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Compact forms of reduced density matrices
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The objective of this paper is to identify the necessary and sufficient minimum information carried by
Reduced Density Matrice@)RDMs). This minimum of essential information determines a set of equivalent
compact-form matricethat are devoid of the redundant information present in the original RDMs when the
system possesses symmetry invariances. The basic properties and algebra operations of these compact-form
matrices are obtained here. The use of these new mathematical objects renders far more economical the
operations and storage of RDMs and will thus be of interest in the study of systems with symmetry invariances.

In particular, it opens the possibility of using large basis for medium-sized systems when solving iteratively the
contracted Schidinger equation.
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I. INTRODUCTION The aim of this paper is to report a method for obtaining
the same information as pRDM although in a compact
The reduced density matricesRDMs) [1-5] are form from which all the redundant information has been
mathematical-physical objects that carry the informationomitted. This methodology takes into account the invariants
about the electronic structure of kelectron system in a far of the strings of creation-annihilation fermion operators in
more economical way than the wave function from whichthe second quantization because their expectation values are
they are derived. However, as the size of the system inthe RDM elements. Therefore, our purpose is to render fea-
creases, the size of the basis of representation of these mgple the operations with RDMs, using as few matrix ele-
trices also increases and, therefore, the dimensions of theggants as possible, without necessarily being forced to use

matrices become too large for easy handling. symmetry or spin-adapted basis functions, but taking the ut-
On the other hand, it is well .knowfﬁ] that the RDMs  Joc¢ advantage of the symmetry of the system.
have a much smaller number of independent parameters than | iha following section, the notation and the necessary

the full configuration interactioFCl) wave function. How- 50 around information are given. The procedure to calcu-
ever, there are several means of rendering the mformatlo%te the number of invariant elements of a giyeRDM is

contained in the RDMs more compact. A simple way of ré-yaq e in some detail in Sec. Ill. The construction of the
ducing the number of lnde.pe'ndent elgments can be to ta mpact-form matrices, equivalent to the RDMs, is shown in
advantage of the characteristic properties of the RDMs, suc ec. IV. Finally, in Sec. V, the handling rules for operating

as its Hermiticity. Another p(_)55|b|I|ty is to shrink the d_lmen- with these compact-form matrices are reported.
sions of the RDMs by labeling rows and columns with sets

of ordered indices. The information contained ip-RDM is
2K
still carried out by { PZ)H) for a one-electron function space !l NOTATION AND THEORETICAL BACKGROUND

of dimension X. This number is further reduced because of A. Transformation of the basis set
the requirement of fixed trace améirepresentability condi- . . . .
tions. The use of a symmetry-adapted basis of spin orbitals Numerical solutions of the electronic problems in atoms
geminals, etc., makes many of their elements vanish. Thigr molecules are usualy achieved by developing wave func-

kind of study has been carried out by several authors mainl§°nS atnd oEera:grs n a l_f;mte} tshet t?f §p|n_||()rt|)|tals. g)n the
in the coordinate representation, particularly making use o resent work, orthonormaiity of th€ basis will always be as-
the spin-symmetry properties of the RDVE] sumed. This basis set of orbitals may be modified by a set of

However, in many cases it may be preferab'e to work Withtransformationg’\?, such as rotations or reﬂeCtionS, of the
an atomic basis instead of with a symmetry-adapted molecifoordinate system. If the set ofZspin orbitals is stable
lar or crystal-adapted basis, and it may be necessary to keemder a linear operatioR, the new orbitals are expressed as
a simple non-spin-adapted labeling in the RDM rows andinear combinations of the old ones. In a different basis of
columns. This is the case on solving the contracted Schraepresentation, the spin-orbital labels will be indicated by
dinger equationCSE) [8-14], which involves the simulta- primed latin alphabets, and so we will have
neous use of three different orders of RDMs, the need for
performing contractions of the 3- and 4-RDMs, and the re- A +
construction of higher-order RDM elements in terms of the ‘Pp’:R¢r22k $Ricpr s ¢’r:_2, @irRir -
lower-order ones. '

2K 2K

The transformation matrix of dimension&X 2K is unitary
*Present address: Instituto de Maféivas y Fsica Fundamental, and thus preserves the orthonormality of the &tis the
CSIC, Serrano 123, 28006 Madrid, Spain. matrix associated to the inverse transformation.
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The set of all those transformation matrices forms a group The transformation of a string of two annihilators takes
U(2K). Some subgroups are K if no spin mixing is al- one of these alternative forms
lowed, and OK) if orbitals are restricted to be real. Other

subgroups are those related to the spatial symmetry of the 2K 2K

; - A T ]
problem, such as a symmetry transformation or atransformaijbiR =y b.bsz:W,-,:Z b|bk2Ri’j';k| Yi',j",
tion to a symmetry-adapted basis. k.1 Il

The change of basis modifies according to the creation-
annihilation operatorgl5] 2K 2K

2K 2K Iibjbili’l=k2| bubszﬁu;ka; blkaRiT/j/;H (i'<j".
biT/ZRbiTRilek ble;ir, bT=E biT/RiT/;kn (1)
II

Extension to the generad-particle space is straightfor-
o A 2K ward and will not be shown here. Only the symb8R and
bi, = Rbinlzzk: bR\ D=2 bR, (20 PR are given for future use.
v The operation that transforms the orbital basis induces a

where invariance of the vacuum has been assumed. Creatidh nsformgtion in the ba;is_pfelectror! functior)s. The chain
operators transform as the spin orbitals themselves, while thf P creation operators is in the basis of theimes tensor

matrices for the annihilators are complex conjugates to thos@rOdUCt of the one-e}ec_:tron crea.tion operator space V\./ith it
for the creators. self; the ordered basis is the basis for the antisymmetric part

The number operator is independent of the choice of th<,9f that tensor produdtl6]. The matrix transformation is eas-
basis set: ily constructed as outer direct products from the transforma-
' tion matrix of the one-electron basis. In what follows, the

X : 2K operatorsR, defined through the transformation of the one-
N= > b, bj = > biby. electron basis functions, may appear acting ofNaglectron
i"=1 k=1 function in the same way as the creation and annihilation

The transformation of the spin orbitals also transforms theoperators do.

string of two creation and annihilation operators. Thus, the

creation operators transform as B. The reduced density matrices
2K In the second quantization, in the occupation number rep-
biT,bjT,:ﬁb?b;‘ﬁ—l:ﬁbrﬁ—lﬁbj‘rﬁ—lzz bib/ R Ry resentation, thg-RDM elements may be written as the ex-
Il pectation values of particle-number-conserving operators:
2K pDi i (]
o NPT pildas ip
:% bib! *Rirjr (Vi',j"). 3

1 Tt T
= a<q’|bjlbj2 .. bjpbip. .. bizbi1|qf>
In order to have uniquely defined two-electron or geminal '
functions, the basis set must also be uniquely defined; this is
achieved by imposing an ordering of the operator labels or, (Viqg,io, v 3j1vi2r --2), (B
equivalently, an antisymmetrized product of the one-electron

basis. It transforms as where b;r, and b; are the creation and annihilation fermion

2K operators, respectively, and the indices represent spin orbitals
b'b!,=> bib! Ruiryr ('<j"), taken out of a given basis.
SR = ’ As mentioned in the Introduction, when an ordered or

) ] ) ~antisymmetrizeg-electron basis is considered, the same in-
where 2R is the matrix transformation of the t\No—partICIe formation is given in a Compressed form:

operators. It is the antisymmetric part of tRew R matrix

product. For any transformatidg, PD. ,
FRIPYRERE |p;leJ2 ----- Jp
“Rut;ij = RiiRi;j —RiiRej (k<Ei<j). (4) —(W|bl bl .- -bl b, ---byb; |W)
J17 )2 Jp71p 1271
Both matrices,?’R and %R, of dimensionsk?xK?2 and
2Ky (3€), respectively, are also unitary: (Vi <ip<---1j1<]jp<---). (6)

2R71=2RT, 2R71=2RT_
Both forms of thep-RDM have the same trace.
Hence, the global transformation of a string of several cre- Similar relations hold for the hole RDM&HRDMs), de-
ation operators is closely related to that of the spin orbitalsfined by
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p 2K 2K
P o ) )
i1.0o pil1:2 Ip OLp'q/;i/i/:rES % ZRp/q’;tuoHtu;manmn;i/j’ , (10)
= —<\li|bip. b b bibf-. ~bij|\If>

k,! m,n
i,Mig MM
2 "1 J1 12 2K 2K

OC — 2t 0 ZR

. . . . rqlitil — R,, ’. ;1 . SN 11

(V|1,|2,...;11,J2,...). prant IZSIZU praitu tmn SEmn ( )
k<l m<n

In some cases, an explicit mention of thea and ket

. . . ; S ) are elements of the matricés and °£, which are respec-
involved in a transition reduced density matrix is required:

tively the transformed matrices dH and %/ to the new
ZD%);\IFf)q: %(\P|bgb*bjbi|®> (Yi,j:p.q). basis, anc_b;,b;,bj/bi, are c_reatio_n and annihilation opera-
tors referring to the new spin orbitals.
Any of them may also be represented in an ordered basis. The Hamiltonian iS invariant Under the transformations of
the U(2) group[18]. The change of basis simultaneously
C. The Hamiltonian transforms the operators and the coefficient matkixinto a

- _ _ new matrix °L.
A Hamiltonian operator, represented in a basis settof 2

spin orbitals, that includes, at most, pairwise interactions

. . SYMMETRY TRANSFORMATIONS
may be written as

Some of the spin-orbital basis transformations just men-

~ 1o ot tioned leave the Hamiltonian matrix and the RDMs invariant,
H=3 ~ Hirsiiabr Dsbiby, ™ and they will be considered here in some detail.
k|
where °H, of dimensions (K)?x(2K)?, is a self-adjoint A. Transformation of the Hamiltonian
numerical matrix, and its element values are given in terms The symmetry properties of the Hamiltonian matrix may
of usual one- and two-electron integrals: be discussed either in the extended fothh or in the com-

pressed fornH.
Out of the infinite set of transformations of the spin-

orbital basis, there are some changes of biadis which the

_ _ . . _associated matrice&R leave the numerical coefficients, col-
The anticommutation relations of the creation and annihifected in matrix form a’H or °L, invariant,

lation operators allow us to rearrange the same Hamiltonian

1
OHrs;kI:<rS|k|>+ m(hr;kgs;l'*' 5r;khs;l)-

in a compressed forfil7] in an ordered two-particle basis 0 2K st 0 ) o
without loss of information: |—pq;ij:%1 Rogtu Hiumn Rmnij="Hpgij» (12
t,u
2K
H=> "H,q.qb/blb by (8)  and consequently, the matrix product @ and °H is com-
o mutative,
with ROH=CH?R, 2ROH=CH?R. (13
"M, s10="H k1= "Hisiic - These commutation relations are equivalent to the operator

commutation in the first quantization, with a clear distinc-
This Hamiltonian operator depends on the basis set in twéion: here, the transformation is a change of basis.
ways: through the numerical constants and through the They are the only transformations of the one-electron ba-
creation-annihilation operators. However, it is as a wholesis, out of the U(K) unitary group, to be considered in this
independent of the particular option of the basis set within gaper. The set of all such transformatidhgorms a groupg,
given subspace of one-electron functions. So, in the new subgroup of U(R) that, for the sake of simplicity, will be

spin-orbital basis, taken as finite in what follows. Among these transformations,
oK the point-group symmetries of the molecule may be in-

A= 1 oL b bbb cluded. In the first quantization formalism with fixed nuclei,

T &, TpaniirEpr R Ei Ry the space symmetry is given by the invariance of the

i electron-nuclear attraction term under a coordinate system
oK transformation. The symmetry in the occupation number rep-

S Oﬁp,q,.i,j,b*,bT,b-,bi, , ) resentation may not be thg same as in the first qua_ntization,
o ; P’ a’ ] although any judicious choice of a one-electron basis should
?,<J-, reflect the space symmetry of the system.
In addition to the spatial symmetry, if no spin interactions
where are taken into account in the Hamiltonian, any unitary trans-
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formation of the spin parts in the spin orbitals is also a symformationsR, so that the two-particle associated matrix com-
metry transformation. In these cases, the symmetry grouR ies with OH, the density matrix| W )(W| = |RW)(RW|

considered here, is the direct product of the mdependerBelongs to the trivial, totally symmetric, irreducible represen-

cor_lr_lrr]nutat;ve s?bgrogps. f the Hamiltoni dify th tation; and the transformation properties of the RDMs can be
ese transiormations of the Hamiftonian mo ify the Op'analyzed from the transformation of the chains or creation
erators while maintaining the coefficients vice versa and annihilation operators

) Hence,

T
I
=
N
=

0 2Rt nithip.p. 2
Hpgijl Rij:klbrbsblbk Rrs;pal PD=PRTPDPR, PD=PRTPDPR (queg)_ (15)

N~
XN —0

This is the same type of transformation as that of &q).

bbibib.[2R o 2Rt For nondegenerate states, the transformations that leave the
rMsVl k[ rs;pq ' 'pa;ij Ij;k|] . . . L. K

Hamiltonian matrix invariant, Eq.(12), also leave the
p-RDM invariant. Thep-RDM is invariant under its transfor-
mation by PR or, in other words, both matrices commute.

The hole reduced density matrices are also invariant under

those symmetry transformations,

I
M

—wun
-0
—a

==

MR =M

The set of one-particle transformation matridesitself
constitutes a, most likely reducible, representatioof the
order of XK of the group; it is generated by the basis of spin
orbitals. The set of one-electron creation-annihilation opera-

: . PD=PRTPDPR, PD=PRTPDPR (VReG). (16
tors generates the same-complex-conjugate representation.

The set of two-particle transformation matricé® con- Powers ofp-RDMs also transform as thp-RDM. For
stitutes another representation: the external prodiwl’.  jnstance,
The set of matrice$R is the antisymmetric part of the pre-
vious onel'®T. PD2=PRTPDPRPRTPD PR=PRPD? PR

B. Transformation of the reduced density matrices due to the unitary condition of théR matrix.
The symmetry properties of the RDMs have been exten- 2. Degenerate states
sively studied[_7,19—24 in the coordinate representation as |t \ forms the basis of the irreducible representation
the kernels of integral operators. In what follows, the devely,ii dimensionl
opment will be carried out in the occupation number repre- mr
sentation. I,
As a generalization of what has been said at the end of the  R¥(¥= > w¥(D®W(R)y,, n=12,...]
preceding section, the set of strings of a larger number of m=1
creation-annihilation operators generate powers of the basic . )
T representation; their ordered subsets generate the corrél€ transformatiorR mixes all the states in a degenerate set

sponding antisymmetriqunder permutations of indices under the grouy. . _ .
power ofT. The N-electron density matrix, associated to one of the

states, transforms as

w

Inserting in Eq.(5) the unit operatoR™ 'R or R'R at both
ds of the chain of t d ihilat A A
ends of the chain of creators and annihilators R Uy RW W)
Ly
:% (D(”)T(R))m;” |‘I’£y“)><‘lf(,7“)|(D(”)(R))y;m,

J1 712

1 A A
= —(¥|R'Rb bl ---bl b; ---b; b; R'R|¥)
p! Jp 7 p 271 . .
but the average density matrix

1 . . P

= a<R\If|ijle,TZ . .bj*pbip ...by oy RTRW), 1 lu o
|_ mE:l |\Irm ><\I’m |
(14 .

is totally symmetric under the group at the origin of the
degeneracy. In other words, if the density matrix transforms
%s a basis of the totally symmetric representation, its RDMs
also transform as a basis of the same totally symmetric rep-
resentation. This averaged density matrix has a unit trace but
it is not idempotent. It corresponds to a state with “less than
maximum information”[25]. It hasl, nonvanishing eigen-
values of value 1/, . Its matrix representation in the basis of

For nondegenerate state® that belong to a one- the eigenstates is invariant under unitary transformations that
dimensional irreducible representation of the group of transeombine degenerate states among themselves. The reduced

where the operation acting di-electron functions is to be
electron basis. The previous relation shows thatpHiDM

is invariant under simultaneous transformation of the
N-electron state and of the creation-annihilation operators.

1. Nondegenerate states
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density matrices that can be obtained from it by contraction TABLE I. Characters of the representation generated by 1-RDM

are also totally symmetric under the grodp elements
For instance, if no spin interactions are considered for &
set of triplet states, the density matrices of any order, averCe E 2C 2C; C, 30, 304 g0=12
aged over the states Wi!lbl s=10,-1, are invarignt under. 6 0 0 0 5 0
any unltary transformation of the spin parts in the sp|n-¢®¢ 36 0 0 0 4 0
orbital basis. b0 b|[2] 21 0 0 3 5 3 4

The invariance properties of tileRDMs for nondegener-
ate states—either particle or hole—given in the preceding

subsection, can be extended, in the case of degeneracies,if0s of the matrix representation generated by the 36 ele-
the average ments of the 1-RDM.
Due to the Hermiticity of the 1-RDM, only the totally

1 lu o1 e symmetric part under the interchange of rows and columns
pDau:r > PDYnm, pDau:r >, PDn¥m. (17)  needs to be taken into account. The characters of the repre-
wm=t wm=t sentation generated by those relevant elements are collected

in the fourth row. The labgl2] appearing in the first column

In the absence of perturbations, this is the only quantity thagefers to the totally symmetric representation of the permu-
can be checked against experimental data. It is an ensemblgtion groupS, [26]. This is clearly a reducible representa-
RDM, with identical statistical weight for every state within tion, Q which may be decomposed into a direct sum of the

the set of degenerate orthonormal states. The average has {iRducible representations of the group. Recalling the well-
same transformation properties as that corresponding t0 ghown formula

nondegenerate state.

1
an,= = 2 XMR*ADR),
IV. INVARIANT PARTS OF THE REDUCED 9 Reg

DENSITY MATRICES _ _ _
where g is the number of operations in the grogp one

As a consequence of relatioiis3) and (19), i.e., if the  obtains the number 4 appearing in the last column which
system presents symmetries, the information carried by thg@enotes the number of times the totally symmetric irreduc-
Hamiltonian matrix°H, as well as that by the RDMBD for  ible representatiod,, is present in that decomposition. This
a nondegenerate state, is multiple times contained and thergumber indicates the number of invariants; that is, the only

fore redundant. As a consequence, only a few data, out of gonvanishing data which are able to carry the information of
large number of matrix elements, are essential; the rest cafe full matrix.

be obtained through the symmetry transformations. This

number equals the dime_ns_ior_l of the subspace spanr!ed by the B. The p-RDM

strings of creation-annihilation operators conserving the

number of particles that transform as the totally symmetric In the previous example, we have made use of two pro-

irreducible representation. The number of invariants in thecedures that are quite general: the construction of the repre-

Hamiltonian matrix°H will coincide with that of the 2-RDM ~ sentation generated by the one-body density operator and the

for a nondegenerate state. calculation of the number of invariants. When considering
Let us evaluate now what is the minimum number of datathe p-electron space, there is an additional problem: the

required in order to have all the information contained in theevaluation of the characters of the representation generated

matrices. In order to provide a more transparent descriptioRY the strings o ordered creation operators related to a set

of the procedure, we will consider a specific example: a0f 2K spin orbitals. The representation generated by the

model molecule made up of six identical atoms, arranged i$trings of annihilators will be its complex conjugate.

a plane as a hexagon, and an orbital basis formed by a set of In the general case, thé") different strings of creators

symmetrically orthonormalized reaklorbitals, one on each constitute a basis for the representatlofP|[ 1], wherel’

atom. For this model system, the spatial symmetry group igs the basic representation generated by tespin orbitals,

finite. The spin part of the basis will be made explicit when-and[ 1P] indicates that only the totally antisymmetric part of

ever required to specify different blocks in the RDMs. Thethe pth power of the representation is to be considered.

RDMs of different orders will be treated independently. In many problems, it is convenient to specify that the

creators and anihilators refer to a spin-adapted basis, i.e., half

of the spin orbitals are of the type and the other half are.

In this basis,p-RDMs for nondegenerate states split into
The group of spatial transformations and the characters dflocks that can be labeled by the quantum numBekég of

the representatiow generated by that basis is presented inthe p-electron basis. For a spin-free Hamiltonian, a further

the second line of Table I. symmetry operation should be considered: the one that inter-
The third row shows the characters of the representatioshanges the spin-functiors and 3.

¢® ¢ generated by the set of all the products of a creation The strings of creators referring to a spin-adapted basis

multiplied by an annihilation operator. It gathers the charac-generate the representations indicated in Table I, wheise

A. The 1-RDM
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TABLE Il. Symmetry of the chain of creators.
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in a given PD, is called thecompact formof PD and is
denoted by”°D.

Spin function S Ms Representation A P°D is a very sparse matrix that nevertheless carries the
aP p p $°P|[1P] essential information contained in the correspondiby
5 5 In this section, we will show how, knowing and a given
aP'B P, ¢ e PD, one can build &°D and how aP°D can be unfolded
21p o % #7717 through the action oR in order to yield back the original
= -1 PD. It will also be shown here that while &°D yields in a
aP~ 9B % % $°P|[2,1P72] unique way the originaPD, several equivalen®°D’s may
o 271 371 oo, be generated from a givetD.
a?*B g_z ¢“P A [1P " ]@ 64 |[17] This folding and unfolding of information can be sche-
P22 ®p|[1P matically represented as
B g g _, 97l
ap*ZBZ E_l E_Z ¢®p‘[2’1p72] R
a?2p2 b, b, emZr o pep,.
—
ap73183 2 E_S ¢®p—3|[1p73]®¢®3|[13] R
a3 p b $P[17] | |
s 2 773 . 5 where the 1" index calls our attention to the fact that there
a’"p P, Py 4Tl2rT is a set of equivalen®-°D.
aP=383 % % $°P|[22,10%] Note that, in general, one maylspegk of compact forms of
572 53 the RDMs, the HRDMs, the Hamiltonian matrix, etc.
aP3p8 p p d®P|[23,1P7 €] The other point of interest, which will be considered here,
273 373 is that to what extent it is possible to operate directly with

these compact forms.

) ) ) A. Properties of the compact forms
the representation of ord& generated by the orbital basis.

The symmetrized power of a group representation is labele L3 the RDMs (15 d the HRDMS16 ¢ ¢
according to the irreducible representation of the correspond-" ), the s(19), an en s . ) must commute
with the symmetry transformations. It is possible to obtain

ing group of perr_nutations. I eXpresses that, for a given fom}rom any matrix noncommuting with the symmetry transfor-
of the spin functions, the spatial part should transform as an _tions a new matrix that does commute with all of them.

irreducible representation of the permutation group with NOrhe group-theoretical methods show that the operation
more than two columns in their corresponding Young dia-

gram. For instance, for two electrong=2) the (@¢B) two-
electron creators transform as the representagienp which
splits into triplets p® ¢|[12] and singlets¢® ¢|[2]. The
same procedure as that described in the 1-RDM case yielgserformed on a matriX*°P leads to a new matri®’P that
the invariants of the various spin blocks of the RDMs. Thosecommutes with every’S in the group of transformations.
of the 2-, 3- and 4-RDMs, for the same model system, are
collected in Table Ill. The first few lines express that the
(aa) block (Mg=1) of the 2-RDM for the above-
mentioned example requires, in a real orbital basis, no more
than 16 independent real data as shown in the rightmost col- 1 .
umn. The third row for every entry in Table l{with label S == > P(SRPPP(SRT=PP (V5eQ)
p-RDM) indicates that, for a symmetric matrix, only the el- 9Reg

ements in and above the main diagonal are considered. T
symmetry due to the interchange®fand 3 parts of the spin
orbitals further reduces the number of invariants. The limit is
the degrees of freedom of the RDM in any approximation,
variational or not.

It has been previously shown that the Hamiltonian matrix

1
_ 2 PRP.CpPRT=PpP

(18)
g éeg

PgPpPGh—P 1 > PRPepPRT| PGt

Reg

pgt
g ﬁ(eg

E P } E PR P.cpPRT
g éeg

1
V. COMPACT FORMS =3 2 P(SR) PePP(SR)T=PP
SRe g
It has previously been shown how the invarianRexf the
Hamiltonian matrix°H—and hence of the system—induce indicating that it is an idempotent process.
invariances in an RDM of any order. The matrix having zero The compact formsP°P of the RDMs, HRDMs, or

elements everywhere, except for the invariants induceR by Hamiltonian matrix f=2) carry the minimum of invariant
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TABLE Ill. Number of invariants in different spin blocks of 2-, 3-, and 4-RDMs.

Spin blocks of the RDM  Representations Cep: E 2C¢ 2C; C, 30, 304 g=12
S=1M=1 $® P|[17] 15 0 0 -3 -1 -3
2-RDM 225 0 0 9 1 9
S 2-RDM 120 0 0 12 8 12 16
M =0 ¢ P 36 0 0 0 4 0
2-RDM 1296 0 0 0 16 0
S 2-RDM 666 0 0 18 26 18 68
S=0M.=0 6® ¢|[2] 21 0 0 3 5 3
2-RDM 441 0 0 9 25 9
S 2-RDM 231 0 0 15 23 15 30
S=3/2M =3/2 o®3[1%] 20 0 2 0 -4 0
3-RDM 400 0 4 0 16 0
S 3-RDM 210 1 3 10 18 10 26
M=1/2 o®?[1%]® ¢ 90 0 0 0 -2 0
3-RDM 8100 0 0 0 4 0
S 3-RDM 4095 0 0 45 47 45 368
S=12M=1/2 $®3[2,1] 70 0o -2 0 2 0
3-RDM 4900 0 4 0 4 0
S 3-RDM 2485 -1 1 35 37 35 228
S=2M =2 %414 15 0 0 3 -1 3
4-RDM 225 0 0 9 1 9
S 4-RDM 120 0 0 12 8 12 16
Mg=1 o [1%]® ¢ 120 0 0 0 -8 0
4-RDM 14 400 0 0 0 64 0
S 4-RDM 7260 0 0 60 92 60 648
S=1M=1 %42, 105 0 0o -3 -7 -3
4-RDM 11025 0 0 9 49 9
S 4-RDM 5565 0 0 57 77 57 502
M =2 6®?|[1%]® ¢®?|[1?] 225 0 0 9 1 9
4-RDM 50625 0 0 81 1 81
S 4-RDM 25425 0 0 153 113 153 2198
S=0M.=0 $®4[22] 105 0 0 9 9 9
4-RDM 11025 0 0 9 49 9
S 4-RDM 5565 0 0 93 93 93 518
information of the respective matrices, but they do not nec-
essarily commute with the transformation matricéR. PD=— 2 PRP-CDPRT, (20)
However, when &°P is unfolded, the resulting matrix does Reg
commute with everyS,Se G. or to HRDMs
The compact fornP °P may have many elements equal to
zero. Their information is accumulated on other elements. — 1

PD== > PRPCDPR!

The projection brings back every portion of information to 94

its proper place.
The above idea of compactness may be applied to ther to their compressed forms in an ordeqgélectron basis
Hamiltonian matrix set. All of them may be expanded from their compact forms.
As an example, consider the particular case of a singlet
state studied in the previously mentioned spin-adapted basis.
The 1-RDM splits into blocks associated with theand 8

OH = 1 S 2R0¢H 2RT, (19  SPins, D« and DA, each one of dimensiori$x K. In this
9 Reg basis, the mixed blocks vanish. The requirement that the
1-RDM must commute with the transformation that inter-
changesa and B in the spin part of the basis forces the
to the RDMs of any order blocksa and g to be identical. The group of transformations
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contains only two operations: the identity and the transfortion process will produce the complete 1-RDM. The compact
mation of interchange of andg, ({e,oc«<0¢’'}). One of the form has many more zeros than the complete matrix. Other
compact Hermitian forms of the 1-RDM may be spatial symmetries could compact the information even fur-
ther.

As another simple example, the information contained in
the first-order spinless density matrix of a highly symmetric
system, such as the benzene molecule, studied under the very
with all the information compacted in one block. The projec-simple Hickel method,

l.CDUZIDa+ lDﬂ l,CDO'/:O

1.00000 0.66667 0 —0.33333 0 0.6666
0.66667 1.00000 0.66667 0 —0.33333 0
0 0.66667 1.00000 0.66667 0 —0.33333
—0.33333 0 0.66667 1.00000 0.66667 0|’
0 —0.33333 0 0.66667 1.00000 0.666
0.66667 0 —0.33333 0 0.66667 1.0000
|
commutes with the transformations contained in tbg, The projection procedure outlined above preserves the

group. It may be stored in a compact form as the nonsymtrace of the matrix,
metric matrix

1
6 00 00 tr(pp):tr(_ 5 pRp,chR‘r) —tr(Pep),
0O 00 0O 9 &eg
O 0 0 O OO
-2 0 0 0 0O Hence, compact forms have the same trace as the complete
0O 00 0 O O matrix.
O 000 0 0 Compact forms of the Hamiltonian matrH, or of the

RDMs, can be neither positive semidefinite nor hermitian,
although they may be chosen to be Hermitian by the simple
method of averaging a matrix and its Hermitian conjugate:
€ pcpy p.ept

> (PCP+PCPT).

The contraction of a compact form of the 2-RDM leads to
compact form of the 1-RDM'D that contains all the
ormation of the 1-RDM:

From this matrix, the previous one may be recovered by th
projection method, Eq.18), which, in this case, implies the
12 operations of th€g, group. Obviously, the higher is the
symmetry of a problem, the lesser are the nonzero elemenﬁ%f
in the compact forms.

Note that, in this example, th@,1) element of the com-
pact form is the sum of the diagonal elements of the unfolded 1
one because the operations in the group will transfer that Ip==> RIDR". (21)
value to all places along the diagonal. As an alternative, the 9 ke
same information could have been placed in any diagonal
element other than thg,1). That is, as in many other pro-
jection processes, the compact form is not unique. There aifequation (21) is the contraction of Eq(20) to the one-
many compact form$ °P that project to the same complete particle space. That is, the unfolding of the compact forms is
matrix PP. Indeed, there may be forms more or less compactstable under contraction to a subspace with lower number of
with more or less zeros in it. particles. The compactness is preserved by the contraction

Since a compact form is not unique, when wishing toprocessThe same algorithm used to contract any RDM to a
construct a compact form one must consider which should bwer-order RDM may be used to contract its compact form
the more convenient distribution of the invariants in the re-Nevertheless, the contraction of a high-order RDM in a com-
sulting matrix. That is, a preliminary analysis should be carpact form does not ensure that what is obtained is the most
ried in which the unfolding process spreads the informatiorcompact possible form of the lower-order RDM.
contained in one element of the compact form throughout The expectation values of operators are calculated as the
many elements of the expanded form. From this analysigrace of a product of matrices. The energy is the trace of the
one can easily deduce where to place the information. product of °H and 2D matrices:
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o 5 2-RDM from 1-RDM in the form
E:; Hrs;kl DkI;rs

1
i D~'DA'D, *Dis~ E(lDr;les;l —'Dy,'Ds)

I
Bl g
Q-

w—

2 2Rrs;mn0’chn;tu2RIu;kl (Vr,s;k,1). (22

Reg MN
t,u

Iy

The matrices obtained as a result of a Grassman product
commute with the matrice8R, associated to the symmetry

1
X | — 2 2 ) 2,CD ) 2ot ) "
g Sctow” Dowsey Seyirs transformation®R e G if every factor does. That is, the Grass-

ASEQ v,W
Y man or the wedge product leads to higher order matrices that
1 have the same symmetry properties as the RDM they try to
:Z 0'CHmn;tu . E 2 2Ttu;Uwz'cDuw;xyz-r)]:y;mn : approximate. .
m.n 91cg l;(\;v As an extension of the above statement, the cumulhts

that are equated with the difference of an ex&gl) RDM
This result can be expressed as the following. and an approximation obtained through Grassman products
Theorem A The trace of a product of two matrices is of lower-order RDM{28-33 are also invariant under trans-
equal to the trace of a product where one of the matrices is iformations that leave the Hamiltonian matrix invariant. That
the compact form, while the other matrix is in the unfoldedis, the cumulant matrices commute with the symmetry matrix
form. The generalization of this theorem is easily proved. transformations. In the previous example, the second-order
Theorem BThe trace of a multiple product of matrices is cumulant?A=2D—D/!D has the same symmetry proper-
equal to the trace of a product where all the matrices are ities as the 2-RDM. As in the Hamiltonian matrix or in
the compact form, except for one of the factors which musRDMs, the information contained in cumulants may also be
be in the unfolded usual form. derived from a compact, abbreviated form that reduces or
These two powerful theorems imply that the use of theavoids redundancies.
compact form matrices greatly enhances the practical possi- A different problem arises if the information of the low-
bilities of any methodology when applied to the study of order matrices is in the compact form mentioned earlier. In
large but highly symmetrical systems. general, the Grassman product of low-order compact form
When approximations or simplifications are required forRDMs vyields a compact-form of the higher-order RDM,
the study of a large molecular system, it would be simpler tovhich projected on the subspace of matrices that commute
modify—neglecting or approximating, for instance, some el-with the symmetry transformation matrices, is not coincident

ements inOH, while preserving all the Symmetri& of the with the Grassman prOdUCt of low-order RDMs in full:
original problem—the compact formi°H rather than the

whole matrix °H. In orde_r to preserve the symmetry of th_e 2p .~ E i E [RT-ST-—RT-SI ]
problem, all the approximations should be consistent with rsikl™ 4 9?5 nivsj s
Eqg. (13). e

Similarly, the RDMsPD corresponding to the eigenstates XD DX [ Sqi 1 Rpk— Sq:kRpi 1.

are approximated more easily, if in compact forfine num-

ber of non-null elements of the most-compact form of arnn other words, the projection of the Grassman products of
RDM will correspond to the number of degrees of freedom ircompact-form RDMs requires an algorithm other than that
a variational approximation procedurelhis number equals presented in E¢(20).

the number of invariants under the transformatiésNote In the case of degeneracies, the use of the average RDM,
that here again, in order to preserve the symmetry of thénentioned in Eq(17), modifies the equations. The Grassman

problem, all the approximations should be consistent withproduct of averaged low-order RDMs is not the same as the
Eq. (15). average of products; there are extra cross terms. This consti-

tutes an alternative approximation of high-order RDMs. But
B. High-order RDMs construction algorithms from the point of view of the symmetry, these ensemble

) ] ) ) ) RDMs behave as those of a nondegenerate pure state. The

The |terat|ye solution of the CSE requires a reliable cal-grassman product of averaged RDMs produces a high-order
culation of high-order RDMs from RDMs of lower order. ppw that commutes with the symmetry transformations. On

Exact algorithms are only known for states described by gne contrary, the average of wedge products of pure RDMs
single configuration with spin orbitals fully occupied or fully yses not.

empty. Although many improvements have been achieved in
recent times, only approximate algorithms have been pro-
posed for states that take into account the correlation effects.
The basic algorithms proposed include external products In addition to the main algorithms for constructing high-
of RDMs of low order, antisymmetrized for a fermion prob- order RDMs through Grassman products of lower-order
lem. These products are Grassmamnwadgeproducts[27]. RDMs, a set of corrections have been proposed. All these
The simplest example is the construction of an approximatedorrections derive fronN-representability conditions. Some

C. Bounds and other corrections
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of the conditions affect the entire matrix, but many other aranay endanger the symmetry properties of the matrix.
conditions on particular elements of the RDM. The simplest All these corrections may be summarized by adding a
example is that the RDM of any order must be positivenew matrix and multiplying by a factor, or a combination of
semidefinite. Within an orthonormal base, it implies that allboth
the diagonal elements must be non-negative. Hence, zero is
the lowest bound for these elements. Other corrections in- al PD+ 1 S PRPD’ PR,
clude scaling to adjust the trace, or the partial traces, to
known predetermined values. Other bounds are the conse-
qguence of the essential non-negativity of t@ematrices ) ) )
mentioned by Garrod and Perci84] and later generalized wherg the correctlon_ matri*D’ has been projected to ensure
by Valdemoroet al. [35—37. that it commutes_wnh every symmetry transforma_non ma-
These corrections, although rather minor, aim at the prelfix, and the scaling factoa may be chosen to adjust the
cise fulfillment of the knowrN-representability conditions in ~ trace.
an attempt to get as close as possible to an exactly
N-representable RDM. o ACKNOWLEDGMENT
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