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Compact forms of reduced density matrices

L. M. Tel, E. Pérez-Romero, F. J. Casquero, and C. Valdemoro*
Departamento de Quı´mica-Fı́sica, Universidad de Salamanca, 37008-Salamanca, Spain

~Received 13 January 2003; published 21 May 2003!

The objective of this paper is to identify the necessary and sufficient minimum information carried by
Reduced Density Matrices~RDMs!. This minimum of essential information determines a set of equivalent
compact-form matricesthat are devoid of the redundant information present in the original RDMs when the
system possesses symmetry invariances. The basic properties and algebra operations of these compact-form
matrices are obtained here. The use of these new mathematical objects renders far more economical the
operations and storage of RDMs and will thus be of interest in the study of systems with symmetry invariances.
In particular, it opens the possibility of using large basis for medium-sized systems when solving iteratively the
contracted Schro¨dinger equation.
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I. INTRODUCTION

The reduced density matrices~RDMs! @1–5# are
mathematical-physical objects that carry the informat
about the electronic structure of anN-electron system in a fa
more economical way than the wave function from whi
they are derived. However, as the size of the system
creases, the size of the basis of representation of these
trices also increases and, therefore, the dimensions of t
matrices become too large for easy handling.

On the other hand, it is well known@6# that the RDMs
have a much smaller number of independent parameters
the full configuration interaction~FCI! wave function. How-
ever, there are several means of rendering the informa
contained in the RDMs more compact. A simple way of
ducing the number of independent elements can be to
advantage of the characteristic properties of the RDMs, s
as its Hermiticity. Another possibility is to shrink the dime
sions of the RDMs by labeling rows and columns with s
of ordered indices. The information contained in ap-RDM is

still carried out by (
2

( p
2K)11

) for a one-electron function spac
of dimension 2K. This number is further reduced because
the requirement of fixed trace andN-representability condi-
tions. The use of a symmetry-adapted basis of spin orbi
geminals, etc., makes many of their elements vanish. T
kind of study has been carried out by several authors ma
in the coordinate representation, particularly making use
the spin-symmetry properties of the RDMs@7#.

However, in many cases it may be preferable to work w
an atomic basis instead of with a symmetry-adapted mole
lar or crystal-adapted basis, and it may be necessary to
a simple non-spin-adapted labeling in the RDM rows a
columns. This is the case on solving the contracted Sc¨-
dinger equation~CSE! @8–14#, which involves the simulta-
neous use of three different orders of RDMs, the need
performing contractions of the 3- and 4-RDMs, and the
construction of higher-order RDM elements in terms of t
lower-order ones.

*Present address: Instituto de Matema´ticas y Fı´sica Fundamental
CSIC, Serrano 123, 28006 Madrid, Spain.
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The aim of this paper is to report a method for obtaini
the same information as ap-RDM although in a compac
form from which all the redundant information has be
omitted. This methodology takes into account the invaria
of the strings of creation-annihilation fermion operators
the second quantization because their expectation value
the RDM elements. Therefore, our purpose is to render
sible the operations with RDMs, using as few matrix e
ments as possible, without necessarily being forced to
symmetry or spin-adapted basis functions, but taking the
most advantage of the symmetry of the system.

In the following section, the notation and the necess
background information are given. The procedure to cal
late the number of invariant elements of a givenp-RDM is
described in some detail in Sec. III. The construction of
compact-form matrices, equivalent to the RDMs, is shown
Sec. IV. Finally, in Sec. V, the handling rules for operatin
with these compact-form matrices are reported.

II. NOTATION AND THEORETICAL BACKGROUND

A. Transformation of the basis set

Numerical solutions of the electronic problems in atom
or molecules are usualy achieved by developing wave fu
tions and operators in a finite set of spin orbitals. In t
present work, orthonormality of the basis will always be a
sumed. This basis set of orbitals may be modified by a se
transformationsR̂, such as rotations or reflections, of th
coordinate system. If the set of 2K spin orbitals is stable
under a linear operationR̂, the new orbitals are expressed
linear combinations of the old ones. In a different basis
representation, the spin-orbital labels will be indicated
primed latin alphabets, and so we will have

wp85R̂f r5(
k

2K

fkRk;p8 , f r5(
i 8

2K

w i 8Ri 8;r
† .

The transformation matrix of dimensions 2K32K is unitary
and thus preserves the orthonormality of the set.R† is the
matrix associated to the inverse transformation.
©2003 The American Physical Society04-1
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The set of all those transformation matrices forms a gro
U(2K). Some subgroups are U(K) if no spin mixing is al-
lowed, and O(K) if orbitals are restricted to be real. Othe
subgroups are those related to the spatial symmetry of
problem, such as a symmetry transformation or a transfor
tion to a symmetry-adapted basis.

The change of basis modifies according to the creat
annihilation operators@15#

bi 8
†

5R̂bi
†R̂215(

k

2K

bk
†Rk; i 8 , bk

†5(
i 8

2K

bi 8
† Ri 8;k

† , ~1!

bi 85R̂biR̂
215(

k

2K

bkRi 8;k
† , bk5(

i 8

2K

bi 8Rk; i 8 , ~2!

where invariance of the vacuum has been assumed. Cre
operators transform as the spin orbitals themselves, while
matrices for the annihilators are complex conjugates to th
for the creators.

The number operator is independent of the choice of
basis set:

N̂5 (
i 851

2K

bi 8
† bi 85 (

k51

2K

bk
†bk .

The transformation of the spin orbitals also transforms
string of two creation and annihilation operators. Thus,
creation operators transform as

bi 8
† bj 8

†
5R̂bi

†bj
†R̂215R̂bi

†R̂21R̂bj
†R̂215(

k,l

2K

bk
†bl

†Rk; i 8Rl ; j 8

5(
k,l

2K

bk
†bl

† 2Rkl; i 8 j 8 ~; i 8, j 8!. ~3!

In order to have uniquely defined two-electron or gemi
functions, the basis set must also be uniquely defined; th
achieved by imposing an ordering of the operator labels
equivalently, an antisymmetrized product of the one-elect
basis. It transforms as

bi 8
† bj 8

†
5(

k, l

2K

bk
†bl

† 2Rkl; i 8 j 8 ~ i 8, j 8!,

where 2R is the matrix transformation of the two-partic
operators. It is the antisymmetric part of theR^ R matrix
product. For any transformationR̂,

2Rkl; i j 5Rk; iRl ; j2Rl ; iRk; j ~k, l ; i , j !. ~4!

Both matrices, 2R and 2R, of dimensionsK23K2 and
(2

2K)3(2
2K), respectively, are also unitary:

2R2152R†, 2R 2152R †.

Hence, the global transformation of a string of several c
ation operators is closely related to that of the spin orbita
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The transformation of a string of two annihilators tak
one of these alternative forms

R̂bjbiR̂
215(

k,l

2K

blbk
2Rkl; i 8 j 8

* 5(
k,l

2K

blbk
2Ri 8 j 8;kl

†
~; i 8, j 8!,

R̂bjbiR̂
215(

k, l

2K

blbk
2Rkl; i 8 j 8

* 5(
k, l

2K

blbk
2R i 8 j 8;kl

†
~ i 8, j 8!.

Extension to the generalp-particle space is straightfor
ward and will not be shown here. Only the symbolspR and
pR are given for future use.

The operation that transforms the orbital basis induce
transformation in the basis ofp-electron functions. The chain
of p creation operators is in the basis of thep times tensor
product of the one-electron creation operator space with
self; the ordered basis is the basis for the antisymmetric
of that tensor product@16#. The matrix transformation is eas
ily constructed as outer direct products from the transform
tion matrix of the one-electron basis. In what follows, t
operatorsR̂, defined through the transformation of the on
electron basis functions, may appear acting on anN-electron
function in the same way as the creation and annihilat
operators do.

B. The reduced density matrices

In the second quantization, in the occupation number r
resentation, thep-RDM elements may be written as the e
pectation values of particle-number-conserving operators

pDi 1 ,i 2 , . . . ,i p ; j 1 , j 2 , . . . ,j p

5
1

p!
^Cubj 1

† bj 2

†
•••bj p

† bi p
•••bi 2

bi 1
uC&

~; i 1 ,i 2 , . . . ;j 1 , j 2 , . . . !, ~5!

where bp
† and bi are the creation and annihilation fermio

operators, respectively, and the indices represent spin orb
taken out of a given basis.

As mentioned in the Introduction, when an ordered
antisymmetrizedp-electron basis is considered, the same
formation is given in a compressed form:

pDi 1 ,i 2 , . . . ,i p ; j 1 , j 2 , . . . ,j p

5^Cubj 1

† bj 2

†
•••bj p

† bi p
•••bi 2

bi 1
uC&

~; i 1, i 2,•••; j 1, j 2,••• !. ~6!

Both forms of thep-RDM have the same trace.
Similar relations hold for the hole RDMs~HRDMs!, de-

fined by
4-2
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pD̄ i 1 ,i 2 , . . . ,i p ; j 1 , j 2 , . . . ,j p

5
1

p!
^Cubi p

•••bi 2
bi 1

bj 1

† bj 2

†
•••bj p

† uC&

~; i 1 ,i 2 , . . . ;j 1 , j 2 , . . . !.

In some cases, an explicit mention of thebra and ket
involved in a transition reduced density matrix is required

2Di j ;pq
FC 5 1

2 ^Cubp
†bq

†bjbi uF& ~; i , j ;p,q!.

Any of them may also be represented in an ordered bas

C. The Hamiltonian

A Hamiltonian operator, represented in a basis set ofK
spin orbitals, that includes, at most, pairwise interactio
may be written as

Ĥ5
1

2 (
r ,s
k,l

2K

0Hrs;klbr
†bs

†blbk , ~7!

where 0H, of dimensions (2K)23(2K)2, is a self-adjoint
numerical matrix, and its element values are given in ter
of usual one- and two-electron integrals:

0Hrs;kl5^rsukl&1
1

N21
~hr ;kds; l1d r ;khs; l !.

The anticommutation relations of the creation and ann
lation operators allow us to rearrange the same Hamilton
in a compressed form@17# in an ordered two-particle basi
without loss of information:

Ĥ5(
r ,s
k, l

2K

0Hrs;klbr
†bs

†blbk ~8!

with

0Hrs;kl5
0Hrs;kl2

0Hrs; lk .

This Hamiltonian operator depends on the basis set in
ways: through the numerical constants and through
creation-annihilation operators. However, it is as a wh
independent of the particular option of the basis set withi
given subspace of one-electron functions. So, in the n
spin-orbital basis,

Ĥ5
1

2 (
p8,q8
i 8, j 8

2K

0Lp8q8; i 8 j 8bp8
† bq8

† bj 8bi 8

5 (
p8,q8
i 8, j 8

2K

0Lp8q8; i 8 j 8bp8
† bq8

† bj 8bi 8 , ~9!

where
05250
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0Lp8q8; i 8 j 85(
r ,s
k,l

2K

(
t,u
m,n

2K

2Rp8q8;tu
† 0Htu;mn

2Rmn; i 8 j 8 , ~10!

0L p8q8; i 8 j 85(
r ,s
k, l

2K

(
t,u
m,n

2K

2Rp8q8;tu
† 0Htu;mn

2Rmn; i 8 j 8 ~11!

are elements of the matrices0L and 0L, which are respec-
tively the transformed matrices of0H and 0H to the new
basis, andbp8

† bq8
† bj 8bi 8 are creation and annihilation opera

tors referring to the new spin orbitals.
The Hamiltonian is invariant under the transformations

the U(2K) group @18#. The change of basis simultaneous
transforms the operators and the coefficient matrix0H into a
new matrix 0L .

III. SYMMETRY TRANSFORMATIONS

Some of the spin-orbital basis transformations just m
tioned leave the Hamiltonian matrix and the RDMs invaria
and they will be considered here in some detail.

A. Transformation of the Hamiltonian

The symmetry properties of the Hamiltonian matrix m
be discussed either in the extended form0H or in the com-
pressed form0H.

Out of the infinite set of transformations of the spi
orbital basis, there are some changes of basisR̂ for which the
associated matrices2R leave the numerical coefficients, co
lected in matrix form as0H or 0L , invariant,

0Lpq; i j 5(
m,n
t,u

2K

2Rpq;tu
† 0Htu;mn

2Rmn; i j [
0Hpq; i j , ~12!

and consequently, the matrix product of2R and 0H is com-
mutative,

2R0H50H2R, 2R 0H50H 2R. ~13!

These commutation relations are equivalent to the oper
commutation in the first quantization, with a clear distin
tion: here, the transformation is a change of basis.

They are the only transformations of the one-electron
sis, out of the U(2K) unitary group, to be considered in th
paper. The set of all such transformationsR̂ forms a groupG,
a subgroup of U(2K) that, for the sake of simplicity, will be
taken as finite in what follows. Among these transformatio
the point-group symmetries of the molecule may be
cluded. In the first quantization formalism with fixed nucle
the space symmetry is given by the invariance of
electron-nuclear attraction term under a coordinate sys
transformation. The symmetry in the occupation number r
resentation may not be the same as in the first quantiza
although any judicious choice of a one-electron basis sho
reflect the space symmetry of the system.

In addition to the spatial symmetry, if no spin interactio
are taken into account in the Hamiltonian, any unitary tra
4-3
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formation of the spin parts in the spin orbitals is also a sy
metry transformation. In these cases, the symmetry gro
considered here, is the direct product of the independ
commutative subgroups.

These transformations of the Hamiltonian modify the o
erators while maintaining the coefficients orvice versa:

Ĥ5(
r ,s
k,l

2K

(
p,q
i , j

2K

0Hpq; i j @
2Ri j ;kl

† br
†bs

†blbk
2Rrs;pq#

5(
r ,s
k,l

2K

(
p,q
i , j

2K

br
†bs

†blbk@
2Rrs;pq

0Hpq; i j
2Ri j ;kl

† # .

The set of one-particle transformation matricesR itself
constitutes a, most likely reducible, representationG of the
order of 2K of the group; it is generated by the basis of sp
orbitals. The set of one-electron creation-annihilation ope
tors generates the same-complex-conjugate representati

The set of two-particle transformation matrices2R con-
stitutes another representation: the external productG ^ G.
The set of matrices2R is the antisymmetric part of the pre
vious oneG ^ G.

B. Transformation of the reduced density matrices

The symmetry properties of the RDMs have been ext
sively studied@7,19–24# in the coordinate representation
the kernels of integral operators. In what follows, the dev
opment will be carried out in the occupation number rep
sentation.

As a generalization of what has been said at the end of
preceding section, the set of strings of a larger numbe
creation-annihilation operators generate powers of the b
G representation; their ordered subsets generate the c
sponding antisymmetric~under permutations of indices!
power ofG.

Inserting in Eq.~5! the unit operatorR̂21R̂ or R̂†R̂ at both
ends of the chain of creators and annihilators

pDi 1 ,i 2 , . . . ,i p ; j 1 , j 2 , . . . ,j p

5
1

p!
^CuR̂†R̂bj 1

† bj 2

†
•••bj p

† bi p
•••bi 2

bi 1
R̂†R̂uC&

5
1

p!
^R̂CuR̂bj 1

† bj 2

† . . . bj p

† bi p
. . . bi 2

bi 1
R̂†uR̂C&,

~14!

where the operation acting onN-electron functions is to be
understood as that induced by the transformation of the o
electron basis. The previous relation shows that thep-RDM
is invariant under simultaneous transformation of t
N-electron state and of the creation-annihilation operator

1. Nondegenerate states

For nondegenerate statesC that belong to a one
dimensional irreducible representation of the group of tra
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formationsR̂, so that the two-particle associated matrix co
mutes with 0H, the density matrixuC&^Cu5uR̂C&^R̂Cu
belongs to the trivial, totally symmetric, irreducible represe
tation; and the transformation properties of the RDMs can
analyzed from the transformation of the chains or creat
and annihilation operators.

Hence,

pD5pR† pD pR, pD5pR † pD pR ~;R̂PG!. ~15!

This is the same type of transformation as that of Eq.~10!.
For nondegenerate states, the transformations that leav
Hamiltonian matrix invariant, Eq.~12!, also leave the
p-RDM invariant. Thep-RDM is invariant under its transfor
mation by pR or, in other words, both matrices commute.

The hole reduced density matrices are also invariant un
those symmetry transformations,

pD̄5pR† pD̄ pR, pD̄5pR † pD̄ pR ~;RPG!. ~16!

Powers ofp-RDMs also transform as thep-RDM. For
instance,

pD25pR† pD pRpR† pD pR5pR† pD2 pR

due to the unitary condition of thepR matrix.

2. Degenerate states

If C forms the basis of the irreducible representationm
with dimensionl m ,

R̂Cn
(m)5 (

m51

l m

Cm
(m)

„D (m)~R!…m;n , n51,2, . . . ,l m ;

the transformationR̂ mixes all the states in a degenerate
under the groupG.

The N-electron density matrix, associated to one of t
states, transforms as

uR̂Cm
(m)&^R̂Cm

(m)u

5(
gh

l m

„D (m)†~R!…m;h uCg
(m)&^Ch

(m)u„D (m)~R!…g;m ,

but the average density matrix

1

l m
(

m51

l m

uCm
(m)&^Cm

(m)u

is totally symmetric under the groupG at the origin of the
degeneracy. In other words, if the density matrix transfor
as a basis of the totally symmetric representation, its RD
also transform as a basis of the same totally symmetric
resentation. This averaged density matrix has a unit trace
it is not idempotent. It corresponds to a state with ‘‘less th
maximum information’’@25#. It has l m nonvanishing eigen-
values of value 1/l m . Its matrix representation in the basis
the eigenstates is invariant under unitary transformations
combine degenerate states among themselves. The red
4-4
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density matrices that can be obtained from it by contract
are also totally symmetric under the groupG.

For instance, if no spin interactions are considered fo
set of triplet states, the density matrices of any order, a
aged over the states withMS51,0,21, are invariant under
any unitary transformation of the spin parts in the sp
orbital basis.

The invariance properties of thep-RDMs for nondegener-
ate states—either particle or hole—given in the preced
subsection, can be extended, in the case of degeneracie
the average

pDav5
1

l m
(

m51

l m
pDCmCm, pD̄av5

1

l m
(

m51

l m
pD̄CmCm. ~17!

In the absence of perturbations, this is the only quantity t
can be checked against experimental data. It is an ense
RDM, with identical statistical weight for every state with
the set of degenerate orthonormal states. The average ha
same transformation properties as that corresponding
nondegenerate state.

IV. INVARIANT PARTS OF THE REDUCED
DENSITY MATRICES

As a consequence of relations~13! and ~15!, i.e., if the
system presents symmetries, the information carried by
Hamiltonian matrix0H, as well as that by the RDMspD for
a nondegenerate state, is multiple times contained and th
fore redundant. As a consequence, only a few data, out
large number of matrix elements, are essential; the rest
be obtained through the symmetry transformations. T
number equals the dimension of the subspace spanned b
strings of creation-annihilation operators conserving
number of particles that transform as the totally symme
irreducible representation. The number of invariants in
Hamiltonian matrix0H will coincide with that of the 2-RDM
for a nondegenerate state.

Let us evaluate now what is the minimum number of d
required in order to have all the information contained in
matrices. In order to provide a more transparent descrip
of the procedure, we will consider a specific example
model molecule made up of six identical atoms, arranged
a plane as a hexagon, and an orbital basis formed by a s
symmetrically orthonormalized real 1s orbitals, one on each
atom. For this model system, the spatial symmetry grou
finite. The spin part of the basis will be made explicit whe
ever required to specify different blocks in the RDMs. T
RDMs of different orders will be treated independently.

A. The 1-RDM

The group of spatial transformations and the character
the representationf generated by that basis is presented
the second line of Table I.

The third row shows the characters of the representa
f ^ f generated by the set of all the products of a creat
multiplied by an annihilation operator. It gathers the char
05250
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ters of the matrix representation generated by the 36
ments of the 1-RDM.

Due to the Hermiticity of the 1-RDM, only the totally
symmetric part under the interchange of rows and colum
needs to be taken into account. The characters of the re
sentation generated by those relevant elements are colle
in the fourth row. The label@2# appearing in the first column
refers to the totally symmetric representation of the perm
tation groupS2 @26#. This is clearly a reducible represent
tion, V which may be decomposed into a direct sum of t
irreducible representations of the group. Recalling the w
known formula

aA1
5

1

g (
R̂PG

x (A1)~R!* x (V)~R!,

where g is the number of operations in the groupG, one
obtains the number 4 appearing in the last column wh
denotes the number of times the totally symmetric irred
ible representationA1, is present in that decomposition. Th
number indicates the number of invariants; that is, the o
nonvanishing data which are able to carry the information
the full matrix.

B. The p-RDM

In the previous example, we have made use of two p
cedures that are quite general: the construction of the re
sentation generated by the one-body density operator and
calculation of the number of invariants. When consideri
the p-electron space, there is an additional problem:
evaluation of the characters of the representation gener
by the strings ofp ordered creation operators related to a
of 2K spin orbitals. The representation generated by
strings of annihilators will be its complex conjugate.

In the general case, the (p
2K) different strings of creators

constitute a basis for the representationG ^ pu@1p#, whereG
is the basic representation generated by the 2K spin orbitals,
and@1p# indicates that only the totally antisymmetric part
the pth power of the representation is to be considered.

In many problems, it is convenient to specify that t
creators and anihilators refer to a spin-adapted basis, i.e.,
of the spin orbitals are of thea type and the other half areb.
In this basis,p-RDMs for nondegenerate states split in
blocks that can be labeled by the quantum numbersS,MS of
the p-electron basis. For a spin-free Hamiltonian, a furth
symmetry operation should be considered: the one that in
changes the spin-functionsa andb.

The strings of creators referring to a spin-adapted ba
generate the representations indicated in Table II, wheref is

TABLE I. Characters of the representation generated by 1-RD
elements

C6v E 2C6 2C3 C2 3sv 3sd g512

f 6 0 0 0 2 0
f ^ f 36 0 0 0 4 0
f ^ fu@2# 21 0 0 3 5 3 4
4-5
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the representation of orderK generated by the orbital basi
The symmetrized power of a group representation is labe
according to the irreducible representation of the correspo
ing group of permutations. It expresses that, for a given fo
of the spin functions, the spatial part should transform as
irreducible representation of the permutation group with
more than two columns in their corresponding Young d
gram. For instance, for two electrons (p52) the (ab) two-
electron creators transform as the representationf ^ f which
splits into tripletsf ^ fu@12# and singletsf ^ fu@2#. The
same procedure as that described in the 1-RDM case y
the invariants of the various spin blocks of the RDMs. Tho
of the 2-, 3- and 4-RDMs, for the same model system,
collected in Table III. The first few lines express that t
(aa) block (MS51) of the 2-RDM for the above-
mentioned example requires, in a real orbital basis, no m
than 16 independent real data as shown in the rightmost
umn. The third row for every entry in Table III~with labelS
p-RDM! indicates that, for a symmetric matrix, only the e
ements in and above the main diagonal are considered.
symmetry due to the interchange ofa andb parts of the spin
orbitals further reduces the number of invariants. The limi
the degrees of freedom of the RDM in any approximatio
variational or not.

V. COMPACT FORMS

It has previously been shown how the invariancesR of the
Hamiltonian matrix 0H—and hence of the system—induc
invariances in an RDM of any order. The matrix having ze
elements everywhere, except for the invariants induced bR

TABLE II. Symmetry of the chain of creators.

Spin function S MS Representation

ap p

2
p

2
f ^ pu@1p#

ap21b p

2
21

f ^ p21u@1p21# ^ f

ap21b p

2
p

2
21

f ^ pu@1p#

ap2g1b p

2
21

p

2
21

f ^ pu@2,1p22#

ap22b2 p

2
22

f ^ p22u@1p22# ^ f ^ 2u@12#

ap22b2 p

2
p

2
22

f ^ pu@1p#

ap22b2 p

2
21

p

2
22

f ^ pu@2,1p22#

ap22b2 p

2
22

p

2
22

f ^ pu@22,1p24#

ap23b3 p

2
23

f ^ p23u@1p23# ^ f ^ 3u@13#

ap23b3 p

2
p

2
23

f ^ pu@1p#

ap23b3 p

2
21

p

2
23

f ^ pu@2,1p22#

ap23b3 p

2
22

p

2
23

f ^ pu@22,1p24#

ap23b3 p

2
23

p

2
23

f ^ pu@23,1p26#

••• ••• ••• •••
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in a given pD, is called thecompact formof pD and is
denoted byp,cD.

A p,cD is a very sparse matrix that nevertheless carries
essential information contained in the correspondingpD.

In this section, we will show how, knowingR and a given
pD, one can build ap,cD and how ap,cD can be unfolded
through the action ofR in order to yield back the origina
pD. It will also be shown here that while ap,cD yields in a
unique way the originalpD, several equivalentp,cD’s may
be generated from a givenpD.

This folding and unfolding of information can be sch
matically represented as

pD

R

→
←
R,

p,cDi ,

where the ‘‘i ’’ index calls our attention to the fact that ther
is a set of equivalentp,cD.

Note that, in general, one may speak of compact forms
the RDMs, the HRDMs, the Hamiltonian matrix, etc.

The other point of interest, which will be considered he
is that to what extent it is possible to operate directly w
these compact forms.

A. Properties of the compact forms

It has been previously shown that the Hamiltonian mat
~13!, the RDMs~15!, and the HRDMs~16! must commute
with the symmetry transformations. It is possible to obta
from any matrix noncommuting with the symmetry transfo
mations a new matrix that does commute with all of the
The group-theoretical methods show that the operation

1

g (
R̂PG

pR p,cP pR†5pP ~18!

performed on a matrixp,cP leads to a new matrixpP that
commutes with everypS in the group of transformations.

pSpP pS†5pSF1

g (
R̂PG

pR p,cP pR†G pS†

5
1

g (
R̂PG

p~SR! p,cP p~SR!†5pP ~;ŜPG!

and

1

g (
ŜPG

pSF1

g (
R̂PG

pR p,cP pR†G pS†

5
1

g (
ŜR̂PG

p~SR! p,cP p~SR!†5pP

indicating that it is an idempotent process.
The compact formsp,cP of the RDMs, HRDMs, or

Hamiltonian matrix (p52) carry the minimum of invariant
4-6
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TABLE III. Number of invariants in different spin blocks of 2-, 3-, and 4-RDMs.

Spin blocks of the RDM Representations C6v : E 2C6 2C3 C2 3sv 3sd g512

S51,Ms51 f ^ fu@12# 15 0 0 23 21 23
2-RDM 225 0 0 9 1 9
S 2-RDM 120 0 0 12 8 12 16

Ms50 f ^ f 36 0 0 0 4 0
2-RDM 1296 0 0 0 16 0
S 2-RDM 666 0 0 18 26 18 68

S50,Ms50 f ^ fu@2# 21 0 0 3 5 3
2-RDM 441 0 0 9 25 9
S 2-RDM 231 0 0 15 23 15 30

S53/2,Ms53/2 f ^ 3u@13# 20 0 2 0 24 0
3-RDM 400 0 4 0 16 0
S 3-RDM 210 1 3 10 18 10 26

Ms51/2 f ^ 2u@12# ^ f 90 0 0 0 22 0
3-RDM 8100 0 0 0 4 0
S 3-RDM 4095 0 0 45 47 45 368

S51/2,Ms51/2 f ^ 3u@2,1# 70 0 22 0 2 0
3-RDM 4900 0 4 0 4 0
S 3-RDM 2485 21 1 35 37 35 228

S52,Ms52 f ^ 4u@14# 15 0 0 3 21 3
4-RDM 225 0 0 9 1 9
S 4-RDM 120 0 0 12 8 12 16

Ms51 f ^ 3u@13# ^ f 120 0 0 0 28 0
4-RDM 14 400 0 0 0 64 0
S 4-RDM 7260 0 0 60 92 60 648

S51,Ms51 f ^ 4u@2,12# 105 0 0 23 27 23
4-RDM 11 025 0 0 9 49 9
S 4-RDM 5565 0 0 57 77 57 502

Ms52 f ^ 2u@12# ^ f ^ 2u@12# 225 0 0 9 1 9
4-RDM 50 625 0 0 81 1 81
S 4-RDM 25 425 0 0 153 113 153 2198

S50,Ms50 f ^ 4u@22# 105 0 0 9 9 9
4-RDM 11 025 0 0 9 49 9
S 4-RDM 5565 0 0 93 93 93 518
ec

s

to
nt
to

th
s.

glet
sis.

the
r-
e
s

information of the respective matrices, but they do not n
essarily commute with the transformation matricespR.
However, when ap,cP is unfolded, the resulting matrix doe

commute with everypS,ŜPG.
The compact formp,cP may have many elements equal

zero. Their information is accumulated on other eleme
The projection brings back every portion of information
its proper place.

The above idea of compactness may be applied to
Hamiltonian matrix

0H5
1

g (
R̂PG

2R 0,cH 2R†, ~19!

to the RDMs of any order
05250
-

s.

e

pD5
1

g (
R̂PG

pRp,cDpR†, ~20!

or to HRDMs

pD̄5
1

g (
R̂PG

pR p,cD̄ pR†

or to their compressed forms in an orderedp-electron basis
set. All of them may be expanded from their compact form

As an example, consider the particular case of a sin
state studied in the previously mentioned spin-adapted ba
The 1-RDM splits into blocks associated with thea and b
spins, 1Da and 1Db, each one of dimensionsK3K. In this
basis, the mixed blocks vanish. The requirement that
1-RDM must commute with the transformation that inte
changesa and b in the spin part of the basis forces th
blocksa andb to be identical. The group of transformation
4-7
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contains only two operations: the identity and the transf
mation of interchange ofa andb, ($e,s↔s8%). One of the
compact Hermitian forms of the 1-RDM may be

1,cDs51Da11Db, 1,cDs850,

with all the information compacted in one block. The proje
m

th
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en

de
th
th
n
-
a

te
ac

to
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tion process will produce the complete 1-RDM. The comp
form has many more zeros than the complete matrix. Ot
spatial symmetries could compact the information even f
ther.

As another simple example, the information contained
the first-order spinless density matrix of a highly symmet
system, such as the benzene molecule, studied under the
simple Hückel method,
S 1.00000 0.66667 0 20.33333 0 0.66667

0.66667 1.00000 0.66667 0 20.33333 0

0 0.66667 1.00000 0.66667 0 20.33333

20.33333 0 0.66667 1.00000 0.66667 0

0 20.33333 0 0.66667 1.00000 0.66667

0.66667 0 20.33333 0 0.66667 1.00000

D ,
the

plete

n,
ple
te:

to

s is
r of
tion
a

m
m-
ost

the
the
commutes with the transformations contained in theC6v
group. It may be stored in a compact form as the nonsy
metric matrix

S 6 0 0 0 0 0

8 0 0 0 0 0

0 0 0 0 0 0

22 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D .

From this matrix, the previous one may be recovered by
projection method, Eq.~18!, which, in this case, implies the
12 operations of theC6v group. Obviously, the higher is th
symmetry of a problem, the lesser are the nonzero elem
in the compact forms.

Note that, in this example, the~1,1! element of the com-
pact form is the sum of the diagonal elements of the unfol
one because the operations in the group will transfer
value to all places along the diagonal. As an alternative,
same information could have been placed in any diago
element other than the~1,1!. That is, as in many other pro
jection processes, the compact form is not unique. There
many compact formsp,cP that project to the same comple
matrix pP. Indeed, there may be forms more or less comp
with more or less zeros in it.

Since a compact form is not unique, when wishing
construct a compact form one must consider which should
the more convenient distribution of the invariants in the
sulting matrix. That is, a preliminary analysis should be c
ried in which the unfolding process spreads the informat
contained in one element of the compact form through
many elements of the expanded form. From this analy
one can easily deduce where to place the information.
-

e

ts

d
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re
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e
-
-
n
t

s,

The projection procedure outlined above preserves
trace of the matrix,

tr~pP!5trS 1

g (
R̂PG

pR p,cP pR†D 5tr~p,cP!.

Hence, compact forms have the same trace as the com
matrix.

Compact forms of the Hamiltonian matrix0H, or of the
RDMs, can be neither positive semidefinite nor hermitia
although they may be chosen to be Hermitian by the sim
method of averaging a matrix and its Hermitian conjuga
1
2 (p,cP1p,cP†).

The contraction of a compact form of the 2-RDM leads
a compact form of the 1-RDM1,cD that contains all the
information of the 1-RDM:

1D5
1

g (
R̂PG

R 1,cDR†. ~21!

Equation ~21! is the contraction of Eq.~20! to the one-
particle space. That is, the unfolding of the compact form
stable under contraction to a subspace with lower numbe
particles. The compactness is preserved by the contrac
process.The same algorithm used to contract any RDM to
lower-order RDM may be used to contract its compact for.
Nevertheless, the contraction of a high-order RDM in a co
pact form does not ensure that what is obtained is the m
compact possible form of the lower-order RDM.

The expectation values of operators are calculated as
trace of a product of matrices. The energy is the trace of
product of 0H and 2D matrices:
4-8
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E5(
k,l
r ,s

0Hrs;kl
2Dkl;rs

5(
k,l
r ,s

F 1

g (
R̂PG

(
m,n
t,u

2Rrs;mn
0,cHmn;tu

2Rtu;kl
† G

3F 1

g (
ŜPG

(
v,w
x,y

2Skl;vw
2,cDvw;xy

2Sxy;rs
† G

5(
m,n
t,u

0,cHmn;tuF 1

g (
T̂PG

(
v,w
x,y

2Ttu;vw
2,cDvw;xy

2Txy;mn
† G .

This result can be expressed as the following.
Theorem A. The trace of a product of two matrices

equal to the trace of a product where one of the matrices
the compact form, while the other matrix is in the unfold
form. The generalization of this theorem is easily proved

Theorem B. The trace of a multiple product of matrices
equal to the trace of a product where all the matrices ar
the compact form, except for one of the factors which m
be in the unfolded usual form.

These two powerful theorems imply that the use of
compact form matrices greatly enhances the practical po
bilities of any methodology when applied to the study
large but highly symmetrical systems.

When approximations or simplifications are required
the study of a large molecular system, it would be simple
modify—neglecting or approximating, for instance, some
ements in0H, while preserving all the symmetriesR̂ of the
original problem—the compact form0,cH rather than the
whole matrix 0H. In order to preserve the symmetry of th
problem, all the approximations should be consistent w
Eq. ~13!.

Similarly, the RDMspD corresponding to the eigenstat
are approximated more easily, if in compact form.The num-
ber of non-null elements of the most-compact form of
RDM will correspond to the number of degrees of freedom
a variational approximation procedure. This number equals
the number of invariants under the transformationsR̂. Note
that here again, in order to preserve the symmetry of
problem, all the approximations should be consistent w
Eq. ~15!.

B. High-order RDMs construction algorithms

The iterative solution of the CSE requires a reliable c
culation of high-order RDMs from RDMs of lower orde
Exact algorithms are only known for states described b
single configuration with spin orbitals fully occupied or ful
empty. Although many improvements have been achieve
recent times, only approximate algorithms have been p
posed for states that take into account the correlation effe

The basic algorithms proposed include external produ
of RDMs of low order, antisymmetrized for a fermion pro
lem. These products are Grassman orwedgeproducts@27#.
The simplest example is the construction of an approxima
05250
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2-RDM from 1-RDM in the form

2D'1D`1D, 2Drs;kl'
1

2
~1Dr ;k

1Ds; l2
1Dr ; l

1Ds;k!

~;r ,s;k,l !. ~22!

The matrices obtained as a result of a Grassman pro
commute with the matricespR, associated to the symmetr
transformationsR̂PG if every factor does. That is, the Gras
man or the wedge product leads to higher order matrices
have the same symmetry properties as the RDM they try
approximate.

As an extension of the above statement, the cumulantspD
that are equated with the difference of an exact~FCI! RDM
and an approximation obtained through Grassman prod
of lower-order RDMs@28–33# are also invariant under trans
formations that leave the Hamiltonian matrix invariant. Th
is, the cumulant matrices commute with the symmetry ma
transformations. In the previous example, the second-o
cumulant 2D52D21D`1D has the same symmetry prope
ties as the 2-RDM. As in the Hamiltonian matrix or i
RDMs, the information contained in cumulants may also
derived from a compact, abbreviated form that reduces
avoids redundancies.

A different problem arises if the information of the low
order matrices is in the compact form mentioned earlier.
general, the Grassman product of low-order compact fo
RDMs yields a compact-form of the higher-order RDM
which projected on the subspace of matrices that comm
with the symmetry transformation matrices, is not coincide
with the Grassman product of low-order RDMs in full:

2Drs;kl'
1

4

1

g2 (
R̂,ŜPG

@Rr ; i
† Ss; j

† 2Rs; i
† Sr ; j

† #

31,cDi ;p
1,cD j ;q3@Sq; lRp;k2Sq;kRp; l #.

In other words, the projection of the Grassman products
compact-form RDMs requires an algorithm other than t
presented in Eq.~20!.

In the case of degeneracies, the use of the average R
mentioned in Eq.~17!, modifies the equations. The Grassm
product of averaged low-order RDMs is not the same as
average of products; there are extra cross terms. This co
tutes an alternative approximation of high-order RDMs. B
from the point of view of the symmetry, these ensemb
RDMs behave as those of a nondegenerate pure state.
Grassman product of averaged RDMs produces a high-o
RDM that commutes with the symmetry transformations.
the contrary, the average of wedge products of pure RD
does not.

C. Bounds and other corrections

In addition to the main algorithms for constructing hig
order RDMs through Grassman products of lower-ord
RDMs, a set of corrections have been proposed. All th
corrections derive fromN-representability conditions. Som
4-9
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of the conditions affect the entire matrix, but many other
conditions on particular elements of the RDM. The simpl
example is that the RDM of any order must be posit
semidefinite. Within an orthonormal base, it implies that
the diagonal elements must be non-negative. Hence, ze
the lowest bound for these elements. Other corrections
clude scaling to adjust the trace, or the partial traces
known predetermined values. Other bounds are the co
quence of the essential non-negativity of theG matrices
mentioned by Garrod and Percus@34# and later generalized
by Valdemoroet al. @35–37#.

These corrections, although rather minor, aim at the p
cise fulfillment of the knownN-representability conditions in
an attempt to get as close as possible to an exa
N-representable RDM.

Rescaling of the entire RDM does not modify its symm
try properties; it commutes with the transformation matric
of the appropriate order. But to rescale only some of
elements, such as the diagonal elements to adjust the t
is

nd
hl
1

O

:

A

is

05250
e
t

l
is

n-
to
e-

-

ly

-
s
e
ce,

may endanger the symmetry properties of the matrix.
All these corrections may be summarized by adding

new matrix and multiplying by a factor, or a combination
both

aS pD1
1

g (
R̂PG

pR pD8 pR†D ,

where the correction matrixpD8 has been projected to ensu
that it commutes with every symmetry transformation m
trix, and the scaling factora may be chosen to adjust th
trace.
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@1# P.O. Löwdin, Phys. Rev.97, 1474~1955!.
@2# E.R. Davidson,Reduced Density Matrices in Quatum Chem

try ~Academic Press, London, 1976!.
@3# Reduced Density Matrices with Applications to Physical a

Chemical Systems, edited by A.J. Coleman and R.M. Erda
Queen’s Papers on Pure and Applied Mathematics Vol.
~Queen’s University, Kingston, Ontario, 1968!.

@4# Proceedings of the A.J. Coleman Symposium, Kingston,
tario, 1985, edited by R. Erdahl and V. Smith~Reidel, Dor-
drecht, 1987!.

@5# A.J. Coleman and V.I. Yukalov,Reduced Density Matrices
Coulson’s Challenge~Springer, New York, 2000!.

@6# C. Garrod, M.V. Mihailovic, and M. Rosina, J. Math. Phys.16,
868 ~1975!.

@7# R. McWeeny and Y. Mizuno, Proc. R. Soc. London, Ser.
259, 554 ~1961!.

@8# L. Cohen and C. Frishberg, Phys. Rev. A13, 927 ~1976!.
@9# H. Nakatsuji, Phys. Rev. A14, 41 ~1976!.

@10# F. Colmenero and C. Valdemoro, Int. J. Quantum Chem.51,
369 ~1994!.

@11# H. Nakatsuji and K. Yasuda, Phys. Rev. Lett.76, 1039~1996!.
@12# C. Valdemoro, L.M. Tel, and E. Pe´rez-Romero, Adv. Quantum

Chem.28, 33 ~1997!.
@13# D.A. Mazziotti, Int. J. Quantum Chem.70, 557 ~1998!.
@14# D.A. Mazziotti, Phys. Rev. A60, 3618~1999!.
@15# J. Avery,Creation and Annihilation Operators~McGraw-Hill,

London, 1976!.
@16# Wu-Ki Tung, Group Theory in Physics~World Scientific,

Philadelphia, PA, 1985!.
@17# J. Applequist, J. Math. Phys.24, 736 ~1983!.
@18# P.R. Surja´n, Second Quantized Approach to Quantum Chem

try. An Elementary Introduction~Springer-Verlag, New York,
1989!.
-

1

n-

-

@19# W. Kutzelnigg, Z. Naturforsch. A18A, 1058~1963!.
@20# R. McWeeny and W. Kutzelnigg, Int. J. Quantum Chem.2, 187

~1968!.
@21# W.A. Bingel and W. Kutzelnigg, Adv. Quantum Chem.5, 201

~1970!.
@22# R.D. Poshusta, J. Math. Phys.8, 955 ~1967!.
@23# E.G. Larson, Int. J. Quantum Chem.13, 121 ~1979!.
@24# E. Kryachko, Int. J. Quantum Chem.14, 1 ~1981!.
@25# U. Fano, Rev. Mod. Phys.29, 74 ~1957!.
@26# M.I. Petrashen and E.D. Trifonov,Applications of Group

Theory in Quantum Mechanics~MIT Press, Cambridge, MA,
1969!.

@27# A.J. Coleman and I. Absar, Int. J. Quantum Chem.18, 1279
~1980!.

@28# W. Kutzelnigg and D. Mukherjee, J. Chem. Phys.107, 432
~1997!.

@29# W. Kutzelnigg and D. Mukherjee, J. Chem. Phys.110, 2800
~1999!.

@30# W. Kutzelnigg and D. Mukherjee, Chem. Phys. Lett.317, 567
~2000!.

@31# D.A. Mazziotti, Phys. Rev. A57, 4219~1998!.
@32# D.A. Mazziotti, Chem. Phys. Lett.289, 419 ~1998!.
@33# P. Ziesche, inMany-Electron Densities and Reduced Dens

Matrices, edited by J. Cioslowsky~Kluwer Academic, Do-
drecht, 2000!.

@34# C. Garrod and J.K. Percus, J. Math. Phys.5, 1756~1964!.
@35# C. Valdemoro, L.M. Tel, and E. Pe´rez-Romero, Phys. Rev. A

61, 032507~2000!.
@36# C. Valdemoro, L.M. Tel, and E. Pe´rez-Romero, inMany-

Electron Densities and Reduced Density Matrices, edited by J.
Cioslowsky~Kluwer Academic, Dordrecht, 2000!.

@37# C. Valdemoro, D.R. Alcoba, L.M. Tel, and E. Pe´rez-Romero,
Int. J. Quantum Chem.85, 214 ~2001!.
4-10


