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Energies and density distributions of(*He)y clusters doped with Br,(X): A Hartree-like approach
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Energies and density distributions of the helium atoms in(Br(*He)y clusters are calculated using a
quantum “Hartree-like” approach in which the dopant molecule andHigeatoms play the role of the nuclei
and electrons, respectively, of the original Hartree formulation. A detailed generalization of the methodology is
presented. The validity of this treatment is assessed by comparing energies and density distributibns for
=2 up toN=18 with those obtained by performing quantum diffusion Monte C&DIBIC) calculations. The
present Hartree model shows good agreement with the DMC calculations, the main difference being that the
DMC density distributions of the He atoms are more isotropic than those generated via the model. The
treatment is extended to largerp to N=60) clusters and saturation effects are analyzed and discussed.
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[. INTRODUCTION onic clusters is the nodal structure of the wave function
which causes the local energy to become infinite during the

Recgnt advanges in experimentgl invgstigations of SpeGyc walk. A guantum-chemistry-type methodology in which
troscopic properties of molecules in helium droplets havee gonant molecule and thele atoms play the role of the
raised new and challenging questions on the role of the,ciei and electrons, respectively, was first proposed and
quantum environment{1]. The experiments produced a hiemented only for the cases of one and five atoms by
number of interesting observations; for example, measurey,nawirth and Kryloy[10]. Heidenreich and Jortnét1] ex-
ments of Grebeneet al. [.2] on the carbonyl su]ﬁdéOCS) tended the approach to bosons and carried out configuration
molecule solvated by helium atoms revealed different spectrg o action calculations for anthracenegHdl=1,2) com-

gf the_ d%panttmm?f#le dIEDquI'_Eg on tthe ferr_nlonlcb Or(ﬁlexes[ll]. As compared to alternative approaches based on
osonic character ot the solvent. The Spectroscopic probe ensity functional theorysee, e.g., Ref.12]) an appealing

'zjhe |Tn?ur|tyltshpemﬁs |r_1tc:]|cate§ free—rot(;)r—llke be?a\;quhhi_ advantage of such a quantum-chemistry-type treatment is
ropiels—athough with an Increased moment of IN€Ma—=4¢ it also provides the wave functions which allow one to
whereas in"He droplets the spectrum of the dopant has a

"Simulate the spectra and other possible observables of the
unstructured broad profile. Adding a small number*ge b P

L . dopant molecule in helium clusters.
atoms(~60) to the fermionic solvent leads to recovering the ~ \yu nave recently used this approach and performed

structured spectrum of the solvated molecule, a featurg,any hody Hartree or Hartree-Fock calculations in order to
which was interpreted as a manifestation of superfluidity onjmjate the vibrotational Raman spectra of bosonic, fermi-
the microscopic scalg€2]. A number of additional experi- onic, and mixed(N=2 up to N=18) Br,(X)-Hey clusters

ments on small- and intermediate-sized doped helium clusr13 14, In *He clusters the s
. . ) 14 pectrum of Bresembles that of
ters[3-6] based on helium nanodroplet isolatigHENDI) the isolated molecule with well-defined rotational branches.

sp?%troscgpir] hgve beent ptgrforlm(tad dfece”f“%’r-] lust IIn 3He clusters the high-energy degeneracy of different spin-
; heoretical and computational studies of the Cluster so multiplicity states leads to an overlap of several lines, result-
vation phenomenon pose a number of challenges. The sy 1g in an unstructured broadband. Ade atoms are added to

tems may be too small fpr a statistical treatment and 0Qhe cluster, the degeneracy is gradually reduced and the pro-
large for a detailednuclei+electrons structural and dy- file of the spectrum evolves into that of the bosonic case.

namic_al anglysis. A prac'gical approach fpr desc_ribing doped The objective of this paper is to present details and a
bosonic helium clusters is to use variational, diffusion, andgeneralization of the methodology used as well as to extend

path integral Monte CarldMC) methods(see, e.g., Refs. the study to clusters of larger sizes. In addition, we provide

[8,9]). The latter represents the most accurate computatio_n%\In assessment of the performance of the Hartree model by

approach. The most obvious difficulty in extension to ferml'comparing both its energetics and structure results with those
arising from “exact” diffusion MC(DMC) calculationg 15].

The paper is structured as follows: Sec. Il discusses the

* Author to whom correspondence should be addressed. Electronimethodology and technical details. Results of the energetics
address: delara@imaff.cfmac.csic.es and helium density distributions in BiX)-(*He)y (N
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=1,18 clusters are presented in Sec. lll, where we also com- . w2 P h2
i i i : Heff=— —— +u(r) + EN(r) +

pare the model with the DMC calculations. In this section we N 2mar? A

also present results obtained applying the Hartree model to

larger clusters and analyze saturation effects. In Sec. IV, washereG=(j?) is given by[16]

provide a summary and discuss future directions.

G, 4
2mr? @

G=JJ+1)+L(L+1)-2A% (5)

Il. COMPUTATIONAL METHOD Since the orbital angular momentunis not a good quantum
number, we average it over the helium total angular momen-

tum distributions:
We first define the nuclear Hamiltonian for the system as

consisting of the Brmolecule solvated b helium atoms. (LD = D P(LyLy(Ly+ 1), (6)
Using satellite coordinates , Ry), wherer is the vector join- Ln

ing the two bromine atoms ardy are vectors from the di-
atomic center of mass to the different helium atoms, thi
Hamiltonian can be written as

A. Hamiltonian: Born-Oppenheimer approximation

SWhere the probabilities, or weight®(Ly) are calculated
from the N-boson ground-state wave function at the, Br
equilibrium distance . (see Appendix B

2 2 02 N
HOV =22y S hRen P(Ly) = (LyJ@ ™M (re) (7)
2mar 2m - '
k=1 We can then solve the Schrédinger equation for the “dis-
#? torted” dopant molecule with thB helium atoms bound to
+ > Vil([Re—R))) - 2 Vv, D
k<l Br, k<l

eff —
where the first three terms correspond to the Hamiltonian of [HR'- enlon =0, ®
the free diatomic molecule witm, j, andU being the di- where v is the vibrational stretching quantum number.
atomic reduced mass, the angular momentum associated witlithin this approximation, the total wave function can be
r, and the Bj intramolecular potential, respectively. The written as
fourth term consists oN triatomic He-Bp Hamiltonians

which can be written as W = Dy 6, 0PNV (RGN xsnn (1), (9)
K2 P z whereDj,, is the Wigner rotation matrix that depends on the
(RN == ———=+— 5 +Wr,R,6), (2)  angular polar components,, ¢,) of r in a space-fixedSP
2u aRE 2uke frame

where u is the reduced He-Brmass,l, is the angular mo-
mentum associated witR,, andW is the weak atom-diatom B. Hartree-like approach

intermolecular interaction potential, which depends on the |, o.der to solve Eq(3) we have used a Hartree-like

(r,RY Qistances and the angle between rtImwde_vectors_. approach. This means that the wave function ofNheound

In the fifth term of Eq(1), Vi, represents the pair interaction pejium atoms is taken to be a symmetrized Hartree product
potentlal betvveenzthkth andlth.hehum_ato_ms. Finally, in (“permanent) of single-particle wave functions. i spin-

the sixth term,(-7°/mg, )V\-V), is the kinetic energy cou- |ess hosons occupy the same one-particle orbital of index

pling between théth andlth helium atoms. . the total wave function of the system oN=3MN;
Choosing a body-fixe@BF) coordinate system with thé (M <N) bosons can be expressed as

axis parallel tor and a fixed value of the intramolecular

distancer, the ground state of the bound clustemMbhelium 1 (M Ny+N,
atoms is obtained by solving the Schrodinger equation CDEN)l =TS [TwR:n TT (R0
My i=1 j=Ng+1
N N
> he+ XV —ER() [U(RiD =0, (3) x I R r)) , (10)
k=1 k<l k=(Ng+ - +Ny_p)+1

in which ther-dependent eigenvalues are labeledAthe wheres is the symmetrization operator, {Ais the normal-
projection of the orbital angular momentumX,<)l, on the  jzation factor, andV'is the number of different Hartree prod-

molecular axis. This representation is equivalent to the Bornycts obtained by interchanging the bosons occupying differ-
Oppenheimer approximation in which the,Bnolecule and ent orbitals:

He atoms play the role of the nuclei and electrons, respec-

tively. For a total angular momentud=j +L with a projec- N \[N-N; N—=(Ny+---+Ny-1)

tion onto the BFZ-axis A and neglecting the Coriolis cou- N= NJUN, Ny, )
plings, the effective Hamiltonian of the dopant can be written

as The energy of théN-boson system can be written as

033203-2
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M M N(N: = &) TABLE I. Values of the parameters used to describe the differ-
EExN) => Nig+ >, '—J—'J—(Jij +Ki)), (12)  entatom-atom interaction potentials.
i=1 i1 2(1+6)
; ~1 -1 -1 -1
where Interaction D (cm™®) a (A™) peg(A) y(au™) Vg (ecm™
Bry(X) 24557.674 1.588 2.281
ei:fder(R;r)h(R,r)lﬁi(R;r) (13 He-Br(X) 19.62 1.55 3.81
He-He 7.61 2.126 2.963 2000 11.53

is the average kinetic and potential eneftlyat of each He
atom with the dopantof a boson described by the orbital 2 2
(R* fi
%i(R;D. The term — L LW, 6,i1) — Ex(1) |ga(R.6ir) = 0. (20)
2u IR?
Jij :f f dR1dR,[¥i(R1iNPVLIY(R2NZ (14) The set ofg, values represents an equidistant gridngg,
points in the rang¢0,#/2]. The g,(R, #;r) functions were

where then orthogonalized using the Schmidt orthogonalization
52 procedure.

Vi,= ViR = Ry|) - V.-V, (15) The_ one-particle and two-pa_\rticle integrals were eva}Iuated

Mer, analytically in the angular variables and numerically in the

. . . radial ones. The details are given in Appendix A.
represents the interaction between the bosonic clouds

l#(R1;1)|? and [¢;(Ro; 7). It is equivalent to theCoulomb

integral in electronic structure theory. Note that Ed5) ex- D. Interaction potentials

plicitly incorporates the kinetic coupling. The term The Br(X) intermolecular interactioll was described by
a Morse functior[19]
Kij = J J dR; AR, (R1:1)4(R1: 1V (Roi 1) i(Ry;1) U(r) = D{1 - exdi- a(r = re) J}2. (21)

(16) The He-Bg(X) intramolecular potentialV was approximated

. ) ) through the addition of Morse-type He-Br pair interactions
is an analog of the exchange integral. If one considers th ]

particular case in which each boson occupies a different or-
bital, Eq. (12) reduces to W(r,R, ) = M(R)) + M(Ry), (22

N N whereR;, i=1,2 are the twdHe-Br distances and
EY =2 6+ 2 (3 +Kp), (17 : :
== M(R)=D{1-exi- a(R-ReJ~D'. (23

which, with the exception of the sign in front of the second | hiS He-Bk interaction potential turned out to be highly an-
term on the right-hand side, is the expression for the HartredSOtropIC W'th_llts minimum in the T-shaped configuration at
Fock energy ofN fermions occupyingN different spin- about —38 cm ._The binding energy of the linear orientation
orbitals. In the other limiting case, when all the bosons ardS about 20 ¢ In another study15], we compared the
populating the same orbital, the expression for the energ MC results on the energetics and the helium density distri-

simplifies to utions obtained using _bqt.h the pqir potentials, Egs.
(21)—<(23), and a furtherab initio evaluation of the He-Br
N _ N(N-1) interaction[21]. In that study we have shown that as the
Ex" =Nep + 2 Ji1- (18) cluster size increases, the differences in the description of the

interaction with the dopant molecule become insignificant
The orbitals are computed through a direct minimizationpecause of the increasing role of the He-He interactions. In
procedure 17,18 to ensure convergence to the global mini- this study we employ the simpler pairwise-additive model
mum. description.
The He-He interaction is also described by a Morse po-
C. Basis set functions tential [22]. To avoid the divergence problem due to the
. . . §trong interatomic repulsion &%,— 0, we truncated the po-
We used a flnlt_e basis set composed of products of rad'aﬁential in two different way$§12,23: (1) by replacingV with
and angular functions V'=V exd—yV] (“truncated barrier” schemend(2) by in-
YR 1) =g, (R:N) Y6, ), (19)  troducing a cutoff value/. Both parametery andV, allow
for selection of the maximum repulsion at short distances.
whereY,.(8, ¢) are spherical harmonics. The radig(R;r)  They were determined by fitting the ground-state energy to
functions are obtained by solving the Schrédinger equatiorits “exact” DMC value alN=2. Table | displays the values of
corresponding to the triatomic He-Bsubsystem at different vy, V., and the other parameters of the different atom-atom
fixed orientationss,;: interactions.
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I1l. COMPUTATIONAL DETAILS, RESULTS, A. Test cases: Comparison with DMC calculations
AND DISCUSSION In Fig. 1 we show the Hartree and DMC total energies,
The calculations were performed with the masgies together with the errors for the DMC energi@sithin 2%),
amu mg,=78.918 30 andm,=4.002 60. A grid of 5000 as a function of the cluster size. Details of the DMC calcu-

points in the rangé1.5-18.3 A was employed to solve nu- lations are gi\_/en in Ref.15]. It is_clear from the figure f[hat
merically Eq.(20) using a Numerov procedure. The compari- for both mod]fled_ He-He potentials _the agreement with the
son with the DMC data was performed at the equilibriumDMC results is fairly good. The maximum relative errors for
Br-Br distance r,=2.281 A. Convergence of the energy the Hartree energies are foundN=8. They are about 11%
within 0.01 cni? for cluster sizes up tdN=60 bosons was and 14% for the “barrier” and “cutoff” truncation schemes,

i N mar= - - ively.
achieved by USiNd a=24, [Mnwl=1, andny,=8. For N  espectively. _ _
=2, the initial guess for the orbitals was derived from the !N Figs. 2 and 3 the radidleft panel and angularight
diagonalization of the Hamiltonian corresponding to thepanels helium probability density distributions around the

: . L solvated By dopant molecule obtained using DMC and Har-
mdepende_nt partl_cle approximation. Frde4, the res‘.*“.s. tree computations are shown for different cluster sizes. Since
of calculations withN-2 bosons were used as the initial

guess for he oril. The comergence tresads for i roe 201 e Shuons epons o e
e|g(;:‘nva_llljes and the total energies were set t® Bd 54 since the former is the same in both the Hartree and
107" cm, respectively. DMC calculations, the similarity of the distributions is a
The lowest energy was invariably found fa=0 and for 4409 indication of the adequacy of the He-He truncation
a symmetric wave function, or sort okg,” state of the sys- models.
tem. Table Il shows the energies of the,#tey clusters Analysis of Figs. 2 and 3 shows that for the smaller clus-
computed at the equilibrium Brbond length and foN  ters the angular density distributions are highly anisotropic
bosons initially distributed oveM=1, 2, and 3 orbitals. In peaking atf==/2. This is a consequence of the strong an-
contrast to the case of the fermioft$und’s rulg, the lowest isotropy in the helium-Br potential which favors the
energies for all cluster sizes are obtained when all the bosonsshaped arrangement. The He atoms populate primarily the
occupy the same orbital which corresponds to a minimunwell associated with this arrangement up to ab€et6. For
value for the projection of the bosonic angular momentumlarger N, the increasing He-He repulsion causes the density
onto the molecular axis. The lowest energies are 3%-149%listribution to flow from a T configuration well into the other
below those obtained witM=2 and 3. The relative energy potential regions. Indications for formation of two side peaks
differences between the variolk cases are very similar for at 6==/4 and 37/4 are evident foN=12, and these peaks
both the “barrier” and “cutoff” He-He potentials. Compari- are clearly present in the graphs correspondiny+d 6 and
son of the results obtained witti =1 with the two types of 18. We return to this point in the discussion below.
truncation of the potential shows a maximal difference of Comparison of the “truncated barrier” angular distribu-
4.2% at N=8 and indicates that the “truncated barrier” tions shows a difference that startsNat 8: the DMC distri-
scheme leads to larger binding energies. Inclusion of the kibutions are less anisotropic. This difference becomes more
netic coupling in Eq(15) did not show a substantial effect. pronounced as the cluster size increases. The Hartree calcu-
For example, the changes in the total energyNor3 are lations with the “cutoff” potential are overall in better accord
0.05 cmi* and 0.35 critt for N=6 andN=20, respectively. with the DMC results. FON=8 and 10 the two distributions
However, in the case of lighter dopant molecules the effecessentially coincide. For larger cluster sizes the DMC distri-
of the kinetic coupling might be important. butions are slightly more isotropic.

TABLE Il. Energies(in cm™) of the Br-Hey clusters computed using the Hartree-like scheme vath
“truncated barrier” andb) “cutoff’ He-He potentials discussed in the text. The three columns for each case
represent different distributions of the bosons over the orbitals. The values correspond to the lowest-energy

“Eg" State.

(@ (b)
N (M=1) (M=2) (M=3) (M=1) (M=2) (M=3)
2 -35.48 -35.15 .
4 —67.19 —65.01 —65.43 —62.79 .
6 -95.35 —90.81 —86.68 -91.85 —86.44 —83.64
8 —120.50 -113.14 -107.15 ~115.70 ~107.30 ~103.39
10 —143.49 -133.19 -131.15 ~137.91 ~126.24 —122.11
12 —165.00 ~151.58 ~151.08 ~158.93 —143.58 ~143.55
14 -185.30 —168.54 -167.77 -178.91 ~159.42 —160.46
16 —204.54 -184.25 ~186.50 -197.92 -173.85 ~175.30
18 —222.82 -198.92 —201.62 —215.98 -186.91 —188.33
20 —240.29 —-212.12 —218.01 —233.12 ~198.65 —201.88
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FIG. 1. Energy values(in
cmY) computed within the DMC
and Hartree approaches using the
“truncated barrier” and “cutoff”

Energy (r=r_) (em™)
2
|

2200 He-He potentials discussed in the
LN T u text.
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| 3---£1 Hartree, cutoff ]
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1 ] ] ] 1 ] 1 1
0 2 4 6 8 10 12 14 16 18

N

Inspection of the helium radial probability density distri- tributions are closer to the Hartree “cutoff’ potential results.
butions around the dopant’s center of mass indicates thdah what follows we present and analyze results obtained us-
they become more diffuse and shift to larger distariRess  ing the Hartree with the “cutoff” potential scheme.
the cluster size increases. Thus, the DMC distribution peaks
at R~4 A for N=2 and at~4.7 A for N=18. The Hartree _ :
distributions show a slightly lesser shift with the “cutoff” B. Hartree results: Extension to larger cluster sizes
potential case being closer to the DMC ones. This is evident We performed Hartree computations for,Bt#ey clusters
in Fig. 4, which displays the mean value Bf (R), as a over the size rangll=2-60. In Fig. 5 we show the values of
function of the cluster size. Figure 4 also shows that(Re the total energie&(N) and the total energies per He atom,
computed with the “cutoff’ potential approaches that ob-E(N)/N, as a function of the cluster si2& The total energy
tained using DMC computations as the cluster size increasetsee also Fig. Rand energy per atom change continuously

In summary, the Hartree energies and distributions oband monotonically with the cluster size giving no indication
tained with the two modified He-He interaction potentials arefor shell-closure effects. The energy per atd&iN)/N, in-
close to those obtained using DMC computations. The DMCreases rapidly as the cluster size increasell4ol5 and
energies are better reproduced by the “truncated barriethen it slowly tends to the bulk value of —4.94 thsee,
computationgwithin 3%). On the other hand, the DMC dis- e.g., Ref.[24]), which would be, obviously, attained for

— DMC
——- Hartree, barner
- = Hartree, cutoff

4 i
He,zBr2 -

FIG. 2. Helium probability

N B density distributions of Bx(X)-
(]
/\ §'
a
o

< sl (*He)y clusters forN=2-8. Left
c i 1 panels: radial probabilities. Right
e 0 0 panels: angular probabilities.
2 8§ 1 Solid lines: DMC results. Dashed
— ! ' ' ' ' ' 1.~ lines: Hartree with “truncated bar-
< | \ AN P rier” He-He potential results. Dot-
Eo,s- 4He Br. | -1§ ted lines: Hartree with “cutoff”
a 62 o He-He potential results. The dis-
N 1 tributions are normalized to 1.
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— DMC
— -~ Hartree, barrier
» = Hartree, cutoff

cluster sizefN=10-18.
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much larger cluster sizes than those analyzed here. As discussed abouef. Fig. 2), for clusters withN<6 the

Figure 6 shows the angular density distributions for He atoms are located chiefly within a limited region centered
=2-40 and how they become more uniformNéncreases. at #=x/2. When projected on the independent-particle pic-
We have also computed the occupation number distributiongre, the population of the lowest T-shaped orbital is about
of the independent-particler, equivalently, HeBy orbitals  in these cases. FOt=8 the effective occupation numbers of
(given by the diagonal elements of the first-order densitythe two lowest-energy orbitals have the values of 7 and 1,
matrix in the independent-particle basis representatibhe  respectively, so that the two side peak®at=/4 and 37/4
angular distributions for the three lowest-lying orbitals arestart to get populated as well. Fdt=24, the occupation
shown in Fig. 7. The only maximum in the distribution for number of the third orbital is about 1, which places about 4%
the lowest-energy-18 cnT) orbital is at6=90° (T-shaped  of the He density at peaks adjacentds0 and 7. For N
configuration of HeBy). The distribution for the next orbital =30, the He distributions are almost independent of the
(-9 cn?) displays a minor peak aroung=90° and major cluster size and they are markedly more isotropic than those
peaks aroundd~m/4 and 37/4. The distribution for the for N<6. The He density becomes effectively distributed
third orbital (-7 cni’?) displays peaks arouné=20°, 60°, over a large number of independent-boson orbitals. This can
90°, 120°. and 160°. The more removed is a peak f®m be understood by taking into account that the strongly aniso-

=90°, the higher and broader it is. tropic potential is felt mainly by the He atoms that are close
3 T T T T T T T T
i ® DMC 1
475 A Hartree, barrier
O % Hartree, cutoff N
~ 45 ® ; —: FIG. 4. Mean distances be-
< Y ® * tween the He and the Bcenter of
% - ° % * a A 2 mass in B(X) - (*He)y clusters as
5 A a function of their sizeN obtained
4251 ® S ' * A ] usingg DMC and Hartree
| i A ] calculations.
& x
4~ -
375 ] 1 ] ] 1 ] 1 1
0 2 4 6 8 10 12 14 16 18
number of heliums
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FIG. 5. Total energyE(N) (open squargsand energy per He

- ! g FIG. 7. Angular distributions and energies of the three lowest
atom, E(N)/N (solid squares as a function of the cluster sizé.

independent-particle picture orbitals.

The computations were performed using the Hartree with the “cut-

off” potential scheme. The negative of the cohesive energy of the . . . .
7 9 » the He-Bg interaction on the bond length distance is felt

bulk “He is also shown.

to the dopant molecule whereas the spatial clustering of thB
He atoms more distant from the impurity is driven primarily
by the He-He interaction. It thus follows that the analysis of
the solvent distribution in terms of the independent-particl
orbitals becomes less adequate as the size of the cluster in-

creases.

eenergy, the dependence of the latter drecomes inessential.

primarily by the He atoms close to the Bdopant. Beyond
the valueN=60 ther dependence felt by the inner He atoms

ecomes insensitive to the addition of more He atoms. For

larger cluster sizes, as the interaction between the He atoms
that do not feel the Brmolecules begins to dominate the

Another aspect of the problem we have examined is the

dependence of the total energy on the Bond length. We
considered three bromine bond lengths2.20, 2.281, and
2.35 A and found that for distances not too different from the
equilibrium Br, bond length the energies can be fitted to

better than 1% with a linear expression

E(N;r)=A(N) + B(N)r.

IV. CONCLUSIONS

In this paper, we have reported results of Hartree-like

tions of Br(X)-

model computations on the energetics and density distribu-
(*He)y clusters in the size rang=2-60.

The main findings of the study can be summarized as fol-
lows.
(i) The lowest energies of the clusters are obtained for the
value A=0 of the projection of the orbital angular momen-
The values of theA and B parameters are plotted as a tum onto the molecular axis and the symmetiNeboson
function of the cluster size in Fig. 8. Both parameters tend tovave function—i.e., theZ " state in which all the He atoms

a constant as the cluster size increases. The dependenceostupy the same orbital.
(ii) The computations on small clustéid< 18) show that

both the energies and the probability density distributions are

0.35
031 E(r;N)=A(N)+B(N)r
0 T T y 70
0.25
I 1 60
& o02¢ -100
§ 1 50
L 0I5} ~ 200 | 2
'E 1 40 7
01 S -300 §
\ § 1% Z
05 = -400 | @
0% 1 20
0 -500 | 1 10
-600 1 N ! 1 N 0
. . o 10 20 30 40 50 60
FIG. 6. Helium angular density distributions around the Br N

molecule for different cluster sizes. The distributions are normal-
ized to 1. The results are obtained using Hartree with “cutoff” po-

tential computations.
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FIG. 8. Cluster size dependence for the paramefersolid
squaresandB (open squares See the text for details.
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P
. ng(R,r)ﬁgnr(R,r),

|2
2uR?

in good agreement with those obtained in “exact” DMC APPENDIX A: EVALUATION OF MATRIX ELEMENTS
computations, if the He-He short-range potential is made

(iii ) The analysis of the angular density distributions andusing the basis functions as defined by E&9). Starting
the occupation numbers within the independent-particle picwith the one-particle Hamiltonian, E€2), one finds
region of the potential minimum associated with the K2 P
T-shaped configuration. For larger cluster sizes the He-He XM= ——s
regions as well. h2 A

(iv) For N= 30, the angular density distribution is nearly =" 556(4’5mn’{
“coated” by the He solvent almost uniformly. (A1)

(v) Both the DMC and the Hartree-model ground-state
and monotonically exhibiting no shell-closure effects. The
energy per He atom increases monotonically to the negative

(n€m) X(n’(’m’)
(vi) Total and single-atom energies further show a linear
+00

this de_pendence vary smoothly with the cluster size and as- = w@eﬁmmj dRa,(R;NR 29, (R;r).
ymptotically tend to constants. 2 0
namical correlation induced by the kinetic coupling terms,
whether this effect can lead to shell-closure phenomena. Aref the Legendre polynomialB, (cosé),
other question is the possible role of the mixing of the Har-

more realistic through use of appropriate truncation schemes. We evaluate here the matrix elements of the Hamiltonian
ture indicates that up thl=6 the solvent populates only the
!(I !’
: . 2 X" )>
repulsion causes the He atoms to populate laterally displaced K
independent of the cluster size and the, Bnolecule is
energies and He density distributions change continuouslyhereas the matrix elements of tHeoperator are
of the bulk cohesive energy.
dependence on the Bbond length. The parameters defining
It is possible that for lighter dopant molecules the dy- (A2)
included in Eq.(1), has an effect. An intriguing question is  If the He-Br, interactionW(r,R, 6) is expanded in terms
tree products in the ground-state bosonic wave function,

which was not considered here. In order to answer this ques- W(r,R,6) = X wy(Rir)Py(cos), (A3)
tion we initiated work on the full Cl treatment of the ground »
state.

Finally, we mention that the quantum chemistry-typethen, its matrix element is given by
method used here has an advantage over density-functional-
t_heory—bqsed techniques because it also furnishes wave fung- My R, 6)] (n’{”m’)>
tions, which can be used to perform computations of spectraX T OIX
and therefore to make a better contact with the experiment. 20" +1\12
Another advantage of the approach used in this work is that = %mm 20 +1
unlike the DMC method it can coherently be applied for
studies of fermion and mixed bosonic and fermionic doped (A4)
clusters. An example is our recent work on the Raman spec-
tra of(He)N-Brz(X) clusters[13,14]. Our planned studies.in— where the termsv;‘”' are
clude extensions to polar molecules, such as CO and LiH, for
which both experimental and theoretical work is available
[5,25-217.

> Wi (€70,\0] € 0)(¢'m’ ,\O| £ m),
A

Wi = f i dRg,(R; 1w, (r,R)gy (R;r) (A5)
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(MM (alama)\/, |3 (N1E3My) ) (N3Eamply = > vglnz?”iné(— 1)m1‘”‘55m1+m2m1+mé\/(2€1 +1)(2¢,+1)(2¢1 + 1)(2¢5,+ 1)
A

X((?l A 61)( ¢ A e;)(fz A eg)( 0, A eg)
0 0 0/\-my m-m; m/\0 0 O/\-m, my-m, m,/’

(A7)

where(.) denotes 3+ symbols and f(R R
400 +00T y <Y€w ( )|V(I)|g( )Yf’ !
U?\lnz;nln2: fo fo dedRzgnl(Rl;r)gni(Rl;r)UA(Rl,Rz) B f 1 6/ e 1 6'
=D -0 v o 00O
XGn,(ReiNGny(Re;1) (A8)
. : : : f(R) i) 9R)
By expressing the gradient operators in terms of spherical X\ Yoo— |V |—Y,5,0 )
components
VO =aloz, V9= T (dlax tialay)2, and taking into account th429]
where the labels=1,2 areassociated with th&; and R, f(R) 9(R)
vectors, the kinetic energy couplings terms in Eg.take the ?Y{;O Vo Yg,0 = Spraa[(2€ +1)(2¢' +1)] V%S
form
_#2 — 52 1 m dg(R) _ 9
Vi Vpme 3 )V VR (Ag) <), RPTR TR
Br, Mar, ,=-1
'Using the Wigner-Eckart theorem for matrix elements ofwheres=max¢,¢’), one arrives at the following form of the
ng} (see, e.g., Ref28]), matrix elements of the two-patrticle kinetic coupling:
|
_hz Tl 1 Pl 1 i 1 €" € l ff
(n€1my) ) (NoloMp) 7 . W7, | /(N1 €1m) ) (Nplomy) 1 1) ( ! ! ) ( : ' ) S ors
mBr2<X X V1 Valx X > mBrzvgl( )" H( )" m v om 00 0 €] +1
C e [ dgy(R:r) — gn(Rir)
X[26+DE+ )]s | dRgy(Ri) +5 :
0 dR R
(A10)
[
APPENDIX B: EVALUATION OF DISTRIBUTIONS D(cosa) = E d,P,(cosa), (B2)
The helium radial density distributions are given by )
where
an+l o )
D(R) = 2 2 5€€’5mn’{gn(R;r)gn’(R;r)Pném,n’(f'm'! dn <(I) |Pn(COSa)|<I) > (BS)
(n€m) (n'¢’'m’)
(@|Py(cosa)| D)
wherePpemp ey are the elements of the first-order reduced =3 S 5.8 <2€' + 1)1/2
density matrix. In order to evaluate the helium angular he- (e o a7y v Omar\ 570
lium density distributions we assume an expansion in Leg-
endre polynomials, X(€'0,n0| € 0)€¢'m’",n0| € MPprymnrerny - (B4)
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It is convenient to compute the total angular momentum P(L,) = £.0.€-0/L.0)2P(¢-)P(¢ B7
distribution P(Ly) by starting with the uncoupled represen- (L) 422521< 20:6:0[L07P(EIP(Ly), B9
tation which gives the weights of the states
(€amy---€my- - -€ymy). For the special case ® bosons oc- 5 the three-body angular momenturg as
cupying the same orbitah=0,

P(€y - -€y) = P(€1)---P(€)- - -P(£n), (B5) P(Lg) = >, >, (€40,L,0[L0)2P(¢5)P(L,),  (B8)
where fa L2
P(t)= > Set,Premnem: (B6)  and for the totalN-body, angular momentury as

(n€m)

Then the weight of the two-body angular momentumin
the ®)" wave function can be computed as

P(Ly) = 2 2 (€80, Ly-10|LNOY?P(€p)P(Ly-p). (BY)
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