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Entangled microwaves as a resource for entangling spatially separate solid-state qubits:
Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules
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Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement
in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By
using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled
baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized.
Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that
this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the
bipartite quantum system which can be optimized for a wide range of realistic physical systems that include
state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic
molecules embedded in a crystalline matrix.
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I. INTRODUCTION

The generation and preservation of entanglement is one of
the basic ingredients in many scalable quantum information
protocols. Quantum cryptography [1,2], quantum communi-
cation [3], quantum repeaters, and certain models of quantum
computation [4–6] demand preexisting entangled states, either
at short distances or at long separations. If we focus on the
establishment of pairwise entanglement, there exist three basic
approaches: (i) an interaction in some past moment [7], (ii)
a joint measurement with an entangled state as an outcome
[8], or (iii) an interaction with a third party or mediator,
such as phonons [9] or photons [10–13], which often can be
reinterpreted as (ii) once the mediator is traced out.

We have cited some examples of atomic and molecular
physics experiments where all these ideas have been put
into practice. However, in recent years the field of solid-
state quantum information processing has reached a status
in which many of those entanglement protocols can be
competitively reproduced, with similar goals and rapidly
improving performance, using semiconductor quantum dots
[14], nitrogen vacancy (NV) centers in diamond [15–17],
superconducting qubits [18–20], surface plasmon polaritons
[21], or superconducting microwave photons [22–26], to name
a few possibilities. In this context, a remarkable idea is the
hybridization of different technologies in a single setup, thus
synthesizing the best of each. One attractive example is the
integration of superconducting resonators with NV centers
in diamond. These systems exploit the long coherence times
of the NV spin in diamond jointly with the promise of
high scalability and robust control of SC circuits [27–30].
Experimentally, the strong coupling between a spin ensemble
and a superconducting resonator has been demonstrated in
the linear or Gaussian regime [31–33], where the resonator
and spin ensemble are both modeled as interacting harmonic
oscillators. In addition, the strong coupling in this hybrid
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systems has made it possible to transfer the state between
the NV ensemble and a superconducting resonator [34] while
some other works show an improvement in the coherence times
and the transfer of single excitations with a flux qubit [35].

A wealth of studies have clarified the transfer of entan-
glement from infinite-dimensional field systems to discrete
matter systems, especially those involving driven cavities with
embedded qubits [36,37]. A first proposal was limited to
considering the unitary evolution of a separate microcavity
plus a single qubit, with the radiation fields in a highly
squeezed pure state [38]. Shortly afterwards, a highlighted
scenario where two remote single-mode cavities containing a
single qubit each was proposed to reach maximally entangled
two-qubit states in both transient and steady-state regimes
[39] by driving the cavities with highly entangled broadband
two-mode Gaussian fields which act as local environments for
each qubit. A standard formalism of second-order perturbation
theory (Born-Markov approximation) makes it possible to
determine the sufficient and necessary conditions to reach
a successful entanglement transfer from a highly mixed
but entangled broadband multimode reservoir to a spatially
separate qubit pair [40]. Finally, pure and mixed entangled
fields have also been proposed to quantum correlate pairs of
other initially uncorrelated subsystems [41], especially when
a mechanism for the replication over many matter subsystem
pairs can be identified [42]. All of these protocols for the con-
trolled manipulation of the entanglement distribution represent
important steps towards the engineering of quantum networks.
Motivated by this joint progress from both the theoretical
and the experimental advances, in this work we study the
transfer of entanglement from a continuous, broadband, two-
line squeezed microwave field (TLSMF) as generated by
Josephson parametric amplifiers (JPAs) [43], onto a bipartite
system consisting of two qubits or two spin ensembles—either
which can be made of NV centers, molecular magnets [44],
or superconducting qubits—roughly as sketched in Fig. 1. By
contrast with previously described protocols, here we propose
a new scheme for gene-rating entanglement between spatially
remote qubit systems exploiting a setup which accommodates
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FIG. 1. System. Two spatially separated qubits (or two-qubit
ensembles) in different branches coupled with entangled microwaves
generated by a parametric Josephson amplifier.

the peculiarities of circuit-QED and of the novel field of
propagating quantum microwaves, without resorting to embed
the qubits in a microcavity but leaving them to couple directly
with the TLSMF which is being continuously replenished.
Moreover, we allow the qubit subsystems to be in contact with
local environments which provide fully incoherent processes
(thermal decoherence) which compete with the quantum
coherent generating processes as represented by the TLSMF.
In this way, we provide quantitative evidence for limitations
on the entanglement transfer as caused by ubiquitous thermal
events, a shortcoming of previous studies [39,40]. We thus
study the pure TLSMF entanglement transfer power as well
as its limitations set by additional couplings to thermal baths,
extending earlier results for quantum systems in contact with
several bath fields [45,46], using Markovian master equations.

The paper is organized as follows. Section II describes the
general formalism for addressing the entanglement driving by
two dissipative entangled baths as represented by TLSMF.
The case of a matter subsystem corresponding to two single
separate qubits is developed in Sec. III, while Sec. IV is devoted
to two distant qubit ensembles. The solutions discussed in
those sections encompass both resonant and nonresonant cases
between central microwave frequency and matter. Further
decoherence effects on the qubit pair or qubit ensembles are
considered in Sec. V. Realistic solid-state implementations
are explored in Sec. VI, where experimental parameters
appropriate to NV centers in diamond, superconducting qubits,
and magnetic molecules are considered. Finally, Sec. VII
summarizes our main conclusions, while technical details are
relegated to the appendixes.

II. BIPARTITE QUANTUM SYSTEM IN CONTACT WITH
TWO SEPARATE BATHS

We start by putting on theoretical ground the formalism
yielding to the master equation describing the generation of
quantum correlations on a quantum matter bipartite system by
driving from two separate entangled (microwave) reservoirs.
In this section we limit ourselves to the effects of the TLSMF
on the matter subsystem. Other couplings of the matter
with additional reservoirs providing extra matter decoherence
channels are discussed below; see Sec. V. Here we follow

and extend to squeezed reservoirs previous results from
[45,46], which have been already applied to a quantum system
coupled to two thermal reservoirs at different temperatures.
We consider a composed quantum system, including the
baths, formed by two spatially separated lines or branches,
as depicted in Fig. 1. In each branch a part of a multisqueezed
microwave field interacts locally with a quantum system of
interest. Thus, the full Hamiltonian reads as

Ĥ =
2∑

j=1

Ĥj =
2∑

j=1

(Q̂j + R̂j + V̂j ), (1)

where for arm j , Q̂j , R̂j , and V̂j denote the partial Hamil-
tonians for the quantum or matter system itself, the free
microwave radiation field, and the matter-radiation interaction
terms, respectively. Notice that [Ĥ1,Ĥ2] = 0.

The aim is to find the equation of motion for the quantum
system reduced density operator, ρ̂(t), from the unitary
evolution of the full supersystem density operator γ̂ (t). To
proceed further we express the full dynamics in the interaction
picture given by the transformation

Û †(t) = Û
†
1 (t)Û †

2 (t) =
2∏

j=1

ei(Q̂j +R̂j )t , (2)

such that an interaction picture operator ÔI (t) is connected
with its Schrödinger version ÔS by ÔI (t) = Û †(t)ÔSÛ (t).
The full supersystem (bipartite quantum system + reservoirs)
density operator satisfies the Liouville-Von Neumann equation
(� = 1)

dγ̂I (t)

dt
= −i[V̂I (t),γ̂I (t)], (3)

with V̂I (t) = V̂1,I (t) + V̂2,I (t). We assume that the coupling
strength between the central quantum matter system and the
microwave reservoirs is weak enough to express γ̂ (t) as

γ̂I (t) = ρ̂I (t) ⊗ ρ̂B
1,2, (4)

where the baths are described by a stationary correlated
(nonseparable) density matrix ρ̂B

1,2. Thus, up to second order
in the matter-radiation interaction strength, we obtain [45,46]

dρ̂I (t)

dt
= (−i)2

∫ t

0
dt1TrR

{[
V̂I (t),

[
V̂I (t1),ρ̂I (t1) ⊗ ρ̂B

1,2

]]}
,

(5)
where TrR{· · · } denotes the partial trace over the squeezed
microwave radiation reservoirs.

According to [24] the broadband TLSMF produced by a
JPA (see Fig. 1) can be described by |Sq〉 = Ŝ|{0}1〉 ⊗ |{0}2〉
[47], where the two-arm multimode vacuum state is denoted
as |{0}1〉 ⊗ |{0}2〉, in such a way that the stationary entangled
baths are described by a nonseparable density operator of the
form

ρ̂B
1,2 = Ŝ|{0}1〉 ⊗ |{0}2〉〈{0}2| ⊗ 〈{0}1|Ŝ†, (6)

indicating that in the arm j a broadband multimode distribution
centered on frequency ωLj is found. The multimode squeezing
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operator is given by

Ŝ = exp

{∑
n,m

s(ωn,ωm)[â†
1(ωL1 + ωn)â†

2(ωL2 − ωm)

− â1(ωL1 + ωn)â2(ωL2 − ωm)]

}
, (7)

where â1(ωL1 + ωn) and â2(ωL2 − ωn) denote the photon an-
nihilation operators for mode n of arms j = 1,2, respectively.
Although microwaves over a broadband continuum of modes
are assumed, the mode indexes n,m in Eq. (7) are represented
by discrete labels for simplicity. In Eq. (7), s(ωn,ωm) = sn,m

are associated with the function (taken as real) of squeezing
parameters between mode ωL1 + ωn in path 1 and mode
ωL2 − ωm in path 2. The multimode entangled state given by
Eq. (6) describes two spatially separated but highly entangled
baths that we use as a resource for entangling the matter
subsystems themselves.

The microwave reservoirs are described by local Hamilto-
nians in each arm such as

R̂ =
2∑

j=1

R̂j =
2∑

j=1

∑
n

[ωLj − (−1)jωn]â†
n,j ân,j . (8)

In the last equation we have explicitly written ân,1 and ân,2

in place of â1(ωL1 + ωn) and â2(ωL2 − ωn), respectively, a
double notation that we take as equivalent in the following.
Additionally, the matter Hamiltonian can be written as

Q̂ =
2∑

j=1

Q̂j =
2∑

j=1

ωj q̂
+
j q̂−

j , (9)

where q̂±
j denote single excitation operators for the mat-

ter subsystem in branch j and the commutation relation
[q̂+

j q̂−
j ,q̂±

j ′ ] = ±q̂±
j δj,j ′ should hold. The specific physical

meaning of ωj and q̂±
j in Eq. (9) are discussed below for

different cases. Finally, the matter-radiation interaction term
in arm j becomes

V̂ =
2∑

j=1

V̂j =
2∑

j=1

∑
n

gn,j (q̂+
j ân,j + q̂−

j â
†
n,j ), (10)

where gn,j = gj [ωLj − (−1)jωn] is the coupling strength
between matter subsystem and mode n in branch j . Therefore,
the interaction picture expression for the matter-radiation
coupling Hamiltonian takes the form

V̂I (t) =
∑

n

g1(ωL1 + ωn)(q̂+
1 ân,1e

i(ω1−ωL1−ωn)t

+ q̂−
1 â

†
n,1e

−i(ω1−ωL1−ωn)t )

+
∑

n

g2(ωL2 − ωn)(q̂+
2 ân,2e

i(ω2−ωL2+ωn)t

+ q̂−
2 â

†
n,2e

−i(ω2−ωL2+ωn)t ). (11)

By inserting Eq. (11) into Eq. (5), expressions involving bath
operators such as TrR1,R2{ρ̂B

1,2â
±
n,kâ

±
m,j } = 〈â±

n,k â±
m,j 〉 (j,k =

1,2) should be evaluated, which for the entangled bath density
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FIG. 2. Microwave squeezing strength s(ω,ω′) described by a
double Gaussian function of two arm frequencies ω and ω′ (in ωL

units, ωL1 = ωL2 = ωL) with �ω+ = 0.09ωL and �ω− = 0.02ωL.

operator given by Eq. (6) leads to

〈â±
n,k â±

m,j 〉=〈{0}1| ⊗ 〈{0}2| Ŝ† â±
n,k â±

m,j Ŝ |{0}1〉⊗ |{0}2〉. (12)

The squeezing function sn,m in Eq. (7) is assumed to be
Gaussian [48], i.e.,

sn,m = s̃

(
2

π�ω−�ω+

)
e−( ωn−ωm

�ω− )2
e−( ωn+ωm

�ω+ )2
, (13)

where �ω− is associated with the width of the two-bath
correlations as determined by the JPA pump duration, while
�ω+ corresponds to the spectral width of the two arms
coherence (see Fig. 2). A special situation occurs when the
two-bath correlations are perfect, i.e., �ω− → 0, transforming
the first Gaussian in Eq. (13) in a δ function, yielding to
sn,m = δn,msn with

sn = s0e
−( 2ωn

�ω+ )2
(14)

being s0 the maximum squeezing between microwaves at
central frequencies ωL1 and ωL2. The reservoir correlations
are then given by the expressions (see the Appendix)

〈â†
n,1âm,1〉 = 〈â†

n,2âm,2〉 = δn,msinh2(rn),

〈â†
n,1â

†
m,2〉 = 〈ân,1âm,2〉 = δn,msinh(rn)cosh(rn),

〈ân,1â
†
m,1〉 = 〈ân,2â

†
m,2〉 = δn,mcosh2(rn). (15)

In the following, we assume that the frequency detunings
(�j = ωj − ωLj ) between quantum matter (ωj ) and central
microwave distribution (ωLj ) satisfy the condition �1 =
−�2 = �, although nonspecific relation between ω1 and ω2 is
required. Arbitrary detuning effects are discussed elsewhere.
Within the Wigner-Weisskopf approach, Eq. (5) yields to a
master equation in Lindblad form as

dρ̂

dt
= L̂MW ρ̂(t) = [L̂1 + L̂2 + L̂1,2]ρ̂(t), (16)

where the MW label in the Lindbladian L̂MW reinforces the
idea of just taking into account TLSMF effects for the moment.
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The local TLSMF terms are given by (j = 1,2)

L̂j ρ̂(t) = �j (�){cosh2[s(�)][2q̂−
j ρ̂(t)q̂+

j − q̂+
j q̂−

j ρ̂(t)

− ρ̂(t)q̂+
j q̂−

j ] + sinh2[s(�)][2q̂+
j ρ̂(t)q̂−

j

− q̂−
j q̂+

j ρ̂(t) − ρ̂(t)q̂−
j q̂+

j ]}, (17)

where, according to Eq. (14), s(�) = s0e
−( 2�

�ω+ )
2

, and the
effective local matter-radiation coupling becomes given by

�j (�) =
∑

n

|gj [ωLj − (−1)jωn]|2δ(ωn − �). (18)

Furthermore, the cross or nonlocal TLSMF Lindblad term in
Eq. (16) reads as

L̂1,2ρ̂(t) = �1,2(�)sinh[2s(�)]{[2q̂+
2 ρ̂(t)q̂+

1 − ρ̂(t)q̂+
1 q̂+

2

− q̂+
1 q̂+

2 ρ̂(t)] + [2q̂+
1 ρ̂(t)q̂+

2 − ρ̂(t)q̂+
2 q̂+

1

− q̂+
2 q̂+

1 ρ̂(t)] + H.c.}, (19)

where the effective nonlocal matter-bath coupling constant in
Eq. (19) is given by

�1,2(�) =
∑

n

g1(ωL1 + ωn)g2(ωL2 − ωn)δ(ωn − �) (20)

and H.c. denotes the Hermitian conjugate terms. Lindblad
terms such as L̂j in Eq. (17) denote the dissipative coupling of
microwaves in line j with its respective matter subsystem.
These local dissipative terms have similar forms as the
coupling of a single matter piece with a single thermal bath,
thus producing a null result for entanglement. Indeed, the
most interesting dissipative term is the nonlocal Lindblad term
L̂1,2 in Eq. (19), which is the responsible for entangling the
two matter subsystems. In the next two sections we apply
this formalism to different physical systems, specifically those
formed by two individual separate qubits, as well as to different
ensembles of qubits interacting with entangled microwave
photons.

III. BIPARTITE QUANTUM SYSTEM: A SOLID-STATE
QUBIT PAIR

The first setup under consideration is a hybrid combination
of two separate single qubits, interacting with a broadband
TLSMF. The solid-state qubits could be individual NV centers,
magnetic nanomolecules or superconducting qubits, while the
entangled microwave fields can be generated in a variety of
ways from JPA devices. The qubits are represented by Pauli
operators σ̂j,z and σ̂±

j , with splitting energies ωj (j = 1,2).
The qubit-radiation interaction strength is given by gn,j =
gj [ωLj − (−1)jωn] for the qubit in the transmission line
j coupled to mode n. In order to quantify the entangling
power of the microwave entangled reservoirs acting on the
noninteracting qubit pair, we start by writing down solutions
to the master equation given in Eq. (16) with Lindblad terms
as in Eqs. (17) and (19), with the substitutions q̂+

j → σ̂+
j and

q̂−
j → σ̂−

j . The effect of the squeezing between the baths on
the qubit pair evolution is evident in the crossed Lindblad term
L̂1,2, where the presence of simultaneous two-qubit excitation
operators σ̂+

1 and σ̂+
2 (or their Hermitian conjugates) occurs. In

a two-qubit base ordered as {| + ,+〉,| + ,−〉,| − ,+〉,| − ,−〉}

the two-qubit density operator ρ̂(t) has the form

ρ̂(t) =

⎛
⎜⎝

ρ1,1(t) 0 0 ρ1,4(t)
0 ρ2,2(t) 0 0
0 0 ρ3,3(t) 0

ρ4,1(t) 0 0 ρ4,4(t)

⎞
⎟⎠, (21)

which is very convenient to evaluate entanglement measures
such as the logarithmic negativity or concurrence [49,50].
Though for a qubit pair these two measures are equivalent,
in this paper we focus on the concurrence (C). The initial two-
qubit density operator corresponds to ρ̂(0) = | − ,−〉〈−, − |;
i.e., the qubit pair is in its ground state. We have solved
analytically the master equation for the qubits in the stationary
regimen and evaluated consequently the concurrence.

The stationary solution for the density matrix ρ̂ss can
be found analytically, which for the density matrix given in
Eq. (21), yields ρss

2,2 = ρss
3,3 and

Css = 2Max
{
0,|ρss

1,4| − ρss
2,2

}
= Max

{
0 ,

2γ tanh[2s(�)] − (γ 2 − 1)sinh2[2s(�)]

(γ 2 + 1) + (γ 2 − 1)cosh[4s(�)]

}
,

(22)

where γ = (γ1 + γ2)/2, with γj = �j/� (from now on we
shall simply denote � = �1,2). Note that the steady-state
two-qubit reduced density matrix, and consequently Css , does
not depend separately on the individual dissipation rates
γj but only on their average value γ . Additionally, it is
straightforward to verify that by putting s0 = 0 in Eq. (22), i.e.,
nonsqueezed microwave baths, each qubit is directly coupled
to a local vacuum or zero-temperature reservoir with no
crossed arm couplings, producing a long-time diagonal density
operator with ρss

1,1 = ρss
2,2 = ρss

3,3 = ρss
1,4 = 0 and ρss

4,4 = 1, cor-
responding to a vanishing qubit pair entanglement, Css = 0.

The result expressed by Eq. (22) holds whenever γ � 1;
otherwise, the Lindblad master equation given by the set of
Eqs. (16), (17) and (19) does not possess steady-state solutions.
The simplicity of this result allows us to obtain an analytical
expression for the borderline in the parameter plane [γ,s(�)],

sinh[4s(�)] = 4γ

γ 2 − 1
, (23)

as shown by the yellow line in Fig. 3(a), separating regions
of zero steady-state concurrence from regions of finite steady-
state entanglement. As depicted in Fig. 3(a), if the microwave
squeezing parameter s(�) increases, the steady-state concur-
rence is also increased, but in order to reach this steady-state
value, a longer time is required. For the special case γ = 1, i.e.,
identical local average and nonlocal cross-dissipation rates,
we found Css = tanh[2s(�)], indicating that for a near reso-
nance condition, � ≈ 0, and large microwave squeezing, r �
1, the stationary concurrence gets saturated to its maximum
value, Css → 1, which corresponds to the qubit pair state ap-
proaching the pure Bell state |
ss〉 ≈ 1√

2
(| + ,+〉 − | − ,−〉).

The two-qubit concurrence time evolution, C(t), is depicted
in Fig. 3(b) for some selected values of the squeezing
parameter s(�) and local dissipation γ terms, as marked by
symbols in Fig. 3(a). Although the precise time evolution of
C(t) does depend on the individual values of γj , from now
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FIG. 3. Two-qubit concurrence C. (a) Steady-state Css as a
function of the microwave squeezing parameter s(�) and γ =
(γ1 + γ2)/2; the solid (yellow) line corresponds to Eq. (23).
(b) Time-dependent C(t) for selected parameters as marked by similar
symbols in (a) for two initially unentangled qubits.

on we restrict ourselves to illustrating results only for the
symmetric case, i.e., γ1 = γ2. In all cases the concurrence
starts growing linearly in time, i.e., C(t) ∼ t , at short times. For
the special line γ = 1 in Fig. 3(a) the steady-state concurrence
value, Css , requires longer times to be reached as the squeezing
parameter s(�) gets larger.

Next we discuss the two-qubit entanglement generation
process from an unentangled initial two-qubit state, by
considering separately the effects of the microwave resonance
squeezing strength s0 and the detuning between central
microwave frequency and qubit splitting, �. In Fig. 4(a),
the steady-state concurrence Css for γ = 1 is plotted as a
function of the resonance squeezing strength s0 and the central
microwave frequency-qubit detuning, �. The time dependence
of C(t) is shown in Fig. 4(b) for the zero-detuning case, i.e.,
� = 0, as a function of the squeezing parameter s0 [green
points in Fig. 4(a)], while in Fig. 4(c) C(t) is shown for the
special microwave squeezing amount s0 = 1 as a function
of the detuning � [black points in Fig. 4(a)]. In Fig. 4(c)
a two-time entanglement evolution is also evident: a fast
entanglement generation at short times with C(t) ∼ t followed
by a slower time evolution towards the saturation value, a clear
behavior especially seen near resonance.

FIG. 4. Concurrence for two initially unentangled qubits for
γ = 1. (a) Steady-state Css as a function of the resonance squeezing
strength s0 and the central microwave frequency-qubit detuning, �.
(b) Time-dependent C(t) at zero detuning, � = 0 [green points in
(a)]. (c) Time-dependent C(t) at fixed maximum squeezing s0 = 1
[black points in (a)].

In order to further explore the entanglement generation
process, we now consider some points in the parameter space
[see Fig. 3(a)] outside the special γ = 1 line. The two-qubit
time-dependent concurrence C(t) is depicted in Fig. 5 for
symmetric local dissipation rates larger than the nonlocal or
cross-dissipation rate, i.e., γ = 1.1. Figure 5(a) shows results
of C(t) at resonance � = 0 as a function of the squeezing
parameter s0, where it is clear that C(t) goes rapidly to
its steady-state value for a microwave squeezing s0 ≈ 0.5.
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FIG. 5. Time-dependent two-qubit entanglement generation,
C(t), for initially unentangled qubits with symmetric local dissipation
rates larger than the cross-dissipation rate, γ = 1.1. (a) Resonance,
� = 0; (b) fixed maximum squeezing parameter s0 = 1.5.

However, at variance with the time evolution behavior for
γ = 1 [see Fig. 4(b)] for which the larger s0, the larger is
the steady-state entanglement generation, now for γ = 1.1
there is only a transient generation of C(t) with a vanishing
steady-state limit, as shown in Fig. 3(a). An interesting
behavior is uncovered by the plot in Fig. 5(b): By starting
with a high microwave entanglement as corresponds to
s0 = 1.5 and the resonance condition � = 0, the two-qubit
concurrence remains stuck to zero [both transient and steady-
state values vanish; see Fig. 3(a)]; however, by detuning the
qubit-microwave interaction, i.e., letting � > 0, the effective
squeezing parameter decreases s(�) < s0, allowing for the
generation of two-qubit entanglement, as can also been seen
as a process where one starts at a point above the yellow line
in Fig. 3(a) and, by varying enough the detuning, one crosses
the yellow line to the zone of the parameter space where
a steady-state entanglement is allowed. Thus, this behavior
could mitigate the necessity of a special γ value to generate a
finite two-qubit entanglement.

The crucial result of this section is that effectively it is
possible to entangle distant qubits initially prepared in a

separable state by using two entangled broadband microwave
baths.

IV. BIPARTITE QUANTUM SYSTEM: TWO
NONINTERACTING QUBIT ENSEMBLES

In the preceding section we showed that a finite amount of
entanglement of two initially separated qubits can be generated
from two highly correlated microwave baths. However, this
transfer process is strongly limited by the coupling strength
between the qubits and the microwave radiation. In order to
increase the matter-radiation coupling, we propose to replace
the system of two single qubits with two spin ensembles. In
this way the matter-radiation coupling increases

as g ∼ ge

√
N , where ge is the coupling of a single qubit

with the microwave photons, yielding to an absolute increase
of both local and nonlocal dissipation rates �j and �. An
immediate positive consequence of this enhancement is to cut
down the rise time of the entanglement generation to reach the
steady-state final value for two spin ensembles.

Assuming that each spin ensemble has a low polarization,
i.e., they remain close to its global ground state, we can
introduce collective bosonic operators associated with each
qubit ensemble b̂j ,b̂

†
j , j = 1,2 [51]. Thus, now we consider

a central quantum system formed by two independent single-
mode boson fields, each of them coupled to a different reservoir
of microwave radiation, but, as before, these microwave
reservoirs still stay in a broadband squeezed multimode state.
The master equation for the spin ensembles has the same
structure as for single qubits, given by Eq. (16), with the
Lindblad terms as given in Eqs. (17) and (19) but now with the
replacements q̂+

j → b̂
†
j and q̂−

j → b̂j (j = 1,2).
We study the dynamics of a subsystem composed of two

initially noninteracting spin ensembles coupled to a broadband
TLSMF from a JPA. We are interested in the time evolution
of the degree of entanglement of the spin ensembles, having
initially zero excitations, i.e., ρ̂(0) = |0,0〉〈0,0|, once they
have interacted with the entangled microwaves. The state
for the pair of spin ensembles is entirely specified by its
covariance matrix, which is a real, symmetric, and positive
matrix [49,52,53],

σ̂ (t) =

⎛
⎜⎝

σxx σxpx
σxy σxpy

σxpx
σpxpx

σypx
σpxpy

σxy σypx
σyy σypy

σxpy
σpxpy

σypy
σpypy

⎞
⎟⎠. (24)

The entries of the last matrix, σαβ , with α,β = x,y,px,py , are
given by

σαβ = 1
2 〈α̂β̂ + β̂α̂〉 − 〈α̂〉 〈β̂〉 , (25)

and they are computed from the canonical boson spin ensemble
operators as

x̂j = (b̂j + b̂
†
j )√

2
, p̂j = (b̂j − b̂

†
j )

i
√

2
, (26)

with (x̂1,p̂1) = (x̂,p̂x) and (x̂2,p̂2) = (ŷ,p̂y).
The entanglement of a two-mode Gaussian state is mea-

sured by the logarithmic negativity EN , which has a closed
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FIG. 6. Logarithmic negativity, EN , for two spin ensembles.
(a) Steady-state Ess

N as a function of the microwave squeezing
parameter s(�) and γ ; the solid (yellow) line corresponds to Eq. (34).
(b) Time-dependent EN (t) for selected parameters as marked by
similar symbols in (a) for two initially unentangled spin ensembles.

expression given by

EN = Max{0, − log2 2ν̃−}. (27)

Here ν̃− represents the smallest of the two symplectic eigen-
values of the partial transpose σ̃ of the two-mode covariance
matrix σ̂ . Writing the matrix σ̂ in terms of 2 × 2 blocks,

σ ≡
(

Â Ĉ

ĈT B̂

)
, (28)

the logarithmic negativity in Eq. (27) reads as

EN (t) = Max

{
0, − 1

2
log2[4G(σ (t))]

}
, (29)

G(σ ) = 1

2
(det A + det B) − det C

−
{[

1

2
(det A + det B) − det C

]2

− det σ

}1/2

. (30)

As in the previous section, for two-qubit ensembles a well-
behaved steady-state solution of the Lindblad equation only
exists for γ � 1. Thus, in the stationary regime (t → ∞) the

only nonzero entries of the covariance matrix in Eq. (24) are

σxx = σyy = 1
2 cosh[2s(�)] = σpxpx

= σpypy
, (31)

σxy = − 1

2γ
sinh[2s(�)] = −σpxpy

, (32)

yielding to the following close expression for the steady-state
logarithmic negativity,

Ess
N = Max

{
0, log2

{
γ

γ cosh[2s(�)] − sinh[2s(�)]

}}
, (33)

a result plotted in Fig. 6(a), where the borderline separating
finite from zero Ess

N regions (solid yellow line) is now given
by

sinh[2s(�)] = 2γ

γ 2 − 1
. (34)

An immediate comparison of this last result with that expressed
by Eq. (23) for the two-qubit case leads us to conclude that the
generation of steady-state entanglement between two-qubit
ensembles is allowed in a wider region of the parameter
space [γ,s(�)] than for a single-qubit pair. In other words,
there are parameter points for which two-qubit steady-state
entanglement never exists but, for the same parameter set, two-
qubit ensembles can indeed get entangled. For selected points
marked in Fig. 6(a) the ensembles entanglement evolution
EN (t) is plotted in Fig. 6(b), where it can be seen that for any
parameter set, EN (t) ∼ t with a single time constant.

The behavior of EN , both steady-state and time-dependent,
as a function separately of the maximum microwave squeezing
parameter s0 and detuning �, for γ = 1, is shown in Fig. 7.
Obviously, at resonance Ess

N grows boundless as a function
of s0 [see Fig. 7(a)], however, with a fast degrading as the
resonance condition is lost. For the time-dependent behavior,
we found a single time-entanglement generation for any
resonance detuning [see Figs. 7(b)–7(c)].

Entanglement generation results for dissipation rates out-
side the special line γ = 1 in Fig. 6(a) show a similar behavior
as that reported in Sec. III for a qubit pair. Again notice that
by increasing the detuning � one can cross the yellow line in
Fig. 6(a), from above to below, allowing the qubit ensembles
to become entangled at nonresonance conditions as shown in
Figs. 8(a) and 8(b).

V. THERMAL DECOHERENCE EFFECTS

The open quantum aspects of the results discussed so
far have been limited to the TLSMF entangled reservoirs
action upon the matter systems. However, the matter qubits
in realistic solid-state setups are also exposed to other
interactions with different degrees of freedom within the
material or with additional external radiation fields which
yield to a matter entanglement decreasing, though the rate
of the entanglement generation by the TLSMF reservoirs
themselves remain unaltered. Therefore, it is necessary to
quantify the effects of realistic decoherence processes in the
present systems of interest: NV centers, magnetic molecules,
and superconducting qubits. We concentrate on amplitude
damping processes associated with thermal excitations as they
constitute the main source of quantum correlation losses in
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FIG. 7. Logarithmic negativity for two initially uncoupled qubit
ensembles for γ = 1. (a) Steady-state Ess

N as a function of the
maximum squeezing strength s0 and the central microwave frequency-
qubit detuning, �. (b) Time-dependent EN (t) at resonance, � = 0
[green points in (a)]. (c) Time-dependent EN (t) at fixed maximum
squeezing s0 = 1.5 [black points in (a)].

condensed-matter qubit systems [54]. However, if we focus on
a specific solid-state realization a more detailed decoherence
modeling might be required. Neighboring spins for NV centers
[55], thermal fluctuations of dipolar interactions for magnetic
molecules [56], and changes in the magnetic flux or external
currents for superconducting qubits [57] are some particular
examples of decoherence processes in different condensed-
matter systems. If we include the thermal excitations, the full

FIG. 8. Time-dependent logarithmic negativity, EN (t), for ini-
tially unentangled qubit ensembles with symmetric local dissipation
rates larger than the cross-dissipation rate, γ = 1.1. (a) Resonance,
� = 0; (b) fixed maximum squeezing parameter s0 = 1.5.

master equation takes the form

dρ̂

dt
= L̂MW ρ̂(t) + L̂Dρ̂(t), (35)

where L̂MW is given by Eqs. (16)–(19) and L̂D in Eq. (35)
represents the decoherence Lindbladian term associated with
amplitude or thermal damping processes as given by

L̂Dρ̂(t) =
∑
j=1,2

�th
j {(nj + 1)[2q̂−

j ρ̂(t)q̂+
j − q̂+

j q̂−
j ρ̂(t)

− ρ̂(t)q̂+
j q̂−

j ] + nj [2q̂+
j ρ̂(t)q̂−

j − q̂−
j q̂+

j ρ̂(t)

− ρ̂(t)q̂−
j q̂+

j ]}, (36)

where nj = (e
ωj

KB Tj − 1)
−1

denotes the Bose-Einstein occupa-
tion number for frequency ωj of a thermal bath at temperature
Tj (KB is the Boltzmann constant) and �th

j represents a
Weisskopf-Wigner effective thermal decay rate, for each j =
1,2 matter subsystem. Notice that the decoherence/thermal
Lindbladian L̂D in Eq. (36) has the same structure as the
sum of local Lindbladians for the TLSMF case as given by
Eq. (17). Thus, we can conclude that the presence of incoherent
thermal processes affecting the spin-qubit systems will leave
unaffected the nonlocal entangling TLSMF Lindblad term in
Eq. (19). However, a stronger competition between entangling
and nonentangling terms is now expected.
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We concentrate upon discussing decoherence effects just
for the steady-state entanglement behavior. For the two
separate qubit case the borderline separating the entangled
from unentangled steady-state regions can now be written as
(�th

1 = �th
2 = �th and n1 = n2 = n),

6∑
i=0

pi(γ,γth,n)xi = 0, (37)

with x = exp{2s(�)} and γth = �th/�1,2. The explicit forms
of functions pi(γ,γth,n) are given in Appendix B, where it is
easily confirmed that in case of γth = 0 it follows that p1 =
p3 = p5 = 0, retrieving the expression previously given in
Eq. (23). For qubit ensembles in the presence of thermal effects
the region in the s(�) − γ parameter plane of finite steady-
state logarithmic negativity, EN , is now given by the following
inequalities:

p−(γ,γth,n) � exp{s(�)} � p+(γ,γth,n), (38)

with

p±(γ,γth,n) =
√

γ − 2nγth ± √
1 + 4nγth(nγth − γ )

γ − 1
. (39)

Notice that when nγth → 0 the borderline separating entangled
from unentangled zones is given by

exp{s(�)} =
√

γ + 1

γ − 1
, (40)

which yields directly to Eq. (34).
Thermal decoherence effects on the TLSMF mediated

entanglement generation for both cases, a qubit pair and
multiqubit ensembles, are depicted in Figs. 9(a) and 9(b) for
γth = 0.7 and n = 0.1. First, by comparing the color scales in
Figs. 9(a) and 9(b) with the corresponding scales in Figs. 3
and 6, we find that the maximum entanglement amount is
reduced roughly one order of magnitude with respect to the
pure TLSMF case. Second, a reduction of the entanglement
zone when thermal effects are incorporated is also observed in
both cases [the solid yellow lines correspond to the borderline
separating the steady-state entangled-unentangled regions in
the s(�) − γ parameter plane]. For the sake of comparison
we also display with dashed yellow lines the γth = 0 results
as previously plotted in Figs. 3(a) and 6(a). For additional
information we also plot, as white dotted lines, in Figs. 9(a)
and 9(b) the borders of the steady-state finite entanglement
regions for a higher-temperature situation, i.e., γth = 0.7 and
n = 0.16. Notice that for low microwave squeezing values,
small s(�), the steady-state entanglement disappears quickly
as the crossed squeezing term �1,2 in Eq. (20) decreases or,
equivalently, when γ values increase. Furthermore, it is evident
that thermal decoherence effects impose, as a requirement for
generating steady-state entanglement, a minimum amount of
microwave squeezing s(�). Notice also that a maximum value
of γ (or equivalently a minimum value of cross TLSMF rate
�1,2) as determined by each temperature, is required to achieve
steady-state entanglement. These extreme values [s∗(�),γ ∗]
are represented in Fig. 9 with solid circles for qubit pairs and
open circles for qubit ensembles. The dependence of these
extreme values for a range of temperatures is depicted in

FIG. 9. Steady-state entanglement in the TLSMF parameter
space {s(�),γ }: (a) two-qubit concurrence Css and (b) two multispin
logarithmic negativity, Ess

N . For panels (a) and (b) lines represent the
border separating entangled from unentangled states: dashed (yellow)
lines denote pure TLSMF entanglement transfer, i.e., γth = 0.0; solid
(yellow) lines correspond to thermal coupling γth = 0.7 and mean
thermal excitation number n = 0.1, while dotted (white) lines denote
a higher-temperature case with γth = 0.7 and n = 0.16. Circles in
the figures, with coordinates {s∗(�),γ ∗}, represent the maximum γ

values, and corresponding squeezing s(�), to reach entangled states
(see also Fig. 10).

Fig. 10, where the area of the circles is proportional to the
average number of excitations n. Evidently, the larger the
temperature a higher minimum value of cross TLSMF �1,2 is
required. The maximum value of concurrence for a qubit pair
as a function of temperature (n) is shown in the inset of Fig. 10.
Since the logarithmic negativity for the multiqubit systems
is not bounded, a similar graph cannot be built for different
temperatures. By including other sources of dissipation the
long-time entanglement is further degraded; nevertheless,
the qualitative behavior described previously is still observed.
The optimal values of �1,2 and s(�) can be controlled to reach
a significant amount of entanglement.

All the main results described for the γth = 0 situation
survive well if decoherence towards thermal environments is
on the same order of magnitude as the cross TLSMF �1,2

value and low-enough temperatures. According to these results
we conclude that thermal decoherence effects limit both the
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,

FIG. 10. Extreme values s∗(�) and γ ∗−1 ∼ �1,2 (see also Fig. 9)
to obtain stationary entangled states for qubit pairs (solid circles)
and qubit ensembles (open circles) for a thermal coupling γth = 0.7
as the temperature is varied, producing mean excitation thermal
numbers ranging from n = 0.05 to n = 0.19. The area of each circle
is proportional to n. (Inset) Maxima of steady-state concurrence for
a qubit pair system as a function of n (or temperature): red squares
represent no thermal bath γth = 0, open black circles γth = 0.1, and
solid blue circles γth = 0.3

maximum amount of entanglement for the two cases consid-
ered as wells as the region in the s(�) − γ parameter space
where a stationary entanglement can be reached. However,
the existence of finite steady-state entanglement generated by
TLSMF can survive the attack of thermal effects. Therefore,
the entanglement transfer from entangled microwaves to solid-
state qubits pairs or multiqubit ensembles is a reliable and
robust process even in the presence of noisy environments.

VI. EXPERIMENTAL IMPLEMENTATION

We have explained two theoretical protocols to transfer
quantum correlations from a squeezed bath to two initially
uncoupled systems, either qubits or ensembles that behave
like effective harmonic oscillators. We now discuss how these
ideas can be adapted to a setup where the entangling bath
is squeezed microwave radiation generated and propagating
through a superconducting device.

JPAs [43] are superconducting devices that, by combining
an external driving with some incoming radiation, can produce
huge signal gains with the addition of very minimal, quantum
limited noise. At the same time that they amplify the radiation,
these devices are also capable of producing very large amounts
of squeezing, either on some income field or in pure vacuum.
From early implementations with about 50% noise reduction
[58,59], state-of-the-art implementations now reach values
of 10 dB squeezing in an input vacuum state [60], figures
that improve every year. When operated in the frequency
downconversion regime, JPA generates pairs of correlated
photons in a two-mode squeezed state such as the one used
in this work [22]. Alternatively to ordinary JPAs, we also find
other Josephson devices in the literature which are specifically
tuned for two-mode squeezing generation and which hold a
greater potential for large squeezing values [24,26], already
facilitating values of 12-dB two-mode squeezing [26].

Let us first discuss the situation in which the TLSMF cou-
ples to an ensemble of NV centers. The advantage of using spin
ensembles composed by NV centers is the similar energy with
the squeezed microwaves generated in quantum circuits. Each
NV center has a S = 1 ground state, with zero-field splitting
� = 2π × 2.87 GHz between the ms = 0 and the ms = ±1
states. By the application of an external magnetic field, one can
isolate two spin transitions of this triplet due to the fact that the
zero-field spin splitting � sets a preferred axis of quantization
to be along the axis of the nitrogen-vacancy bond and model
the NV like two qubits. For the coupling between the NV spin
ensemble and the microwave field we have taken experimental
reported parameters where for N = 3 × 107 color centers
g ≈ 2π × 35 MHz [29]. In order to quantify the entanglement
between the ensembles once they have interacted with the
correlated baths, we calculated the logarithmic negativity in
Sec. IV and we show the optimal parameter of squeezing
of the microwaves s0 required. In Figs. 6 to 8 we can
note that appreciable entanglement is obtained for s0 � 0.5
in both regimes, time depending and stationary. This value
corresponds to a gain GE = cosh2[s0] = 1.27 dB; therefore,
the required squeezing for the microwaves to obtain maximum
entangled values is in the range of the reported experimental
values. The other essential parameter in that process is the �,
where � ∼ g2. For the case of a spin ensemble, g ≈ 2π ×
35 MHz, and the results show that with this parameter we can
obtain significant values of entanglement between the two spin
ensembles. In the stationary regime the Ess

N function reaches
the value 5 for s0 = 1.5. The other experimental setup that
we propose consists of two single qubits which are spatially
separated and coupled to different transmission line modes.
As we have seen above, a good qubit-radiation coupling is
essential for a successful transfer of correlations, which may
condition the implementation. If those qubits are NV centers,
the typical coupling to the microwaves will be rather small,
about 100 Hz for a bare line, or slightly larger, ∼ 0.1 MHz,
for more sophisticated coupling mechanisms [61,62], but
always on the borderline and dominated by other dephasing
or dissipation mechanisms. One interesting alternative is to
rely on molecular magnets: Still in the range of microwaves,
these macromolecules host ions with large magnetic moments
and they can be placed cleverly for enhanced coupling
with the radiation. For example, for molecules of Fe8 the
relation g/ω is three orders of magnitude greater than for
NV centers [44]. Finally, the simplest route would be to
use our protocol to entangle ordinary superconducting qubits.
In QED circuit experiments strong coupling of microwave
photons confined in a transmission line cavity with single
superconducting qubits has already been demonstrated, with
coupling strengths between matter and radiation reaching
values of up to g = 105 MHz [63], while thermal decay effects
in such low-temperature setups are so weak that effects in such
low-temperature setups are so weak that our results shown in
Figs. 9 and 10 are indeed relevant.

VII. CONCLUSIONS

Summing up, in this work we have proposed a hybrid
system in order to study the dynamics of quantum correlations
transferred to initially uncoupled single or spin ensembles
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from a squeezed microwave field generated by JPA devices
combining recent advances on parametric amplifiers with
NV centers and other solid-state spin systems which share
similar energy scales to that of controlled microwave radiation
fields. For the case of spin ensembles we evidence a notable
value for the entanglement without requiring high values for
the squeezing parameter of microwaves r; this facilitates the
possible experimental implementation. Even more interesting
is the possibility of getting entanglement even in the stationary
regimen. The experimental values for coupling between spin
ensembles and microwaves show that this proposal would
serve for obtain highly entangled states. In the case of the
qubits it is of great interest to control single quantum particles
and reach entanglement among them. The results show that if
we combine the squeezed microwaves with single-molecule
magnets or superconducting qubits it is possible to reach
non-negligible spin entanglement values. We have established
the robustness of TLSMF entanglement transfer processes
under thermal dissipative conditions.
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APPENDIX A: BROADBAND SQUEEZING
TRANSFORMATIONS

To proceed further, it is important to realize that reservoir
boson operators are transformed by the action of the squeezing
operator Ŝ [see Eq. (7)] as

Ŝ†ân,j Ŝ =
∑
m

[
A(1)

n,mâm,j + A(2)
n,mâ

†
m,j̄

]
,

(A1)
Ŝ†â†

n,j̄
Ŝ =

∑
m

[
A(1)

n,mâ
†
m,j̄

+ A(2)
n,mâm,j

]
,

j,j̄ = 1,2, with j + j̄ = 3. In Eq. (A1) the expressions for
A

(j )
n,m are given by

A(1)
n,m = δn,m + 1

2!

∑
p

rn,prm,p

+ 1

4!

∑
p,q,r

rn,prq,prq,r rm,r + · · ·,

A(2)
n,m = rn,m + 1

3!

∑
p,q

rn,prq,prq,m

+ 1

5!

∑
p,q,r,s

rn,prq,prq,r rs,rRs,m + · · ·. (A2)

On inserting Eqs. (A1) into Eq. (12) it follows that the only
different-from-zero partial traces over the reservoir degrees of
freedom correspond to

〈â†
n,1âm,1〉 = 〈â†

n,2âm,2〉 =
∑

p

A(2)
n,pA(2)

m,p,

〈â†
n,1â

†
m,2〉 = 〈ân,1âm,2〉 =

∑
p

A(1)
n,pA(2)

m,p,

〈ân,1â
†
m,1〉 = 〈ân,2â

†
m,2〉 =

∑
p

A(1)
n,pA(1)

m,p. (A3)

On inserting Eq. (14), valid for a perfect correlated two-bath
system, into Eq. (A2), we arrive to the simple expressions

A(1)
n,m = δn,mcosh(rn),

A(2)
n,m = δn,msinh(rn). (A4)

On substituting Eqs. (A4) into Eqs. (A1) we obtain Eqs. (15).

APPENDIX B: COMPETITION BETWEEN SQUEEZING
AND THERMAL EFFECTS

Here we proceed to give the explicit form for the steady-
state two-qubit concurrence Css . It is given by

Css = 1

4

6∑
i=0

pi(γ,γth,n)xi

6∑
i=0

qi(γ,γth,n)xi

, (B1)

with x = exp{2s(�)} and the explicit forms of functions
pi(γ,γth,n) and qi(γ,γth,n) are

p0(γ,γth,n) = p6(γ,γth,n) = −γ (γ 2 − 1),

p1(γ,γth,n) = p5(γ,γth,n) = 2γth(1 + 2n)(1 − 3γ 2),

p2(γ,γth,n) = −γ − 8γ 2 + γ 3 − 16γ γth + 8γ 2γth − 8γ 2
th

− 8γ γ 2
th − 48γ γ 2

thn(n + 1),

p4(γ,γth,n) = −γ + 8γ 2 + γ 3 + 16γ γth + 8γ 2γth

+ 8γ 2
th−8γ γ 2

th − 48γ γ 2
thn(n + 1),

p3(γ,γth,n) = −4γth[1 + γ 2 − 4γ γth + 2(1 + γ 2)n

− 8γthn(γth − γ + 3γthn + 2γthn
2)], (B2)

and

q0(γ,γth,n) = q6(γ,γth,n) = γ (γ 2 − 1),

q1(γ,γth,n) = q5(γ,γth,n) = γ [1 + 3γ 2 + 12γ 2
th(1 + 2n)2],

q2(γ,γth,n) = q4(γ,γth,n) = −γ − 8γ 2 + γ 3 − 16γ γth

+ 8γ 2γth − 8γ 2
th − 8γ γ 2

th − 48γ γ 2
thn(n + 1),

q3(γ,γth,n) = 16γth[(1 + 2n)(1 + 3γ 2) + 2γ 2
th(1 + 6n

+ 12n2 + 8n3)]. (B3)
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[27] Z.-L. Xiang, X.-Y. Lü, T.-F. Li, J. Q. You, and F. Nori, Phys.
Rev. B 87, 144516 (2013).

[28] D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin,
and A. S. Sørensen, Phys. Rev. Lett. 105, 210501 (2010).

[29] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-i. Karimoto, H.
Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto et
al., Nature (London) 478, 221 (2011).

[30] Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya,
N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A.
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D. Zueco, and F. Luis, New J. Phys. 15, 095007 (2013).
[45] L. Quiroga, F. J. Rodrı́guez, M. E. Ramı́rez, and R. Parı́s, Phys.

Rev. A 75, 032308 (2007).
[46] J. C. Castillo, F. J. Rodrı́guez, and L. Quiroga, Phys. Rev. A 88,

022104 (2013).
[47] M. Scully and M. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, UK, 1997).
[48] L. J. Salazar, D. A. Guzmán, F. J. Rodrı́guez, and L. Quiroga,

Opt. Express 20, 4470 (2012).

062336-12

http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature06118
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/nature01494
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1038/nature04353
http://dx.doi.org/10.1103/PhysRevLett.96.030405
http://dx.doi.org/10.1103/PhysRevLett.96.030405
http://dx.doi.org/10.1103/PhysRevLett.96.030405
http://dx.doi.org/10.1103/PhysRevLett.96.030405
http://dx.doi.org/10.1103/PhysRevLett.110.213603
http://dx.doi.org/10.1103/PhysRevLett.110.213603
http://dx.doi.org/10.1103/PhysRevLett.110.213603
http://dx.doi.org/10.1103/PhysRevLett.110.213603
http://dx.doi.org/10.1038/nature11573
http://dx.doi.org/10.1038/nature11573
http://dx.doi.org/10.1038/nature11573
http://dx.doi.org/10.1038/nature11573
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1103/PhysRevA.81.062325
http://dx.doi.org/10.1103/PhysRevA.81.062325
http://dx.doi.org/10.1103/PhysRevA.81.062325
http://dx.doi.org/10.1103/PhysRevA.81.062325
http://dx.doi.org/10.1103/PhysRevLett.108.040502
http://dx.doi.org/10.1103/PhysRevLett.108.040502
http://dx.doi.org/10.1103/PhysRevLett.108.040502
http://dx.doi.org/10.1103/PhysRevLett.108.040502
http://dx.doi.org/10.1103/PhysRevLett.112.216805
http://dx.doi.org/10.1103/PhysRevLett.112.216805
http://dx.doi.org/10.1103/PhysRevLett.112.216805
http://dx.doi.org/10.1103/PhysRevLett.112.216805
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1103/PhysRevLett.113.110502
http://dx.doi.org/10.1103/PhysRevLett.113.110502
http://dx.doi.org/10.1103/PhysRevLett.113.110502
http://dx.doi.org/10.1103/PhysRevLett.113.110502
http://dx.doi.org/10.1103/PhysRevB.87.144516
http://dx.doi.org/10.1103/PhysRevB.87.144516
http://dx.doi.org/10.1103/PhysRevB.87.144516
http://dx.doi.org/10.1103/PhysRevB.87.144516
http://dx.doi.org/10.1103/PhysRevLett.105.210501
http://dx.doi.org/10.1103/PhysRevLett.105.210501
http://dx.doi.org/10.1103/PhysRevLett.105.210501
http://dx.doi.org/10.1103/PhysRevLett.105.210501
http://dx.doi.org/10.1038/nature10462
http://dx.doi.org/10.1038/nature10462
http://dx.doi.org/10.1038/nature10462
http://dx.doi.org/10.1038/nature10462
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.060502
http://dx.doi.org/10.1103/PhysRevLett.107.060502
http://dx.doi.org/10.1103/PhysRevLett.107.060502
http://dx.doi.org/10.1103/PhysRevLett.107.060502
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevA.85.012333
http://dx.doi.org/10.1103/PhysRevA.85.012333
http://dx.doi.org/10.1103/PhysRevA.85.012333
http://dx.doi.org/10.1103/PhysRevA.85.012333
http://dx.doi.org/10.1103/PhysRevA.91.042329
http://dx.doi.org/10.1103/PhysRevA.91.042329
http://dx.doi.org/10.1103/PhysRevA.91.042329
http://dx.doi.org/10.1103/PhysRevA.91.042329
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1103/PhysRevB.69.214502
http://dx.doi.org/10.1103/PhysRevB.69.214502
http://dx.doi.org/10.1103/PhysRevB.69.214502
http://dx.doi.org/10.1103/PhysRevB.69.214502
http://dx.doi.org/10.1103/PhysRevLett.104.240501
http://dx.doi.org/10.1103/PhysRevLett.104.240501
http://dx.doi.org/10.1103/PhysRevLett.104.240501
http://dx.doi.org/10.1103/PhysRevLett.104.240501
http://dx.doi.org/10.1103/PhysRevLett.92.197901
http://dx.doi.org/10.1103/PhysRevLett.92.197901
http://dx.doi.org/10.1103/PhysRevLett.92.197901
http://dx.doi.org/10.1103/PhysRevLett.92.197901
http://dx.doi.org/10.1103/PhysRevA.89.033803
http://dx.doi.org/10.1103/PhysRevA.89.033803
http://dx.doi.org/10.1103/PhysRevA.89.033803
http://dx.doi.org/10.1103/PhysRevA.89.033803
http://dx.doi.org/10.1103/PhysRevLett.110.040503
http://dx.doi.org/10.1103/PhysRevLett.110.040503
http://dx.doi.org/10.1103/PhysRevLett.110.040503
http://dx.doi.org/10.1103/PhysRevLett.110.040503
http://dx.doi.org/10.1364/JOSAB.4.001551
http://dx.doi.org/10.1364/JOSAB.4.001551
http://dx.doi.org/10.1364/JOSAB.4.001551
http://dx.doi.org/10.1364/JOSAB.4.001551
http://dx.doi.org/10.1088/1367-2630/15/9/095007
http://dx.doi.org/10.1088/1367-2630/15/9/095007
http://dx.doi.org/10.1088/1367-2630/15/9/095007
http://dx.doi.org/10.1088/1367-2630/15/9/095007
http://dx.doi.org/10.1103/PhysRevA.75.032308
http://dx.doi.org/10.1103/PhysRevA.75.032308
http://dx.doi.org/10.1103/PhysRevA.75.032308
http://dx.doi.org/10.1103/PhysRevA.75.032308
http://dx.doi.org/10.1103/PhysRevA.88.022104
http://dx.doi.org/10.1103/PhysRevA.88.022104
http://dx.doi.org/10.1103/PhysRevA.88.022104
http://dx.doi.org/10.1103/PhysRevA.88.022104
http://dx.doi.org/10.1364/OE.20.004470
http://dx.doi.org/10.1364/OE.20.004470
http://dx.doi.org/10.1364/OE.20.004470
http://dx.doi.org/10.1364/OE.20.004470


ENTANGLED MICROWAVES AS A RESOURCE FOR . . . PHYSICAL REVIEW A 93, 062336 (2016)

[49] J. Laurat, G. Keller, J. A. Oliveira-Huguenin, C. Fabre, T.
Coudreau, A. Serafini, G. Adesso, and F. Illuminati, J. Opt.
B 7, S577 (2005).

[50] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
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