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Ca2+-ATPases are plasmamembrane and intracellular membrane transporters that use the energy of ATP hydro-
lysis to pump cytosolic Ca2+ out of the cell (PMCA) or into internal stores. These pumps are themain high-affinity
Ca2+ systems involved in themaintenance of intracellular free Ca2+ at the properly low level in eukaryotic cells.
The failure of neurons to keep optimal intracellular Ca2+ concentrations is a common feature of neurodegener-
ation by aging and aging-linked neuropathologies, such as Alzheimer's disease (AD). This disease is characterized
by the accumulation of β-amyloid senile plaques and neurofibrillary tangles of tau, a protein that plays a key role
in axonal transport. Here we show a novel inhibition of PMCA activity by tau which is concentration-dependent.
The extent of inhibition significantly decreases with aging in mice and control human brain membranes, but in-
hibition profiles were similar in AD-affected brain membrane preparations, independently of age. No significant
changes in PMCA expression and localizationwith aging or neuropathologywere found. These results point out a
link between Ca2+-transporters, aging and neurodegeneration mediated by tau protein.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Aging involves a physiological neurodegenerative process which in-
cludes functional and biochemical changes before a significant cell
death occurs [1]. However, these changes are frequently observed in
neuropathologies where aging is also a risk factor.

Neurodegeneration is primarily related with a lack of function in
cells where functional polarity and cytoskeleton organization is crucial.
Several aging-associated pathologies are related with cytoskeleton-
associated proteins such as tauopathies, a group of disorders where
the function of tau protein is affected. Tau is a microtubule associated
protein involved in the assembly and stability of microtubules in neu-
rons [2]. Its function is dependent on its phosphorylation state [3], e.g.
when tau is dephosphorylated, microtubules can elongate promoting
vesicular transport, but when tau is phosphorylated, microtubules are
more stable and elongation is reduced. In pathological conditions, tau
proteinmay result hiperphosphorylated generating aberrant aggregates
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that are toxic to neurons. Thus, the presence of these tau aggregates,
known as neurofibrillary tangles (NFTs), is a hallmark of different
tauopathies [4].

Neural aging is also well associated to Ca2+ dyshomeostasis [5–9].
That would involve alteration of Ca2+-mediated signaling pathways
that may affect critical activities as membrane excitability, synaptic
plasticity or cytoskeleton reorganization [10]. In fact, tau phosphoryla-
tion can be Ca2+-dependent since kinases such as glycogen synthase
kinase 3β (GSK3β) increase their activity when cytosolic Ca2+ levels
are high [11], contributing to the disorder.

Among aging-related neuropathologies, Alzheimer´s disease (AD) is
one where both, the presence of NFTs of tau [12,13] and Ca2+ dysregu-
lation [5,14–16] have been associated to the neurodegenerative process.
AD is characterized by a progressive loss of cognitive abilities that
implies an important social impact. In addition, AD presents another
histological hallmark such as a large number of senile plaques of the
neurotoxic amyloid β-peptide (Aβ). The relationship between Aβ and
Ca2+ dyshomeostasis has been well documented [17–20] including
alteration of Ca2+-regulatory proteins. Thus, it has been reported an in-
hibitory effect of Aβ in the activity of plasma membrane Ca2+-ATPase
(PMCA) [21,22] and an alteration of amyloid β production by SERCA
in CHO cells [23]. Ca2+-ATPases are high affinity active transporters
that pump Ca2+ ions through the plasma membrane (PMCA) or organ-
elle membranes of sarco(endo)plasmic reticulum (SERCA) and secreto-
ry pathway (SPCA) (reviewed in [24,25]). Their activities in neurons
have been well documented in many important processes depending
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of Ca2+, in physiological [26–28] and pathological conditions where
optimal intracellular Ca2+ levels are affected [29–31], including the
Aβ-Ca2+-ATPases interactions mentioned above. However, Ca2+ regu-
lation trough a functional connection between tau and Ca2+-
transporters has not yet been shown. In this work we have used kinetic
and immunological assays to look for a functional relationship between
tau and Ca2+-ATPases in adult and aged mouse brain, and also in
AD-affected human brain, in order to link Ca2 dyshomeostasis and tau
protein in aging and AD.

2. Material and methods

2.1. Materials

Biotinylated-calmodulin was from Calbiochem, Sulfo-NHS biotin
from ProteoChem and GenJuice transfection reagent from Novagen.
Tau protein used in this work was a recombinant tau protein expressed
in E. coli containing 2 N-terminal inserts and 4 microtubule binding re-
peats, that is usually named as tau 42 according to [32]. The anti-
SERCA2b and anti-SPCA1 polyclonal antibodies, and cDNA of SERCA2b
cloned in the pSV45 and SPCA1a cloned in the pMT2 plasmids were
kindly provided by Dr. F. Wuytack, (Katholieke Universiteit Leuven,
Belgium). The cDNA of PMCA4b cloned in pMT2 was kindly supplied
by Dr. E.E. Strehler (Mayo Clinic, USA). Monoclonal antibodies 5F10
(which recognizes all PMCA isoforms) was from Affinity Bioreagents,
anti-β-tubulin from Sigma, AT8 (anti-phospho-tau) from Innogenetics,
Tau1 (anti-non-phospho tau) from Chemicon, Tau5 (anti-total tau)
from Calbiochem and anti-GAPDH from Santa Cruz Biotechnology.
Nine adult Swiss mice (3-month-old) and 9 aged mice (15-month-
old)were obtained from the Animal Facility at Universidad de Extrema-
dura (Badajoz, Spain). Adult and agedmice were anaesthetized and de-
capitated in accordance with the policies on the use of animals in
research. Each mouse's brain was sagitally divided into two halves;
one halfwas used to preparemembrane vesicles for biochemical studies
and blots and the other half was immediately fixed for histochemical
analysis. Twelve samples of human tissues from medial frontal gyrus
of brains affected by AD (60-91 years old, Braak stages 5 and 6) and
eleven tissue samples from nondemented age-matched controls (60-
91 years old) were obtained from the Netherlands Brain Bank
(Amsterdam, The Netherlands).

2.2. Preparation of membranes

Membrane vesicles (MV) were prepared from adult or aged mice
brains, from postmortem human brain of normal and Alzheimer' dis-
ease affected donors or from overexpressing-COS cells, following the
protocol described by [33]. Briefly, tissues were homogenized in
10 mM HEPES/KOH pH 7.4, 0.32 M sucrose, 0.5 mM MgSO4, 0.1 mM
phenylmethylsulfonyl fluoride, 2 mM2-mercaptoethanol, and protease
inhibitor cocktail solution (Roche). The homogenatewas centrifuged for
10min at 1500×g, the resulting supernatantwas centrifuged for 45min
at 100 000×g and the final pellet was resuspended in 10 mM HEPES/
KOH pH 7.4, 0.32 M sucrose and stored at −80 °C until use. The
resulting fraction (MV) contained a mixture of plasma and organellar
membranes. The protein contentwas evaluated by the Bradfordmethod
[34] using bovine serum albumin as a protein standard.

2.3. Over-expression of PMCA4b, SERCA2b y SPCA1a

COS cells were seeded in 100-mm culture plates at a density of
2.5 × 106 cells/plate and transfected usingGenJuice transfection reagent
with respective plasmids (see Materials). After incubation for 60 h at
37 °C in the presence of 5% CO2, cells were harvested from plates for
membrane vesicle preparation. High transfection efficiency and high
levels of protein overexpression were previously confirmed respect to
transfection with empty-plasmid by immunocytochemistry and
Western blot (not shown).

2.4. Ca2+-ATPase activity

Total Ca2+-ATPase activities or specific PMCA, SERCA and SPCA ac-
tivities were determined in MV by using a coupled enzymatic assay at
37 °C as described in [35]. Briefly, the reaction was started with 1 mM
ATP, followed by addition of tau when required. Subsequent activity
measurements were done after independent additions of 100 nM
thapsigargin (to inhibit SERCA activity), 2 μM vanadate (to selectively
inhibit PMCAactivity) and 3mMEGTA (tomeasureMg2+-ATPase activ-
ity). The total Ca2+-ATPase activity was calculated after subtraction of
the Mg2+-ATPase activity to the activity obtained in the presence of
ATP. The SERCA activity was calculated by subtracting the activity mea-
sured in the presence of thapsigargin, which includes PMCA, SPCA, and
Mg2+-ATPase activities, from the total (Ca2+-Mg2+)-ATPase activity.
The SPCA activitywas calculated by subtracting theMg2+-ATPase activ-
ity from the activity in the presence of thapsigargin and vanadate; and
the PMCA activity was calculated by subtracting the Mg2+-ATPase and
SPCA activities from the ATPase activity in the presence of thapsigargin.

2.5. Tau and PMCA biotinylation

Tau biotinylationwas performed using a 15:1molar ratio of biotin to
tau (equivalent to 0.33 mol of biotin per lysine). Briefly, a 0.01 mg/ml
stock solution of Sulfo-NHS biotin (ProteoChem) was freshly prepared
in 50 mM sodium bicarbonate buffer (pH 8.0). Then 0.22 μg of biotin
was mixed with 1.8 μg of tau and incubated in 200 μl final volume for
2 h on ice. Free biotin was removed through a 30 kDa cut-off microcone
centrifuge filter (Millipore). PMCA biotinylation was carried by mixing
2.7 μg of freshly made biotin (0.1 mg/ml stock solution) with 22.5 μg
of purified pig brain PMCA [36] (38:1 molar ratio of biotin to PMCA,
equivalent to 0.33 mol of biotin per lysine) in 200 μl final volume.
After 2 h incubation on ice free biotin was removed through a 50 kDa
cut-off microcone centrifuge filter.

2.6. Overlay binding assay

Purified PMCA and recombinant tau were subjected to a Dot blot or
to a 10% SDS-PAGE gel and transferred to nitrocellulose membranes.
After blocking with phosphate-buffered saline-1% Tween 20 (PBS-T),
containing 2% (w/v) low-fat milk for 1 h at RT and following several
washes with PBS-T, membranes were incubated for 2 h at 37 °C with
0.5 μg/μl biotinylated-tau (to detect PMCA) or with 0.3 μg/μl
biotinylated-PMCA in PBS-T in presence of 0.5 mM CaCl2 (to detect
tau). Following extensivewashing stepswith PBS-T to remove unbound
biotinylated proteins, the membranes were incubated with ExtrAvidin-
Peroxidase (1:2000, Sigma) in PBS-T for 1 h at RT. After washing, mem-
branes were developed with ECL substrate and signal was visualized
with a Chemidoc™ XRS + Imaging System (BioRad) and quantified
with Image Lab™ software 3.0 (BioRad).

2.7. Western blotting

Electrophoresis was performed in 10% (w/v) SDS-polyacrylamide
gels according to the method of [37]. Proteins (20 μg) were
electrotransferred to nitrocelullose membranes using a Trans-Blot SD
semidry system (Bio-Rad). After blocking in Tris-buffered saline (TBS)
containing 2% (w/v) of low-fat milk for 1 h, immunostaining reactions
were performed by incubating the membranes for 3 h at room temper-
ature or overnight at 4 °Cwith the following primary antibodies diluted
in TBS-0.05% (v/v) Tween 20: AT8 (1:500 dilution), Tau1 (1:1000),
5F10 (1:3000), anti-SERCA2b (1:1000), and anti-SPCA1 (1:1000).
Afterwards, membranes were incubated for 1 h at room temperature
with peroxidase-conjugated secondary antibodies (1:3000, Bio-Rad)
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and developed with ECL substrate. The monoclonal anti-GAPDH anti-
body (1:1000) was used as control of protein loading. Protein bands
were visualized as mentioned above.

2.8. Histochemistry

Half of eachmousebrain sampleswerefixedby immersion in4% (w/v)
paraformaldehyde in PBS for 24 h at 4 °C. After rinsing with PBS, tissue
was cryo-protected in 10% (w/v) sucrose in PBS for 2 days, and then em-
bedded in 10% (w/v) gelatine, 10% (w/v) sucrose in PBS. The blocks
were frozen for 2 min in isopentane, cooled at −70 °C by dry ice, and
stored at −80 °C. Serial para-sagittal sections of 20 μm were collected
on Super-Frost Plus slides using a cryostat Leica CM1900. Paraffin-
embedded human brain tissue sections were cut from blocks at 8 μm
thickness in a microtome Microcut H and dried at 37 °C until use.

Cresyl violet staining was carried out with a solution containing
0.01% cresyl violet, 0.01% thionin, 0.6% acetic acid, and 1.25% sodium ac-
etate during 5 min at 37 °C and differentiated with 80% ethanol and 2
drops of acetic acid. Sections were mounted with Eukitt. Alternatively,
several sections without staining were covered in FluorSave mounting
medium for observation of lipofuscin autofluorescence in a Nikon
E600 microscope.

2.9. Immunohistochemistry

Cryostat or deparaffinized tissue sectionswere permeabilized by im-
mersion in PBS-0.05% (v/v) Triton X-100 (PBS-Tx) for 15 min. Endoge-
nous peroxidase activity was quenched with PBS-0.5% (v/v) H2O2 for
45min. Sections were blocked in a solution containing 0.2% (w/v) gela-
tin, 0.25% (v/v) Triton X-100 in PBS (PBS-G-Tx) and 0.1 M lysine for 1 h.
Afterwards, sections were incubated overnight at room temperature in
a humidified chamber with 5F10 (at 1:500 dilution), anti-SERCA2b
(1:500), anti-SPCA1 (1:500) or tau5 (1:500) primary antibodies diluted
in PBS-G-Tx. Sections were subsequently washed in PBS-Tx and incu-
bated with biotinylated goat anti-mouse or anti-rabbit antibodies
(1:200 dilution, Sigma) and then with ExtrAvidin-peroxidase (1:200,
Sigma). The immunodetection of peroxidase activity was carried out
using 0.03% (w/v) 3,3-diaminobenzidine tetrahydrochloride. Sections
were dehydrated and mounted with Eukitt for their observation under
the microscope.

2.10. Behavioural tests

Two tests were performed: in the Morris Water Maze [38], the
mouse was placed into a small pool (100 cm in diameter, 20 cm high)
half-filled with water to 10 cm in depth, which contained an escape
platformhidden a fewmillimetres below thewater surface. Colour sym-
bols as visual cues were placed around the pool in plain sight of the an-
imal. After starting the task,mouse swimed around the pool in search of
an exit and the time taken to reach the platformwas registered. The ex-
periment was performed in 2 steps; in the learning stage, after subse-
quent trials (1 per day for 6 days), mouse were able to locate the
platform increasingly rapidly. In the evaluation stage (day 7), platform
was hidden using coloured water, and time required to find the plat-
form, as result of learning and memory relative to visual cues, was re-
corded. An Objects Recognition Test was also carried out according to
[39], in two steps: in the learning stage, the mouse was allowed to ex-
plore a box (55×35×20 cm) for 5 min, twice per day for 2 days. After
that, 2 equal objects (A1 y A2) were introduced in the box, and the
mouse was allowed to explore them for 5 min. In the testing phase,
one of the objects was changed to a new object different in shape and
colour (B). The mouse was introduced in the box and the time required
for recognizing objects (nose close to the object)was registered in order
to calculate a Memory Index (MI). The MI was defined as the time re-
quired to recognize the new object B related to the time to recognize
A and B, in percentage (MI = (tB/tA + tB)×100). Both tests were
used for evaluation of spatial learning andmemory associated to hippo-
campal lesions.

2.11. Data processing and statistical analysis

Data are represented asmean±SE and significant differences deter-
mined by an unpaired Student t-test using the SigmaPlot v10 software
(SPSS Inc., Chicago, IL). A value of p ≤ 0.01 was considered statistically
significant.

3. Results

3.1. Aging and neurodegeneration-dependent impairment of plasma
membrane Ca2+- ATPase activity in the presence of tau protein

In order to determine if tau affects the functional properties of Ca2+

pumps and if this modulation is aging and/or neurodegeneration de-
pendent, Ca2+-ATPase activity assays were carried out in the presence
of tau on brain membrane vesicles from young adult (3-months-old)
and aged (15-months-old) mice (Fig. 1). As shown in Fig. 1A, tau
inhibited total Ca2+-ATPase activity in a concentration-dependentman-
ner in both, adult and aged-mice membranes. Solid lines represent a
single 3-parameter exponential decay equation fit to the ATPase inhibi-
tion data. As can be seen, inhibition of ATPase activity by tauwas aging-
dependent, reachingmaximum inhibition levels of 53.2± 3 % and 34±
3% at 5 nM tau. The IC50 values (concentration producing half-
maximum inhibition) were 1.54 nM and 2.62 nM in adult and aged
mice membranes, respectively. A more selective assay (described in
the Methods section) was performed to measure the sensitivity of
each type of Ca2+ pump (PMCA, SERCA and SPCA) to tau (Fig. 1B). As
shown, only PMCA activity was significantly inhibited by tau, being
this inhibition higher in adult than in aged-mice membranes. Experi-
ments were carried out with non-phosphorylated tau (non-P-tau), al-
though similar results were obtained with phosphorylated tau (P-tau)
(not shown).

As described elsewhere, tau is a biological marker of AD, a neurode-
generative disorder closely associated to aging. Therefore, functional ef-
fects of tau on Ca2+-transporters were also assayed in membrane
vesicles from human brains diagnosized with AD and age- (around
76-82 years old) and sex-matched controls. As shown (Fig. 2A), tau
also inhibited the Ca2+-ATPase activity in these membranes, in a
concentration-dependent manner, reaching a maximum 62.5% inhibi-
tion in both, control and AD membranes. Interestingly, the inhibition
profile and pattern were similar in both membrane preparations.
Specific kinetic assays (Fig. 2B) showed that plasma membrane Ca2+-
ATPase activity was exclusively inhibited by tau. Although non P-Tau
was used in these experiments, the PMCA activity was equally reduced
in the presence of P-tau (results not shown). The effect of tau was also
analyzed in membranes from control and AD human brains samples of
different age groups (60 and 91 years). As shown (Fig. 3A) in control
membranes the maximal inhibitory effect of tau on Ca2+-ATPase activ-
itywas lower in the oldest group, as found in adult and agedmicemem-
branes, whereas AD samples exhibited an age-independent inhibition of
ATPase activity by tau (Fig. 3B). Similar age-related changes in the
regulation of PMCA activity by tau were also found in other species,
e.g. chicken at hatching (P0) respect to 7 months-old (Fig. S1).

The specific inhibition of the plasma membrane Ca2+-ATPase activ-
ity by tau was confirmed by performing similar kinetic assays with
membrane vesicles from COS cells overexpressing PMCA, SERCA or
SPCA (Fig. 4A). Only PMCA activity was inhibited by tau, as obtained
in mice membranes, being this inhibition dependent on tau concentra-
tion (results not shown). Besides, the presence of 7.5 nM tau on PMCA
activity measured as a function of Ca2+ concentrations did not show
any significant effect on the Ca2+-dependence of ATPase activity
(Fig. 4B). The Kact values estimated in the presence and absence of
tau were about 0.19 μM, albeit the Vmax value was around 41% lower



Fig. 1.Effect of tau onCa2+-ATPase activity inmembrane vesicles of adult and agedmice brain. A) The total Ca2+-ATPase activitywasmeasured in 10 μg ofMV from adult (○) and aged (●)
mice brain as described inMethods, in the presence of the indicated concentrations of tau. B) The total Ca2+-ATPase activity and specific PMCA, SERCA and SPCA activities were assayed in
10 μg of MV from adult (white bars) and aged (grey bars) mice brain in the absence (empty bars) and presence (dashed bars) of 7.5 nM tau. Data are mean ± SE values obtained from 6
experiments performed in 3 adult and 3 aged mice preparations.
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in the presence (0.42 ± 0.03 μmol.min−1.mg−1) than in the absence
(0.71 ± 0.03 μmol.min−1.mg−1) of tau.

To test for a possible interaction between tau and PMCA we per-
formed binding studies by Dot-blot overlay immunoassays. Thus, puri-
fied PMCA, recombinant tau and BSA were spotted onto nitrocellulose
membrane and overlaid with tau (Fig. 5A). Later incubation with an
anti-tau antibody revealed a positive tau-PMCA binding. Tau and BSA
were also spotted as positive and negative controls, respectively. Alter-
native overlay assays were also done after SDS-PAGE separation of pro-
teins and transfer to nitrocellulose membrane. PMCA and tau were
overlaid with biotinylated-PMCA or biotinylated-tau, respectively and
interactions were visualized with ExtrAvidin-peroxidase. Fig. 5B clearly
Fig. 2. Effect of tau onCa2+-ATPase activity inmembrane vesicles fromAlzheimer's disease (AD)
measured in 20 μg ofMV from Ctr (○) and AD (●) brain, as described inMethods, in the presen
assayed in 20 μg of MV from Ctr (white bars) and AD (grey bars) human brain in the absence (e
from 6 experiments performed in membrane fractions obtained from AD cases (n = 7) and ag
shows binding of biotinylated-tau to ~130 kDa PMCA and biotinylated-
PMCA to ~60 kDa tau.

3.2. Age-related morphological changes in mice hippocampal regions

In order to analyze and compare brains of adult- and aged-mice used
in this study, histological assays were performed. Age-related changes
were observed mainly in the hippocampus (Fig. 6), while no significant
changeswere observed in other areas such as cerebral cortex or cerebel-
lum (results not shown). Cresyl violet staining in hippocampus (Fig. 6A)
showed a narrowing of the pyramidal cell layer of the CA1 region of the
Ammon´s horn in agedmice compared to the same region in adult mice.
and age-matched control (Ctr) human brain tissues. A) The total Ca2+-ATPase activitywas
ce of the indicated concentrations of tau. B) Specific PMCA, SERCA and SPCA activities were
mpty bars) and presence (dashed bars) of 7.5 nM tau. Data are mean± SE values obtained
e-matched controls (n = 6).



Fig. 3. Effect of tau on Ca2+-ATPase activity in membranes from control (Ctr) and AD
affected human brain samples at different ages. The total Ca2+-ATPase activity was
measured in 20 μg of MV from Ctr and AD human brain tissue from individuals aged
60 (○) and 91 (●), as described in Methods, in the presence of the indicated concentra-
tions of tau. The 100% activity values correspond to 0.302 ± 0.010 and 0.363 ±
0.010 μmol.min−1.mg−1, for 60 and 91 years old control membranes respectively, and
0.409±0.010 and 0.408±0.010 μmol.min−1.mg−1, for 60 and 91 years old ADmembranes
respectively. Data represent means ± SE values of 6 experiments performed with different
membrane preparations obtained fromAD cases (n=4) and age-matched controls (n=4).

Fig. 4. (A) Effect of tau on Ca2+-ATPase activities of overexpressed hPMCA4b, SERCA2b
and SPCA1 in COS cells. The Ca2+-ATPase activity was measured in 10 μg of MV from
COS cells overexpressing hPMCA4b, SERCA2b and SPCA1 as described in Methods, in the
absence (white bars) and the presence (grey bars) of 7.5 nM tau. Data are mean ± SE
values obtained from5 experiments performed in 4 preparations. The 100% activity values
correspond to 0.32 ± 0.015, 0.088 ± 0.010 and 0.33 ± 0.040 μmol.min−1.mg−1, respec-
tively, in the absence of tau. (B) Effect of tau on the Ca2+ dependence of ATPase activity
of overexpressed hPMCA4b. The activity was measured in 10 μg of membranes, in the ab-
sence (○) or presence (●) of 7.5 nM tau, as described in the Methods. Free Ca2+ concen-
tration, expressed as pCa, was adjusted by the appropriated addition of BAPTA. Data
represent mean ± SE values from four experiments and with two different preparations.
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Besides, these cells in CA1 showed a more intensely stained cytoplasm,
probably as a result of its acidification during degeneration. Detection of
autofluorescence by the presence of lipofuscin pigments, also known as
age-pigments, showed a remarkable increase also in the CA1 region of
aged mice compared to no signal in adult mice (Fig. 6B). To correlate
these histological changes in hippocampus with functional defects,
memory tests were performed. Fig. 6C shows results obtained with
the Morris Water Maze task, widely used to measure hippocampal-
dependent learning and memory. After 6 days of learning stage, the
mice behaviour was evaluated on day 7. As shown, aged-mice required
more time to reach the platform (Fig. 6C). Additionally, an object recog-
nition test revealed that adult mice spent significantlymore time recog-
nizing the novel object, whereas aged mice failed to distinguish
between old and new objects, as can be seen by a significant reduction
in the memory index (Fig. 6D), confirming hippocampal alterations.

Considering that tau aggregation and Ca2+ dyshomeostasis are hall-
marks of aging and aging-related neurodegerative disorders, we ana-
lyzed in adult and aged mice the expression of tau and the three
families of Ca2+ pumps, highly involved in the maintenance of optimal
cytosolic Ca2+ concentration. Immunohistochemical studies were per-
formed in the CA1 region of the hippocampus, the most affected area
by aging and AD (Fig. 6E). In adult mice, Tau 5 antibody (that recognizes
total tau) showed tau expression in the neuropil of CA1, while in aged
mice it was highly concentrated in the soma of pyramidal cells of CA1.
Neither histological changes nor differences in tau expression were
significantly detected in the CA2 region by aging (results not shown).
The localization and expression of the three families of Ca2+-ATPases
PMCA, SERCA and SPCA were not altered by aging.
Differences with respect to histology, lipofuscin content and expres-
sion of tau and Ca2+-ATPases were also analyzed in control and AD-
affected human brains used in this study (Fig. 7). While no significant
differences were observed after haematoxylin staining (Fig. 7A), visual-
ization of lipofuscin-associated autofluorescence showed to some ex-
tent an increase in AD brains with respect to control tissue (Fig. 7B).
Immunohistochemistry assays with Tau5 revealed localization of tau
in the cytoplasm of pyramidal cells soma in control groups and in neu-
rofibrillary tangles in AD tissues (see magnifications of tau staining).
Concerning to ATPases distribution (Fig. 7C), PMCA protein showed its
typical localization in the plasma membrane in pyramidal cells and in
the neuropil whereas SERCA2b and SPCA1 proteins were found in the
somatic cytoplasm of these cells, in accordance to intracellular ATPases
distribution in endoplasmic reticulum and Golgi complexes, respective-
ly (as it has been reported in other species). No significant changes in
the expression of these pumps were found in AD-affected tissue.

3.3. Tau and Ca2+-ATPases content in membrane vesicles of adult and aged
mice brains and in AD and control human brains

Western blots were used to determine expression levels of non-P-
tau and P-tau (Fig. 8A), and Ca2+-ATPases (Fig. 8B) in adult and aged



Fig. 5. Tau and PMCA interaction. (A) Dot blot assay: pig brain purified PMCA, recombinant tau and BSAwere applied onto a nitrocellulosemembrane at the indicated amounts (μg). After
blocking and washing, the membrane was incubated for 2 h at 37 °C with 0.18 μg of tau, followed by several washes to remove unbound tau and overnight incubation at 4 °C with Tau5
antibody (1:1000), which binds to total tau. The presence of bound tau was detected by chemiluminiscence. (B) Five μg of pig brain PMCA (lane 1) or 2.5 μg of recombinant tau
(lane 2) were subjected to 10% SDS-PAGE and subsequently transferred onto nitrocellulose membranes and incubated with biotinylated-tau (b-Tau) or biotinylated-PMCA (b-PMCA)
as indicated in Methods (lanes 1 and 2, respectively). After washing away unbound protein, membranes were incubated with ExtrAvidin-Peroxidase and binding was detected by
chemiluminescence.
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mice membrane vesicles. These blots showed that expression levels of
non P-tau (probed with Tau1 antibody) were almost the same in both
adult and aged groups, while aged mice showed a significant increase
in P-tau levels (81 ± 6%, probed with AT8 antibody) compared to
adult mice. Conversely, the estimation of Ca2+-ATPases content using
antibodies against PMCA, SERCA and SPCA (Fig. 8B) showed an age-
independent expression of the three families of Ca2+pumps. Expression
levels of tau and ATPaseswere also evaluated byWestern blots inmem-
brane vesicles from human brains affected by AD and aged-matched
controls (Fig. 9). Levels of non P-tau (Fig. 9A) were about 65.2 ± 10%
higher in control than in AD-affected brains, while P-tau content was
barely detectable in control samples and highly expressed in AD mem-
branes (85± 15% increase in ADwith respect to control brain samples).
On the other hand,Western blots performedwith ATPases specific anti-
bodies (Fig. 9B) showed that PMCA was less abundant in membrane
vesicles from AD-affected brain than inmatched controls, while expres-
sion levels of intracellular ATPases did not change with neurodegenera-
tion. In addition to this, we have seen that there are differences among
human control samples regarding the aging status, showing that non P-
tau content was independent of age while P-tau levels appear to be in-
creased in the oldest group (Fig. S2). This is in agreement with our pre-
viously mentioned results in mice.

4. Discussion

This study describes a novel inhibition of PMCA pump by tau, a pro-
tein that in its aberrant state is actively involved in neurodegenerative
processes and aging. Besides, the percentage of inhibition seems to be
aging- but not neurodegeneration-dependent.

We did not find significant age or neurodegeneration-dependent
changes in PMCA activity, neither in SERCA nor in SPCA, but we
observed a specific decline of PMCA activity by both, P-tau and non
P-tau. This functional effect, which is probably due to intermolecular in-
teractions, as shown by overlay assays, could reflect a protein-protein
interaction under physiological but also under pathological conditions.
The presence of tau had no significant effect on the Ca2+ dependence
of PMCA activity, suggesting that tau did not affect the affinity of
PMCA for Ca2+. Similarly, other PMCA inhibitors, such as spermine
[40] and thioridazine [41] had no effect on the affinity of the ATPase
for Ca2+.

Although tau is a cytosolic protein, several studies have reported
that it may interact with the plasma membrane [42–45]. We have also
seen tau localization close to the plasma membrane in mice and
human tissues used in the present work (result not shown). Besides,
it has been shown that tau is also present in lipid rafts [46], cell surface
microdomains which also associate to PMCA [47–49]. All the
aforementioned results support a tau-PMCA interaction. As previously re-
ported PMCA activity is inhibited byAβ, a peptide that clumps to form the
senile plaques, while intracellular Ca2+ pumps are not affected [21,22].
Therefore, the plasma membrane Ca2+-ATPase can be functionally mod-
ulated bymolecular components of the two pathological hallmarks of AD
associated with memory impairment [50]. Further studies are being un-
dertaken to go in depth into Aβ, tau and PMCA functional relationship.

It is worth to note that tau showed more affinity for PMCA in adult
than in aged mice, as in youngest human membranes when compared
to the oldest samples not affected by AD. Thus, a 30-year age difference
was a wide enough age gap to find a different inhibitory effect of tau on
PMCA in control human brain membranes. However, the PMCA inhibi-
tion pattern by tau was similar in the AD group independently of the
age. Considering all this togetherwe can conclude that the inhibitory ef-
fect of tau on PMCA increases with cognitive decline associated to nor-
mal aging, but it seems to be independent of cognitive decline and
other neurodegenerative processes linked to AD pathology.

The differential effect of tau with aging could be explained by the
fact that either, PMCA or its membrane environment, may present
age-related structural changes that make PMCA less sensitive to its
inhibition by tau. Several reports have shown that PMCA and its
endogenous activator calmodulin are very susceptible to oxidative
stress with aging [51,52]. Also, calmodulin content was significantly re-
duced in AD affected brains [53]. On the other hand, increase of
hyperphosphorylated tau protein is linked to the formation of NFTs,
which could affect functional PMCA-tau interaction. Besides, mem-
branes from aged mice or from the oldest healthy human samples
were less sensitive to tau inhibition. This could be due to the higher
P-tau content already present in these tissues, which could be responsi-
ble for partial PMCA activity inhibition before exogenous tauwas added
to the assay.

Intriguingly tau inhibition profile found in AD membranes was sim-
ilar to that found in control oldest human membranes. This suggests
that somehow the molecular mechanisms involved in AD lead to struc-
tural and/or conformational changes in the enzyme to a state with sim-
ilar affinity for tau, independently of age.

Although further experiments are required in order to elucidate the
PMCA inhibition mechanisms mediated by tau, we could speculate that
PMCA-tau binding involve electrostatic interactions. Indeed, tau is neg-
atively charged in both, N- and C-terminus and positively charged in the
microtubule binding domain. It has been reported that tau interacts
with the neural plasma membrane through its amino-terminal projec-
tion domain, being a mediator of microtubule-plasmamembrane inter-
actions [42,43]. Likewise, taumay use the N-terminus to interact trough
the plasma membrane with PMCA. On the other hand, given the ionic
nature of the transport ligands Ca2+ and H+, the substrates Mg2+ and



Fig. 6. Effect of aging on the morphology and lipofuscin fluorescence of mice hippocampus and memory tests. Immunolocalization of tau and Ca2+-ATPases. Criostat sections of
hipoccampus were analyzed by cresyl violet staining (A) and lipofuscin-associated autofluorescence (B). MorrisWater Maze (C) and Objects Recognition (D) tests were performed as in-
dicated inMethods. (E) Hippocampal CA1 sections of adult and aged-mice were stained with Tau5 (that recognizes phosphorylated and non-phosphorylated Tau), 5F10 (that recognizes
all PMCA isoforms), a-SERCA2b and a-SPCA1 antibodies. pcl: pyramidal cell layer; so: stratum oriens; sr: stratum radiatus. Scale bar: 15 μm.
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Fig. 7. Effect of neurodegeneration on the morphology and lipofuscin fluorescence and immunolocalization of tau and Ca2+-ATPases in control and Alzheimer´s disease affected human
brain. Paraffin sections of medial frontal gyrus of control (Ctr) and AD-affected human brain tissues were analyzed by haematoxylin staining (A) and lipofuscin-associated autofluores-
cence (B). No significant differences in histologywere observed between Ctr and AD brain tissues, while lipofuscin autofluorescence levelswere slightly higher in AD. Immunohistochem-
istries (C) were performed in similar sections with Tau5 (that recognizes total tau), 5F10 (that recognizes all PMCA isoforms), a-SERCA2b and a-SPCA1 antibodies. Scale bar: 15 μm.
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ATP, it is highly likely that electrostatic interactions may play a signifi-
cant role in PMCA reaction. An important manifestation of electrostatic
interactions is the ionic strength dependence. Therefore this can be
exploited to shed light into the nature of PMCA-tau interaction. If we as-
sume that PMCA-tau binding is trough ionic interactions, the inhibitory
effect of tau on PMCA activity would be expected to decrease by



Fig. 8. Levels of non-phosphorylated tau (non-P-Tau), phosphorylated tau (P-Tau), and Ca2+-ATPases (PMCA, SERCA2b and SPCA1) inmembrane vesicles of adult and aged mouse brain.
MV (20 μg) from adult and agedmicewere subjected toWestern blot as described inMethods. The blotswere probedwith Tau-1 and AT8 antibodies to identify the presence of non-P-Tau
and P-Tau, respectively (A) andwith 5F10, a-SERCA2b, and a-SPCA1antibodies to detect levels of the 3 families of ATPases (B). RepresentativeWestern blots are shown. Protein levelswere
quantified relative to GAPDH expression to correct for loading differences (data are shown asmean± SE relative values (arbitrary units) obtained from 2-4 blots performed in 9 different
preparations of each group).
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increasing the ionic strength of the assaymedium and then to be revers-
ible. This is what we observed when activity assays were done at in-
creasing salt concentrations (see Fig. S3). Consequently we may
suggest an ionic nature for PMCA-tau interaction. This binding seems
to be reversible, since salt can affect the interaction between water
and protein side chains or backbone by masking charged residues
which are important for PMCA-tau binding. Besides, we suggest that
tau binding site on PMCA may be located somewhere at its C-terminal
cytosolic domain, and that it may involve the calmodulin binding do-
main or another domain close to it. Thus, overlay assays with
biotynilated-calmodulin on PMCApreviously incubatedwith increasing
concentration of tau shows (Fig. S4) that calmodulin binding to PMCA
becomes weaker when the pump is previously preincubated with in-
creasing concentrations of tau. Current functional studies are being un-
dertaken in order to elucidate tau inhibitory mechanism.

Neural aging is a physiological condition in life characterized by dif-
ferent processes, includingmemory and orientation problems.We have
confirmed by behavioral tests that agedmice used in this study showed
cognitive impairments and histological changes associated with aging,
mainly in hippocampus. These results are in agreementwith other stud-
ies which have reported a fine correlation betweenmemory defects and
hippocampus alteration [54,55]. In fact, rats with damage in fimbria or
dentate gyrus did not show good results in the Morris test [38,56].
Similar correlation was found using tests in human patients [57]. We
used cresyl violet staining as a routine technique to analyze neural
tissue [58,59], especially in neurodegenerative processes which involve
an acidification of cytoplasm as a consequence of altered cellular ion
homeostasis which implies different dye affinity. Results showed hippo-
campal degeneration of these aged-mice mainly in the pyramidal cell
layer of CA1 and dentate gyrus. It has been reported that CA1 cells are
especially sensitive to neurotoxic agents decreasing sensitivity in CA2
and CA3 [60–62], which could explain the reduced effect observed in
these areas with aging. Dentate gyrus as well showed changes with
aging, being an area that is also affected in age-related diseases such
as tauopaties [63]. Both regions showed an increase in lipofuscin fluo-
rescence, a hallmark of normal senescence [64,65] and symptomatic of
numerous age-related diseases, including AD [64,66]. Changes in tau lo-
calization were observed in both mice and human samples, in accor-
dance to the involvement of this protein in aging and AD, albeit we
did not observe any evident histological changes or lipofuscin increase
in AD sampleswith respect to age-matched controls. Indeed, tauwas lo-
calized in the soma of pyramidal cells in aged mice, and in neurofibril-
lary tangles in AD-affected human samples. A differential distribution
of tau in neurons has been described depending on its phosphorylation



Fig. 9. Levels of non-phosphorylated tau (non-P-Tau), phosphorylated tau (P-Tau), and Ca2+-ATPases (PMCA, SERCA2b and SPCA1) inmembrane vesicles of control (Ctr) and Alzheimer´s
disease-affected human brain (AD). MV (20 μg) were subjected to Western blot as described in Methods. The membranes were probed with Tau-1 and AT8 antibodies to identify the
presence of non-P-Tau and P-Tau, respectively (A) and with 5F10, a-SERCA2b, and a-SPCA1 antibodies to detect levels of the 3 families of ATPases (B). Representative Western blots
are shown. Quantification of proteins relative to GAPDH levels are shown as mean ± SE relative values (arbitrary units) obtained from 2-4 experiments performed in 9 different
preparations of each group.
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state, being dephosphorylated tau located primarily in distal regions of
the axon, and phosphorylated tau being present in the somatodendritic
compartment [67], which is in accordance with our results.

As we have shown, expression levels of non P-tau seem to be age-
independent, both in mice and human control samples. However,
P-tau levels increased with aging and neurodegeneration. Similar re-
sults have been reported by [68] in aged mice and could be related to
the reported accumulation of abnormally hyperphosphorylated tau in
AD human brain [69,70] that could be either associated to age-related
decrease in levels and activity of protein phosphatase 2a [71–73] and
see reviews [74,75] or to an increase in GSK3β activity [76–78]. In fact,
experiments withmice overexpressing GSK-3β have shown an increase
of phosphorylated tau especially in hippocampus [79], the regionwhere
we observed a more concentrated localization of tau linked to age-
related degeneration in mice. Western blots revealed that AD samples
contained significant levels of P-tau whereas only traces of P-tau were
detected in membranes from control cases, as previously found in
[80]. Similar profiles were also observed by [81] and [82].

Emerging studies have associated aging related disorders with in-
creased resting levels of intracellular Ca2+ that lead to neuronal loss
[83,84]; see review [85]. However, evidences are mainly focused in
Ca2+ influx trough the plasma membrane (from NMDAR, L-VGCC or
SOC channels [86]) or the endoplasmic reticulum (from InsP3R and
RyanR (reviewed in [87,88])), but do not pay particular attention to
Ca2+ extrusion mechanisms. Considering the key role that Ca2+

pumps play in Ca2+ extrusionmechanisms due to their high Ca2+ affin-
ity, we analyzed Ca2+-pumps with respect to neurodegeneration in
aging mice or to neuropathology in AD human tissue. However our
data did not showdifferences in termsof distribution although a specific
reduction in PMCA protein levels associated to neurodegeneration was
observed in AD-affected membranes, and interestingly, only the Ca2+-
ATPase activity coupled to PMCA could be inhibited by tau in a
concentration-dependent manner.

5. Conclusions

In summary, our data provide the first evidence that tau protein acts
as a PMCA inhibitor by directly interacting with this Ca2+-transporter.
Besides, the inhibitory effect of tau on PMCA activity is aging dependent
in animal species and control humanmembranes but not in AD-affected
humanmembranes. Overall, these results lead to consider PMCA-tau an
interaction that deregulates intracellular Ca2+ levels. Further work
needs to be done in order to elucidate these differences, since looking
for molecular sites of interactions could make PMCA a target for
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development of therapeutic approaches to AD and other tau-related
pathologies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2015.04.007.
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