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Energies and density distributions of the helium atoms in Br2sXd - s4HedN clusters are calculated using a
quantum “Hartree-like” approach in which the dopant molecule and the4He atoms play the role of the nuclei
and electrons, respectively, of the original Hartree formulation. A detailed generalization of the methodology is
presented. The validity of this treatment is assessed by comparing energies and density distributions forN
=2 up toN=18 with those obtained by performing quantum diffusion Monte CarlosDMCd calculations. The
present Hartree model shows good agreement with the DMC calculations, the main difference being that the
DMC density distributions of the He atoms are more isotropic than those generated via the model. The
treatment is extended to largersup to N=60d clusters and saturation effects are analyzed and discussed.
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I. INTRODUCTION

Recent advances in experimental investigations of spec-
troscopic properties of molecules in helium droplets have
raised new and challenging questions on the role of the
“quantum environment”f1g. The experiments produced a
number of interesting observations; for example, measure-
ments of Grebenevet al. f2g on the carbonyl sulfidesOCSd
molecule solvated by helium atoms revealed different spectra
of the dopant molecule depending on the fermionic or
bosonic character of the solvent. The spectroscopic probe of
the impurity species indicates free-rotor-like behavior in4He
droplets—although with an increased moment of inertia—
whereas in3He droplets the spectrum of the dopant has an
unstructured broad profile. Adding a small number of4He
atomss,60d to the fermionic solvent leads to recovering the
structured spectrum of the solvated molecule, a feature
which was interpreted as a manifestation of superfluidity on
the microscopic scalef2g. A number of additional experi-
ments on small- and intermediate-sized doped helium clus-
ters f3–6g based on helium nanodroplet isolationsHENDId
spectroscopyf7g have been performed recently.

Theoretical and computational studies of the cluster sol-
vation phenomenon pose a number of challenges. The sys-
tems may be too small for a statistical treatment and too
large for a detailedsnuclei1electronsd structural and dy-
namical analysis. A practical approach for describing doped
bosonic helium clusters is to use variational, diffusion, and
path integral Monte CarlosMCd methodsssee, e.g., Refs.
f8,9gd. The latter represents the most accurate computational
approach. The most obvious difficulty in extension to fermi-

onic clusters is the nodal structure of the wave function
which causes the local energy to become infinite during the
MC walk. A quantum-chemistry-type methodology in which
the dopant molecule and the3He atoms play the role of the
nuclei and electrons, respectively, was first proposed and
implemented only for the cases of one and two3He atoms by
Jungwirth and Krylovf10g. Heidenreich and Jortnerf11g ex-
tended the approach to bosons and carried out configuration
interaction calculations for anthracene·HeN sN=1,2d com-
plexesf11g. As compared to alternative approaches based on
density functional theoryssee, e.g., Ref.f12gd an appealing
advantage of such a quantum-chemistry-type treatment is
that it also provides the wave functions which allow one to
simulate the spectra and other possible observables of the
dopant molecule in helium clusters.

We have recently used this approach and performed
many-body Hartree or Hartree-Fock calculations in order to
simulate the vibrotational Raman spectra of bosonic, fermi-
onic, and mixedsN=2 up to N=18d Br2sXd -HeN clusters
f13,14g. In 4He clusters the spectrum of Br2 resembles that of
the isolated molecule with well-defined rotational branches.
In 3He clusters the high-energy degeneracy of different spin-
multiplicity states leads to an overlap of several lines, result-
ing in an unstructured broadband. As4He atoms are added to
the cluster, the degeneracy is gradually reduced and the pro-
file of the spectrum evolves into that of the bosonic case.

The objective of this paper is to present details and a
generalization of the methodology used as well as to extend
the study to clusters of larger sizes. In addition, we provide
an assessment of the performance of the Hartree model by
comparing both its energetics and structure results with those
arising from “exact” diffusion MCsDMCd calculationsf15g.

The paper is structured as follows: Sec. II discusses the
methodology and technical details. Results of the energetics
and helium density distributions in Br2sXd - s4HedN sN
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=1,18d clusters are presented in Sec. III, where we also com-
pare the model with the DMC calculations. In this section we
also present results obtained applying the Hartree model to
larger clusters and analyze saturation effects. In Sec. IV, we
provide a summary and discuss future directions.

II. COMPUTATIONAL METHOD

A. Hamiltonian: Born-Oppenheimer approximation

We first define the nuclear Hamiltonian for the system as
consisting of the Br2 molecule solvated byN helium atoms.
Using satellite coordinatessr ,Rkd, wherer is the vector join-
ing the two bromine atoms andRk are vectors from the di-
atomic center of mass to the different helium atoms, this
Hamiltonian can be written as

HsNd = −
"2

2m

]2

]r2 + Usrd +
j 2

2mr2
+ o

k=1

N

hksRk,rd

+ o
k,l

VklsuRk − Rlud −
"2

mBr2

o
k,l

=k · =l , s1d

where the first three terms correspond to the Hamiltonian of
the free diatomic molecule withm, j , and U being the di-
atomic reduced mass, the angular momentum associated with
r , and the Br2 intramolecular potential, respectively. The
fourth term consists ofN triatomic He-Br2 Hamiltonians
which can be written as

hksRk,rd = −
"2

2m

]2

]Rk
2 +

lk
2

2meRk
2 + Wsr,Rk,ukd, s2d

wherem is the reduced He-Br2 mass,lk is the angular mo-
mentum associated withRk, andW is the weak atom-diatom
intermolecular interaction potential, which depends on the
sr ,Rkd distances and the angle between ther andRk vectors.
In the fifth term of Eq.s1d, Vkl, represents the pair interaction
potential between thekth and lth helium atoms. Finally, in
the sixth term,s−"2/mBr2

d¹k·¹l, is the kinetic energy cou-
pling between thekth andlth helium atoms.

Choosing a body-fixedsBFd coordinate system with theZ
axis parallel tor and a fixed value of the intramolecular
distancer, the ground state of the bound cluster ofN helium
atoms is obtained by solving the Schrödinger equation

Fo
k=1

N

hk + o
k,l

Vkl − EL
sNdsrdGFL

sNdshRkj;rd = 0, s3d

in which ther-dependent eigenvalues are labeled byL, the
projection of the orbital angular momentumL =ok=1

Ne lk on the
molecular axis. This representation is equivalent to the Born-
Oppenheimer approximation in which the Br2 molecule and
He atoms play the role of the nuclei and electrons, respec-
tively. For a total angular momentumJ= j +L with a projec-
tion onto the BFZ-axis L and neglecting the Coriolis cou-
plings, the effective Hamiltonian of the dopant can be written
as

HN
ef f = −

"2

2m

]2

]r2 + Usrd + EL
sNdsrd +

"2

2mr2
G, s4d

whereG=kj 2l is given byf16g

G = JsJ + 1d + LsL + 1d − 2L2. s5d

Since the orbital angular momentumL is not a good quantum
number, we average it over the helium total angular momen-
tum distributions:

kL2l < o
LN

PsLNdLNsLN + 1d, s6d

where the probabilities, or weights,PsLNd are calculated
from the N-boson ground-state wave function at the Br2
equilibrium distancere ssee Appendix Bd:

PsLNd = kLNuFsNdsredl2. s7d

We can then solve the Schrödinger equation for the “dis-
torted” dopant molecule with theN helium atoms bound to
it:

fHN
ef f − eJLvgxJLvsrd = 0, s8d

where v is the vibrational stretching quantum number.
Within this approximation, the total wave function can be
written as

C < DMV
J*

swr,ur,0dFL
sNdshRkj;rdxJLvsrd, s9d

whereDMV
J is the Wigner rotation matrix that depends on the

angular polar componentssur ,wrd of r in a space-fixedsSFd
frame.

B. Hartree-like approach

In order to solve Eq.s3d we have used a Hartree-like
approach. This means that the wave function of theN bound
helium atoms is taken to be a symmetrized Hartree product
s“permanent”d of single-particle wave functions. IfNi spin-
less bosons occupy the same one-particle orbital of indexi,
the total wave function of the system ofN=oi

MNi
sM øNd bosons can be expressed as

FsN1,…,NM
d

sNd =
1

ÎNŜSp
i=1

N1

c1sRi ;rd p
j=N1+1

N1+N2

c2sR j ;rd¯

3 p
k=sN1+¯+NM−1d+1

N

cMsRk;rdD , s10d

whereŜ is the symmetrization operator, 1 /ÎN is the normal-
ization factor, andN is the number of different Hartree prod-
ucts obtained by interchanging the bosons occupying differ-
ent orbitals:

N = S N

N1
DSN − N1

N2
D¯SN − sN1 + ¯ + NM−1d

NM
D . s11d

The energy of theN-boson system can be written as
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EL
sNd = o

i=1

M

Niei + o
i,j=1

M
NisNj − dijd
2s1 + di jd

sJij + Kijd, s12d

where

ei =E dRci
*sR;rdhsR,rdcisR;rd s13d

is the average kinetic and potential energysthat of each He
atom with the dopantd of a boson described by the orbital
cisR ; rd. The term

Jij =E E dR1dR2ucisR1;rdu2V128 uc jsR2;rdu2, s14d

where

V128 = V12suR1 − R2ud −
"2

mBr2

=1 · =2, s15d

represents the interaction between the bosonic clouds
ucisR1; rdu2 and uc jsR2; rdu2. It is equivalent to theCoulomb
integral in electronic structure theory. Note that Eq.s15d ex-
plicitly incorporates the kinetic coupling. The term

Kij =E E dR1dR2ci
*sR1;rdc jsR1;rdV128 c j

*sR2;rdcisR2;rd

s16d

is an analog of the exchange integral. If one considers the
particular case in which each boson occupies a different or-
bital, Eq. s12d reduces to

EL
sNd = o

i=1

N

ei + o
i, j

N

sJij + Kijd, s17d

which, with the exception of the sign in front of the second
term on the right-hand side, is the expression for the Hartree-
Fock energy ofN fermions occupyingN different spin-
orbitals. In the other limiting case, when all the bosons are
populating the same orbital, the expression for the energy
simplifies to

EL
sNd = Ne1 +

NsN − 1d
2

J11. s18d

The orbitals are computed through a direct minimization
proceduref17,18g to ensure convergence to the global mini-
mum.

C. Basis set functions

We used a finite basis set composed of products of radial
and angular functions

xsn,mdsR;rd = gnsR;rdY,msu,fd, s19d

whereY,msu ,fd are spherical harmonics. The radialgnsR; rd
functions are obtained by solving the Schrödinger equation
corresponding to the triatomic He-Br2 subsystem at different
fixed orientationsun:

F−
"2

2m

]2

]R2 + WsR,un;rd − EnsrdGgnsR,un;rd = 0. s20d

The set ofun values represents an equidistant grid ofnmax
points in the rangef0,p /2g. The gnsR,u ; rd functions were
then orthogonalized using the Schmidt orthogonalization
procedure.

The one-particle and two-particle integrals were evaluated
analytically in the angular variables and numerically in the
radial ones. The details are given in Appendix A.

D. Interaction potentials

The Br2sXd intermolecular interactionU was described by
a Morse functionf19g

Usrd = Dh1 − expf− asr − reqdgj2. s21d

The He-Br2sXd intramolecular potentialW was approximated
through the addition of Morse-type He-Br pair interactions
f20g

Wsr,R,ud = MsR1d + MsR2d, s22d

whereRi, i =1,2 are the twoHe-Br distances and

MsRid = D8h1 − expf− asRi − Reqdgj2 − D8. s23d

This He-Br2 interaction potential turned out to be highly an-
isotropic with its minimum in the T-shaped configuration at
about −38 cm−1. The binding energy of the linear orientation
is about −20 cm−1. In another studyf15g, we compared the
DMC results on the energetics and the helium density distri-
butions obtained using both the pair potentials, Eqs.
s21d–s23d, and a furtherab initio evaluation of the He-Br2
interaction f21g. In that study we have shown that as the
cluster size increases, the differences in the description of the
interaction with the dopant molecule become insignificant
because of the increasing role of the He-He interactions. In
this study we employ the simpler pairwise-additive model
description.

The He-He interaction is also described by a Morse po-
tential f22g. To avoid the divergence problem due to the
strong interatomic repulsion asR12→0, we truncated the po-
tential in two different waysf12,23g: s1d by replacingV with
V8=V expf−gVg s“truncated barrier” schemed and s2d by in-
troducing a cutoff valueVc. Both parametersg andVc allow
for selection of the maximum repulsion at short distances.
They were determined by fitting the ground-state energy to
its “exact” DMC value atN=2. Table I displays the values of
g, Vc, and the other parameters of the different atom-atom
interactions.

TABLE I. Values of the parameters used to describe the differ-
ent atom-atom interaction potentials.

Interaction D scm−1d a sÅ−1d req sÅd g sa.u.−1d Vc scm−1d

Br2sXd 24557.674 1.588 2.281

He-BrsXd 19.62 1.55 3.81

He-He 7.61 2.126 2.963 2000 11.53
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III. COMPUTATIONAL DETAILS, RESULTS,
AND DISCUSSION

The calculations were performed with the massessin
amud mBr=78.918 30 andm4He=4.002 60. A grid of 5000
points in the rangef1.5–18.5g Å was employed to solve nu-
merically Eq.s20d using a Numerov procedure. The compari-
son with the DMC data was performed at the equilibrium
Br-Br distance re=2.281 Å. Convergence of the energy
within 0.01 cm−1 for cluster sizes up toN=60 bosons was
achieved by usinglmax=24, ummaxu=1, andnmax=8. For N
=2, the initial guess for the orbitals was derived from the
diagonalization of the Hamiltonian corresponding to the
independent-particle approximation. FromN=4, the results
of calculations withN−2 bosons were used as the initial
guess for the orbitals. The convergence thresholds for the
eigenvalues and the total energies were set to 10−6 and
10−7 cm−1, respectively.

The lowest energy was invariably found forL=0 and for
a symmetric wave function, or sort of “Sg,” state of the sys-
tem. Table II shows the energies of the Br2-HeN clusters
computed at the equilibrium Br2 bond length and forN
bosons initially distributed overM =1, 2, and 3 orbitals. In
contrast to the case of the fermionssHund’s ruled, the lowest
energies for all cluster sizes are obtained when all the bosons
occupy the same orbital which corresponds to a minimum
value for the projection of the bosonic angular momentum
onto the molecular axis. The lowest energies are 3%–14%
below those obtained withM =2 and 3. The relative energy
differences between the variousM cases are very similar for
both the “barrier” and “cutoff” He-He potentials. Compari-
son of the results obtained withM =1 with the two types of
truncation of the potential shows a maximal difference of
4.2% at N=8 and indicates that the “truncated barrier”
scheme leads to larger binding energies. Inclusion of the ki-
netic coupling in Eq.s15d did not show a substantial effect.
For example, the changes in the total energy forM =3 are
0.05 cm−1 and 0.35 cm−1 for N=6 andN=20, respectively.
However, in the case of lighter dopant molecules the effect
of the kinetic coupling might be important.

A. Test cases: Comparison with DMC calculations

In Fig. 1 we show the Hartree and DMC total energies,
together with the errors for the DMC energiesswithin 2%d,
as a function of the cluster size. Details of the DMC calcu-
lations are given in Ref.f15g. It is clear from the figure that
for both modified He-He potentials the agreement with the
DMC results is fairly good. The maximum relative errors for
the Hartree energies are found atN=8. They are about 11%
and 14% for the “barrier” and “cutoff” truncation schemes,
respectively.

In Figs. 2 and 3 the radialsleft panelsd and angularsright
panelsd helium probability density distributions around the
solvated Br2 dopant molecule obtained using DMC and Har-
tree computations are shown for different cluster sizes. Since
the degree of anisotropy of these distributions depends on the
competing effects of the dopant-He and He-He interactions
and since the former is the same in both the Hartree and
DMC calculations, the similarity of the distributions is a
good indication of the adequacy of the He-He truncation
models.

Analysis of Figs. 2 and 3 shows that for the smaller clus-
ters the angular density distributions are highly anisotropic
peaking atu=p /2. This is a consequence of the strong an-
isotropy in the helium-Br2 potential which favors the
T-shaped arrangement. The He atoms populate primarily the
well associated with this arrangement up to aboutN=6. For
larger N, the increasing He-He repulsion causes the density
distribution to flow from a T configuration well into the other
potential regions. Indications for formation of two side peaks
at u=p /4 and 3p /4 are evident forN=12, and these peaks
are clearly present in the graphs corresponding toN=16 and
18. We return to this point in the discussion below.

Comparison of the “truncated barrier” angular distribu-
tions shows a difference that starts atN=8: the DMC distri-
butions are less anisotropic. This difference becomes more
pronounced as the cluster size increases. The Hartree calcu-
lations with the “cutoff” potential are overall in better accord
with the DMC results. ForN=8 and 10 the two distributions
essentially coincide. For larger cluster sizes the DMC distri-
butions are slightly more isotropic.

TABLE II. Energiessin cm−1d of the Br2-HeN clusters computed using the Hartree-like scheme withsad
“truncated barrier” andsbd “cutoff” He-He potentials discussed in the text. The three columns for each case
represent different distributions of the bosons over the orbitals. The values correspond to the lowest-energy
“og” state.

sad sbd
N sM =1d sM =2d sM =3d sM =1d sM =2d sM =3d

2 235.48 … … 235.15 … …
4 267.19 265.01 … 265.43 262.79 …
6 295.35 290.81 286.68 291.85 286.44 283.64

8 2120.50 2113.14 2107.15 2115.70 2107.30 2103.39

10 2143.49 2133.19 2131.15 2137.91 2126.24 2122.11

12 2165.00 2151.58 2151.08 2158.93 2143.58 2143.55

14 2185.30 2168.54 2167.77 2178.91 2159.42 2160.46

16 2204.54 2184.25 2186.50 2197.92 2173.85 2175.30

18 2222.82 2198.92 2201.62 2215.98 2186.91 2188.33

20 2240.29 2212.12 2218.01 2233.12 2198.65 2201.88
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Inspection of the helium radial probability density distri-
butions around the dopant’s center of mass indicates that
they become more diffuse and shift to larger distancesR as
the cluster size increases. Thus, the DMC distribution peaks
at R,4 Å for N=2 and at,4.7 Å for N=18. The Hartree
distributions show a slightly lesser shift with the “cutoff”
potential case being closer to the DMC ones. This is evident
in Fig. 4, which displays the mean value ofR, kRl, as a
function of the cluster size. Figure 4 also shows that thekRl
computed with the “cutoff” potential approaches that ob-
tained using DMC computations as the cluster size increases.

In summary, the Hartree energies and distributions ob-
tained with the two modified He-He interaction potentials are
close to those obtained using DMC computations. The DMC
energies are better reproduced by the “truncated barrier”
computationsswithin 3%d. On the other hand, the DMC dis-

tributions are closer to the Hartree “cutoff” potential results.
In what follows we present and analyze results obtained us-
ing the Hartree with the “cutoff” potential scheme.

B. Hartree results: Extension to larger cluster sizes

We performed Hartree computations for Br2-HeN clusters
over the size rangeN=2–60. In Fig. 5 we show the values of
the total energiesEsNd and the total energies per He atom,
EsNd /N, as a function of the cluster sizeN. The total energy
ssee also Fig. 2d and energy per atom change continuously
and monotonically with the cluster size giving no indication
for shell-closure effects. The energy per atom,EsNd /N, in-
creases rapidly as the cluster size increases toN<15 and
then it slowly tends to the bulk value of −4.94 cm−1 ssee,
e.g., Ref. f24gd, which would be, obviously, attained for

FIG. 1. Energy valuessin
cm−1d computed within the DMC
and Hartree approaches using the
“truncated barrier” and “cutoff”
He-He potentials discussed in the
text.

FIG. 2. Helium probability
density distributions of Br2sXd -
s4HedN clusters forN=2–8. Left
panels: radial probabilities. Right
panels: angular probabilities.
Solid lines: DMC results. Dashed
lines: Hartree with “truncated bar-
rier” He-He potential results. Dot-
ted lines: Hartree with “cutoff”
He-He potential results. The dis-
tributions are normalized to 1.
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much larger cluster sizes than those analyzed here.
Figure 6 shows the angular density distributions forN

=2–40 and how they become more uniform asN increases.
We have also computed the occupation number distributions
of the independent-particlesor, equivalently, HeBr2d orbitals
sgiven by the diagonal elements of the first-order density
matrix in the independent-particle basis representationd. The
angular distributions for the three lowest-lying orbitals are
shown in Fig. 7. The only maximum in the distribution for
the lowest-energys−18 cm−1d orbital is atu=90° sT-shaped
configuration of HeBr2d. The distribution for the next orbital
s−9 cm−1d displays a minor peak aroundu=90° and major
peaks aroundu<p /4 and 3p /4. The distribution for the
third orbital s−7 cm−1d displays peaks aroundu=20°, 60°,
90°, 120°. and 160°. The more removed is a peak fromu
=90°, the higher and broader it is.

As discussed abovescf. Fig. 2d, for clusters withNø6 the
He atoms are located chiefly within a limited region centered
at u=p /2. When projected on the independent-particle pic-
ture, the population of the lowest T-shaped orbital is aboutN
in these cases. ForN=8 the effective occupation numbers of
the two lowest-energy orbitals have the values of 7 and 1,
respectively, so that the two side peaks atu<p /4 and 3p /4
start to get populated as well. ForN=24, the occupation
number of the third orbital is about 1, which places about 4%
of the He density at peaks adjacent tou=0 andp. For N
ù30, the He distributions are almost independent of the
cluster size and they are markedly more isotropic than those
for Nø6. The He density becomes effectively distributed
over a large number of independent-boson orbitals. This can
be understood by taking into account that the strongly aniso-
tropic potential is felt mainly by the He atoms that are close

FIG. 3. Same as Fig. 2, but for
cluster sizesN=10–18.

FIG. 4. Mean distances be-
tween the He and the Br2 center of
mass in Br2sXd - s4HedN clusters as
a function of their sizeN obtained
using DMC and Hartree
calculations.
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to the dopant molecule whereas the spatial clustering of the
He atoms more distant from the impurity is driven primarily
by the He-He interaction. It thus follows that the analysis of
the solvent distribution in terms of the independent-particle
orbitals becomes less adequate as the size of the cluster in-
creases.

Another aspect of the problem we have examined is the
dependence of the total energy on the Br2 bond length. We
considered three bromine bond lengthsr =2.20, 2.281, and
2.35 Å and found that for distances not too different from the
equilibrium Br2 bond length the energies can be fitted to
better than 1% with a linear expression

EsN;rd = AsNd + BsNdr .

The values of theA and B parameters are plotted as a
function of the cluster size in Fig. 8. Both parameters tend to
a constant as the cluster size increases. The dependence of

the He-Br2 interaction on the bond length distance is felt
primarily by the He atoms close to the Br2 dopant. Beyond
the valueN=60 ther dependence felt by the inner He atoms
becomes insensitive to the addition of more He atoms. For
larger cluster sizes, as the interaction between the He atoms
that do not feel the Br2 molecules begins to dominate the
energy, the dependence of the latter onr becomes inessential.

IV. CONCLUSIONS

In this paper, we have reported results of Hartree-like
model computations on the energetics and density distribu-
tions of Br2sXd-s4HedN clusters in the size rangeN=2–60.
The main findings of the study can be summarized as fol-
lows.

sid The lowest energies of the clusters are obtained for the
value L=0 of the projection of the orbital angular momen-
tum onto the molecular axis and the symmetricN-boson
wave function—i.e., the “Sg” state in which all the He atoms
occupy the same orbital.

sii d The computations on small clusterssNø18d show that
both the energies and the probability density distributions are

FIG. 5. Total energyEsNd sopen squaresd and energy per He
atom,EsNd /N ssolid squaresd, as a function of the cluster sizeN.
The computations were performed using the Hartree with the “cut-
off” potential scheme. The negative of the cohesive energy of the
bulk 4He is also shown.

FIG. 6. Helium angular density distributions around the Br2

molecule for different cluster sizes. The distributions are normal-
ized to 1. The results are obtained using Hartree with “cutoff” po-
tential computations.

FIG. 7. Angular distributions and energies of the three lowest
independent-particle picture orbitals.

FIG. 8. Cluster size dependence for the parametersA ssolid
squaresd andB sopen squaresd. See the text for details.
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in good agreement with those obtained in “exact” DMC
computations, if the He-He short-range potential is made
more realistic through use of appropriate truncation schemes.

siii d The analysis of the angular density distributions and
the occupation numbers within the independent-particle pic-
ture indicates that up toN=6 the solvent populates only the
region of the potential minimum associated with the
T-shaped configuration. For larger cluster sizes the He-He
repulsion causes the He atoms to populate laterally displaced
regions as well.

sivd For Nù30, the angular density distribution is nearly
independent of the cluster size and the Br2 molecule is
“coated” by the He solvent almost uniformly.

svd Both the DMC and the Hartree-model ground-state
energies and He density distributions change continuously
and monotonically exhibiting no shell-closure effects. The
energy per He atom increases monotonically to the negative
of the bulk cohesive energy.

svid Total and single-atom energies further show a linear
dependence on the Br2 bond length. The parameters defining
this dependence vary smoothly with the cluster size and as-
ymptotically tend to constants.

It is possible that for lighter dopant molecules the dy-
namical correlation induced by the kinetic coupling terms,
included in Eq.s1d, has an effect. An intriguing question is
whether this effect can lead to shell-closure phenomena. An-
other question is the possible role of the mixing of the Har-
tree products in the ground-state bosonic wave function,
which was not considered here. In order to answer this ques-
tion we initiated work on the full CI treatment of the ground
state.

Finally, we mention that the quantum chemistry-type
method used here has an advantage over density-functional-
theory-based techniques because it also furnishes wave func-
tions, which can be used to perform computations of spectra
and therefore to make a better contact with the experiment.
Another advantage of the approach used in this work is that
unlike the DMC method it can coherently be applied for
studies of fermion and mixed bosonic and fermionic doped
clusters. An example is our recent work on the Raman spec-
tra of sHedN-Br2sXd clustersf13,14g. Our planned studies in-
clude extensions to polar molecules, such as CO and LiH, for
which both experimental and theoretical work is available
f5,25–27g.
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APPENDIX A: EVALUATION OF MATRIX ELEMENTS

We evaluate here the matrix elements of the Hamiltonian
using the basis functions as defined by Eq.s19d. Starting
with the one-particle Hamiltonian, Eq.s2d, one finds

Kxsn,mdU−
"2

2m

]2

]R2Uxsn8,8m8dL
= −

"2

2m
d,,8dmm8E

0

+`

dRgnsR;rd
]2

]R2gn8sR;rd,

sA1d

whereas the matrix elements of thel2 operator are

Kxsn,mdU l2

2mR2Uxsn8,8m8dL
=

lsl + 1d
2m

d,,8dmm8E
0

+`

dRgnsR;rdR−2gn8sR;rd.

sA2d

If the He-Br2 interactionWsr ,R,ud is expanded in terms
of the Legendre polynomialsPlscosud,

Wsr,R,ud = o
l

wlsR;rdPlscosud, sA3d

then, its matrix element is given by

kxsn,mduWsr,R,uduxsn8,8m8dl

= dmm8S2,8 + 1

2 , + 1
D1/2

o
l

wl
nn8k,80,l0u , 0lk,8m8,l0u , ml,

sA4d

where the termswl
nn8 are

wl
nn8 =E

0

+`

dRgnsR;rdwlsr,Rdgn8sR;rd sA5d

and k¯ ,¯ u¯l denotes Clebsch-Gordan coefficients.
By denoting any He-He interactionVkl appearing in Eq.

s1d asV12suR1−R2ud and resorting to an expansion in terms of
Legendre polynomials,

V12suR1 − R2ud = V12sR1,R2gd = o
L

vLsR1,R2dPLscosgd,

sA6d

where cosg=R1·R2/R1R2, the two-particle matrix element
can be written as
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kxsn1,1m1dxsn2,2m2duV12uxsn18,18m18dxsn28,28m28dl = o
L

vL
n1n2;n18n28s− 1dm1−m28dm1+m2m18+m28

Îs2,1 + 1ds2,2 + 1ds2,18 + 1ds2,28 + 1d

3 S,1 L ,18

0 0 0
DS ,1 L ,18

− m1 m1 − m18 m18
DS,2 L ,28

0 0 0
DS ,2 L ,28

− m2 m2 − m28 m28
D ,

sA7d

wheres¯
¯

d denotes 3−j symbols and

vL
n1n2;n18n28 =E

0

+` E
0

+`

dR1dR2gn1
sR1;rdgn18

sR1;rdvLsR1,R2d

3gn2
sR2;rdgn28

sR2;rd. sA8d

By expressing the gradient operators in terms of spherical
components

¹0
sid = ]/]zi, ¹±1

sid = 7 s]/]xi ± i ] /]yid/Î2,

where the labelsi =1,2 areassociated with theR1 and R2
vectors, the kinetic energy couplings terms in Eq.s1d take the
form

− "2

mBr2

¹1 ·¹2 =
− "2

mBr2

o
n=−1

1

s− 1dn¹n
s1d ·¹−n

s2d. sA9d

Using the Wigner-Eckart theorem for matrix elements of
¹±n

sid ssee, e.g., Ref.f28gd,

KY,v

fsRd
R

u¹v
sidu

gsRd
R

Y,8v8L
= s− 1d−vFS , 1 ,8

− v n v8
DYS, 1 ,8

0 0 0
DG

3 KY,0
fsRd
R

u¹0
sidu

gsRd
R

Y,80L ,

and taking into account thatf29g

K fsRd
R

Y,0U¹0UgsRd
R

Y,80L = d,,8±1fs2 , + 1ds2,8 + 1dg−1/2s

3E
0

+`

dRfsRdFdgsRd
dR

7 s
gsRd

R
G ,

wheres=maxs, ,,8d, one arrives at the following form of the
matrix elements of the two-particle kinetic coupling:

− "2

mBr2

kxsn1,1m1dxsn2,2m2du=1 · =2uxsn18,18m18dxsn28,28m28dl =
− "2

mBr2

o
n=−1

1

s− 1d−np
i=1

2

s− 1d−miFS ,i 1 ,i8

− mi n mi8
DYS,i 1 ,i8

0 0 0
DGd,i,i8±1

3 fs2,i + 1ds2,i8 + 1dg−1/2siE
0

+`

dRigni
sRi ;rdFdgni8

sRi ;rd

dRi
7 si

gni8
sRi ;rd

Ri
G .

sA10d

APPENDIX B: EVALUATION OF DISTRIBUTIONS

The helium radial density distributions are given by

DsRd = o
sn,md

o
sn8,8m8d

d,,8dmm8gnsR;rdgn8sR;rdPn,m,n8,8m8,

sB1d

wherePn,m,n8,8m8 are the elements of the first-order reduced
density matrix. In order to evaluate the helium angular he-
lium density distributions we assume an expansion in Leg-
endre polynomials,

Dscosad = o
n

dnPnscosad, sB2d

where

dn =
2n + 1

2
kFL

sNduPnscosaduFL
sNdl sB3d

and

kFL
sNduPnscosaduFL

sNdl

= o
sn,md

o
sn8,8m8d

dnn8dmm8S2,8 + 1

2 , + 1
D1/2

3k,80,n0u , 0lk,8m8,n0u , mlPn,m,n8,8m8. sB4d
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It is convenient to compute the total angular momentum
distribution PsLNd by starting with the uncoupled represen-
tation which gives the weights of the states
k,1m1¯,imi¯,NmNl. For the special case ofN bosons oc-
cupying the same orbitalm=0,

Ps,1¯,i¯,Nd = Ps,1d¯Ps,id¯Ps,Nd, sB5d

where

Ps,id = o
sn,md

d,,i
Pn,m,n,m. sB6d

Then the weight of the two-body angular momentumL2 in
the F0

sNd wave function can be computed as

PsL2d = o
,2

o
,1

k,20,,10uL20l2Ps,2dPs,1d, sB7d

for the three-body angular momentumL3 as

PsL3d = o
,3

o
L2

k,30,L20uL30l2Ps,3dPsL2d, sB8d

and for the total,N-body, angular momentumLN as

PsLNd = o
lN

o
LN−1

k,N0,LN−10uLN0l2Ps,NdPsLN−1d. sB9d
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