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Abstract The recovery times of upper D region electron density elevations, caused by lightning-induced
electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a
recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF
events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere;
they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground)
lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are
considered first for a weak enhancement in electron density and then for a much stronger one caused by
an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling
of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the
electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above
79 km attachment is balanced totally by associative electron detachment so that electron loss at these
higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n

and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at
altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition,
a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied,
which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates
for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical
early VLF events, which are known to be associated with sprites.

1. Introduction

LOng Recovery Early VLF events (LOREs) represent a small subclass of early VLF events which associate
with direct tropospheric lightning effects on the mesosphere and lower ionosphere caused by induced
quasi-electrostatic (QE) and electromagnetic pulsed (EMP) fields. These direct lightning interactions
may lead to ionospheric conductivity modifications which affect VLF transmissions propagating in the
Earth-ionosphere waveguide and the generation of various types of momentary optical emissions known as
transient luminous events (TLE). The most common TLE categories are those of sprites and elves, which have
their origin in lightning QE and EMP field effects in the upper atmosphere, respectively [Pasko et al., 2012, and
references therein].

Typical early VLF events are abrupt perturbations in amplitude and phase of narrowband VLF signal recep-
tions. They occur within ∼20 ms of a causative lightning discharge having either a fast (<20 ms) or slow
(∼1 or 2 s) onset duration and typical recoveries in the range from ∼50 to 180 s [see Inan et al., 1996; also Inan
et al., 2010, and references therein].

Early VLF events have been studied extensively in an effort to understand their relation to TLEs, an issue that
has been surrounded in earlier studies by controversy. In an effort to resolve this controversy, Haldoupis et al.
[2004] and Neubert et al. [2005] used multi-instrument observations in Europe to obtain convincing evidence
in favor of a close relationship between sprites and early VLF perturbations, suggesting a nearly one-to-one
association. These findings prompted Marshall et al. [2006] to test this relationship further by analyzing a data
set of concurrent sprite and early VLF events. Their results suggested that sprites and early VLF events were
related, but not in a one-to-one correlation; that is, they found that about 48% of early events were asso-
ciated with sprites. In discussing the difference between the two data sets, Marshall et al. [2006] suggested
that these might be due to the relative location of the causative lightning along the VLF signal path (i.e., near
transmitter or near receiver) in that mode coupling of the propagating VLF signal causes some perturbations
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to be undetectable at long distances from the disturbed region. The whole issue and its disagreements were
dealt with in a detailed study by Haldoupis et al. [2010]. This latest study confirmed that visible sprite occur-
rences are accompanied by early event perturbations in a one-to-one correspondence, but this relationship, if
viewed conversely, appeared not to be always reciprocal, which suggested a possible role also for the so-called
subvisual sprites, e.g., see Pasko [2010].

In the light of the above observations, one likely reason for the early-type VLF perturbations is the produc-
tion of ionization at sprite altitudes driven by QE fields induced by +CG lightning with large charge moment
changes leading to sprite discharges, as well as sprite halos [Pasko et al., 2012]. In this case then, the observed
early event recoveries of tens of seconds can be understood in terms of anticipated electron density relaxation
times at sprite and sprite halo altitudes, typically below 80 km, between about 60 km and 85 km, as shown by
Haldoupis et al. [2009].

The present paper aims in explaining the long recoveries of LOREs, which have been identified first by Cotts
and Inan [2007] as a distinct VLF signature caused by lightning. While LOREs have abrupt onsets and onset
duration similar to those of typical early VLF events, they differ from them by their long recoveries, which range
from several minutes up to∼20 to 30 min, or even longer. The origin of LOREs was experimentally identified in
the studies by Haldoupis et al. [2012, 2013] and Salut et al. [2012, 2013], to be associated with unusually large
peak currents of CG lightning discharges.

Multi-instrument data sets showed that LOREs are triggered by powerful CG lightning discharges of either
positive or negative (±) polarity, carrying very large peak currents (>250 kA) which are also capable of produc-
ing elves or elve-sprite pairs, especially if the causative CG discharge polarity was positive. The observations
suggested that LOREs are caused by lightning-emitted, strong electromagnetic pulsed (EMP) electric fields
which impact onto the upper mesosphere, at heights >80 to ∼85 km, to generate long-lasting elevations in
electron density. In addition, it was implied that LORE is the VLF fingerprint of elves, a fact that was predicted
by EMP theory earlier [Rodger, 2003]. Certainly, one cannot exclude the option that LOREs may also associate
with elevations in ionization which occur in relation with high altitude sprite halos or halos alone, with the lat-
ter occurring with either positive or negative CG lighting discharges [e.g., Newsome and Inan, 2010; Williams
et al., 2012]. Still, however, this latter option remains to be verified by observations.

This paper continues research on LOREs by taking a closer look at their long recoveries. It presents theory
estimates and modeling results, which provide a better physical understanding of the phenomenon, and
helps quantify lightning EMP effects on electron density production and relaxation in the nighttime upper D
region ionosphere. In the following, a full nonequilibrium kinetic model of air plasmas is used first to com-
pute the relaxation times of a weakly enhanced (above ambient values) electron density perturbation at
upper D region heights. Next, a two dimensional (2-D) EMP model is employed to compute the EMP electric
fields causing strong ionization enhancements by electron impact in the upper D region that is representative
of LORE-occurring conditions. Next, these fields are used in the full nonequilibrium kinetic model of the air
plasmas to independently predict electron density relaxation times and identify the prevailing kinetic paths
during and after the action of intense lightning EMP fields associated with elves. Finally, a simplified kinetic
model is presented and used to explain physically the fundamental kinetic processes and their correspond-
ing time scales which determine the LORE relaxation times of electron density enhancements in the upper
D region.

Before presenting the model and its findings, a brief reference is made first, for completeness purposes, on
LORE observational characteristics. These are summarized below.

2. LORE Observational Properties

The present LORE knowledge and experimental properties are documented in two recent papers by Haldoupis
et al. [2013] and Salut et al. [2013]. Both are statistical studies of early-type VLF perturbations occurring in rela-
tion with intense CG lightning discharges with peak currents > | ± 200| kA. It should be noted that there is
recent support for an elve production cutoff of ≃88 kA peak current [Blaes et al., 2016]. Previous elve produc-
tion cutoff peak currents were established to≃56 kA [Barrington-Leigh and Inan, 1999] and≃60 kA [Chen et al.,
2008]. However, LORE occurrences increase with stroke current intensities and approach unity for discharges
with peak currents greater than about |±300| kA. LORE perturbations are detected when a causative lightning
discharge is located within ∼250 to 300 km of the great circle path (GCP) of a VLF transmitter-receiver link,

GORDILLO-VAZQUEZ ET AL. KINETIC MODEL OF LORE RELAXATION TIMES 3526



Journal of Geophysical Research: Space Physics 10.1002/2015JA021408

Figure 1. Long recovery early VLF event (LORE) occurrences associate with the most pronounced VLF perturbations
caused by intense lightning discharge peak currents. See text for more details.

which implies a large perturbed area comparable with that of elves. They associate with the strongest and
longest-living VLF perturbations caused by CG lightning discharges in the D region ionosphere.

The LORE phenomenon can be appreciated in Figure 1. It shows VLF recordings obtained with a Stanford
receiver [Cohen et al., 2010] located in Tunis, for two VLF links whose transmitter to receiver GCPs passed near
a localized but very intense maritime storm located west of Corsica, at ∼42∘N and 7.5∘E. The storm lasted
∼6 h during the night of 12–13 December 2009, from ∼21 to 03 h UT, and produced many TLE events, which
included tens of sprites, several spectacular sprite-elve pairs, and a gigantic jet, the first ever to be observed in
Europe [van der Velde et al., 2010]. It also produced several strong +CG discharges with peak currents exceed-
ing+250 kA, captured by the Italian LINET lightning detection system [Betz et al., 2004], which produced LOREs
concurrently with sprites and elves.

Figure 1 shows unfiltered (raw) signal amplitude time series, for the NRK (Island)-Tunis (top) and HWU
(north France)-Tunis (bottom) VLF propagation links, recorded during a 4 h storm interval from 21 to 01 UT.
Besides the dense sequence of numerous strong sferics caused by CG lightning, the most conspicuous pertur-
bations in Figure 1 are those of LOREs, characterized by large sudden onsets and long recoveries to pre-event
levels, exceeding in a few cases 30 min. The red arrows near onset indicate the occurrence of four prominent
LORE events during this time interval, all triggered by unusually intense +CG discharges with peak currents
ranging from +282 to +406 kA.

Since the present paper deals with the modeling of LORE recoveries, it is important to have information
about their dependence on causative peak current intensities. To measure the event recovery, however, is a
formidable task in most cases because, as pointed out by Haldoupis et al. [2013] and Salut et al. [2013] and as it
can also be inferred from Figure 1, it is difficult to get reliable recovery estimates due to additional ionospheric
fluctuations occurring independently, which affect and complicate the signal on time scales of minutes.
Despite this difficulty, an effort was made to manually reinspect the large data base used by Haldoupis et al.
[2013] in order to identify typical LORE cases for which reasonable recovery estimates were possible within an
approximate error bound of ∼20%. The recovery time was defined here as the time between the event onset
and the approximate moment when the signal returned to its pre-event level. Shown in Figure 2 are exam-
ples of such events caused by either a positive or negative CG discharge whose peak currents in kiloampere
are denoted in red. Plotted are logarithmic VLF amplitudes of raw signal (unfiltered) recordings in which the
recovery times, measured from the event onset to the time the signal relaxes back to its preonset level, are
indicated in each plot by a line and the estimated recovery time, 𝜏 , in minutes.

Figure 3 summarizes in a point scatter plot the LORE recovery estimates versus their causative peak current
intensities. It is based on 136 LORE events similar to those of Figure 2, with the majority of them (∼70%)
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Figure 2. Typical examples of LOREs observed with the Crete VLF receiver, for which the event duration (recovery) can
be estimated within a reasonable error bound.

belonging in the +CG lightning discharge group marked with red dots in Figure 3, while the blue dots denote
−CG strokes. As seen, there is a clear trend for the LORE recoveries to increase with stroke peak current. The
observed dependence was fitted by a straight line that produced a linear correlation coefficient of ∼75%. A
similar effort for the LORE onset amplitudes measured in decibels did not produce any obvious trend or a

Figure 3. Dependence of estimated LORE recovery times on the
causative CG lightning discharge peak current for both positive (red)
and negative (blue) current polarities. There is a linear trend which is
fitted by a straight line with a linear correlation coefficient of 0.76.

functional relationship with the causative
peak currents, which is in agreement with
a similar conclusion made by Salut et al.
[2013]. The lack of LORE amplitude depen-
dence on peak current can be attributed
to various unresolved signal complexities.
These may include VLF modal propagation
effects on the narrowband VLF amplitude
and phase at the receiver, uncertainties
in the altitude and horizontal extent of the
effective scattering region, and obscure
signal variations caused by irregular chan-
ges in the state of the nighttime D region
ionosphere along the entire great circle
path from the transmitter to the receiver.

3. Modeling the LORE
Recoveries

The key hypothesis adopted here, which
relies on strong experimental evidence, is
that LOREs are due to VLF scattering from
electron density enhancements caused by
lightning-induced EMPs, impacting onto
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Table 1. Mitra-Rowe Scheme Implemented in This Study Following the
Work By Mitra [1975]a

Reaction Rate Coefficient

NO+ → H+(H2O)n B = 1.0 × 10−31N2 s−1

O+
2 → H+(H2O)n B = 1.0 × 10−31N2 s−1

O+
4 → H+(H2O)n B = 1.0 × 10−31N2 s−1

e + H+(H2O)n → Neutrals 𝛼c
d

= 1.0 × 10−5 cm3 s−1

O−
2 + H+(H2O)n → Neutrals 𝛼i = 1.0 × 10−7 cm3 s−1

CO−
3 + H+(H2O)n → Neutrals 𝛼i = 1.0 × 10−7 cm3 s−1

aThe parameter N stands for the total gas density (in cm−3) at
different altitudes.

the uppermost D region ionosphere. In
all theoretical and numerical simulation
studies of lightning EMP-ionosphere
interaction [see Marshall, 2012, and refer-
ences therein], EMP effects produce exci-
tation of optical emissions (elves) and
electron density elevations at altitudes
above ∼75 to 80 km. In the following, the
altitudes under consideration are con-
fined in with upper D region ionosphere,
in the range from 76 to 92 km, which of
course does not necessarily imply that
VLF transmissions reach all the way up to
this upper altitude. Given that at regular

nighttime conditions VLF signals reflect near 85 ± 2 km, the reflection heights during LOREs are expected
to become lower because of the anticipated elevations in electron density also below the regular reflection
heights. Therefore, the relaxation of the lightning-induced electron density elevations suggests that VLF sig-
nals reflect over a range of heights during LORE lifetimes. This is expected because, as it will be shown later,
the effective reflection height is likely to increase with time during the event, because the ionization relaxes
to ambient levels faster at lower rather than at higher altitudes.

3.1. Kinetic Modeling of LORE Relaxation Times
The full nonequilibrium kinetic model of air plasmas proposed by Gordillo-Vázquez [2008, 2010],
Gordillo-Vázquez and Luque [2010], and Gordillo-Vázquez et al. [2011, 2012] is used here for the study of the
air plasma reaction kinetics during TLE occurrences in the Earth mesosphere and D region ionosphere. The
basic model equations entering the nonequilibrium air plasma chemistry are a set of time-dependent con-
tinuity equations for each of the species involved, that is, ground neutrals, electronically, and vibrationally
excited neutrals, as well as positive and negative atomic and molecular ions, and electrons. The model also
treats the D region kinetics of positive cluster (hydrated) ions of the series H+(H2O)n lumped together in a
Mitra-Rowe (M-R) scheme, originally proposed for solar flare studies [Mitra and Rowe, 1972]. The implemented
M-R scheme, which is shown in Table 1, considers (a) the conversion of positive ions (NO+, O+

2 , …) into pos-
itive cluster ions H+(H2O)n with an effective rate of conversion B = 10−31N2 s−1 where N stands for the total
gas density at different altitudes and the fitted values of B follow very closely the observational data (ratio Σ
H+(H2O)n / NO+) between 70 km and 88 km, (b) the recombination of electrons with H+(H2O)n with an effec-
tive rate coefficient 𝛼c

d = 10−5 cm3 s−1 [Mitra, 1975], and (c) the recombination of negative ions (O−
2 , CO−

3 , …)

Table 2. Reduced Humid Chemistry Considered in the Full Kinetic Modela

Reaction Rate Coefficient Reference

O(1D) + H2O → OH + OH 2.2 × 10−10
(

T
300

)0.5
cm3 s−1 Brasseur and Solomon [1986]

H + O2 + N2 → HO2 + N2 5.5 ×10−32 ×
(

300
T

)1.6
cm3 s−1 Brasseur and Solomon [1986]

OH + O → H + O2 2.2 × 10−11 × exp(117/T) cm3 s−1 Brasseur and Solomon [1986]

OH + CO → H + CO2 1.5 × 10−13 cm3 s−1 Brasseur and Solomon [1986]

OH + O3 → HO2 + O2 1.6 × 10−12× exp(−940/T) cm3 s−1 Brasseur and Solomon [1986]

H + O3 → OH∗ + O2 1.4 × 10−10 × exp(−470/T) cm3 s−1 Brasseur and Solomon [1986]

HO2 + O3 → OH + O2 + O2 1.4 × 10−14 × exp(−580/T) cm3 s−1 Brasseur and Solomon [1986]

HO2 + O → OH + O2 3.0 × 10−11× exp(200/T) cm3 s−1 Brasseur and Solomon [1986]

HO2 + OH → H2O + O2 1.7 × 10−11× exp(416/T) cm3 s−1 Brasseur and Solomon [1986]

HO2 + NO → NO2 + OH 3.7 × 10−12× exp(240/T) cm3 s−1 Brasseur and Solomon [1986]

HO2 + HO2 → H2O2 + O2 2.3 × 10−13 × exp(590/T) cm3 s−1 Brasseur and Solomon [1986]

H2O2 + OH → HO2 +H2O 3.1 × 10−12× exp(−187/T) cm3 s−1 Brasseur and Solomon [1986]

H2O2 + O → OH + HO2 1.4 × 10−12× exp(−2000/T) cm3 s−1 Brasseur and Solomon [1986]
aThe gas temperature (T) is in kelvin.
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Table 3. Reactions Added to the Kinetic Scheme in Gordillo-Vázquez [2008, 2010]a

Reaction Rate Coefficient Reference

N2 + h𝜈 → N+
2 + e TCR / 2N s−1 Thomas [1974]

O2 + h𝜈 → N+
2 + e TCR / 2N s−1 Thomas [1974]

N2 + N2O+
2 → O+

2 + N2 + N2 1.1 × 10−6
(

300
T

)5.3
exp(−2357/T) cm3 s−1 Kossyi et al. [1992]

O2 + N2O+
2 → O+

4 + N2 10−9 cm3 s−1 Kossyi et al. [1992]

O−
2 + O2 + N2 / O2 → O−

4 + N2 / O2 3.5 × 10−31
(

300
T

)
cm6 s−1 Thomas [1974]

O−
2 + NO3 → O2 + NO−

3 5 × 10−10 cm3 s−1 Kossyi et al. [1992]

O−
2 + N2O → N2 + O−

3 5 × 10−13 cm3 s−1 Kossyi et al. [1992]

O− + O2 + N2 → N2 + O−
3 1.1 × 10−30

(
300

T

)
cm6 s−1 Capitelli et al. [2000]

O− + NO + N2∕O2 → NO−
2 + N2 / O2 10−29 cm6 s−1 Capitelli et al. [2000]

O− + CO2 + N2∕O2 → CO−
3 + N2 / O2 3.1 ×10−28

(
T

300

)0.5
cm6 s−1 Brasseur and Solomon [1986]

e + N2O+
2 → O2 + N2 1.3 ×10−6

(
300
Te

)0.5
cm3 s−1 Kossyi et al. [1992]

e + O2 + O2 → O−
2 + O2 1.4 × 10−29 ( 300

Te
) exp

(
−600

T

)
exp

(
700(Te−T)

TeT

)
cm6 s−1 Kossyi et al. [1992]

e + O2 + N2 → O−
2 + N2 1.07 × 10−31

(
300
Te

)2
exp

(
−70

T

)
exp

(
1500(Te−T)

TeT

)
cm6 s−1 Kossyi et al. [1992]

aWe have considered the ion pair production rate TCR cm−3 s−1(due to different ionizing mechanisms at the different altitudes considered) reported by Thomas
[1974] for the quite nighttime D region. N stands for the total gas density at the different altitudes. The gas and electron temperatures, T and Te , are in kelvin.

and H+(H2O)n with an effective rate coefficient 𝛼i = 10−7 cm3 s−1 [Mitra, 1975]. All these continuity equations
are coupled to the time-dependent spatially uniform Boltzmann equation of the energy distribution function
of free electrons in the mesospheric plasma.

The model considers more than 100 chemical species and about 1000 reactions including electron pro-
duction mechanisms such as electron impact ionization and associative electron detachment [Luque and
Gordillo-Vázquez, 2011], and electron loss processes due to attachment and dissociative recombination
[Gordillo-Vázquez, 2008, 2010; Parra-Rojas et al., 2013, 2015]. The whole set of humid chemistry reactions intro-
duced first by Gordillo-Vázquez [2008] is replaced here by a reduced set of 13 kinetic mechanisms listed in
Table 2, which involve atomic hydrogen (H), hydroxyl (OH) and H2O, HO2, and H2O2. Moreover, Table 3 shows
the set of new processes that have been added to the air kinetic model scheme of Gordillo-Vázquez [2008].

The simulation process consisted of two steps. The first step considered the relaxation of the air kinetic scheme
[Sentman et al., 2008; Parra-Rojas et al., 2013] in the absence of lightning activity. In order to exclude the effects
of lightning and/or TLEs in the mesospheric chemical environment, the chemical equilibrium was examined
for the dominant ion pair production rates due to different ambient ionizing mechanisms at various altitudes,
adopted directly in this model from Thomas [1974] for the quiet nighttime D region ionosphere. In this scheme,
the values of the ambient species concentrations at each altitude, including those of electrons and ions, were
determined from their consistency with the ion pair production rate obtained when the model equations
are left to evolve for a relatively long time (t ∼ 104 s) in the presence of a fair weather reduced electric field
E/N = 0.005 Td, which is typical at mesospheric altitudes [Rakov and Uman, 2003]. The initial ambient concen-
trations of the neutral species for dry air and for H2O, H, OH, … at each altitude were taken from the Whole
Atmosphere Community Climate Model (WACCM) [Marsh et al., 2013] assuming midlatitude nighttime con-
ditions at the same gas and electron temperature (∼216 K). The densities of all species, including those of
the neutrals and positive cluster ions H+(H2O)n, obtained soon after the relaxation of the present air kinetic
scheme were used as the new ambient concentrations to initialize the subsequent LORE kinetic simulations,
in order to be consistent with the ion pair production rate that is adopted for the nighttime D region.

Figure 4 compares the original WACCM midlatitude nighttime ambient concentrations (solid lines) for atomic
oxygen (O), ozone (O3), and carbon monoxide (CO), with the concentrations of the same species resulting from
the relaxation of the nighttime air kinetic scheme (dashed lines) between 76 and 92 km. Also shown are avail-
able measurements of nighttime ozone concentrations at midlatittude (crosses, CRISTA 1 ozone mean profiles
[Kaufmann et al., 2003]) and at equatorial latitudes (solid circles, SABER ozone profiles [Smith et al., 2008]).
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Figure 4. Ambient number density profiles of atomic oxygen (O), ozone (O3), and carbon monoxide (CO) in the altitude
range from 76 to 92 km. Solid lines are values produced by the WACCM model, while the dashed line curves correspond
to the relaxed number densities obtained with the air kinetic model used in this investigation for upper atmospheric
electrical discharges. Also shown are available measurements of nighttime ozone concentrations at midlatitude
(crosses, CRISTA 1 ozone mean profiles [Kaufmann et al., 2003]) and the equatorial region (solid circles, SABER ozone
profiles [Smith et al., 2008]). The green shaded region indicates the variability in the measurements of mesospheric
nighttime ozone densities between middle and equatorial latitudes. The solid squares represent recent nighttime
global atomic oxygen concentrations, derived from Sounding of the Atmosphere Using Broadband Emission
Radiometry (SABER) observations in the upper mesosphere (79–100 km) [Smith et al., 2010] and averaged over all
latitudes. The blue shaded region indicates the variability of nighttime atomic oxygen density profiles which are
based on past measurements [Russell et al., 2005].

The green shaded region indicates the variability in the measurements of mesospheric nighttime ozone den-
sities between middle and equatorial latitudes. In addition and for comparison between the kinetic model
and WACCM predictions, Figure 4 includes recent nighttime global (averaged over all latitudes) atomic oxy-
gen concentrations derived from SABER observations (solid squares) for the upper mesosphere (79–100 km)
[Smith et al., 2010]. Note that the atomic oxygen densities retrieved from nighttime SABER data are higher
by a factor of 2 to 5 (blue shaded area) as compared to O concentrations determined from other measure-
ments [Russell et al., 2005]. The nighttime atomic oxygen measurements were derived from the Meinel band
airglow emissions (detectable at a minimum altitude near 79–80 km) from vibrationally excited hydroxyl (OH)
[Smith et al., 2010] that limits the lowest altitude for which O densities can be estimated observationally. As
seen in Figure 4, the nighttime ambient concentrations of O, O3, and CO obtained with the present model
are in reasonable agreement with the available nighttime measurements and the predictions of widely used
reference models.

Once the system of equations of the time-dependent kinetic model is relaxed, that is, once the ambient con-
centrations of all the species become consistent with the ion pair production rate under consideration, further
computations were undertaken to examine how an enhanced electron density (due to relatively weak per-
turbation, and due to strongly perturbed elve-related conditions) can affect the relaxation times between
76 and 92 km. In particular, an effort was made to identify the most important kinetic mechanisms acting
behind the computed LORE relaxation times and how these compare with measured estimates. In this analysis,
two different definitions of the LORE relaxation time (te

relax and t2e
relax) were adopted that depend on a chosen

decay factor, that is, (e or 2e). Therefore, te
relax and t2e

relax are the times needed for the perturbed electron den-
sity to decay by a factor e or 2e, that is, reaching the values ne(te

relax) = n0
e + Δne∕e or ne(t2e

relax) = n0
e + Δne∕2e,

where Δne is the perturbation of the ambient electron density (n0
e ).

In comparing with other models, Rodger et al. [1998] introduced the effect of an impulsive electron produc-
tion mechanism under the action of background cosmic ray ionization, without further considerations on the
importance of naturally occurring ambient (chemical) sources of electrons, such as associative detachment.
On the other hand, the paramount importance of associative detachment reactions in the ion chemistry of
the upper D region is generally accepted since the early 1960s [Dalgarno, 1961; Whitten and Poppoff , 1962].
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Figure 5. Ambient electron densities (solid blue line), positive ions NO+ (dash-dotted line), positive hydrated cluster
ions H+(H2O)n (solid red line), and negative ions (O− and O−

2 ) (solid green and black lines), according to the present
kinetic model for electric discharges in air. Also plotted are available mass spectrometer measurements (squares) of
nighttime D region O−

2 concentration reported by Arnold and Krankowsky [1971] and the variability (shaded blue region)
of a set of nighttime D region electron density profiles inferred from VLF recordings and nighttime rocket experiments,
presented by Cheng et al. [2006].

Glukhov et al. [1992] published a model using a simplified kinetic scheme including four species (electron,
positive and negative ions, and positive cluster ions), accounting for electron detachment and the M-R scheme
for positive cluster kinetics. The model by Glukhov et al. [1992] and later ones by Pasko and Inan [1994],
Lehtinen and Inan [2007], and Haldoupis et al. [2009], which have been based on the work by Glukhov et al.
[1992], were successfully applied to study the relaxation (over 10–100 s) of transient lower ionospheric
(D region) disturbances caused by lightning-induced electron precipitation and directly by lightning. Thus, it
is clear that both electron detachment and positive cluster kinetics should not be disregarded when studying
the LORE recoveries taking place at longer time scales.

Associative detachment reactions, with rates independent of electric field, act independently of an impulsive
ionization source to release free electrons by means of detachment of some negative ions through collisions
with abundant ambient neutral species. In this regard, preliminary laboratory measurements by Fehsenfeld
et al. [1967] already revealed by the late 1960s that associative detachment reactions of atmospheric interest
had unexpectedly high reaction rate coefficients (>10−10 cm3 s−1). In particular, the reactions

O− + O → O2 + e (1)

and
O−

2 + O → O3 + e (2)

are of special importance in maintaining high ambient electron densities in regions of the atmosphere where
the concentration of atomic oxygen is quite significant. The latter exists primarily in the upper mesosphere,
above about 75 km. Note that the nighttime density of atomic oxygen naturally increases by about 6 orders
of magnitude, from ≃60 cm−3 to ≃2.5 × 107 cm−3, between 65 and 75 km. As shown by Smith et al. [2010],
the nighttime atomic oxygen keeps growing above 75 km to take values up to or even higher of 1011 cm−3

at 92 km (see Figure 4). The enormous increase experienced by the ambient nighttime atomic oxygen is
anticipated to have profound effects on associative detachment reactions, in which it participates.

Figure 5 shows the ambient nighttime density profiles for electrons (n0
e ) (solid blue line), positive ions NO+

(dash-dotted line), positive cluster ions H+(H2O)n (solid red line), and the negative ions O− (solid green line)
and O−

2 (solid black line) resulting from the present model relaxation. Note that in Figure 5, the ambient elec-
tron density profile from 80 km to 90 km is quite flat (it hardly changes by a factor of 2). This is due to the
fact that in the absence of solar radiation (nighttime conditions), the ambient ionization in the 80–90 km
range is primarily due to the precipitation of high-energy particles which produce ionization that changes
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Figure 6. Computed ambient concentrations of electrons and positive ions O+
2 (solid lines) and those of the negative

ions NO−
2 , NO−

3 , and CO−
2 (solid lines). Available mass spectrometer measurements of nighttime D region concentrations

of NO−
3 (solid squares-dashed line) and CO−

3 (solid circles-dashed line) reported by Arnold and Krankowsky [1971] are
also shown.

only slightly, about a factor of 2, between 80 km and 90 km [Thomas, 1974]. The calculated trend of the night-
time NO+ and H+(H2O)n densities shows that positive cluster ions disappear above about 88 km, in agreement
with Mitra [1975]. Also shown in Figure 5 are the mass spectrometer measurements (squares) of nighttime D
region O−

2 concentration reported by Arnold and Krankowsky [1971] and the range of variability (shaded blue
region) of a set of nighttime D region electron density profiles inferred from VLF recordings and nighttime
rocket measurements, published by Cheng et al. [2006].

Figure 6 shows the calculated ambient concentrations of electrons and positive ions O+
2 (solid lines), along

with those of the negative ions NO−
2 , NO−

3 , and CO−
2 (solid lines). Shown also in Figure 6 are the available

mass spectrometer measurements of nighttime D region concentrations of NO−
3 (squares) and CO−

3 (circles)
reported by Arnold and Krankowsky [1971]. Note that the measured negative ion densities shown in Figures 5
and 6 have significant uncertainties in both altitude and concentration of ∼3 km and a factor of ∼10,
respectively [Arnold and Krankowsky, 1971]. In spite of these large uncertainties, the trends in the densities
calculated by the kinetic model, for O−

2 (Figure 5) and NO−
3 and CO−

3 (Figure 6), are in reasonable agreement
with the observations reported by Arnold and Krankowsky [1971].
3.1.1. Relaxation of an Electron Density Enhancement
First, the air kinetic model is applied to an increase (Δne = 2n0

e ) of the ambient electron density (n0
e ), for the

purpose of computing the kinetic relaxation for a given, relatively weak, electron density enhancement
(ne(t = 0) = n0

e + Δne), without making any assumption about the cause behind this enhancement.

A detailed analysis of the main kinetic processes underlying the relaxation of the electron density perturba-
tion (enhancement) shows that the three-body attachment of electrons, e + O2 + N2∕O2 → O−

2 + N2/O2,
dominates the loss of electrons at the lower altitudes, near 76 km. As the altitude increases, however, the rel-
ative importance of two-body attachment, e + O3 → O− + O2, and especially that of associative detachment
of O− becomes more decisive in affecting the altitude-dependent trend of the enhanced electron density
relaxation shown in Figure 7.

Figure 7 shows the time-dependent variation between 76 and 92 km of an enhanced ambient electron density
(ne(t = 0) = 3n0

e ) in the absence of an impulsive ionization source. As seen, the relaxation time increases with
altitude from 76 to 79 km, decreasing slightly between 79 km and ∼81 km, remaining almost constant from
81 km to 88 km, to finally increase at higher altitudes between 88 km and 92 km. The first slight decrease in
electron density after about 40 s (76 km) and 100 s (78 km and 79 km) is due to two- and three-body electron
attachments producing O− but, more importantly, O−

2 (see Figure 5). This behavior is understood by consider-
ing the characteristic times (see Figure 8) and reaction rates (see Figure 9) of the key reactions, listed in Table 4,
which produce and remove electrons.
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Figure 7. Time-dependent variation of the perturbed (ne(t = 0) = 3n0
e ) electron density between 76 and 92 km, in the

absence of an impulsive ionization source.

Figure 8 shows the characteristic times (𝜏i), at t ≃ 0 s for the fundamental kinetic processes controlling the
production and loss of electrons during nighttime conditions in the D region. Each representative 𝜏i is calcu-
lated by multiplying the corresponding reaction rate coefficients ki with the densities of the neutral reactants,
e.g., 𝜏−1

attach =(ka1 + ka2)[O3] + [O2](ka3[N2] + ka4[O2]) (see Table 4 for the various attachment rate coefficients).
During the electron density relaxation of 5000 s, the concentrations of the neutral reactants change only
slightly, by less than a factor of 2 (O3 and O at all altitudes).

Since net charge neutrality holds, Figures 5 and 6 show that the reaction [e] + [CO−
3 ] + [NO−

3 ] ≃ [H+(H2O)n]
dominates below ≃79 km, whereas the [e] ≃ [H+(H2O)n] + [NO+] + [O+

2 ] prevails fully above ≃79 km.
Therefore, for both the electron-positive cluster and electron-positive ion dissociative recombination
processes, an instant enhancement (Δne) in the background electron density is matched instantly in the
model by the same amount in the ambient concentrations of H+(H2O)n at altitudes below ≃79 km. For alti-
tudes above 79 km, the model background densities of both the positive cluster ions (H+(H2O)n) and the
dominant positive ions (NO+ and O+

2 ) match an electron density enhancement Δne by the weighted amounts

Figure 8. Detachment, attachment, and recombination characteristic times at t ≃ 0 s. Three different detachment
characteristic times are presented, corresponding to the detachment of O− by O, CO, O2, and O3 (four channels), the
detachment of O−

2 by O (one channel), and the detachment of O−
3 by O and O3 (two channels). The loss of electrons is

mainly due to 3 and 2 body electron attachment (four channels, dashed line) and dissociative electron recombination
with H+(H2O)n (solid red line) and NO+ (two channels, dash-dotted line) producing N(2D) + O and N + O.
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Figure 9. Different time snapshots (at 40, 100, and 1000 s) of the reactions rates of detachment (six channels, red lines),
attachment (four channels, green lines), and electron recombination paths with H+(H2O)n (one channel, blue lines) and
NO+ (2 channels, black lines) listed in Table 4. These are calculated during the time-dependent variation of the
perturbed (ne(t = 0) = 3n0

e ) electron density between 76 and 92 km in the absence of an impulsive ionization source.

of 𝛾1Δne, 𝛾2Δne, and 𝛾3Δne, respectively, with 𝛾1 + 𝛾2 + 𝛾3 ≃ 1 and 𝛾1,2,3 ≥ 0. Apparently, at t ≃ 0 s slightly
before the perturbation, [H+(H2O)n]before = 𝛾1n0

e , [NO+]before = 𝛾2n0
e , and [O+

2 ]
before = 𝛾3n0

e , whereas at t ≃ 0 s
slightly after the perturbation and above 79 km, [H+(H2O)n]after = 𝛾1 n0

e + 𝛾1 Δne, [NO+]after = 𝛾2 n0
e + 𝛾2 Δne,

and [O+
2 ]

after = 𝛾3 n0
e + 𝛾3 Δne. Figure 8 also displays approximate characteristic times at t ≃ 0 s for the

nonlinear e-NO+ and e-H+(H2O)n recombination reactions given by 𝜏−1
rec-NO+ = (krec1 + krec2)[NO+]after and

𝜏−1
rec-H+(H2O)n = 𝛼c

d [H+(H2O]after.

Three different detachment relaxation times were considered in the analysis, corresponding to four O−

detachment kinetic channels (see Table 4) of O− by O, CO, O2, and O3, one detachment process of O−
2 by O,

and two detachment kinetic channels of O−
3 by O and O3, respectively. As mentioned above, the loss of

electrons is mainly due to three- and two-body electron attachments (four kinetic channels, see Table 4)

Table 4. Most Important Types of Detachment, Attachment, and Recombination Reactions Controlling the
Concentration of Electronsa

Reaction Rate Coefficient Type

O− + CO → CO2 + e kd1 = 6.6 × 10−10 cm3 s−1 Detachment

O− + O2 → O3 + e kd2 = 5.9 × 10−15 cm3 s−1 Detachment

O− + O3 → 2O2 + e kd3 = 5.3 × 10−10 cm3 s−1 Detachment

O− + O → O2 + e kd4 = 5.0 × 10−10 cm3 s−1 Detachment

O−
2 + O → O3 + e kd5 = 1.5 × 10−10 cm3 s−1 Detachment

O−
3 + O3 → 3 O2 + e kd6 = 1.0 × 10−10 cm3 s−1 Detachment

O−
3 + O → 2 O2 + e kd7 = 1.4 × 10−10 cm3 s−1 Detachment

e + O3 → O− + O2 ka1 ≃ 7.4 × 10−12 cm3 s−1 Attachment

e + O3 → O−
2 + O ka2 ≃ 1.24 × 10−12 cm3 s−1 Attachment

e + O2 + O2 → O−
2 + O2 ka3 = 1.4 × 10−29

(
300
Te

)
exp

(
−600

T

)
exp

(
700(Te−T)

TeT

)
cm6 s−1 Attachment

e + O2 + N2 → O−
2 + N2 ka4 = 1.07 × 10−31

(
300
Te

)2
exp

(
−70

T

)
exp

(
1500(Te−T)

TeT

)
cm6 s−1 Attachment

e + NO+ → N(2D) + O krec1 = 3 × 10−7 × 300
Te

cm3 s−1 Recombination

e + NO+ → N + O krec2 = 4 × 10 −7 ×
(

300
Te

)1.5
cm3 s−1 Recombination

e + H+(H2O)n → neutrals 𝛼c
d

= 1.0 × 10−5 cm3 s−1 Recombination

aThe gas (T) and electron (Te) temperatures are both in kelvin.

GORDILLO-VAZQUEZ ET AL. KINETIC MODEL OF LORE RELAXATION TIMES 3535



Journal of Geophysical Research: Space Physics 10.1002/2015JA021408

electron recombination with NO+ (two kinetic channels, see Table 4) producing N(2D) + O and N + O,
and electron recombination with H+(H2O)n. As shown in Figure 8, the characteristic time of the two-channel
electron-ion recombination reactions (dash-dotted red line) is always higher than the characteristic times of
the electron-positive charged cluster recombination (solid red line), the four-channel electron attachment
reactions (dashed line), and that of the different detachment reactions (solid blue, green, and black lines).
Between 76 and 78 km, the characteristic time of electron attachment is shorter (40–100 s) than that of O−

2
associative detachment (100–300 s) and, as shown in Figure 9, the electron loss is mainly controlled by the
three-body attachment producing O−

2 .

At higher altitudes (79 to 92 km) detachment is much faster (see Figure 8) than attachment. However, their
reactions rates become about equal at 79 km (see the snapshots shown in Figure 9); thus, electron recombi-
nation with H+(H2O)n and NO+ becomes the only kinetic reaction mechanisms driving the loss of electrons
between 79 and 92 km. The recombination of electrons and positive charged cluster ions dominate up to
≃88 km when electron recombination with NO+ begins to be relatively fast. Therefore, according to the
present kinetic analysis, there is a lower region (76 to 79 km) where LORE relaxation times are controlled by
a three-body attachment process producing O−

2 . Next, there is a higher region above 79 km where the rela-
tive efficiencies of attachment and associative detachment are the same, and thus, LORE relaxation times are
driven by the time scale of electron-H+(H2O)n recombination. Finally, above 88 km, and because of the grow-
ing density of NO+ (see Figures 5 and 9), the recombination time of electrons with NO+ is sufficiently fast so
that electrons take the longest time to relax to ambient values by means of recombining with NO+. This sug-
gests the possibility that long-lasting (>10 min and up to 30 min) LORE events can take place between 79 km
and 88 km, although it is unlikely that VLF could penetrate beyond 85 km. Note that according to observations
(see Figure 3), most LORE recovery times are shorter than 15 min. Between 79 km and 88 km, the recombina-
tion reaction rate of electron-positive clusters remains almost constant in altitude, whereas the electron-NO+

recombination increases (see Figure 9), leading to stable, or slightly longer, LORE relaxation times.
3.1.2. A Perturbation Caused by a Large EMP Field
Here the same kinetic model is used to investigate the dynamics of a LORE-related electron density pertur-
bation, which is produced by lightning EMP electron impact in the upper D region. To pursue this case, the
finite difference time domain (FDTD) code GREMPY, developed by Luque et al. [2014], was applied to model
the effects on the upper D region of an intense lightning return stroke with a peak current of 400 kA and char-
acteristic rise and decay times 𝜏r = 20 μs and 𝜏f = 50 μs, respectively. Within the lifetime of the EMP field,
the only effects on the plasma medium are governed by the processes of impact ionization and electron dis-
sociative attachment. The dynamics of the reduced electric field at D region heights, which results from the
lightning EMP under consideration, are illustrated in Figure 10 as a function of time and altitude. By inserting
the D region reduced fields into the full chemical code, the dynamics of the elevated electron density were
computed and investigated during both the impulsive action of the EMP field and the much slower electron
relaxation phase. The main findings are presented below in brief.

The perturbed electron densities in the altitude range between 76 and 92 km are plotted as a function of
time for several altitudes in Figure 11. This range of altitudes was chosen in order to include all uppermost D
region heights that could be reached by VLF waves propagating in the Earth-ionosphere waveguide during
nighttime. As seen, there is first a sharp increase of the electron density between 0.40 ms and 0.45 ms in
response to the rise and the maximum of the reduced EMP electric field, which was depicted in Figure 10.
Right after the first electron density enhancement, there is a second weak augmentation of the electron den-
sity around 0.50 ms caused by the impact of a second peak in the EMP electric field occurring between 0.5 ms
(at 76 km) and 0.53 ms (at 92 km), as seen in Figure 10. Once the EMP field is gone, after about 2.5 ms, the
electron density relaxation phase begins. What is seen first during this regime is a hump in electron density
which starts near 10 ms. This is attributed to the action of associative detachment that releases electrons from
negatively charged ions (mainly O− and O−

2 ), whose concentrations have been previously enhanced by the
action of the lightning EMP. This secondary increase that last for about 10 s is followed by a relaxation in elec-
tron density which is strongly dependent on altitude. As seen in Figure 11, the longest relaxation time occurs
at 88 km and 92 km, which is attributed to the combined action of electron recombination with H+(H2O)n

(at 88 km and below) and NO+ (at 92 km) ions.

The altitude dependence of electron density relaxation times, insinuated in Figures 7 and 11, is summarized in
a conceivable way in Figure 12, for the altitude range between 76 and 92 km, for both scenario cases consid-
ered in the present study. Shown there with green solid (te

relax) and dashed (t2e
relax) lines are the electron density
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Figure 10. Upper altitude reduced electric fields associated to a lightning EMP causing an ELVE and ionization in the upper mesosphere. The calculations were
made with a finite differences time domain (FDTD) code. The EMP shown is associated to an intense lightning return stroke with a peak current of 400 kA.
(left) Four snapshots of the reduced electric field distribution as a function of altitude and radial distance r, from the causative CG lightning. (right) The time
evolution of the reduced electric fields along an altitude range from 60 to 100 km, taken at 100 km away from the parent lightning position, as shown by the
blue line in Figure 10 (left).

relaxation times simulated for a weaker perturbation in the absence of an electric field, whereas the blue solid
(te

relax) and dashed (t2e
relax) lines represent the relaxation times associated with the case of an EMP-driven ioniza-

tion source that is capable of causing a LORE due to much larger elevation in electron density. As expected,
the LORE relaxation times become longer when larger decay factors, 2e, rather than smaller, e, are considered.
It is worth mentioning that the relaxation times for heights below 78 km become short, that is, less than≃80 s.
Such times are comparable with the recoveries of typical early VLF events, which are known to be often asso-
ciated with sprites that appear to be located mostly below ∼80 km [e.g., see Inan et al., 2010]. One, however,
should be cautious in generalizing this implication, because sprites, as well as sprite halos, are also known to
extend at times above 80 km.

Finally, it is also noticeable in Figure 12 that below ∼79 km, the electron relaxation times are almost the same
for both the EMP and non-EMP cases, because the driving electron loss mechanism, that is, electron attach-
ment has a linear dependence on electron density, ne. On the other hand, for heights greater than ∼79 km,
electron loss is dominated by the mechanisms of dissociative recombination of electrons with H+(H2O)n

(mostly between 79 km and 88 km) and NO+ (mostly above 88 km), when it prevails a nonlinear (quadratic)
dependence on electron density. In addition, one should note that below ≃85 km, the modeled electron

Figure 11. Time-dependent evolution of electron density enhancements at altitudes between 76 and 92 km caused by
an impulsive source of ionization driven by the lightning-induced EMP shown in Figure 10.

GORDILLO-VAZQUEZ ET AL. KINETIC MODEL OF LORE RELAXATION TIMES 3537



Journal of Geophysical Research: Space Physics 10.1002/2015JA021408

Figure 12. Computed electron density relaxation times te
relax

(solid lines) and t2e
relax

(dashed lines) between 76 and 92 km
for the cases of a perturbed initial electron density (ne(t = 0) = 3n0

e ) that is unrelated to an impulsive ionization source
(solid green line) and for the case of an impulsive ionization source (solid blue line) associated with a lightning-induced
electromagnetic pulse (EMP) which impacts in the upper D region causing elve emissions and LORE-related elevations in
electron density. Two different definitions of the LORE relaxation time (te

relax
and t2e

relax
) are shown to depend on the

chosen decay factor (e or 2e). Longer LORE relaxation times are obtained when a larger decay factor is used, that is, 2e
rather than e.

density enhancement is smaller for the non-EMP case than it is in the EMP case. All this causes the relaxation
times below ≃85 km to become shorter in the EMP case, as compared to the non-EMP case, simply because
recombination depends on the square of electron density. As for altitudes above ≃85 km, when ne reaches its
maximum value in the non-EMP case, the concentration of H+(H2O)n is smaller in the EMP case, than in the
non-EMP one, resulting in longer relaxation times. It is worth mentioning that the difference in the non-EMP
and EMP positively charged cluster concentration is due to (1) the difference in ion pair production assumed
in the non-EMP (see section 3.1.1) and (2) calculated in the EMP case.

3.2. Time Scale Analysis
In order to understand better the mechanisms behind the LORE long recoveries, it is useful to strip the
full kinetic model to its essential reactions. The analyses in the previous sections show that the evolution
of the electron density is determined by attachment, detachment, and recombination processes. The main
attachment and detachment reactions are

e + O3

ka1−−→ O− + O2, (3)

e + O2 + O2

ka3−−→ O−
2 + O2, (4)

e + O2 + N2

ka4−−→ O−
2 + N2, (5)

O− + O2

kd2−−→ e + O3, (6)

O− + O
kd4−−→ e + O2, (7)

O−
2 + O

kd5−−→ e + O3, (8)

O−
2 + O

kex−−→ O− + O2. (9)

Other negative ion conversion reactions (apart from reaction (9)) converting O−
2 to O−

3 and O−
4 play a minor

role. The reaction converting O−
2 to O−

3 has a rate coefficient similar to that of (9), but the ambient concen-
tration of O is between 1 and 3 orders of magnitude higher than the ambient density of O3 in the altitude
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range considered (see Figure 4). Moreover, the conversion of O−
2 to O−

4 mainly occurs through three-body
processes, which are not very efficient at mesospheric altitudes. Thus, although the full kinetic model includes
many different negative ion conversion reactions, the simplified kinetic scheme in this section only considers
the dominant negative ion conversion producing O− from O−

2 .

Electrons recombine with positive molecular and cluster ions. The dominant molecular positive ion is NO+,
which recombines with electrons in the reaction

e + NO+
𝛼m

d−−→ N + O. (10)

The recombination of electrons with clusters H+(H2O)n, which is significantly faster than molecular recombi-
nation, proceeds with the reaction

e + H+(H2O)n

𝛼c
d−→ Neutrals. (11)

As detailed above, the cluster ions are considered, in line with [Mitra and Rowe, 1972], to be created by the
conversion of molecular positive ions at a rate B = N210−31 cm6 s−1, where N is the total density of neutrals.

Finally, this simplified model is completed by a source of ionization that creates pairs of oppositely charged
particles at a given rate g. Most of the rate coefficients of the reactions (3)–(9) and (10) and (11) are listed in
Table 4; in addition, kex = 3.310 × 10−10 cm−3 s−1 and 𝛼m

d = krec1 + krec2.

This simplified chemical reaction system can be divided into two subsystems. The first one, which is called
attachment-detachment subsystem, comprises reactions (3)–(9) and accounts for the transfer of negative
charges. The second subsystem, which is named here recombination subsystem, involves the recombination
reactions (10) and (11) as well as the conversion of positive ions and the creation of new charge pairs. The
typical time scales of the two subsystems can be determined by treating them separately. This is justifiable
because of the wide separation that is anticipated between these two time scales.
3.2.1. Attachment-Detachment Balance
Neglecting variations in the densities of neutral species in (3)–(9), the evolution of negatively charged species
is determined by the following set of equations:

d
dt

⎛⎜⎜⎝
ne

n1

n2

⎞⎟⎟⎠ = A
⎛⎜⎜⎝

ne

n1

n2

⎞⎟⎟⎠ +
⎛⎜⎜⎝

g − Srec

0
0

⎞⎟⎟⎠ , (12)

where

A =
⎛⎜⎜⎝
−𝜈a3 − 𝜈a4 − 𝜈a1 𝜈d2 + 𝜈d2 𝜈d5

𝜈a1 −𝜈d2 − 𝜈d4 𝜈ex

𝜈a3 + 𝜈a4 0 −𝜈d5 − 𝜈ex

⎞⎟⎟⎠ . (13)

In the above equations, ne is the electron density, n1 and n2 are the densities of O− and O−
2 , respectively,

while Srec accounts for the removal of electrons through recombination processes. Each 𝜈i is obtained from
ki in (3)–(9) by multiplying with the immutable densities of the neutral reactants, e.g., 𝜈a3 = ka3[O2]2, so that
through this dependence all 𝜈i depend on altitude.

Note that the matrix A is singular, and therefore, one of its eigenvalues is zero. This is a consequence of the
conservation of charge by the system of reactions (3)–(9):

d
dt

(ne + n1 + n2) = 0. (14)

The eigenvectors (ne, n1, n2)with eigenvalue zero cover a continuous family of quasi-equilibrium states which
is written as (ne, n1, n2) = m(re, r1, r2), where re + r1 + r2 = 1 and m = (ne +n1 +n2). The values of the ri , plotted
in Figure 13a, describe the relative equilibrium densities of each of the above three species. Figure 13b shows
the relaxation times of the linear system at each altitude, defined as the inverse of the two nonzero eigenvalues
of A. These values define the time scale of the attachment-detachment subsystem, which lies between several
seconds and some minutes.
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Figure 13. (a) Quasi-equilibrium relative concentrations of the three dominant negatively charged species.
(b) Relaxation times of the attachment/detachment subsystem (gray) and linear relaxation time of recombination with
NO+ . The shaded TLE structures in Figure 13 are provided to approximately indicate the altitude range of sprites and
elves. The red line in Figure 13 indicates the dominant time scale on which the electron density relaxes. As seen, there is
a sharp jump at a transition altitude near 75 km; above this altitude the attachment/detachment subsystem cancels
itself; therefore, electron loss at higher altitudes is dominated by the much slower recombination relaxation rates.

Figure 13 exhibits two differentiated regimes: (1) One below 75 km where all negative charges are converted
into O−

2 in a time scale that varies from about 1 s at 60 km to about 1 min at 75 km. In this regime an electron
density elevation is quickly depleted by being converted into an equal population of the much less mobile
O−

2 . Thus, it does possibly reconcile with the short relaxation time of early fast events. (2) Above 75 km free
electrons dominate by far the negative charges in an attachment-detachment quasi-equilibrium situation,
so that, although the relaxation times governed by attachment are short, the conductivity does not relax
within these short time scales. This is the regime of long recovery times that characterize the long-living LORE
perturbations.
3.2.2. Recombination and Decay Toward Equilibrium
The arguments in the previous sections explain the long recovery times of atmospheric conductivity above
75 km. However, to obtain a quantitative prediction, which could be compared with the observations, one
needs to investigate the characteristic times of the recombination reactions (10) and (11). Since these times are
anticipated to be considerably longer than the characteristic times of the attachment-detachment subsystem
investigated in the previous section, it is reasonable to assume from there on that the attachment-detachment
reactions are fully relaxed (i.e., A(ne, n1, n2)T = 0 in the notation of equation (12)). Under these conditions,
and because free electrons at higher altitudes dominate the negative charges, the electron density equals the
sum of the cluster and molecular ions,

ne = nm + nc, (15)

where nm = [NO+] and nc = [H+(H2O)n] are the number densities of molecular and cluster ions, respectively.

The evolution of these densities obeys the following set of differential equations:

dne

dt
= −𝛼m

d nenm − 𝛼c
dnenc + g, (16)

dnm

dt
= −𝛼m

d nenm + g − Bnm, (17)

dnc

dt
= −𝛼c

dnenc + Bnm. (18)
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By using (15), it turns out that the equilibrium electron density of this system of equations, ne0, satisfies the
condition:

𝛼c
dn2

e0

(
B + 𝛼m

d ne0

)
B + 𝛼c

dne0
= g. (19)

In this equilibrium, the ratio between the density of clusters and the total density of positively charged species,
x = nc∕ne = nc∕(nc + nm), is given by

x0 = B
B + 𝛼c

dne0
. (20)

Next, in order to obtain a relaxation time scale, one needs to rewrite equation (16) as

dne

dt
= −n2

e �̄� + g, (21)

with an effective recombination coefficient �̄� = (1 − x)𝛼m
d + x𝛼c

d . If, for simplicity, it is assumed that x takes
always its equilibrium value from (20), equation (21) can be linearized close to equilibrium (ne(t) = ne0+𝛿ne(t),
𝛿ne(t) ≪ ne0) to derive a relaxation time 𝜏 = 1∕(2

√
�̄�g). By using the production rate g from Thomas [1974],

and solving for ne0 in (19), one finds the recombination times plotted in Figure 13. As a consistency check, it is
noted that the recombination time scale is everywhere significantly longer than the attachment-detachment
time scales; thus, the adopted approach of treating these two subsystems separately is justified.

Figure 13 provides an illustrative summary of the different relaxation times observed in VLF perturbations.
Sprites, which occur in a range of altitudes from about 65 km to 85 km, create electron density enhance-
ments, which are detectable by VLF waves at lower altitudes, possibly below ≃80 km. As shown, an electron
enhancement located at these heights relaxes at time scales of many seconds to several tens of seconds, that
is, in general agreement with the observed recoveries of typical early/fast VLF events, which are known to
associate with sprite discharges.

On the other hand, LOREs associate with elves which are located above 80 km where the relaxation of electron
density enhancements is taking much longer, having characteristic times of several to many minutes.

In this frame of interpretation, the transition altitude which is identified here to be at about 75 km is some-
what smaller but, in general, compares well with the altitude obtained with the full kinetic model (79 km).
One should note, however, that the exact transition altitude depends on the presumed concentrations
of O and O3, used as model inputs. Since these concentrations are highly variable in the upper meso-
sphere, one may expect some variation in the transition altitude between the regimes of attachment- and
recombination-dominated electron density relaxation.

4. Summary and Concluding Comments

The principal findings of this paper are summarized as follows:

1. Using a full kinetic model, the upper mesosphere kinetic reaction mechanisms, including those which con-
trol the kinetics of hydrated positive cluster ions, were investigated and applied to the case of lightning
EMP electron density production in the nighttime D region ionosphere.

2. Two possible scenarios were investigated: (a) the relaxation of a small enhancement in ambient electron
density without having to invoke an impulsive ionization source for its production and (b) the relaxation of
a much stronger (factor of≃20 above ambient values) electron density enhancement caused by the impact
in the upper D region plasma of impulsive EMP fields induced by a very intense +CG lightning discharge
of ∼400 kA, that is, an EMP field which is expected to produce LOREs and elves. The full nonequilibrium
kinetic modeling of the perturbation dynamics in the 76 to 92 km altitude range showed that electron
density relaxation times are controlled by attachment at lower altitudes, from about 75 to 78 km, while
above ∼80 km attachment is fully canceled by associate detachment of negative ions (mainly O− and O−

2 )
with ground neutrals of significant mesospheric number densities, as is atomic oxygen at night. In this way
the loss of electrons at anticipated LORE (and elve) altitudes (>80 km) is overwhelmingly controlled by
dissociative recombination reactions, mostly of electrons with H+(H2O)n ions and secondarily with NO+

ions, with the latter to dominate the process above about 88 km.
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3. Important associative detachment reactions in the upper mesosphere, particularly those of high rates
(>10−10 cm3 s−1) act to produce free electrons regardless of the presence or not of an impulsive ioniza-
tion source driven by an electromagnetic pulsed electric field and/or possibly also a quasi-electrostatic (QE)
field source.

4. A separate time scale analysis of the relaxation of mesospheric D region electron density perturbations, was
introduced and applied successfully for the purpose of gaining a better physical insight and for testing the
findings of the complicated, but more accurate, full kinetic model. The agreement between the two models
is fairly good. In general terms, both models show that (a) short electron density relaxation times prevail
below about 80 km and compare well with the observed lifetimes of typical early/fast events, which are
known to associate with sprites, and (b) electron density elevations live much longer above about 80 km
where lightning-induced intense EMPs impact on the upper D region to generate long-living, large electron
density disturbances which are responsible for LORE type VLF perturbations and also for producing elves.

5. The full nonequilibrium kinetic model simulations indicate that the long electron density relaxation
times occur above about 79 km, where electron loss by attachment is canceled by the action due to
detachment; thus, lifetime of electrons is determined at these heights by recombination with H+(H2O)n

and NO+.

The results of the present study helped quantify and understand the lightning EMP effects on electron
density production and relaxation in the nighttime upper D region. In general, the simulation results
on electron density relaxation times are consistent with observations of LORE recovery times [Haldoupis
et al., 2012, 2013].

It should be stressed that although the present chemical models were applied for the case of strong
lightning-induced EMP effects on the upper D region, they also qualify for a source of ionization produc-
tion that relates with lightning-generated quasi-electrostatic (QE) fields in the upper atmosphere, that is,
fields which are known to generate momentary sprite discharges and halo displays. This implies that the
models used here may also be accountable for long-living early-type VLF events which may occur in associ-
ation with high altitude (>80 km) sprite discharges, sprite halos, and even the highest part of gigantic jets.
Although there is not yet any VLF evidence suggesting it is happening, this option needs to be kept in mind
and investigated in future studies.

Finally, it needs to be pointed out that this paper does not model VLF scattering from the long-lived, electron
density inhomogeneities that produce the LORE perturbations. This type of quantitative analysis is important
for the ultimate validation of the present chemical model. However, it constitutes a major task which was set
outside the scope of this work but needs to be undertaken in one or more future studies.
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