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Abstract

Dynamic models of biochemical networks are often formulated as sets of non-linear ordinary
differential equations, whose states are the concentrations or abundances of the network compo-
nents. They typically have a large number of kinetic parameters, which must be determined by
calibrating the model with experimental data. In recent years it has been suggested that dynamic
systems biology models are universally sloppy, meaning that the values of some parameters can
be perturbed by several orders of magnitude without causing significant changes in the model
output. This observation has prompted calls for focusing on model predictions rather than on
parameters. In this work we examine the concept of sloppiness, investigating its links with the
long-established notions of structural and practical identifiability. By analysing a set of case stud-
ies we show that sloppiness is not equivalent to lack of identifiability, and that sloppy models can
be identifiable. Thus, using sloppiness to draw conclusions about the possibility of estimating
parameter values can be misleading. Instead, structural and practical identifiability analyses are
better tools for assessing the confidence in parameter estimates. Furthermore, we show that,
when designing new experiments to decrease parametric uncertainty, designs that optimize prac-
tical identifiability criteria are more informative than those that minimize sloppiness.
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1. Introduction

Dynamic models of cellular processes describe the interactions among molecular entities —
for example, proteins, transcripts or regulatory sites — that determine cellular behaviour. Such
models typically consist of non-linear ordinary differential equations, whose state variables rep-
resent the concentrations of the network components and whose parameters characterize the
reaction kinetics. Unfortunately, in most cases the parameter values are unknown, or only rough
estimates are available. It is therefore necessary to calibrate the model using time-series experi-
mental data [28]. The task of estimating the parameter values is an optimization problem, whose
objective is to minimize a cost function that quantifies the differences between model predictions
and experimental data. In dynamic models of biochemical systems this problem is typically char-
acterized by limited observability, large number of parameters, and scarce, poor quality data [7].
As a consequence, its solution is in general challenging and computationally expensive, even
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with efficient optimization methods. In addition, data limitations often lead to great uncertainty
in the parameter estimates [47, 48].

During the last decade, several works [52, 22, 23, 44, 45, 46, 34] have introduced and elab-
orated the concept of sloppiness. The parameters of a dynamic model can be divided into stiff
(those that can be determined with great certainty) and sloppy (those that can vary by orders of
magnitude without influencing significantly the model output), although it is difficult to establish
a clear cut-off between both categories. The sloppiness of a model is quantified from the distri-
bution of the eigenvalues of its Fisher information matrix; a separation of more than 3 orders of
magnitude in the eigenvalues qualifies a model as sloppy.

It has been claimed that dynamic systems biology models are universally sloppy [23], and
therefore it is not possible to obtain accurate estimates of their parameters. This idea has been
cited in many publications and, unfortunately, has sometimes led to misinterpretations. Since
parameter estimation is often an arduous task in practice, it is tempting to use the notion of slop-
piness to argue that it is not necessary nor possible to uniquely determine the parameter values,
thus justifying that no further efforts are invested to it (see for example [39, 16, 31, 51, 19]). The
suggestion that sloppiness is a universal — or, more precisely, ubiquitous — property of systems
biology models has spurred a debate: should modellers desist from trying to estimate precise val-
ues for the parameters and, instead, focus on characterizing model predictions? Exploring this
direction, Cedersund and coworkers [13, 11, 12] coined the term ‘“core predictions” to denote
specific model outcomes that can be uniquely determined, even if parameter values cannot. The
parameter regions complying with core predictions can be found using optimization, at least for
models of moderate size [11].

In [43] the origin of sloppiness was traced back to the structure of the sensitivity matrix,
which contains the sensitivities of the model outputs with respect to the parameters. Experimen-
tal design was proposed as a way of reducing sloppiness, concluding that the intensity of the
effect is highly dependent on the available data, thus challenging the universality of the property.
The importance of the role played by experimental design in this task had been stressed e.g. in
[2, 32]. Finally, it is worth mentioning that sloppiness has sometimes been considered as an
indication of biological robustness [21, 30].

In this work we aim at clarifying the application and implications of sloppiness, to avoid cer-
tain misconceptions. We study the role played by model parameters using the well established
framework of identifiability, which has a long history of application in dynamical systems [50],
including biological models. Indeed, while the study of parameter identifiability has been present
in the systems and control literature for decades, many methodological advances in the field have
been motivated by biological applications, starting in the 1970s and 1980s [8, 37, 20, 27] and
continuing until the present day [49]. Identifiability-based concepts are rigorously defined and
well understood, and they can be analysed with a large number of techniques. Hence it is of inter-
est to clarify the connection between sloppiness and (lack of) identifiability [41, 19, 38], which,
despite recent developments, is still incompletely understood. Here we study the relationship
between sloppiness and identifiability from both structural and practical points of view. Using a
set of case studies, we inquire to which extent is sloppiness determined by the model structure,
and how it is influenced by the quantity and quality of experimental data. Then we explore opti-
mal experiment design alternatives that reduce sloppiness and improve identifiability, and clarify
the connections between both concepts. We conclude that identifiability analysis can be more
insightful than sloppiness for characterizing the mapping between parameters and outputs.



2. Methods

We consider general nonlinear models of the form:

y = h(x,p). X() = Xo(p) M
where x = (x, ..., x,,) € R™ is the state vector, u = (uy, ..., u,,) € R™ a n,—dimensional input
(control) vector, and y = (y1,...,yn,) € R™ is the n,—dimensional output (experimentally ob-
served quantities). The vector of unknown parameters is denoted by p = (pi, ..., pn,) € P, and
is assumed to belong to an open and connected subset of R". The entries of f, g = (g, ..., g,)
and h are analytic functions of their arguments. These functions and the initial conditions may
depend on the parameter vector p € P.

Note that the model in Eqns. (1) is composed of two different elements: (i) a set of ordinary
differential equations (ODEs), describing the system dynamics and (ii) the observation func-
tion, which relates states (typically concentrations or amounts) and measurements. In this work
we consider that the mathematical structure of the system dynamics (f, g) can by no means be
modified, whereas the mathematical structure of the observation function (h) may eventually be
modified by the experimental scheme (which, in fact, leads to a different model).

() - { =fx,p) + XL, g;(x. pu;,

2.1. Parameter estimation

The above representation (1) is a sufficiently accurate mathematical description of the real
system, i.e. the only uncertainty is represented by the vector of unknown parameters. This means
that, in principle, there is a unique “true” value of the parameters, denoted by p* = (pys e p:‘lp),
which allows the model to reproduce a given data set and to predict the system behaviour. This
vector p* is computed by means of data fitting, i.e. by solving an optimization problem devoted
to minimizing the log-likelihood function, which for Gaussian experimental noise reads:

t n‘

% (p) Z Z Z [yg 0, c(PJ ) Ye,o,s]2 , (2)

e=1 o=1 s= e

where 7, is the number of experiments, n, the number of observables for each experiment, and
ng the number of sampling times; ¥, , (P, ¢s) denotes the output of the model (1) for the sampling
time #; under the experimental conditions e; §,, s is the corresponding experimental data; and

0% is the variance of the measurement noise.

e,0,8

2.2. Structural identifiability

Structural identifiability analysis studies the possibility of finding a unique solution to the
parameter estimation problem, assuming perfect experimental data (i.e. noise-free and continu-
ous in time) [50]. A parameter p;, i = 1,...,n, is structurally globally (or uniquely) identifiable
if for almost any p* € P, Z(p) = X(p*) = p; = p;, whereas a parameter p;, i = 1,..,n, is
structurally locally identifiable if for almost any p* € P there exists a neighbourhood V(p*) such
that p € V(p*) and X(p) = X(p*) = p; = p;.

In some cases, an unidentifiable parameter may be made identifiable by including more mea-
sured outputs in the observation function, h. This modification leads to a new model with a
different structure. In other cases, however, the model may be structurally unidentifiable even if
all states are accessible to the experimentation, i.e. y = X. In this case it will not be possible to
avoid the lack of identifiability.
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Recent reviews [35, 18] compare alternative methods to perform global structural identifia-
bility analysis for nonlinear models; additionally, state of the art local methods are described in
[15, 49]. In this work we adopt the MATLAB based GenSSI toolbox [17], which combines the
generating series approach with identifiability tableaus. The underlying idea of the generating
series approach is that the observables y can be expanded in series with respect to time and inputs
around a given time point (), and that the uniqueness of the series coefficients guarantees the
structural identifiability of the model. The series coefficients are computed by means of succes-
sive Lie derivative of h along the vector fields f and g. The identifiability tableaus correspond to
the Jacobian of the Lie derivatives with respect to the model parameters, and help to decide on
global or local structural identifiability of the model [5].

2.3. Sloppiness

Parameter sloppiness can be quantified by means of the eigenvalues of the Hessian of the log-
likelihood function (Eqn. 2) as evaluated in the optimal value of the parameters p*. The Fisher
information matrix () can be used as an approximation of the Hessian:

M]T[M])
ap ap 7
In [23] Gutenkunst et al. suggest using the following normalized version of F to assess sloppi-
ness:

7 = E( 3)
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where ng is the total amount of data, and logarithms of the parameters are used to avoid scaling
issues due to different orders of magnitude of the parameters.

The largest eigenvalues correspond to “stiff” parameters and the smallest to “sloppy” pa-
rameters [10]. Models are said to be sloppy when the maximum eigenvalue (A,,,,) is orders of
magnitude larger than the minimum eigenvalue (4,,;,). Even if there is no clear cut-off between
sloppy and stiff parameters, from previous works [53, 23] it can be considered that a model is
sloppy if Cr = 42 < 107,

Sloppiness is a local property that depends on the parameter vector of reference, p*. A
generalization called multiscale sloppiness, which accounts for non-infinitesimal deviations from
p*, has been proposed recently [38].

2.4. Practical identifiability

Practical identifiability analysis assesses the quality of parameter estimates. Several methods
are available for this purpose. Confidence intervals can be robustly calculated using Monte-Carlo
based approaches such as bootstrap [29], which performs many calibrations after generating
pseudo-measurements. Likewise, the profile likelihood method involves re-optimization with
respect to all parameters for each value of a given parameter [40]. These methods provide robust
estimations of the confidence intervals, although the associated computational cost complicates
their application to large scale models. Alternatively, the confidence interval (p;) of € may be
obtained through the covariance matrix. Assuming a normal distribution for the parameters, the
confidence interval can be calculated as:

Pi = itZ/z Vcii (5)
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where t(yl n is given by Students t-distribution, y = Ny — 1 degrees of freedom and (1 — @)100% is
the confidence interval selected, typically 95%.

For non-linear models there is no exact way of obtaining C. The most widely used approxi-
mation is possibly the one based on the Crammer-Rao inequality. It establishes that the inverse
of the Fisher information matrix is a lower bound of the covariance matrix (under certain as-
sumptions on the number of data and the non-linearity of the model): C > F 1.

From the covariance matrix it is possible to compute the correlation matrix:

c S iy =1 6

rij m I NN N (6)

in such a way that two parameters (p;, p;) are completely uncorrelated if Cr;; = 0 or completely
correlated if Cr;; = £1.

If a model is structurally non identifiable, the Fisher information matrix, ¥ (Eqn. 3) and
its modified version (Eqn. 4) should be theoretically singular for any parameter values. Note,
however, that numerical inaccuracies when solving the model (Eq. 1) and computing the para-
metric sensitivities may lead to a non-singular 7, even for a structurally identifiable model. Note
also that the fact that both matrices are singular does not imply that the model is structurally
unidentifiable.

2.5. Role of the experimental error

In order to analyse the role of the amount of experimental noise, we generate a significant
number (200) of realizations of noisy pseudo-experimental data. We do it by adding noise to the
output of the models, considering a Gaussian distribution with known time-varying variance:

ye,o,s =Yeo,s T €055 with €eos = O X randce,o,s X maX(Ye,o) (7)

where €, , ; are normally distributed independent random variables with standard deviation o X
max(y,,), and randC, , ; is a random number drawn from the standard normal distribution N'(0, 1)
defined for every experiment, observable and sampling time. We consider three scenarios:
o = 0.05, 0 = 0.1, and o = 0.2, and solve the subsequent parameter estimation problem for
each of the 200 pseudo-data realizations. Then we compute the sloppiness (Cr) and mean value
of the confidence intervals (p) for each of the optimal solutions obtained.

2.6. Optimal experimental design

The quality of parameter estimates may be improved if more data is available in the calibra-
tion process. Experiments that maximize the information content of the newly added data can be
found via optimal experimental design. The idea is to formulate a dynamic optimization problem
where the objective is to find those experimental conditions (number of experiments, external in-
puts, number and location of sampling times, initial conditions, experiment duration, and possi-
bly observables for each experiment) which result in maximum information content, as measured
e.g. by ¥, subject to the system dynamics of Eqn. (1) and experimental constraints. The prob-
lem can be solved by a combination of the control vector parameterization (CVP) method and
an optimizer that enables the simultaneous design of several dynamic experiments with optimal
sampling times [4, 5].



Several ¥ -based criteria can be used for optimal experimental design. The most widely
used are the D-optimum and E-optimum criteria, which correspond to the maximization of the
determinant of ¥ and the maximization of its minimum eigenvalue, respectively. Here we will
also explore the minimization of the sloppiness, i.e. the minimization of Cr. This type of design
will be called S-optimum.

In this work we use the MATLAB toolbox AMIGO (Advanced Model Identification using
Global optimization) [6] for the purposes of parameter estimation, sensitivity and practical iden-
tifiability analysis, and optimal experimental design.

2.7. Model reduction

Given a complex system, the model reduction problem consists in finding an approximation
that generates a similar output with less computational cost, while maintaining the properties of
the original system. Many model reduction techniques have been developed in control theory and
related areas of engineering [1]. Most of them can be classified in two categories, Singular Value
Decomposition (SVD) and moment matching. A popular example of the first type of methods is
the balanced order reduction presented by Moore [36], which uses principal component analysis
(PCA), a tool introduced in 1933 [26]. It is possible to apply SVD to nonlinear systems by
extending Proper Orthogonal Decomposition methods (POD) [54].

The idea that a sloppy model is insensitive to parameter changes along sloppy directions, but
highly sensitive along stiff combinations of parameters, has been exploited to propose reduced
order modelling techniques [42, 3, 9]. The aim is to obtain a non-sloppy model that captures the
relevant dynamics of the original model, but with a reduced number of states and parameters.
Sloppy models in physics and biology show weak dependence of macroscopic observables on
microscopic details, which allows effective descriptions with reduced dimensionality [33].

3. Models

To perform the different analysis proposed in this work we have selected a collection of
examples representative of biological systems and processes. They are of different sizes and
include several types of non-linear terms, such as general mass action, Michaelis-Menten or Hill
kinetics. All the selected models are sloppy.

3.1. Example 1: Fed-batch reactor for ethanol production

This model [25] describes ethanol production using the anaerobic fermentation of glucose
with the help of Sacharomyces cerevisiae. The unsteady state material balances are as follows:

X =xu— u%,,
S = —Voxu + uso‘;s’
P = xe—- u%,

V=u,

®)

where x, S, P are the cell mass, substrate, and ethanol concentrations (g/L), u corresponds to

glucose concentration (g/L), V' is the volume (L), u = 5 f O KSS+S is the specific growth rate, and
Kp

1 s
1+KL, Ky+S

P
0.22,v; = 10, K, = 71.5, Ky = 0.44, and the initial conditions are [x = 1,§ = 150,P =0,V =
10]; x, S and P are measured.

€ = the specific productivity. The parameter values are py = 0.408, Ky = 16, K5 =
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3.2. Example 2: A linear biochemical pathway with 14 steps
The system, that could describe a linear biochemical network, is represented by fourteen

differential equations and sixteen parameters as follows:

X = —ﬁ + piu,

Xy = p1X1 — p2X2,

X3 = paXp — P33,

X4 = P3X3 — PaXy,

X5 = paXq — psXs,

X6 = P5Xs — PeXo,

1:67 i PeXe — P1X7, ©)

Xg = p7X7 — P8X3,

X9 = pgxg — PoXo,

X10 = P9X9 — P10X10

X11 = p1oXio — P11X11,

X12 = p1iXi — paxiz,

X13 = p12X12 — P13X13,

X14 = P13X13 — P14X14,
where x; stands for the components concentrations. The initial conditions are assumed to be zero
for all components but x;(0) = 2, and the nominal parameter values are: v,, = 1.6, k,, = 2.8,
pP1 = 05, P2 = 10, pP3 = 16, P4 = 12, pP5 = 12, Pe = 03, P71 = 13, pPs = 08, P9 = 14,
pio = 1.5, p11 = 1.0, p12 = 1.8, p13 = 1.2, p14 = 0.4. All states can be measured.

3.3. Example 3: Six-gene regulatory network

This model, proposed in the DREAM6 parameter estimation challenge?, assumes linear ki-
netics for mRNA degradation and protein synthesis (translation) and degradation. The mRNA
synthesis follows a Hill-type kinetics, unless for some cases where there is no regulatory input
to a gene. The mathematical model reads:

mry = pst; —mdrymry,
p1 = rstymry — pypdr,
mry = psthasirs, — mdromrs,
P2 = rstymry — popdr,
mry = pstzasyrsy — mdrymrs,
P3 = rstsmrs — p3pdr,
mryq = pstyas,rsy — mdrymry,
P4 = rstymry — papdr, (10)
mrs = pstsrsy — mdrsmrs,
Ps = rstsmrs — pspdr,
mre = psterss — mdremre,
D6 = rStemre — pepdr,
(pi/k)™ . _ (pi/k)" . (p1/k3)3

451 = Tp oy > 452 = Tapy iy 2453 = Ty k)
T ks T Tyl T Tk
T84 = ke 185 =

L+(pa k)"

Zhttp://www.the-dream-project.org/challenges/dream6-estimation-model-parameters-challenge
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where the p; are proteins and mr; mRNA concentrations, pdr is a protein degradation con-
stant, mdr; corresponds to the mRNA degradation rate, the pst; are the corresponding promoter
strengths, rs; the strengths of the ribosomal binding sites, k; the binding affinities, and /; the Hill
coefficients. All mRNA degradation rate constants are assumed to be known and equal to 1. All
other parameters are unknown. In this work we chose the following nominal values: pdr = 0.8,
psty = psts = pstg = 3, pst, = 4.7, psts = 5, psty = 20, rst; = 1, rsty = rst3 = rstg = 4,
rsty = 04, rsts = 6, ky = ks = 1, ky = 09, ks = k¢ = k7 = 0.1, ky = 9.5, kg = 0.2,
hy =hy =hg =4,hy = hy = hg = h; = 2, hs = 1. At initial time all protein concentrations are
setto 1, and mRNAs are set to 0. It is assumed that all protein and mRNA concentrations can be
measured.

4. Results

4.1. The geometry of sloppiness

Before proceeding to analyse the models presented in Section 3 we illustrate the geometric
implications of the definition of sloppiness, and how it relates to identifiability, using simple
examples.

We begin by remarking that two equally sloppy experimental schemes may have very different
identifiability properties. The reason is that it is possible to modify the confidence volume of the
confidence hyper-ellipsoid without modifying the ratio between the maximum and the minimum
semi-axis, i.e. the sloppiness. This fact can be trivially illustrated using a two dimensional
example, as in Fig. 1.

pl

Figure 1: Analysis of sloppiness from a geometric point of view. The figure represents two confidence ellipses for
an arbitrary example with two-parameters. The semi-axes of the larger ellipse are twice as long as the semi-axes of
the smaller ellipse. The parameter values can be determined with higher confidence for the smaller ellipse, whereas
sloppiness is the same in both cases.



Next we show that the experimental setup influences sloppiness and identifiability in different
ways. To this end we use a simple dynamic model that can be analysed symbolically. Consider
the following system, which could be a description of a linear biochemical network:

X = —pix1, 11
X2 = p1X1 — paxa,

where x; and x; represent the concentrations of two reaction components, with initial conditions
x1(0) = x19 and x,(0) = 0. If we take a single measurement at time ¢ of both states, the sloppiness
can be computed symbolically and it can be shown (see Supplementary Information) that sloppi-
ness depends on the values of the parameters and on the sampling time, but it is independent of
the initial condition of the experiments. In contrast, practical identifiability depends also on the
initial condition, because the eigenvalues of the Fisher information matrix — and hence the confi-
dence on the parameters — are dependent on the system’s state at the beginning of the experiment.
Figure 2 illustrates this fact, showing that, if it is possible to increase the initial amount of x; in
the system, the identifiability of both parameters improves — without altering the sloppiness.



a) Sloppiness in the parameter space o) Sloppiness vs identifiability A P2
]

(93]

08 +.15 P,

p1=2;p2=4
CF=0.23

(=]
(9]

p1=0.045 ; p2=0.015
CF =0.007
CF=0.007

[A] p1=0.045 ; p2=0.015

Figure 2: Effect of parameter values and experimental setup on sloppiness and practical identifiability. Figure (a)
shows that sloppiness is highly dependent on parameter values for given experimental conditions (i.e. initial amount of
x1 and sampling time). Figure (b) shows the influence of the experimental setup: sloppiness varies significantly with
the choice of the sampling time ¢, but it is independent of the initial condition x;(r = 0). As a consequence, Figure
(c) illustrates the fact that it is possible to estimate parameters with reasonable accuracy despite being sloppy. The blue
ellipses represent relative confidence intervals for initial condition x{(0) = 0.5 and parameter values p; = 2 and p; = 4,
coloured in dark blue (for a choice of sampling time #; = 1) and light blue (for #{ = 20). Both cases are non-sloppy
and non-identifiable. The green and red ellipses represent relative confidence intervals for parameter values p; = 0.045
and p, = 0.015, when 3 samples are measured at times ¢ = [15, 18,22], and for different initial conditions: the green
ellipsis corresponds to x1(0) = 3, and the red one to x;(0) = 5. While sloppiness is the same in both cases, practical
identifiability is affected by the initial condition. For the case x1(0) = 5, at least p; can be considered as identifiable, and
the confidence level for p, is = 60%, which can be reasonable in many cases.

4.2. Sloppiness versus structural identifiability

We analysed the structural identifiability of the three models presented in Section 3 using the
GenSSI toolbox [17], as outlined in Section 2.2. The three models are structurally identifiable,
because they have full rank identifiability fableaus (see Figure 3).

A tableau represents the non-zero elements of the Jacobian of the generating series coeffi-
cients with respect to the parameters. If the Jacobian is rank deficient, i.e. the tableau presents
empty columns, the corresponding parameters may be non-identifiable. If the rank of the Ja-
cobian equals the number of parameters, the model is at least locally identifiable. A unique
non-zero element in a given row indicates a globally identifiable parameter. The fableau can
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be “reduced” by removing such parameters, which may in turn lead to new unique non-zero
elements, and so on.

Figure 3 shows that examples 2 (biochemical pathway) and 3 (six-gene regulatory network)
are globally structurally identifiable, while in example 1 (fed-batch reactor) all parameters are
globally structurally identifiable except Kp and K},, which are only locally structurally identifi-
able. As a consequence, it is in principle possible to identify all the parameters in these examples,
provided that the appropriate datasets are used for parameter estimation.

To determine the quality that can be expected from the parameter estimates we use practical
identifiability techniques, as explained next (Section 4.3).

a) Example 1: fed-batch reactor b) Example 2: biochemical pathway
mu0 KP KS KPp KSp nu0

v _km pl p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

c) Example 3: six-gene regulatory network

pdr pst1 rst1 rst2 rst3 rst4 rst5 rst6 k1 h1 k2 h2 k3 h3 k4 h4 k5 h5 k6 h6 k7 h6 k8 h8
- [ .
- [ =
o [ |
s - - -
- L
- [ [
- I .
o I =
r [
- — ]
- [ =
= [ 1

Figure 3: Identifiability tableaus for the three examples. a) Fed-batch reactor for ethanol production. b) Biochemical
pathway: in red, direct globally identifiable parameters; in orange, 2" level globally identifiable parameters. c) Six-gene
regulatory network: in red, direct globally identifiable parameters; in orange, yellow and green, 2" to 4 level globally
identifiable parameters.



4.3. Sloppiness versus practical identifiability

4.3.1. Example 1: Fed-batch reactor for ethanol production

Here we analyse the practical identifiability of this model for an experiment in which the
reactor is fed with a constant amount of glucose u = 10 for ¢ty = 24h. We assume that x, S, and
P are measured and consider two possible scenarios: with 30 (Case 1a) or 60 (Case 1b) samples,
which are equidistantly distributed throughout the experiment duration. The total number of data
points is 90 in Case la and 180 in Case 1b.

Although the addition of sampling times reduces the sloppiness (from C# = 1 x 107 to
Cs# = 4.3 x 1077, as shown in Figure 4.a) and the confidence intervals (Figure 4.b), the model
is both sloppy and practically unidentifiable in both scenarios, specially for K and K;. Several
parameters (K, K, K, and K7,) are strongly correlated, as shown in Figure 4.c. Increasing the
number of data points decreases correlation, although the effect is small; particularly, K7 and K
are highly correlated in both cases. Figure 4.d plots model predictions obtained by changing the
value of K while keeping all other parameters fixed to the optimum. Cell mass and substrate
concentration are insensitive to changes in K, whereas ethanol production is clearly affected
at the end of the experiment. This result shows that the fact that a parameter is sloppy does
not necessarily mean that model predictions will remain the same regardless of the parameter
value. Note that, since K; and K; are highly correlated, the effect of changes in K} can be
compensated by changing K;. Hence, if both parameters are simultaneously manipulated the
predictions may remain unchanged. This case study provides a clear example of the differences
between sloppiness and (practical) identifiability.

It should be also noted that only the last samples of ethanol provide information for estimating
K and K;. Therefore, it is expected that the accumulation of sampling times at the end of the
experiment will improve identifiability. To assess this intuition we consider a third scenario (Case
1c) in which the data points are not equidistant. We obtain that, with 30 non equidistant sampling
times, it is possible to reduce both sloppiness (C# = 1.3 x 107) and confidence intervals for K
and K7, with respect to the use of 60 equidistant sampling times (Case 1b). This result stresses
that the location of sampling times is sometimes more determining than their number, for the
purpose of reducing sloppiness and improving identifiability. Thus, while the quantity of data is
important, it may not be indispensable to have massive amounts of high-quality measurements,
as has been suggested sometimes [14].

Finally, we analyse the effect of experimental noise. We proceed as described in section 2.5
for the case with constant glucose feeding and 30 non equidistant sampling times (Case 1c).
Figure 5.a shows the distribution of C# values, while Figure 5.b presents the distribution of
the mean of the confidence intervals. Both sloppiness and confidence intervals depend on the
amount of experimental noise; in general, the larger the variance, the greater the sloppiness and
the confidence intervals.
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Figure 4: Sloppiness vs practical identifiability for the example 1: ethanol production. a) Normalized eigenvalue
spectra provide a measure of sloppiness. In the two scenarios the eigenvalues span between 7 and 9 orders of magnitude,
indicating sloppiness in both cases. b) Normalized confidence intervals for the model parameters for both scenarios. c)
Correlation matrices. d) Model predictions when modifying the value of K}, between 0.5 and 2 times its optimal value,
with all other parameters fixed to the optimum. Plots show that x and P are not sensitive to Kj, and therefore those
measurements are not providing information to estimate its value, at least for the selected constant feeding profile.
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Figure 5: Role of the experimental noise in the sloppiness and practical identifiability for the example 1: ethanol
a) Sloppiness: distribution of the values of Cr (log scale) out of 200 runs for each of the three different
experimental noise amounts, for 30 non equidistant sampling times (Case 1c). b) Practical identifiability: distribution of

production.

the mean value of the confidence intervals p (log scale).
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4.3.2. Example 2: biochemical pathway

For this example we set the stimulus to # = 1 and the experiment duration to ¢y = 20.
Since there are 16 unknown parameters, a reasonable number of data was selected to be 56. We
consider three different ways of placing the total of 56 measurements: 2a), 2b), and 2¢). In case
2a) we only measure the concentrations of the first and last components, 28 samples each. In
case 2b) we measure half of the components, 8 samples each; from the more than 3000 different
combinations we choose to measure (x;, x», X5, X7, X109, X13 and x14) In case 2¢) we measure all
the components in the network, 4 samples each. In all cases, sampling times are selected to be
equidistantly distributed.

Figure 7 presents an overview of the results. The system is sloppy in all scenarios (Figure
7.a), with C# < 1 x 107>, However, the distribution of eigenvalues and the values of C# change
with the number of observables. The possibility of measuring all the components in the pathway
significantly reduces the sloppiness of the system and improves the confidence on the parame-
ter values (Figure 7.b), even if the number of measurements per observable decreases (the total
amount of data is the same in all cases). Note that this is a characteristic of linear pathways. Fig-
ure 7.c shows the sensitivity of the observables with respect to the different parameters, showing
that the sensitivity matrix is almost triangular, as expected (since the concentration of a compo-
nent is not affected by the downstream subnetwork). Figure 7.c also reveals (see yellow arrows)
that it would have been necessary to measure x3, x4 Or Xg, X9 and xj, to improve the identifiability
of ps, pa, pe and pi,. The addition of observables improves confidence (Figure 7.b) and tends to
decorrelate parameters (Figures 7.d).

Figure 6 shows the effect of the amount of experimental noise for the scenario 2¢c. As in the
previous example, the value of Cr is influenced by the amount of experimental noise, and all
cases are regarded as sloppy. The mean value of the confidence intervals also increases with the
experimental error, as expected.
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Figure 6: Role of the experimental noise in the sloppiness and practical identifiability for the example 2: bio-
chemical pathway. a) Sloppiness: distribution of the values of log(Cr) out of 200 runs for each of the three different
experimental noise scenarios. Values expand several orders of magnitude, and the model is sloppy in all cases. b) Prac-
tical identifiability: distribution of the mean value of the confidence intervals p. Confidence intervals are larger for the
cases with larger variance in the experimental error.
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4.3.3. Example 3: six-gene regulatory network

In this case study, time courses of all mRNA concentrations may be obtained by microarray
experiments, and protein concentrations can be measured by means of fluorescence microscope
experiments. We consider an experiment in which all mRNA and protein concentrations are
measured during 20 time units, with 21 equidistant sampling times (252 total data points), and
experimental errors with o = 0.20. Under these conditions, a sensitivity analysis reveals that it
will be problematic to estimate several parameters, specially binding affinities and Hill coeffi-
cients (Figure 8.a). Indeed, solving the parameter estimation problem for 200 different realiza-
tions of the experimental data yields large distributions of parameter values (Figure 8.b), which
reveals poor practical identifiability. In addition, Cr values are between 1 x 1072° and 1 x 1072,
indicating that the model is sloppy independently of the realization of the data.

Values (log scale)

0 4 :
ﬂ ﬂ

Figure 8: Role of the experimental noise in the sloppiness and practical identifiability for the 6-gene regulatory
network a) Sensitivity matrix showing how some observables are almost not sensitive to parameter changes under wild
type conditions (mry, mryq or p4) and how some parameters do almost not influence model outputs (pst4, h1, k3, h3, ks
or hig). b) Distribution of optimal parameter values achieved out of 200 realizations of experimental data. Most of the
parameters cannot be estimated with precision.
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4.4. The role of optimal experimental design and sloppiness

The results presented in Section 4.3 have shown how the experimental setup influences slop-
piness and practical identifiability. By appropriately choosing the number and location of the
sampling times, the stimulation conditions, and (when possible) the measured outputs, it is pos-
sible to improve identifiability and reduce sloppiness. Note that, strictly speaking, the latter case
(changing the observation function) involves redefining the model. Choosing the right experi-
mental conditions is not easy, and may be counter intuitive. It is thus useful to apply optimal
experimental design (OED) techniques, which automatically find the best experiment for a spe-
cific objective. The goal can be to improve identifiability, i.e. by minimizing the confidence
intervals or the correlation among parameters, or, alternatively, to minimize sloppiness. Here
we analyse the impact of experiment design, using Examples 2 and 3 from Section 3 as case
studies. To this end we solve the associated D-optimum, E-optimum and S-optimum problems
(see Section 2.6) under different experimental constraints and compare the results.

4.4.1. Example 2: biochemical pathway

For this example we assume that we have already performed the experiment labeled “Case
2b” in Section 4.3.2, that is, we have 8 measurements per each of the 7 observables (a total of 56
data points), obtained under sustained stimulation ¥ = 1. We want to design a second experiment
that complements the information provided by the first one. In this optimal experimental design
task we consider the following degrees of freedom: the observed quantities with a maximum
of 7, the stimulation conditions (0 < u(f) < 2), and the experiment durations (15 < ¢y < 25).
Sampling times are assumed to be equidistant, and the total amount of data is again n°x56. Table
1 summarizes the results.

’ nt/ nyg \ Criterion \ Cr \ pi(%)

D-opt 1.3x 107 [ 15.9,23.2,3.0,5.0,6.1,6.1,5.4,6.2,6.1,6.9,7.2,6.9,7.7,8.0,8.4, 12.1

2/112 E-opt 48x107 | 11.0,12.2,6.8,8.3,9.9,10.2,9.3,26.4,7.0,8.6,8.8,7.9,9.4,9.8,9.5, 13.6

S-opt 6.6x 107 | 12.6,14.2,3.2,4.7,6.1,6.7,6.5,23.8,8.6,52.0,5.7,7.4,5.9,6.1,8.7,12.1

D-opt 1.7x107%15.1,5.0,2.2,4.0,3.2,3.1,4.4,3.1,5.2,3.5,3.7,6.1,4.0,4.1,7.5,10.6

3/168 E-opt 20x107% | 4.8,4.8,2.1,4.0,3.3,3.2,4.4,3.3,5.2,3.7,3.8,6.1,4.1,4.3,7.4,10.5

S-opt 22x107% | 5.2,5.1,2.1,4.0,3.5,3.4,4.4,3.5,5.2,3.9,4.1,6.0,4.4,4.6,7.4,10.4

Table 1. Optimal design of experiments for the biochemical pathway example. First column: total
number of experiments used (n°, i.e. Case 2b plus the number of optimally designed experiments, and
total amount of data (n,. Second column: criterion used for optimal experimental design. Third column:
sloppiness. Fourth column: relative confidence intervals for all parameters. Underlined values correspond
to the minimum and maximum relative confidence interval in each scenario.

Recall that for experiment Case 2b the sloppiness Cr was in the order of 107!1°. The addi-
tion of a single experiment reduces the sloppiness by 5 orders of magnitude, in all experimental
designs. Further reductions are achieved by adding a second experiment. However, the addition
of further experiments does not lead to a non-sloppy scenario. Although the model is sloppy for
all experimental designs, the confidence intervals are substantially reduced for all the parame-
ters (see Figure 9), to the point that all of them can be considered practically identifiable. For
example, with the E — opt experimental design the mean confidence interval is p = 4.7% and the
maximum is max(p;) = 10.5%.
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The final experimental designs with two designed experiments are shown in Figure 10. D-opt
and E-opt criteria result in qualitatively similar experiments. In both cases the optimum choice
is to measure X3, X4, Xg, X3, X9, X11, X12 (as already expected from the sensitivity analysis, Figure
7.c). The resulting feeding profiles are time-varying and complement the information obtained
from experiment Case 2b, where there was a constant input # = 1; the new feeds are either clearly
above or below 1. The S-opt design results in the measurement of x;, x», X3, X4, X9, X11, X1 in the
first experiment and x3, x4, Xg, X3, X9, X11, X12 in the second. The feed is kept at low levels in both
cases, even though the profiles lead to different dynamic behaviours of the system.
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Figure 9: Evolution of the relative confidence intervals with optimal experimental design for the biochemical
pathway. Stars: results obtained with the experiment “Case 2b” plus one optimally designed experiment. The use of
different criteria for OED results in substantial differences in the confidence intervals (wide area shaded in blue). Circles:
results of “Case 2b” plus two optimally designed experiments. All criteria converge to practically the same result (narrow
area shaded in orange), given the experimental constraints.
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Figure 10: Optimally designed experiments for the biochemical pathway example. Experiments obtained with dif-
ferent criteria: a) D-opt, b) E-opt, ¢) S-opt. Lines represent stimulation conditions and measured states, triangles in the
X-axis represent sampling times.

4.4.2. Example 3: six-gene regulatory network

Following the instructions of the DREAMG6 parameter estimation challenge, we assume that
the following perturbations can be implemented:

o GD: Gene deletion to eliminate both mRNA and protein production for a specified gene.
o KD: mRNA knockdown using siRNA to achieve a 5-fold increase in mRNA degradation.

e RBA: Increase of RBS activity by 100% (i.e. double) to increase translation rate.
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For every perturbation we can measure either all mRNA time courses, by means of microar-
ray measurements (M), or time courses of protein abundance for a maximum of 2 proteins per
experiment, by means of fluorescent protein fusion (P). Measuring mRNA provides 21 X 6 data,
whereas measuring protein yields only 41 x 2 data per experiment. In addition, a gel-shift assay
(GS) can be chosen to determine the binding affinity (Kd) and Hill coefficient (h) of any tran-
scription factor. A maximum budget of 20 X C1, where C1 is a unit cost, is allowed for buying
experiments. The cost of each type of experiment is as follows:

e GD:2xC1,KD: 1 xCl and RBA: 1 X Cl1
e M:2xC1,P: 1 xCl1
e GS:3xCl1

The sequences of experiments obtained with the D-optimum, E-optimum and S-optimum de-
sign criteria are shown in Table 2. The selected experiments vary significantly depending on the
criteria. D-optimum design avoids gel shift assays, since those experiments reduce the dimen-
sion and thus the determinant of . The tendency is to use all other types of experiments and to
measure all states, when enough budget is available. E-optimum design exploits a combination
of gel shift assays with mRNA knockdown and gen deletion. S-optimum design combines gene
deletion and gel shift assays.

Criterion | Sequence of experiments \ Cs \ p \ max(p;) ‘
D-opt mRNA 5 knockdown, all mRNA measured 21x 10710 [ 2451% | 4.726 x 10*%
Gene 1 deletion, all mRNAs measured 1.2x1077 | 50.5% 125%
mRNA 5 knockdown, all proteins measured 7.8x107% | 37.7% 122%
Gene 1 deletion, all proteins measured 8.6x 1078 32.5% 104%
mRNA 1 knockdown, all mRNA measured 2.7%x1077 | 26.6% 80.9%
Increase of RBS 1 activity, all mRNAs measured | 3.1 X 1077 | 24.3% 77.6%
Increase of RBS 1 activity, p2 & p3 measured 32x107 | 233% 76.1%
E-opt mRNA 5 knockdown, all proteins measured 47x 10710 [ 481% 6987%
Gel shift (hy, k1) 1.3x107° | 418% 6897%
mRNa 5 knockdown, all mRNAs measured 1.8x 1078 111% 1721%
Gene 1 deletion, all mRNAs measured 29x 1077 | 29.6% 108%
Gel shift (3, k3) 3.7x107 | 23.7% 64.9%
Gel shift (hy, kq) 5.6x1077 | 21.3% 64.9%
Gene 1 deletion, p3 & p5 measured 83x107 | 16.9% 57.8%
S-opt Gene 5 deletion, all proteins measured 73x 107 | 735% 1.0 x 10*%
Gene 1 deletion, all mRNAs measured 5.6x1078 | 67.1% 252%
Gene 5 deletion, all mRNAs measured 6.1x 1077 | 50.2% 215%
Gel shift (hy, k1) 6.1 x107° | 36.3% 122%
Gel shift (g, k¢) 1.3x107° | 32.3% 122%
Gene 1 deletion, p1, p2, p3 & p5 measured 201075 | 22.8% 80.5%

Table 2. Optimal design of experiments for the six-gene regulatory network. First column: crite-
rion used for optimal experimental design. Second column: experiments. Third column: sloppiness.
Fourth and fifth columns: mean and max relative confidence intervals, respectively.
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Under the imposed constraints it was not possible to obtain a non-sloppy scenario. The best
result in terms of identifiability was achieved with the E-optimum criterion; note that for this
design the sloppiness is two orders of magnitude worse than for the S-optimum design.
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Figure 11: Relative confidence intervals in OED for the six-gene regulatory network example. The figures show
the evolution of relative confidence intervals as new experiments are added using D-opt, E-opt and S-opt experimental
designs. Shaded areas represent parameters measured by means of gel shift experiments, whose confidence intervals are
0%. Red triangles represent the best value achieved. Best overall result corresponds to the E-opt design, for which the
confidence on the protein degradation rate is below 10%, for all promoter strengths and ribosomal binding sites strengths
the relative confidence is around 10%, and for binding affinities and Hill coefficients it is below 60%.

21



5. Discussion and conclusions

The present work was motivated by the claim that sloppiness is an inherent property of sys-
tems biology models [22, 23]. Intrigued by this statement, we started by assessing to what extent
“inherent” might be equivalent to “structural”. To this end we analysed the structural identifi-
ability of several sloppy models with different characteristics of size and type of non-linearity.
Results revealed that sloppiness is not equivalent to structural non-identifiability, since the mod-
els turned out to be structurally identifiable. This means that it is possible — at least in principle
— to find unique values of sloppy parameters.

Since the origin of sloppiness is not — or at least not exclusively — related to the model struc-
ture (in fact, the dependence of sloppiness on data was already known [23]), it should be rooted
elsewhere. Therefore our next question was: given a sloppy but structurally identifiable model,
is it possible to determine the values of its parameters with reasonable confidence, for a realistic
amount of noisy experimental data? In other words: can sloppy models be practically identifiable
in reality? Practical identifiability depends on the experimental conditions (such as number of
experiments, number of observables, number and location of sampling times, initial state of the
system, and stimulation conditions) and on the type and amount of measurement noise. It is not
uncommon to find in the recent literature the assumption that sloppiness is equivalent to practical
non-identifiability, which sometimes leads to the conclusion that, since systems biology models
are universally sloppy, they are also practically unidentifiable and, therefore, parameter estima-
tion is doomed to fail, see e.g. [19]. However, we have found that sloppiness is not equivalent to
lack of practical identifiability, although they are related. We have provided examples of sloppy
models for which the confidence intervals of the parameters are reasonable, and thus the model
may be considered practically identifiable — using feasible, realistic experimental setups.

As we have seen, sloppiness is neither equivalent to lack of structural nor practical identifia-
bility. Thus the fact that a model is sloppy does not necessarily mean that its parameters cannot
be estimated: sloppiness analysis cannot replace structural or practical identifiability analysis.
Hence it is always advisable to analyse practical identifiability, for example by means of a non-
parametric bootstrap approach, before making a decision on whether the parameters of a model
can or cannot be estimated.

It is known that the practical identifiability of a model can be improved by means of an ad-
equate experimental design [2, 4, 41, 24], and a similar procedure can be used to reduce sloppi-
ness. Apgar and coworkers [2] analysed the evolution of sloppiness with the number of designed
experiments, suggesting that sloppiness can decrease significantly following a careful experi-
mental design. Later, in a reply to [2], Chandra and coworkers [14] objected that (i) even after
experimental design the model remains sloppy, and (ii) the amount of data required is too high.
We compared experiments designed with the aim of minimizing sloppiness with conventional
D-optimum and E-optimum designs, whose goal is to improve confidence intervals. We found
that the distribution of relative confidence intervals depends on the optimization criterion, as ex-
pected, and so does sloppiness. We observed that designs which minimize sloppiness do not end
up in the best compromise between mean and maximum expected confidence on the parameters.
The additive nature of the Fisher information matrix implies that the addition of informative data
will increase its determinant and thus reduce the mean confidence intervals. However, this reduc-
tion does not necessarily modify the ratio between the minimum and the maximum eigenvalue
(Cr), which is what defines sloppiness. This can be easily seen from a geometric perspective, as
shown in Section 4.1. Taking this into account, we suggest using E-optimum or D-optimum de-
signs to improve parameter estimates, instead of minimizing sloppiness. Regarding experimental
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design, we also found that while the addition of new observables is very effective for reducing
sloppiness, the amount of data is less critical than an adequate selection of sampling times.

The idea that a good fit to data is a guarantee for the validity of a model and, thus, for the
validity of the corresponding predictions, although tempting, requires further analysis. Similarly,
the idea that sloppy parameters can take almost any value without modifying model predictions
also requires further analysis. We have seen here that this is not always the case, as shown e.g. in
Figure 4. Hence parameter estimation remains a fundamental step in the model building process,
and we argue that, despite the associated difficulties, a properly performed model calibration is
an effort worth making.

Sloppiness is not a consequence of biological robustness, but a mathematical property of a
given model and the data used for its calibration. While sloppiness has been linked to robustness
[21], we argue that both concepts are only partially related. Robustness in biological behaviours
with respect to different sources of noise can be associated with a certain insensitivity of models
predictions to parameter values. However, whether this insensitivity is rooted in a lack of struc-
tural or practical identifiability makes a difference. We can distinguish three situations. The first
one is lack of structural identifiability, in which case the model can be robust against parameter
value modifications, but this has little or nothing to do with the biological robustness. The second
situation is if a model is both structurally and practically identifiable, and sloppy. In this case
the model may be robust to perturbations around the parameter values, and robustness can be
assessed by the uncertainty associated with model predictions. Finally, if the model is sloppy
but practically non-identifiable (or poorly identifiable), then the model (or, more precisely, some
states in the model) may not be robust against parameter modifications. This situation would be,
in principle, reverted if more informative experimental data becomes available.

The fact that sloppiness is not equivalent to structural nor practical identifiability (or to any
other properties) indicates that it is not a redundant concept. This realization poses a new ques-
tion: where exactly does the value of sloppiness reside? This point has so far been controversial.
On the one hand, a number of researchers have expressed critical or sceptical views about the
utility of the concept [2, 24, 43, 48]. On the other hand, it has been argued that sloppiness
can not only explain why tools such as principal component analysis (PCA) and the Levenberg-
Marquardt algorithm are effective, but also that it is the phenomenon that enables biological
evolution; and, ultimately, that sloppiness is the reason why science is possible and the universe
is comprehensible [46]. While these are certainly impressive claims, in the present work we
have investigated a more specific topic, namely the identification of biological models. It is in
this context that we inquire: what does sloppiness exactly contribute in order to be considered a
pertinent addition to the set of conceptual tools employed by systems biology modellers? From
our analyses, we conclude that what sloppiness brings to the table is of little use. Identifiability
is a more informative concept, both in terms of the inverse and forward problems. Therefore,
identifiability-based approaches are a better option for assessing the quality of parameter esti-
mates and the predictive capabilities of calibrated models.
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Supplementary material

Symbolic analysis of a simple linear model.

References

(1]
(2]
(3]
[4]
(5]
(6]

(8]
(9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

(23]
[24]

[25]

Antoulas, A. C., Sorensen, D. C., Gugercin, S., 2001. A survey of model reduction methods for large-scale systems.
Contemporary mathematics 280, 193-220.

Apgar, J., Witmer, D., White, F., Tidor, B., 2010. Sloppy models, parameter uncertainty, and the role of experimen-
tal design. Mol. BioSyst. 6, 1890—1900.

Apri, M., de Gee, M., Molenaar, J., 2012. Complexity reduction preserving dynamical behavior of biochemical
networks. J. Theor. Biol. 304(7), 16-26.

Balsa-Canto, E., Alonso, A., Banga, J., 2008. Computational procedures for optimal experimental design in bio-
logical systems. IET Syst. Biol. 2(4), 163—172.

Balsa-Canto, E., Alonso, A., Banga, J., 2010. An iterative identification procedure for dynamic modeling of bio-
chemical networks. BMC Syst. Biol. 4:11.

Balsa-Canto, E., Banga, J., 2011. AMIGO, a toolbox for advanced model identification in systems biology using
global optimization. Bioinformatics 27(16), 2311-2313.

Banga, J. R., Balsa-Canto, E., 2008. Parameter estimation and optimal experimental design. Essays Biochem. 45,
195-210.

Bellman, R., Astrom, K. J., 1970. On structural Identifiability. Math. Biosci. 7, 329-339.

Berthomieux, S., Brilli, M., Kahn, D., de Jong, H., Cinquemani, E., 2012. On the identifiabiity of metabolic network
models. J. Math. Biol., DOI: 10.1007/s00258-012-0614—x.

Brown, K., Sethna, J.P., 2003. Statistical mechanical approaches to models with many poorly known parameters.
Phys Rev E Stat Nonlin Soft Matter Phys. 68.

Cedersund, G., 2012. Conclusions via unique predictions obtained despite unidentifiability- new definitions and a
general method. FEBS J. 279, 3513-3527.

Cedersund, G., 2016. Prediction uncertainty estimation despite unidentifiability: an overview of recent develop-
ments. In: Uncertainty in Biology. Springer, pp. 449—466.

Cedersund, G., Roll, J., 2009. Model based evaluation and comparison of potential explanations for given biological
data. FEBS J. 276(4), 903-922.

Chandra, R., Transtrum, M., Sethna, J., 2011. Comment on Sloppy models, parameter uncertainty, and the role of
experimental design. Mol. Biosyst. DOI: 10.1039/c1mb05046;.

Chatzis, M. N., Chatzi, E. N., Smyth, A. W., 2015. On the observability and identifiability of nonlinear structural
and mechanical systems. Struct. Control Health Monit. 22 (3), 574-593.

Chen, W., Schoeberl, B., Jasper, P., Niepel, M., Nielsen, U., Lauffenburger, D., Sorger, P., 2009. Input output
behavior of erbb signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst.
Biol. 5(239).

Chis, O., Banga, J., Balsa-Canto, E., 2011. GenSSI: a software toolbox for structural identifiability analysis of
biological models. Bioinformatics doi: 10.1093/bioinformatics/btr431.

Chis, O., Banga, J., Balsa-Canto, E., 201 1. Structural identifiability of systems biology models: A critical compar-
ison of methods. PLoS ONE 6(11).

Cirit, M., Haugh, J. M., 2012. Data-driven modelling of receptor tyrosine kinase signalling networks quantifies
receptor-specific potencies of pi3k-and ras-dependent erk activation. Biochem. J. 441 (1), 77-85.

Cobelli, C., DiStefano, J., 1980. Parameter and structural identifiability concepts and ambiguities: a critical review
and analysis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 239 (1), R7—
R24.

Daniels, B. C., Chen, Y.-J., Sethna, J. P., Gutenkunst, R. N., Myers, C. R., 2008. Sloppiness, robustness, and
evolvability in systems biology. Curr. Opin. Biotechnol. 19 (4), 389-395.

Gutenkunst, R., Casey, F., Waterfall, J., Myers, C., Sethna, J., 2007. Extracting falsifiable predictions from sloppy
models. Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for
Pathway Inference Annals of the New York Academy of Sciences 1115 (203-211), 1115-203.

Gutenkunst, R., Waterfall, J., Casey, F., Brown, K., Myers, C., Sethna, J., 2007. Universally sloppy parameter
sensitivities in systems biology models. Plos Comput. Biol. 3 (10), 1871-1878.

Hagen, D. R., White, J. K., Tidor, B., 2013. Convergence in parameters and predictions using computational
experimental design. Interface Focus 3 (4), 20130008.

Hong, J., 1986. Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition
kinetics. Biotechnol. and Bioeng. 28, 1421-1431.

24



[26]
[27]

[28]
[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]
(511

[52]
[53]

[54]

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of educational
psychology 24 (6), 417.

Jacquez, J. A., Greif, P., 1985. Numerical parameter identifiability and estimability: Integrating identifiability,
estimability, and optimal sampling design. Mathematical Biosciences 77 (1), 201-227.

Jagaman, K., Danuser, G., 2006. Linking data to models: data regression. Nat. Rev. Mol. Cell Bio. 7 (11), 813-819.
Joshi, M., Seidel-Morgenstern, A., Kremling, A., 2006. Exploiting the bootstrap method for quantifying parameter
confidence intervals in dynamical systems. Metab. Eng. 8, 447-455.

Kirouac, D. C., Madlambayan, G. J., Yu, M., Sykes, E. A., Tto, C., Zandstra, P. W., 2009. Cell—cell interaction
networks regulate blood stem and progenitor cell fate. Molecular systems biology 5 (1), 293.

Kotte, O., Heinemann1, M., 2009. A divide-and-conquer approach to analyze underdetermined biochemical mod-
els. Bioinformatics 25(4), 519-525.

Liepe, J., Filippi, S., Komorowski, M., Stumpf, M., 2013. Maximizing the information content of experiments in
systems biology. PLoS Computational Biology 9.

Machta, B., Chachra, B., Transtrum, M., Sethna, J., 2013. Parameter space compression underlies emergent theories
and predictive models. Science 342, 604—607.

Mannakee, B. K., Ragsdale, A. P., Transtrum, M. K., Gutenkunst, R. N., 2016. Sloppiness and the geometry of
parameter space. In: Uncertainty in Biology. Springer, pp. 271-299.

Miao, H., Xia, X., Perelson, A., Wu, H., 2011. On identifiability of nonlinear ode models and applications in viral
dynamics. SIAM Rev Soc Ind Appl Math. 53(1), 3-39.

Moore, B., 1981. Principal component analysis in linear systems: Controllability, observability, and model reduc-
tion. IEEE transactions on automatic control 26 (1), 17-32.

Pohjanpalo, H., 1978. System identifiability based on power-series expansion of solution. Math. Biosci. 41 (1-2),
21-33.

Raman, D. V., Anderson, J., Papachristodoulou, A., 2016. Delineating parameter unidentifiabilities in complex
models. arXiv preprint arXiv:1607.07705.

Rand, D., 2008. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global
summation law. J. R. Soc. Interface 5, 59-69.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmiiller, U., Timmer, J., aug 2009. Structural
and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics 25 (15), 1923-9.

Raue, A., Kreutz, C., Maiwald, T., Klingmuller, U., Timmer, J., 2011. Addressing parameter identifiability by
model-based experimentation. IET Systems Biology 5 (2), 120-130.

Sunnaker, M., Cedersund, G., Jirstrand, M., 2011. A method for zooming of nonlinear models of biochemical
systems. BMC Syst. Biol. 5, 140.

Tonsing, C., Timmer, J., Kreutz, C., 2014. Cause and cure of sloppiness in ordinary differential equation models.
Physical Review E 90 (2), 023303.

Transtrum, M., Machta, B. B., Sethna, J., 2010. Why are nonlinear fits to data so challenging? Phys. rev. Lett. 104,
060201.

Transtrum, M., Machta, B. B., Sethna, J., 2011. Geometry of nonlinear least squares with applications to sloppy
models and optimization. Phys. Rev. E. 83, 036701.

Transtrum, M. K., Machta, B. B., Brown, K. S., Daniels, B. C., Myers, C. R., Sethna, J. P., 2015. Perspective: Slop-
piness and emergent theories in physics, biology, and beyond. The Journal of chemical physics 143 (1), 010901.
Vanlier, J., Tiemann, C., Hilbers, P, van Riel, N., 2013. Parameter uncertainty in biochemical models described by
ordinary differential equations. Mathematical Biosciences 246, 305-314.

Villaverde, A. F,, Banga, J. R., 2014. Reverse engineering and identification in systems biology: strategies, per-
spectives and challenges. Journal of The Royal Society Interface 11 (91), 20130505.

Villaverde, A. F., Barreiro, A., 2016. Identifiability of large nonlinear biochemical networks. MATCH Commun.
Math. Comput. Chem. 76 (2), 259-296.

Walter, E., Pronzato, L., 1997. Identification of Parametric Models from Experimental Data. Springer, Masson.
Wang, C., Cirit, M., Haugh, J., 2009. Pi3k-dependent cross-talk interactions converge with ras as quantifiable inputs
integrated by erk. Molecular Systems Biology 5:246.

Waterfall, J., 2006. Universality in multiparameter fitting: sloppy models. Ph.D. thesis, Cornell University.
Waterfall, J., Casey, F., Gutenkunst, R., Brown, K., Myers, C., Brouwer, P., Elser, V., Sethna, J., 2006. Sloppy-
model universality class and the vandermonde matrix. Physical Review Letters 97(15).

Willcox, K., Peraire, J., 2002. Balanced model reduction via the proper orthogonal decomposition. AIAA journal
40 (11), 2323-2330.

25



