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Abstract

The aim of this paper is to explore the class of intermediate logics
between the truth-preserving  Lukasiewicz logic  L and its degree-preserving
companion  L≤. From a syntactical point of view, we introduce some
families of inference rules (that generalize the explosion rule) that are
admissible in  L≤ and derivable in  L and we characterize the corresponding
intermediate logics. From a semantical point of view, we first consider
the family of logics characterized by matrices defined by lattice filters in
[0, 1], but we show there are intermediate logics falling outside this family.
Finally, we study the case of finite-valued  Lukasiewicz logics where we
axiomatize a large family of intermediate logics defined by families of
matrices (A, F ) such that A is a finite MV-algebra and F is a lattice
filter.

1 Introduction

In the last two decades, formal systems of fuzzy logic, nowadays under the um-
brella of mathematical fuzzy logic (MFL) [10], have been proposed and studied
as suitable tools for reasoning with propositions containing vague predicates.
Their main feature is that they allow us to interpret formulas in a linearly or-
dered scale of truth values which makes them specially suited for representing
gradual aspects of vagueness.

Particular deductive systems in MFL have been usually studied under the
paradigm of (full) truth-preservation which, generalizing the classical notion of
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consequence, postulates that a formula follows from a set of premises if every al-
gebraic evaluation that interprets the premises as true also interprets the conclu-
sion as true. In other words, the defining requirement in the truth-preservation
paradigm for an inference to be valid is, actually, that every algebraic evaluation
that interprets the premises as completely true, will also interpret the conclusion
as completely true. An alternative approach that has recently received some at-
tention is based on the degree-preservation paradigm (see [15, 5]), in which a
conclusion follows from a set of premises if, for all evaluations, the truth degree
of the conclusion is not lower than those of the premises. It has been argued
that this approach is more coherent with the commitment of many-valued logics
to truth-degree semantics because all values play an equally important rôle in
the corresponding notion of consequence (see e.g. [14]).

Recall that a logic with a negation ¬ is explosive (w.r.t. ¬) if from any the-
ory containing a formula ϕ and its negation ¬ϕ everything follows. That is,
any ¬-contradictory theory is explosive. Paraconsistent logics, by its turn, are
logics which contain a negation ¬ which is not explosive: that is, there is at
least one theory containing some contradiction {ϕ,¬ϕ} which is not explosive
(i.e., some formula is not derivable from such theory). As proved in two re-
cent papers [13, 11], while the truth-preserving fuzzy logics are explosive w.r.t.
the usual negation ¬ϕ = ϕ → ⊥, some (extensions of) degree-preserving fuzzy
logics have been shown to exhibit some well-behaved paraconsistency proper-
ties. In particular, this is the case of the well-known  Lukasiewicz logic  L, whose
degree preserving companion  L≤ is not explosive, i.e. it is paraconsistent. Ac-
tually, the degree-preserving companions of finite-valued  Lukasiewicz logics  Ln

belong to the family of paraconsistent logics called logics of formal inconsistency
(LFIs) [7].

Since, for instance,  L≤ is included in  L (in terms of their consequence oper-
ators), with  L≤ being paraconsistent and  L explosive, a natural question that
arises in this setting is to ask about possible intermediate logics between  L≤

and  L. And in particular, to characterise them and also to study which of them
are paraconsistent and which of them are explosive. In this paper we aim at
answering these questions. To do this, one can follow two approaches.

From a syntactical point of view, since  L≤ and  L have the same theorems,
intermediate logics will be necessarily defined as extensions of  L≤ with inference
rules admissible in  L≤ and derivable in  L. The problem is how to either find or
at least give a characterization of inference rules satisfying these conditions. In
this paper we begin with some examples of inference rules that are admissible in
 L≤ and derivable in  L, but the main results come from the semantical approach.

From a semantical point of view, recall that  L is complete with respect to
all matrices (A, F ) where A is an MV-algebra and F is the implicative filter
F = {1A}. Moreover, it is well known that, since  L is standard complete, this
family of matrices can be in fact reduced to only one, the matrix ([0,1]MV, {1}),
where [0,1]MV is the MV-algebra over the real interval [0, 1] (see Example 1).
On the other hand,  L≤ is complete with respect to the class of all matrices of
type (A, F ) where A is an MV-algebra and F is a lattice filter of A, see e.g.
[15, 5]. Besides, it is proved in [5] that  L≤ is also complete with respect to the
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restricted set of all matrices ([0,1]MV, F ), where F is a lattice filter of [0, 1], i.e.
intervals either of type [a, 1] with a > 0 or of type (a, 1], for a < 1. Therefore,
from a semantical point of view, the intermediate logics we are interested in
are logics defined from arbitrary sets of matrices of the type (A, F ), where
A is an MV-algebra and F is a lattice filter of A, always including the matrix
([0,1]MV, {1}). The problem here is to study and characterize the logics defined
by them.

Following a syntactical approach, in this paper we introduce some families
of inference rules (inspired in the explosion rule) that are admissible in  L≤

and derivable in  L, and we characterize the corresponding intermediate logics.
On the other hand, following a semantical approach, we then first study some
families of logics characterized by families of matrices ([0,1]MV, F ) where F ⊆
(0, 1] is a lattice filter, and we prove that there are another intermediate logics
(like the one defined by the explosion inference rule) that are not semantically
defined by this type of matrices. Then we restrict ourselves to the case of finite-
valued  Lukasiewicz logics, where we define and axiomatize a large family of
intermediate logics defined by families of matrices (A, F ) with A being a finite
MV-algebra and F is a lattice filter.

As far as we know, the only papers dealing with logics defined by matri-
ces in the framework of the infinite-valued  Lukasiewicz logic are [3, 4], where
the author studies logics LF defined by matrices ([0,1]MV, F ) with F being a
principal lattice filter. However, these logics are out of the scope of this paper
because they are not intermediate for F 6= {1}. Indeed, the condition to be
intermediate is that the set of lattice filters defining the logic has to contain the
filter {1} in order to be contained in the truth-preserving  Lukasiewicz Logic.
Nevertheless some results that directly follow from the ones in [4] are included
at the beginning of Section 4.

This paper is structured as follows. After this introduction, Section 2 con-
tains some needed preliminaries about  Lukasiewicz logics and their degree-
preserving companion. Section 3 introduces some intermediate logics defined
syntactically by adding to  L≤ the explosion rule and some of its generalizations,
and we characterize these logics semantically using evaluations. Section 4 deals
with logics defined semantically by matrices. In its first part we define and
axiomatize a family of intermediate logics defined semantically by some families
of matrices of type ([0,1]MV, F ) where F is a lattice filter. The second part
of Section 4 is devoted to prove that there are intermediate logics not defined
by those families of matrices, and we give a general theorem characterizing
intermediate logics as logics of matrices over general MV-algebras by lattice
filters. In the last sections we study intermediate logics in the framework of
finite-valued  Lukasiewicz logics  Ln. In Section 5 we give some results towards
a general characterization of intermediate logics for finite-valued  Lukasiewicz
logics. In Section 6 we characterize and axiomatize intermediate logics defined
by families of matrices of type (A, F ) where A is a direct product of copies of
 LVn (the MV-algebra associated to  Ln) and F is a lattice filter. The lattices of
these intermediate logics for n = 3 and n = 4 are described in Appendices A1
and A2. Finally, in Section 7 the case of  Ln when n − 1 is a prime number is
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analyzed. The lattice of all intermediate logics for  L3 and  L4 are fully described
in Appendices B1 and B2 respectively. The paper ends with some conclusions
and further research proposals.

2 Preliminaries on  Lukasiewicz logic  L and the
degree preserving companion  L≤

2.1  Lukasiewicz logic and MV-algebras

The logical setting in which we frame our study is that of infinite-valued  Lu-
kasiewicz logic  L, and its finite-valued axiomatic extensions  Lk. Formulas of
(any finite-valued)  Lukasiewicz logic are inductively defined from a countable
set V = {p1, p2, . . .} of variables, along with the binary connective → and the
unary connective ¬. We will denote by F(V ) the class of formulas defined from
the set of variables V .

Further connectives are definable from → and ¬ as follows:

ϕ⊕ ψ is ¬ϕ→ ψ
ϕ⊗ ψ is ¬(¬ϕ⊕ ¬ψ)
ϕ ∨ ψ is (ϕ→ ψ)→ ψ
ϕ ∧ ψ is ¬(¬ϕ ∨ ¬ψ)
ϕ↔ ψ is (ϕ→ ψ) ∧ (ψ → ϕ)

The truth constant > is ϕ → ϕ and the truth constant ⊥ is ¬>, and we will
henceforth use sometimes the following abbreviations: for every n ∈ N and for
every ϕ ∈ F(V ), nϕ will stand for ϕ⊕ · · · ⊕ ϕ (n-times), and ϕn will stand for
ϕ⊗ · · · ⊗ ϕ (n-times). When n = 0 we take nϕ = ϕn = >.

The propositional  Lukasiewicz logic ( L in symbols) is defined as the following
Hilbert style system of axioms and rule (cf. [18]):

( L1) ϕ→ (ψ → ϕ),

( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)),

( L3) (¬ϕ→ ¬ψ)→ (ψ → ϕ),

( L4) (ϕ ∨ ψ)→ (ψ ∨ ϕ),

(MP) The rule of modus ponens:
ϕ ϕ→ ψ

ψ
.

For every k ∈ N with k ≥ 2, the k-valued  Lukasiewicz logic  Lk is the ax-
iomatic extension of  L defined by the following axioms (cf. [17, 18]):

( L5) (k − 1)ϕ↔ kϕ,

( L6) (nϕn−1)k ↔ kϕn,
for every n = 2, 3, . . . , k − 2 that does not divide k − 1.
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The notion of deduction and proof in  L or in  Lk are the usual ones (see e.g. [18]).
A theory is any subset of F(V ), and for every theory Γ and for every formula ϕ
we will write Γ ` ϕ if ϕ can be proved from Γ in the logic  Lk.

The algebraic counterpart of (resp. finite-valued)  Lukasiewicz calculus is the
class of (resp. finite-valued) MV-algebras. An MV-algebra (cf. [9, 18, 19]) is a
system M = (M,⊕,¬, 0M ) of type (2, 1, 0) such that the reduct (M,⊕, 0M ) is
a commutative monoid, and the following equations hold:

(MV1) x⊕ 1M = 1M ,

(MV2) ¬¬x = x,

(MV3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

where in (MV1), 1M stands for ¬0M .
For every k ∈ N with k ≥ 2, an MVk-algebra is an MV-algebra that also

satisfies:

(MV4) kx = (k − 1)x,

(MV5) (nxn−1)k = kxn, for every n = 2, 3, . . . , k − 2 not dividing k − 1,

where, for every n ≥ 1, nx = x⊕· · ·⊕x (n-times), and xn = x⊗· · ·⊗x (n-times)
[17]. When n = 0, nx = xn = 1M . As in the case of the logical language, here
other operations can be defined as well, among them x→ y is ¬x⊕ y and x⊗ y
is ¬(¬x⊕ ¬y).

In every MV-algebra M we can define an order relation by the following
stipulation: for every x, y ∈M ,

x ≤ y iff ¬x⊕ y = 1M .

An MV-algebra is said to be linearly ordered, or an MV-chain, provided that
the order ≤ is linear. The class of MV-algebras, MV, constitutes a variety (i.e.
an equational class [6]).

Example 1 (Standard Algebras). (1) Equip the real unit interval [0, 1] with
the operations of

- truncated sum: for all x, y ∈ [0, 1], x⊕ y = min(1, x+ y),

- standard negation: for all x ∈ [0, 1], ¬x = 1− x.

Then the algebra [0,1]MV = ([0, 1],⊕,¬, 0) is an MV-algebra called the standard
MV-algebra. The variety of MV-algebras MV is generated, as a variety and as
a quasi-variety, by [0, 1]MV (cf. [8, 9]). This means that, in order to show that
a given equality, or quasi-equality, written in the algebraic language of MV-
algebras, holds in every MV-algebra, it is sufficient to check whether it holds in
[0,1]MV.

(2) For every k ∈ N, let  LVk = {0, 1
k−1 , . . . ,

k−2
k−1 , 1}. Equip  LVk with the

restrictions to  LVk of the above defined truncated sum and standard negation.
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We will henceforth denote by  LVk the obtained structure, that is usually called
the standard MVk-algebra. The variety of MVk-algebras is generated by  LVk

(cf. [9]).

MV-algebras constitute the equivalent algebraic semantics for  Lukasiewicz
logic.1 Similarly, for every k, MVk-algebras form a variety, MVk, that is the
equivalent algebraic semantics for  Lk. Among other things, this implies that  Lu-
kasiewicz logic is (strongly) complete with respect to the class of MV-algebras,
and that  Lk is (strongly) complete with respect to class of MVk-algebras as
well. This means the following. Let an evaluation e of formulas of F(V ) into
an MV-algebra (MVk-algebra) M be any map e : V → M that extends to
compound formulas by truth functionality using the operations in M. We say
that e is a model of (or satisfies) a formula ϕ ∈ F(V ) when e(ϕ) = 1M . Then,
for any set of formulas Γ ∪ {ϕ} ⊆ F(V ), Γ ` ϕ iff for any MV-algebra M and
any M-evaluation e, if e(ψ) = 1M for any ψ ∈ Γ, then e(ϕ) = 1M as well.

But clearly, the above examples (and the results cited therein) show a
stronger version of completeness for  L and  Lk that we are going to make clear
as follows.

Theorem 1. (1)  Lukasiewicz logic is finitely strong standard complete, i.e.:
for every finite set of formulas Γ ∪ {ϕ} ⊆ F(V ), Γ ` ϕ in  L iff every evaluation
into the MV-algebra [0,1]MV that satisfies Γ, satisfies ϕ as well.

(2) For every k ∈ N,  Lk is strong real complete, i.e.: for every set of formulas
Γ ∪ {ϕ} ⊆ F(V ), Γ ` ϕ in  Lk iff every evaluation into the MVk-algebra  LVk

that satisfies Γ, satisfies ϕ as well.

Remark 1. Every finite MV-algebra M can be represented as a finite direct
product of finite MV-chains. In other words, for every finite MV-algebra M,
there exist a finite set of finite MV-chains S1, . . . ,Sk, such that M is isomorphic
to the direct product Πk

i=1Si.

2.2 The degree-preserving companion of  Lukasiewicz logic

 Lukasiewicz logic  L, and the main logics studied in Mathematical Fuzzy
Logic, is a (full) truth-preserving fuzzy logic (in the sense that inference in
these logics preserves the truth-value 1). But besides the truth-preserving
paradigm so far considered, one can find an alternative approach in the
literature, first introduced for  Lukasiewicz logic by Wójcicki [22, 4.3.14] and
then further explored in [15]. Based on the definitions in [15], we introduce
the variant of  L, that we shall denote by  L≤, whose associated consequence
relation is semantically defined as follows: for every finite set of formulas Γ∪{ϕ},

1Actually, the equivalent algebraic semantics of  L, properly speaking, is the variety of
Wajsberg algebras [16], although, as it is well-known, Wajsberg and MV-algebras are term-
equivalent.
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Γ |= L≤ ϕ iff for every evaluation v over [0, 1]MV and every a ∈ [0, 1],
if a ≤ v(γ) for every γ ∈ Γ, then a ≤ v(ϕ).2

If Γ is infinite, stipulate that Γ |= L≤ ϕ when there exists a finite subset Γ0 ⊂ Γ
such that Γ0 |= L≤ ϕ. So defined,  L≤ is known as the  Lukasiewicz logic preserving
degrees of truth, or the degree-preserving companion of  L. Clearly,  L and  L≤ have
the same theorems and, moreover, for every finite set of formulas Γ ∪ {ϕ}:

Γ |= L≤ ϕ iff ` L Γ∧ → ϕ,

where Γ∧ means γ1 ∧ . . . ∧ γk for Γ = {γ1, . . . , γk} (when Γ is empty then Γ∧

is >).
As regards axiomatization, the logic  L≤ admits a Hilbert-style axiomatiza-

tion having the same axioms as  L and the following deduction rules [5]:

(Adj-∧)
ϕ ψ

ϕ ∧ ψ ,

(MP-r) if ` L ϕ→ ψ (i.e. if ϕ→ ψ is a theorem of  L), then from ϕ derive ψ.

We will denote by ` L≤ the corresponding consequence relation associated to
the Hilbert calculus for  L≤ .

In [15] it is shown that the logic  L≤ is not algebraizable in the sense of Blok
and Pigozzi, but nevertheless it has a suitable semantics via logical matrices.

In general, by a logical matrix we understand a pair (A, F ) where A is an
algebra and F is a subset of designated elements of A. The logic L induced by
the matrix (A, F ) is defined as follows: for any subset of formulas Γ ∪ {ϕ},
Γ `L ϕ if, for any evaluation e on A, if e(ψ) ∈ F for all ψ ∈ Γ, then e(ϕ) ∈ F .

The logic determined by a class of matrices is defined as the intersection of the
logics defined by all the matrices in the family.

The matrices we will deal with in this paper will be pairs (A, F ) where A is
an MV-algebra and F is either an implicative or a lattice filter of A.3 It is well-
known [16, 21] that (infinite-valued)  Lukasiewicz logic  L is (strongly) complete
with respect to the class of matrices

{(A, F ) : A is an MV-algebra and F is an implicative filter of A},
and also with respect to its subclass of matrices

{(A, {1A}) : A is an MV-algebra},
that are its reduced models. Moreover,  L is finitely strong complete with respect
to the single matrix ([0,1]MV, {1}), this is Theorem 1. On the other hand, the
degree-preserving companion of  Lukasiewicz logic  L≤ is complete with respect
to the class of matrices

2This condition is equivalent to require that for every evaluation v over [0, 1]MV, min{v(γ) |
γ ∈ Γ} ≤ v(ϕ).

3F is a lattice filter of a MV-algebra A if i) 1A ∈ F , ii) if x ∈ F and x ≤ y then y ∈ F ,
and iii) if x, y ∈ F then x ∧ y ∈ F . F is an implicative filter if it is a lattice filter and it is
closed by modus ponens, that is, if x, x→ y ∈ F then y ∈ F as well.
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{(A, F ) : A is an MV-algebra and F is a lattice filter of A},

see [15]. Moreover, in [15] it is also proved that  L≤ is complete with respect to
the smaller class of matrices over the standard MV-algebra:

{([0,1]MV, F ) : F is a lattice filter of [0,1]MV}.

Analogous results and relationships hold for the case of truth-preserving and
degree-preserving finite-valued  Lukasiewicz logics  Lk and  L≤k , replacing MV-
algebras by MVk-algebras and [0,1]MV by  LVk.

3 Some syntactically defined intermediate logics

Recall (see, for instance, [7]) that a logic L containing a negation ¬ is said to be
explosive (w.r.t. ¬) if, from any theory containing a formula ϕ and its negation
¬ϕ, any other formula can be derived: for every set of formulas Γ ∪ {ϕ,¬ϕ},

Γ, ϕ,¬ϕ `L ψ

for every formula ψ. On the other hand, L is said to be paraconsistent (w.r.t.
¬) if it is not explosive, that is: there is a set of formulas Γ∪ {ϕ,¬ϕ} such that

Γ, ϕ,¬ϕ 6`L ψ

for some formula ψ.
As observed in [13, 11], while the truth-preserving fuzzy logics are explosive

w.r.t. the usual negation (¬ϕ is defined as ϕ→ ⊥), some (extensions of) degree-
preserving fuzzy logics are paraconsistent. In particular, this is the case of
 Lukasiewicz logic  L, which is explosive while its degree-preserving companion
 L≤ is paraconsistent.4

3.1 Adding the explosion rule to  L≤

Given the aim of this paper, it seems very natural to begin with the study of the
logic  L≤exp, the weakest explosive intermediate logic, defined syntactically as the

extension of the usual Hilbert-style calculus for the logic  L≤ with the explosion
inference rule:

(exp)
ϕ ¬ϕ
⊥

It is clear that (exp) is admissible in  L≤ (it does not add new theorems) and
derivable in  L, since it is a particular case of modus ponens rule (notice that
¬ϕ = ϕ → ⊥), but it is not weaker than the restricted modus ponens rule

4It is clear that in  L, from {ϕ,¬ϕ} we can derive anything, since we have ϕ,¬ϕ ` L ϕ⊗¬ϕ,

and ϕ⊗¬ϕ→ ⊥ and ⊥ → ψ are theorems of  L. On the contrary, in  L≤ we have e.g. (for any
propositional variable p) that p,¬p 6` L≤ p⊗ ¬p and so {p,¬p} is not explosive. By the way,
we have that p,¬p ` L≤ p ∧ ¬p, but ϕ ∧ ¬ϕ→ ⊥ is not a theorem of  L.
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(MP-r) used in the definition of  L≤.

Notation. To simplify notation, from now on we will write `≤ for ` L≤ , and
`≤exp for `

 L
≤
exp

.

Next lemmas show straightforward properties of the logic  L≤exp.

Lemma 1. Γ `≤exp ⊥ iff there exists ϕ such that Γ `≤ ϕ ∧ ¬ϕ.

Proof. From right to left is immediate. Assume Γ `≤exp ⊥ and consider the
following two cases:

• if Γ `≤ ⊥, then trivially Γ `≤ ϕ ∧ ¬ϕ.

• if Γ 6`≤ ⊥, in any proof of ⊥ from Γ in  L≤exp there must be a first application
of the rule (exp) to some pair of formulas ϕ and ¬ϕ. Therefore, both ϕ
and ¬ϕ have been proved without using the rule (exp), hence they are
provable from Γ in the logic  L≤. From this, Γ `≤ ϕ∧¬ϕ, by rule (Adj-∧).

Lemma 2. If Γ 6`≤exp ⊥ then, for every ϕ, it holds that
[
Γ `≤exp ϕ iff Γ `≤ ϕ

]
.

Proof. It is clear that Γ `≤ ϕ implies Γ `≤exp ϕ. Therefore we have to prove that

if Γ `≤exp ϕ and Γ 6`≤exp ⊥ then Γ `≤ ϕ. But this is easy, since if in a proof of ϕ

from Γ in  L≤exp the rule (exp) is applied, then we would have Γ `≤exp ⊥, against

the hypothesis. Thus, in no proof of ϕ from Γ in  L≤exp the rule (exp) is applied,

hence this means that Γ `≤ ϕ.

Actually, the previous lemmas allow us to express `≤exp only in terms of `≤.

Proposition 1.

Γ `≤exp ϕ iff either there exists ψ such that Γ `≤ ψ ∧ ¬ψ,
or Γ `≤ ϕ.

Proof. From left to right, suppose that Γ `≤exp ϕ. There are two case to analyze:

Case 1: Γ `≤exp ⊥. Then, there exists ψ such that Γ `≤ ψ ∧ ¬ψ, by Lemma 1.

Case 2: Γ 0≤exp ⊥. Then, by Lemma 2, Γ `≤ ϕ since, by hypothesis, Γ `≤exp ϕ.

From right to left, suppose first that Γ `≤ ψ∧¬ψ for some ψ. Then Γ `≤exp ⊥,

by Lemma 1, hence Γ `≤exp ϕ. On the other hand, if Γ `≤ ϕ then obviously

Γ `≤exp ϕ.

As a consequence, since the semantics for `≤ is clear and well-known, we
can establish the exact semantics that characterizes the logic  L≤exp.

Notation. In the following, given a finite set of formulas Γ, we will use Γ∧ to
denote a ∧-conjunction of all its formulas,

∧
ϕ∈Γ ϕ (if Γ = ∅ then Γ∧ is >).

9



Lemma 3. There exists ϕ such that Γ `≤ ϕ ∧ ¬ϕ iff for every [0,1]MV-
evaluation e, e(Γ∧) ≤ 1/2.

Proof. Since, for any evaluation e we have e(ϕ ∧ ¬ϕ) ≤ 1/2, the left to right
direction is immediate. Assume now that for every evaluation e, e(Γ∧) ≤ 1/2.
It is clear that then, for every evaluation e, e(¬Γ∧) ≥ 1/2, and hence e(Γ∧) =
e(Γ∧ ∧ ¬Γ∧). Take ϕ = Γ∧. Therefore, by completeness of `≤, this means that
Γ `≤ ϕ ∧ ¬ϕ.

Proposition 2 (Soundness and Completeness of  L≤exp w.r.t. [0,1]MV). For any
set of formulas Γ ∪ {ϕ}, we have:

Γ `≤exp ϕ iff either for every [0,1]MV-evaluation e, e(Γ∧) ≤ 1/2,
or for every [0,1]MV-evaluation e, e(Γ∧) ≤ e(ϕ).

Proof. It is a direct consequence of Proposition 1, Lemma 3 and the soundness
and completeness of  L≤ with respect to evaluations over [0,1]MV.

This makes it clear that the corresponding notion of inconsistency in the
logic  L≤exp leading to explosion is somewhat more demanding than in the 1-
preserving logic  L: while the semantic condition for a set of formulas Γ to be
inconsistent in  L is that e(Γ∧) < 1 for every evaluation e, in  L≤exp the condition
is strengthened to require e(Γ∧) ≤ 1/2 for any evaluation e.

3.2 There are infinitely-many paraconsistent and explo-
sive intermediate logics

Once we have identified the weakest explosive logic, it is not difficult to define
countable families of paraconsistent and explosive intermediate logics, only by
slightly modifying the explosion rule (exp). Namely, let us consider, for each
natural k, the following inference rules:

(exp−k )
ϕ ¬(ϕ⊕ k. . . ⊕ϕ)

⊥

(exp+
k )

ϕ ¬(ϕ⊗ k. . . ⊗ϕ)

⊥
For k = 1 we recover the explosion rule: in fact, (exp) = (exp−1 ) = (exp+

1 ). But
for k > 1, it is clear that (exp−k ) is strictly weaker than (exp) while (exp+

k ) is
strictly stronger. This easily follows respectively from observing that, for k > 1,
¬(ϕ⊕ k. . . ⊕ϕ) → ¬ϕ and ¬ϕ → ¬(ϕ⊗ k. . . ⊗ϕ) are theorems in  Lukasiewicz
logic, while the converse implications are not.

Let us then consider the logics  L
(k)
exp− and  L

(k)
exp+ to be the extensions of

 L≤ with the inference rules (exp−k ) and (exp+
k ) respectively. From the above

observations it follows that  L
(k)
exp− ⊂  L≤exp ⊂  L

(k)
exp+ . Since  L≤exp is the weakest

explosive intermediate logic, it follows that all the logics  L
(k)
exp− with k > 1 are
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paraconsistent while all the logics  L
(k)
exp+ are explosive. Moreover, they form a

chain of intermediate logics with the following strict inclusions:5

 L≤ ⊂ . . . ⊂  L
(k)
exp− ⊂ . . . ⊂  L

(2)
exp− ⊂  L≤exp ⊂  L

(2)
exp+ ⊂ . . . ⊂  L

(k)
exp+ ⊂ . . . ⊂  L

Therefore, as we can see, there are at least countably many paraconsistent
and countably many explosive logics between  L≤ and  L. Moreover, as an easy
generalization of the results for the logic  L≤exp we can obtain the following result:

Proposition 3 (Soundness and Completeness). For any set of formulas Γ∪{ϕ},
we have:

Γ `(k)
exp− ϕ iff either for every evaluation e over [0,1]MV, e(Γ∧) ≤ 1/(k + 1),

or for every evaluation e over [0,1]MV, e(Γ∧) ≤ e(ϕ).

Γ `(k)
exp+ ϕ iff either for every evaluation e over [0,1]MV, e(Γ∧) ≤ k/(k + 1),

or for every evaluation e over [0,1]MV, e(Γ∧) ≤ e(ϕ).

Actually it is also very easy to further generalize the inference rules (exp−k )
and (exp+

k ) by considering, for instance, the following rules:

(exp−k,m)
ϕ ¬((ϕ⊗ m. . . ⊗ϕ)⊕ k. . . ⊕(ϕ⊗ m. . . ⊗ϕ))

⊥

(exp+
k,m)

ϕ ¬((ϕ⊕ m. . . ⊕ϕ)⊗ k. . . ⊗(ϕ⊕ m. . . ⊕ϕ))

⊥
It is obvious that, for each k we have (exp−k,1) = (exp−k ) and (exp+

k,1) =

(exp+
k ), and for each m, we have (exp−1,m) = (exp+

m) and (exp+
1,m) = (exp−m).

Hence, in particular, (exp−1,1) = (exp+
1,1) = (exp).

Now, let us define the logics  L
(k,m)
exp− and  L

(k,m)
exp+ as the extensions of  L≤ with

the inference rules (exp−k,m) and (exp+
k,m) respectively. Then for instance, we

have that  L
(1,1)
exp− =  L

(1,1)
exp+ =  L≤exp,  L

(k,1)
exp− =  L

(k)
exp− and  L

(k,1)
exp+ =  L

(k)
exp+ . Therefore

we get two doubly infinite families of intermediate logics, one between  L≤ and
 L≤exp and another between  L≤exp and  L. Once again, in order to simplify notation

from now on we will write `(k,m)
exp− and `(k,m)

exp+ to denote their corresponding
syntactic consequence relation.

Now we can proceed in an analogous way as the previous section to

characterize the logics  L
(k,m)
exp− and  L

(k,m)
exp+ . We will omit proofs that are very

similar.

5It is worth noting that, similarly, other generalizations of the explosion rule have been
defined in [20] leading to a denumerable chain of logics, called Bn, between the Belnap-Dunn
logic and Kleene 3-valued logic.
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Notation. In the following, to simplify notation we will write ϕ−k,m and ϕ+
k,m

as compact notations for the formulas ϕ ∧ ¬((ϕ⊗ m. . . ⊗ϕ)⊕ k. . . ⊕(ϕ⊗ m. . . ⊗ϕ))
and ϕ ∧ ¬((ϕ⊕ m. . . ⊕ϕ)⊗ k. . . ⊗(ϕ⊕ m. . . ⊕ϕ)) respectively.

Lemma 4. For each set of formulas Γ we have:

(i) Γ `(k,m)
exp− ⊥ iff there exists ϕ such that Γ `≤ ϕ−k,m.

Γ `(k,m)
exp+ ⊥ iff there exists ϕ such that Γ `≤ ϕ+

k,m.

(ii) If Γ 6`(k,m)
exp− ⊥ then

[
Γ `(k,m)

exp− ϕ iff Γ `≤ ϕ
]

If Γ 6`(k,m)
exp+ ⊥ then

[
Γ `(k,m)

exp+ ϕ iff Γ `≤ ϕ
]

From the previous lemma, it is possible to express `≤−(k,m) and `≤+(k,m) in

terms of `≤.

Proposition 4. For any set of formulas Γ ∪ {ϕ}, we have:

(i) Γ `(k,m)
exp− ϕ iff either there exists ψ such that Γ `≤ ψ−k,m,

or Γ `≤ ϕ.

(ii) Γ `(k,m)
exp+ ϕ iff either there exists ψ such that Γ `≤ ψ+

k,m,

or Γ `≤ ϕ.

As a consequence, the semantics over [0,1]MV that characterize the logics

 L
(k,m)
exp− and  L

(k,m)
exp+ can now be established after two preliminary lemmas.

Lemma 5. For any evaluation e on [0,1]MV and any formula ϕ we have:

e(ϕ−k,m) ≤ k(m− 1) + 1

km+ 1
and e(ϕ+

k,m) ≤ k

km+ 1
.

Proof. We prove the condition for ϕ+
k,m, the one for ϕ−k,m is analogous. Let

f(x) = 1− (mx⊗ k. . . ⊗mx). Then it is routine to check that

f(x) =


1, if x ≤ 1+k

km

k(mx− 1), if 1+k
km < x < 1

m

0, otherwise.

Since f(x) is monotonically decreasing, min(x, f(x)) ≤ y, where y is such
that y = f(y), that is, y = k

km+1 . Therefore, taking x = e(ϕ), we have

e(ϕ−k,m) = min(e(ϕ), f(e(ϕ))) ≤ k
km+1 .

Lemma 6. For any set of formulas Γ we have:

12



(i) There exists ϕ such that Γ `≤ ϕ−k,m iff for every evaluation e,

e(Γ∧) ≤ k(m−1)+1
km+1 .

(ii) There exists ϕ such that Γ `≤ ϕ+
k,m iff for every evaluation e,

e(Γ∧) ≤ k
km+1 .

As in the previous section, from the above lemmas we can characterize the

logics  L
(k,m)
exp− and  L

(k,m)
exp+ with respect to semantics over the standard MV-algebra

[0,1]MV as follows.

Proposition 5 (Soundness and completeness). For any subset of formulas
Γ ∪ {ϕ}, we have:

Γ `(k,m)
exp− ϕ iff either for every [0,1]MV-evaluation e, e(Γ∧) ≤ k(m−1)+1

km+1 ,

or for every [0,1]MV-evaluation e, e(Γ∧) ≤ e(ϕ).

Γ `(k,m)
exp+ ϕ iff either for every [0,1]MV-evaluation e, e(Γ∧) ≤ k

km+1 ,

or for every [0,1]MV-evaluation e, e(Γ∧) ≤ e(ϕ).

We omit the proof since it is a matter of routine to check the details.
Finally, as a consequence of this characterization, we can establish when

these logics are paraconsistent or explosive.

Proposition 6. For each natural k and m, the following hold:

(i) The logics  L
(k,m)
exp− are paraconsistent if m = 1, and explosive otherwise.

(ii) The logics  L
(k,m)
exp+ are explosive if m = 1, and paraconsistent otherwise.

Proof. By the previous Proposition 5, it reduces to check when the values
(k(m− 1) + 1)/(km+ 1) and k/(km + 1) are less than 1/2 (paraconsistent)
or greater or equal than 1/2 (explosive).

In particular, this last proposition tells us that the only paraconsistent in-

termediate logics defined in this section are of the form  L
(k)
exp− for k > 1.

4 Intermediate logics defined by matrices with
lattice filters

In this section we begin by exploring the definition of intermediate logics defined
by matrices over the standard MV-algebra [0,1]MV. Then we show that these
matrices are not enough to cover the logics syntactically defined in the previous
section by adding to  L≤ the explosion rule and some variants of them.
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4.1 Intermediate logics defined by matrices with principal
filters over [0, 1]

This small subsection contains some results that are easy consequences, into
the framework of intermediate logics, of results originally obtained in [4]. Let
F̄ x = [x, 1] be the principal lattice filter defined by x ∈ (0, 1]. In the cited
paper, Bou proved that given a, b ∈ (0, 1] with a 6= b, then the logics defined by
the matrices ([0,1]MV, F̄

a) and ([0,1]MV, F̄
b) are incomparable. Note that these

logics are not intermediate, and so they lie outside the scope of the present paper.
But this result can be directly generalized into the framework of intermediate
logics.

Proposition 7. Let a, b ∈ (0, 1] be such that a 6= b. Then the logics defined
by the pairs of matrices {([0,1]MV, F̄

a), ([0,1]MV, {1})} and {([0,1]MV, F̄
b),

([0,1]MV, {1})} are incomparable.

The proof is an easy extension of the proof of [4, Prop. 3.1].

Corollary 1. The lattice of intermediate logics for  Lukasiewicz infinite-valued
logic has at least continuous width.

Let us consider now the lattice filters defined by semi-open intervals F x =
(x, 1] for all x ∈ [0, 1). Then, also as extension of results in [4], the following
results also hold:

• If a is rational, then the logic of the pair of matrices
{([0,1]MV, F

a), ([0,1]MV, {1})} is incomparable with the one defined by
the pair of matrices {([0,1]MV, F̄

a), ([0,1]MV, {1})}.
• If a is irrational, then the logics defined by the pairs of matrices
{([0,1]MV, F

a), ([0,1]MV, {1})} and {([0,1]MV, F̄
a), ([0,1]MV, {1})} coin-

cide.

4.2 A family of intermediate logics L(Fa) parametrized by
elements a ∈ [0, 1)

In this section we define and partially axiomatize a family of intermediate logics
induced by sets of matrices over the standard MV-algebra [0,1]MV defined by
the following families Fa of lattice filters parametrized by elements a ∈ [0, 1):

Fa = {(b, 1] : b ≥ a} ∪ {[b, 1] : b > a}.

Every filter in Fa is proper and the corresponding class of matrices Ma =
{([0,1]MV, F ) : F ∈ Fa) define in the usual way a logic L(Fa), whose conse-
quence relation will be denoted by |=≤a .

Lemma 7. The consequence relation |=≤a is equivalently defined as follows:
if Γ ∪ {ϕ} is a finite set of formulas then Γ |=≤a ϕ iff, for every [0,1]MV-
evaluation e,

either e(Γ∧) ≤ a or e(Γ∧) ≤ e(ϕ).

14



Proof. By definition, Γ |=≤a ϕ iff, for every F ∈ Fa and every evaluation e in
[0, 1], e(Γ∧) ∈ F implies e(ϕ) ∈ F , which is in fact equivalent to the condition:
for every evaluation, and every b > a, e(Γ∧) ≥ b implies e(ϕ) ≥ b. That is, for
every e, either e(Γ∧) ≤ a or e(Γ∧) ≤ e(ϕ).

The axiomatization of the logics L(Fa) when a = r is rational is quite easy.
By McNaughton’s theorem, there exists a formula Θr(p) depending exactly on
the propositional variable p, whose associated function fr : [0, 1] → [0, 1] is
such that fr(x) = 1 if, and only if, x ∈ [0, r] (see e.g. [1]). That is, for every
evaluation e, e(Θr(p)) = 1 iff e(p) ≤ r. In some cases it is easy to explicitly give
the formula Θr(p), for example:

• If r = 1/2, then Θ1/2(p) = p→ ¬p,

• If r = 1/(k + 1) with k ≥ 2, then Θ1/(k+1)(p) = p→ ¬(p⊕ k. . . ⊕p),

• If r = k/(k + 1) with k ≥ 2, then Θk/(k+1)(p) = p→ ¬(p⊗ k. . . ⊗p),

Using the formula Θr(p) next we define the logic  L≤r .

Definition 1. Let  L≤r be the Hilbert calculus obtained from the one for  L≤

adding the following inference rule:

(R̄r)
ϕ ` Θr(ϕ) ∨ (ϕ→ ψ)

ψ

The consequence relation of  L≤r will be denoted by `≤r .

The adequacy of the proposed calculus with respect to the semantics of filters
can be easily proved.

Proposition 8. [Soundness and Completeness] For any rational r ∈ [0, 1), the
logic  L≤r is determined by the class of matrices Mr. That is, for any finite set
of formulas Γ ∪ {ϕ} we have:

Γ `≤r ϕ iff Γ |=≤r ϕ.

Proof. It follows the same line as the proof of [5, Th. 2.12]. One direction
is soundness and easily follows by taking into account Lemma 7 and the way
the formula Θr is defined. For completeness, assume Γ |=≤r ϕ where Γ =
{ψ1, . . . , ψn}. By Lemma 7, Γ |=≤r ϕ iff |= L Θr(Γ∧) ∨ (Γ∧ → ϕ), and by
completeness of  Lukasiewicz logic, we have ` L Θr(Γ∧) ∨ (Γ∧ → ϕ), so there is
a proof in  L of Θr(Γ∧) ∨ (Γ∧ → ϕ). Finally, to get a proof of ϕ from Γ in  L≤r
it is enough to start with n − 1 applications of the adjunction rule to get Γ∧,
followed with a proof of Θr(Γ∧) ∨ (Γ∧ → ϕ), and finally an application of the
inference rule (R̄r).

The hierarchy of the family of logics L(Fa) for a ∈ [0, 1) is stated in the
following proposition.
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Proposition 9. The set of logics L(Fa) satisfies the following properties:

(1) L(F0) =  L≤0 =  L≤.

(2) If a < b then L(Fa) ( L(Fb).

(3) L(Fa) (  L, for every element a in [0, 1).

(4) L(Fa) is paraconsistent for a < 1/2, and is explosive for a ≥ 1/2.

Proof. (1) Immediate from Definition 7 and Proposition 8.

(2) If a < b then Fa ⊃ Fb and so L(Fa) ⊂ L(Fb). It is clear from the ax-
iomatization that the inclusion is strict when a, b are rational. And from them,
taking into account that for any two elements a, b ∈ [0, 1) with a < b, there exist
rational numbers r, r′ such that a < r < r′ < b, the inclusion between L(Fa)
and L(Fb) is also strict.

(3) Observe first that L(Fa) has the same theorems as  L, and there is a rational
r such that a < r < 1. Thus L(Fa) ⊂  L≤r . On the other hand, the rule (R̄r)
is clearly derivable in  L: if e is an evaluation over [0, 1] such that e(ϕ) = 1 and
if Θr(ϕ) ∨ (ϕ → ψ) is a theorem of  L≤r then it is also a theorem of  L and so,
e(Θr(ϕ) ∨ (ϕ → ψ)) = 1. Then, either e(Θr(ϕ)) = 1 or e(ϕ → ψ) = 1. Since
e(ϕ) = 1 6≤ 1/r then e(Θr(ϕ)) 6= 1 and so e(ϕ → ψ) = 1. From this, it follows
that e(ψ) = 1. Therefore L(Fa) ⊆  L.

In order to prove that the inclusion is proper, let 0 < r < 1, and ε > 0
such that ε < (1 − r)/2 and r − ε > 0. Let p and q two different propositional
variables and e an evaluation such that e(p) = r + ε < 1 and e(q) = r − ε > 0.
Then e(p → q) = 1 − 2ε > r and e(p) > r but e(q) < r. Then p, p → q 6|=≤r q.
This shows that Modus Ponens is not derivable in  L≤r and thus not derivable in
 L≤a either.

(4) If a ≥ 1/2 and for an evaluation e, e(α) ∈ F for some F ∈ Fa, then e(¬α) /∈
F and thus the explosion rule is valid. This is not true when a < 1/2 and in
this case the explosion rule is not valid and thus the logic is paraconsistent.

As a consequence, this proposition shows the existence of a (at least) con-
tinuous, linearly ordered set of intermediate logics {L(Fa) (  L : a ∈ [0, 1)},
and we know which of them are paraconsistent and which are explosive. This,
together with Corollary 1, leads to the following.

Corollary 2. The lattice of intermediate logics between  L≤ and  L has at least
continuous width and depth.

Finally, remember that in Section 3.2 we have already studied the families

of intermediate logics  L
(k,m)
exp− and  L

(k,m)
exp+ . Thus a natural question arises, what

is the relation between them and the family of intermediate logics  L≤r studied
in this section? This is the content of the next subsection.
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4.3 The explosion rules and semantics based on lattice
filters of [0,1]MV

Consider again the explosion rule:

(exp)
ϕ ¬ϕ
⊥

and the logic  L≤exp it defines as an extension of  L≤. The question we address in
this section is whether this logic has a semantics defined by a family of lattice
filters in the standard MV-algebra [0,1]MV.

Let Fil([0, 1]) denote the set of proper lattice filters of [0, 1]. It is easy to see
that the lattice filters from Fil([0, 1]) that are compatible with or closed under6

the rule (exp) are exactly the set F1/2 = {(a, 1] : a ≥ 1/2}∪{[a, 1] : a > 1/2}.
Indeed, we have:

{F ∈ Fil([0, 1]) : for every x ∈ [0, 1], if x ∧ ¬x ∈ F then 0 ∈ F}
= {F ∈ Fil([0, 1]) : for every x ∈ [0, 1], x ∧ ¬x 6∈ F}
= {F ∈ Fil([0, 1]) : for every x ∈ [0, 1], if x ∈ F then ¬x 6∈ F}
= {F ∈ Fil([0, 1]) : 1/2 6∈ F}
= {(a, 1] : a ≥ 1/2} ∪ {[a, 1] : a > 1/2}.
= F1/2.

Therefore the set of filters compatible with (exp) is F1/2, but its corresponding

logic  L≤1/2 turns out to be different from  L≤exp. Remember that  L≤1/2 is defined

by the Hilbert calculus by extending the one for  L≤ with the inference rule

(R̄1/2)
ϕ ` (ϕ→ ¬ϕ) ∨ (ϕ→ ψ)

ψ
.

Actually  L≤exp is a weaker logic (in the sense of not having more consequences)

than  L≤1/2, i.e. it holds that `≤exp ⊆ `≤1/2. This directly follows from a simple

inspection of their semantic characterizations:

- Γ `≤exp ϕ iff either (∀e)(e(Γ∧) ≤ 1
2 ) or (∀e)(e(Γ∧) ≤ e(ϕ));

- Γ `≤1/2 ϕ iff (∀e)( either e(Γ∧) ≤ 1
2 or e(Γ∧) ≤ e(ϕ)).

It is clear than the first condition implies the second, but not vice-versa in
general. In particular the following example shows a derivation in  L≤1/2 that

does not hold in  L≤exp.

Example 2. Let p and q be two different propositional variables. Then it is
very easy to check that

(p ∧ ¬p) ∨ q `≤1/2 q but (p ∧ ¬p) ∨ q 6`≤exp q.
6A lattice filter F ∈ Fil([0, 1]) is said to be compatible with or, equivalently, closed under

a rule
ϕ1, . . . , ϕn

ψ
whenever for every [0, 1]-evaluation e, if e(ϕi) ∈ F for every i = 1, . . . , n,

then e(ψ) ∈ F as well.
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Therefore, the logic  L≤exp cannot be characterized by a family of lattice filters
on [0,1]MV. More generally, one can also show that the same situation holds

with all the logics  L
(k)
exp− and  L

(k)
exp+ as the following proposition shows.

Proposition 10. The following conditions hold:

• The set of filters from Fil([0, 1]) compatible with the rules (exp−k,m) and

(exp+
k,m) are respectively the sets F k(m−1)+1

km+1
and F k

km+1
.

• If Γ `(k,m)
exp− ϕ, then Γ `≤r ϕ with r = k(m−1)+1

km+1 , but the converse is not
true in general.

• If Γ `(k,m)
exp+ ϕ, then Γ `≤r ϕ with r = k

km+1 , but the converse is not true in
general.

Proof. We only prove that the converse implications of the second and third
items do not hold. Define a formula ψ depending on only one variable p such
that its MacNaugton function f is given by the piecewise linear graph joining
the points a = (0, 0), b = (r/2, 0), c = ((r + 1)/2, 1) and d = (1, 1), where
r = 1/(k+ 1). Then it is clear that for e(p) < 1/(k+ 1), e(p) > e(ψ) = f(e(ψ)),
while e(p) ≤ e(ψ) = f(e(ψ)), if e(p) ≥ 1/(k + 1). Therefore we have that

p `≤1
k+1

ψ, but p 6`(k,1)
exp− ψ. The case of r = k/(k+ 1) is very similar, only special

care has to be taken in choosing the point c.

These previous observations illustrate the fact that logics defined by families
of lattice filters of [0,1]MV containing the filter {1} do not cover the set of
intermediate logics between  L≤ and  L, as one might have conjectured with a
too simple an analysis of what happens with the logics  L≤ and  L. Actually, what
one can easily show is that one needs to consider families of matrices defined
by lattice filters over arbitrary MV-algebras. The following is a general result,
adapted from well-known results in the literature.

Theorem 2. Let L be a logic whose (Tarskian, finitary and structural) conse-

quence relation |=L is such that `≤ L ⊆ |=L ⊆ ` L. Then |=L is the logic induced

by the family of matrices (A, F ), where A is an MV-algebra and F is lattice
filter of A compatible with |=L (i.e. if Γ |=L ϕ then for every A-evaluation e, if
e(Γ∧) ∈ F then e(ϕ) ∈ F ).

Proof. By definition, if Γ |=L ϕ then Γ |=M ϕ for every M = (A, F ) such that
A is an MV-algebra and F is lattice filter of A compatible with |=L.

Conversely, suppose that Γ 6|=L ϕ. Let F(V ) be the set of formulas and
consider the Lindenbaum algebra A = F(V )/≡, where ϕ ≡ ψ iff ` L ϕ ↔ ψ.
Clearly, A is an MV-algebra. For each formula ψ, we will denote by [ψ] the
equivalence class of ψ, i.e. the set {γ ∈ F(V ) : ψ ≡ γ}.

Now define F = {[δ] : Γ |=L δ}. It is clear that F is a lattice filter
of A. Moreover F is compatible with |=L. Indeed, we have to show that if
Σ |=L ψ then for any evaluation e : F(V ) → A, e(Σ∧) ∈ F implies e(ψ) ∈ F .
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But an evaluation e : F(V ) → F(V )/ ≡ can be turned into a substitution
σ : F(V )→ F(V ) where σ(γ) = γ′ such that γ′ is any formula in the equivalence
class e(γ) ∈ F(V )/≡. In fact: consider a mapping σ0 : V → F(V ) such that
σ0(p) ∈ e(p), for every propositional variable p ∈ V , and let σ : F(V ) → F(V )
be its unique extension to an homomorphism. Since e is an homomorphism then
e(α→ β) = e(α)→ e(β) and e(¬α) = ¬e(α). This means that, if α′ ∈ e(α) and
β′ ∈ e(β) then ¬α′ ∈ e(¬α) and α′ → β′ ∈ e(α → β). From this, by induction
on the complexity of the formula γ it can be proven that σ is a substitution
such that σ(γ) ∈ e(γ), for every formula γ.

Since |=L is structural, σ(Σ) |=L σ(ψ). But e(Σ∧) ∈ F implies that Γ |=L

σ(Σ), therefore Γ |=L σ(ψ), hence e(ψ) ∈ F . This shows that F is compatible
with |=L.

Finally, let us check that Γ 6|=M ϕ for M = (A, F ). Indeed, define the
evaluation h : F(V ) → A as follows: for every ψ, h(ψ) = [ψ]. It readily follows
that h(Γ∧) = [Γ∧] ∈ F since trivially Γ |=L Γ∧. However, since Γ 6|=L ϕ, then
h(ϕ) = [ϕ] 6∈ F .

In the particular case the logic L is defined syntactically as an extension of
 L≤ with a set R of (structural) inference rules derivable in  L, a matrix (A, F )
(with A being an MV-algebra and F a lattice filter of A) is compatible with L
whenever every rule in R is compatible with F .

The next example shows a matrix that distinguishes  L≤exp from  L≤1/2.

Example 3. Consider the MV-algebra A =  L2 ×  L3, thus,

A = {(0, 0), (0, 1/2), (0, 1), (1, 0), (1, 1/2), (1, 1)}

where 0A = (0, 0) and 1A = (1, 1). Let a = (1, 1/2), b = (1, 0) and F = {a, 1A}.
So defined, F is a lattice filter compatible with the explosion rule (exp). Indeed,
¬a = (0, 1/2) 6∈ F , while ¬1A = 0A 6∈ F . Now, let p and q be two different
propositional variables, and let ϕ = (p ∧ ¬p) ∨ q and ψ = q.

As observed in Example 2, in the logic  L≤1
2

defined by all the lattice filters

over [0, 1] compatible with (exp), we have ϕ |=≤1/2 ψ.

Let e be an evaluation over A such that e(p) = a and e(q) = b. Then
e(ϕ) = (a ∧ ¬a) ∨ b = ¬a ∨ b = (0, 1/2) ∨ (1, 0) = (1, 1/2) = a. Therefore,
e(ϕ) ∈ F , but on the other hand, e(ϕ) = a 6≤ b = e(ψ) 6∈ F . This shows again
that ϕ 6`≤exp ψ.

5 The case of finite-valued  Lukasiewicz logics

As it has been made clear in the last section, one cannot restrict to families
of lattice filters of [0,1]MV to account for all the intermediate logics between
the infinite-valued logics  L≤ and  L: rather, one has to consider families of
matrices with lattice filters over arbitrary MV-algebras. This apparently makes
the task of identifying all the intermediate logics very hard, and we cannot offer
so far satisfactory results. Therefore, we turn our attention in the rest of this
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paper to the case of finite-valued  Lukasiewicz logics  Ln, where the landscape
appears to be more affordable. Indeed, in the finite-valued case, Theorem 2
can be specialized to this more concrete result. In the following, recall that for
every n ≥ 2 we denote by  LVn the set {0, 1

n−1 , . . . ,
n−2
n−1 , 1} and by  LVn the

corresponding MV-algebra.

Theorem 3. Let L be a logic whose (Tarskian, finitary and structural) con-

sequence relation |=L is such that `≤ Ln
⊆ |=L ⊆ ` Ln

. Then |=L is the
logic induced by the family of matrices (A, F ), where A is a direct product of
finitely-many subalgebras of  LVn and F is a lattice filter of A compatible with
|=L.

Proof. Assuming Γ 6|=L ϕ, the crucial point here in contrast with Theorem 2 is
to consider the Lindenbaum algebra A′ = F(V0)/≡, where F(V0) is the set of
formulas built from the finite set of variables V0 appearing in Γ ∪ {ϕ}, rather
than the Lindenbaum algebra F(V )/≡ over all the formulas. The advantage is
that A′ is a finite MV-algebra (since the variety MVn generated by the chain
 LVn is locally finite), and moreover every finite MV-algebra is a direct product
of finitely-many subalgebras of  LVn. The rest of the proof runs analogously to
that of Theorem 2.

Given that a lattice filter F of a direct product of  Ln-chains A =
∏

i=1,k Si

is of the form F =
∏

i=1,k Fi, where each Fi is an lattice filter of Si, in order to

study intermediate logics between  L≤n and  Ln we need to study logics defined
by matrices of the form M = (

∏
i=1,k Si,

∏
i=1,k Fi), that we call  Ln-matrices.

Taking into account that each lattice filter Fi is of the form Fi = [ti, 1] =
{x ∈ Si : x ≥ ti} and each evaluation e over A is in fact given as a tuple
e = (e1, . . . , ek) of evaluations ei over the corresponding factors Si, the logic
L(M) given by the above matrix M is defined as follows:

Γ `M ϕ iff (∀e1, . . . ,∀ek)
(

if

k∧
j=1

[ej(Γ
∧) ≥ tj ] then

k∧
j=1

[ej(ϕ) ≥ tj ]
)
.

where each ei ranges over evaluations on Si.
7 This expression makes it clear

that having repeated pairs (Si, Fi) in a matrix M is irrelevant to determine
the corresponding logic, and so such repetitions could be eliminated without
affecting the logic. Therefore, without loss of generality we can restrict ourselves
to  Ln-matrices M = (

∏
i=1,k Si,

∏
i=1,k Fi) such that Fi 6= Fj whenever Si = Sj .

A direct consequence of this is the fact that there are only finitely-many logics
defined by  Ln-matrices.

Moreover, since any such an  Ln-matrix is determined by the set of factors
Si and the values ti ∈ Si defining the filters Fi, we can equivalently describe
matrices by means of non-empty sets T = {(ti,Si) : i = 1, . . . , k} of pairs of

7Note that in this expression the
∧

’s denote metalinguistic conjunctions.
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subalgebras and values such that ti > 0 for all i, and ti 6= tj whenever Si = Sj .
Such sets T will be called matrix determination sets for  Ln.

For the sake of a more compact notation, in a determination set T we will
only make explicit the subalgebras Si that are different from  LVn. For instance,
when writing T = {t1, (t2,S), t3} we will refer to the matrix MT = ( LVn ×S×
 LVn, [t1, 1] × [t2, 1] × [t3, 1]). Abusing the notation once again, and without
danger of confusion, we will also denote by L(T ) the logic L(MT ) defined by
the matrix MT .

Finally, as usual, if M is a family of  Ln-matrices, the logic L(M) given by
M is defined as the intersection of the logics L(M), i.e. Γ `M ϕ iff Γ `M ϕ for
each M ∈M.

Therefore, if we denote by Mat( Ln) the set of Ln-matrices MT defined by
determination sets T , then the set of intermediate logics between  L≤n and  Ln is
exactly the set:

Int( Ln) = {L(M) : M⊆Mat( Ln) and (1,  LVn) ∈ T for some T ∈M}.

We are not able to provide a general full description of the whole set Int( Ln) of
intermediate logics: only partial results will be presented. Namely, in the next
sections we provide the following:

• a full description of the set IntΠ( Ln) of logics defined by (sets of) matrices
from Mat( Ln) over direct products of the standard  Ln-algebra  LVn.

• an almost full description of the whole set Int( Ln) when n− 1 is a prime
number.

6 Intermediate logics IntΠ( Ln) defined by matri-
ces over direct products of  LVn

As we have observed above, logics in IntΠ( Ln) are given by sets of matrix
determination sets of the form T = {t1 > t2 > . . . > tm} with ti ∈  LVn \ {0},
corresponding to sets of matrices MT = (( LVn)m, Ft1 × . . .×Ftm), where Fti =
[ti, 1] is an lattice filter of  LVn. Recall that the logic L(T ) defined by the matrix
MT is defined as

Γ `MT
ϕ iff (∀e1, . . . ,∀ek)

(
if

k∧
j=1

[ej(Γ
∧) ≥ tj ] then

k∧
j=1

[ej(ϕ) ≥ tj ]
)
.

where each ei ranges over all  LVn-evaluations. Since these logics are totally
determined by the lattice filters Fti , we will also use sometimes the more explicit
notation L(Ft1,...,tm) to denote the logic L(T ), to emphasize that it is defined
by the lattice filter Ft1 × . . .× Ftm . Note that L(F1) =  Ln.

Given T , one can also consider the family of matricesMT = {( LVn, [ti, 1]) :
ti ∈ T} determined by each of the lattice filters Fti = [ti, 1]. The corresponding
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logic L(MT ) is defined as:

Γ `MT
ϕ iff (∀t ∈ T, ∀e)(if e(Γ∧) ≥ t then e(ϕ) ≥ t)

where e ranges over all  LVn-evaluations. As a matter of fact, this logic is
different from the above logic L(T ) and it holds that L(MT ) =

⋂
i=1,m L(Fti).

8

Note that, in particular, if T =  LVn \ {0}, then L(MT ) =  L≤n .
Actually these two kinds of logics will play a distinguished role in our anal-

ysis. In what follows,

• IntLF
Π ( Ln): will denote the set of of logics L(T ) = L(Πt∈TFt), with 1 ∈ T ,

defined by the lattice filter Πt∈TFt of the direct product ( LVn)|T |.

• IntOF
Π ( Ln): will denote the set of logics L(MT ) =

⋂
t∈T L(Ft), with 1 ∈ T ,

defined by the set of (linearly ordered) lattice filters {Ft}t∈F of  LVn.

Although the logics L(T ) and L(MT ) are different, they are closely related.

Proposition 11. Let Γ ∪ {ϕ} be a finite set of formulas, T a matrix determi-
nation set for  Ln, and let t0 = max(T ). Then:

Γ `MT
ϕ iff either (∀e)

(
e(Γ∧) < t0

)
or Γ `MT

ϕ.

Proof. Consider the condition involved in the definition of Γ `T ϕ:

(∀e1, . . . ,∀ek)
(

if

k∧
j=1

[ej(Γ
∧) ≥ tj ] then

k∧
j=1

[ej(ϕ) ≥ tj ]
)

This condition is in fact equivalent to

(∀e1, . . . ,∀ek)
[ (

if
∧k

j=1[ej(Γ
∧) ≥ tj ] then e1(ϕ) ≥ t1

)
and

(
if
∧k

j=1[ej(Γ
∧) ≥ tj ] then e2(ϕ) ≥ t2

)
. . .

and
(

if
∧k

j=1[ej(Γ
∧) ≥ tj ] then ek(ϕ) ≥ tk

) ]
and in turn to:

(∀e)(∀t′ ∈ T )[ if e(Γ∧) ≥ t′ and (∀t 6= t′,∃e′)(e′(Γ∧) ≥ t) then e(ϕ) ≥ t′
)
]

and finally to:

(∀e)(∀t′ ∈ T )[ if e(Γ∧) ≥ t′ and (∃e′)(e′(Γ∧) ≥ t0) then e(ϕ) ≥ t′
)
]

and to:

either (∀e)(e(Γ∧) < t0) or (∀e, ∀t′ ∈ T )[ if e(Γ∧) ≥ t′ then e(ϕ) ≥ t′
)
])

But the latter condition is nothing but

8Here
⋂

i=1,m L(Fti ) means the intersection of the the logics L(Fti ) understood them as
consequence relations.
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either (∀e)
(
e(Γ∧) < t0

)
or Γ `MT

ϕ.

Notation: From now on, given a generic logic L extension of  L≤n and with
associated consequence relation `, t ∈  LVn, and a set of formulas Γ ∪ {ϕ},
consider the following conditions:

Kt(Γ): (∀e)(e(Γ∧) < t)

Ct(Γ, ϕ): (∀e)(if e(Γ∧) ≥ t then e(ϕ) ≥ t)

We will say that L is characterized by the condition:

• Kt if, for any Γ ∪ {ϕ}, Γ ` ϕ iff Kt(Γ)

• Ct if, for any Γ ∪ {ϕ}, Γ ` ϕ iff Ct(Γ, ϕ).

Given Γ ∪ {ϕ}, any combination by conjunctions and disjunctions of the
conditions Kt(Γ) and Ct′(Γ, ϕ) (for t, t′ ∈  LVn) can also be considered, in order
to characterize other logics. For instance, using this notation, the last lemma
for T = {t1, . . . , tm}, with t1 > t2 > . . . > tm, says that, while the logic
L(MT ) is characterized by the condition Ct1 ∧ Ct2 ∧ . . . ∧ Ctm , the logic L(T )
is characterized by the condition Kt1 ∨ (Ct1 ∧ Ct2 ∧ . . . ∧ Ctm).9

As a direct consequence of Proposition 11, the following results hold.

Corollary 3. Let T,R ⊆  LVn be two determination sets such that max(T ) =
max(R). Then

L(T ) ∩ L(R) = L(T ∪R).

Corollary 4. Let T,R ⊆  LVn be two determination sets. Then

L(MT ) ∩ L(MR) = L(MT ∪MR) = L(MT∪R)

Corollary 5. Let T ⊆  LVn be a determination set. Then⋂
t∈T

L(Ft) = L(MT ) ⊂ L(T ).

6.1 Lattice structures of intermediate logics from IntΠ( Ln)

From the previous results we can derive the lattice structure of some subsets of
intermediate logics.

9The meaning of this notation, generalizing the notation for a logic being characterized by
condition Kt or Ct, should be obvious. For instance, a logic being characterized by condition
Kt1 ∨ (Ct1 ∧ Ct2 ) means that, for any Γ ∪ {ϕ}, Γ ` ϕ iff Kt1 (Γ) ∨ (Ct1 (Γ, ϕ) ∧ Ct2 (Γ, ϕ)).
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Lemma 8. The set of intermediate logics IntLF
Π ( Ln) equipped with the order

defined by set inclusion of their consequence relations forms a Boolean lattice,
denoted IntLF

Π ( Ln), that is anti-isomorphic to the Boolean lattice of subsets
of  LVn \ {0}. The maximum of this Boolean lattice is  Ln, the minimum is
L( LVn \ {0}), and the coatoms are the logics L(F1,t) for each t ∈  LVn \ {0, 1}.
Proof. Since L(T ) ⊂ L(R) if R ⊂ T , it is clear that the coatoms are the logics
L(F1,t), for each t ∈  LVn \ {0, 1}. Then, from Corollary 3 we obtain that
L(F1,t1,...,tk) ∩ L(F1,r1,...,rm) = L(F1,t1,...,tk,r1,...,rm). Therefore, any element of
IntLF

Π ( Ln) is obtained by making intersections of the coatoms, one for each
subset of  LVn \ {0}. This determines an structure isomorphic to the lattice of
subsets of  LVn \ {0} with the reverse order.

Observe that the lattice IntLF
Π ( Ln) is not a sublattice of the lattice Int( Ln)

of all the intermediate logics, since its minimum L( LVn \ {0}) is strictly greater
than  L≤n .

Lemma 9. The set of intermediate logics IntOF
Π ( Ln) equipped with the order

defined by set inclusion of their consequence relations forms a Boolean lattice,
denoted IntOF

Π ( Ln), that is anti-isomorphic to the Boolean lattice of subsets of
 LVn \ {0}. The maximum of this Boolean lattice is  Ln, the minimum is  L≤n and
the coatoms are the logics L(M{1,t}) = L(F1)∩L(Ft) for each t ∈  LVn \ {0, 1}.
Proof. It is analogous to that of Lemma 8, replacing T ’s by MT ’s and only
noticing that now, from Corollary 4, we have L(MT )∩L(MR) = L(MT∪R).

Unlike the previous case, the lattice IntOF
Π ( Ln) is a sublattice of Int( Ln).

Notice also that the last results prove that the lattice IntΠ( Ln) of intermediate
logics defined by families of lattice filters of direct products of  LVn, contains
both the logics of the Boolean lattices IntLF

Π ( Ln) and IntOF
Π ( Ln) and their

intersections.
Next lemma gives the relative position in IntΠ( Ln) of the logics belonging

to the Boolean lattices IntLF
Π ( Ln) and IntOF

Π ( Ln).

Lemma 10. The following properties hold:

• The logics L(F1,t) are the coatoms of IntΠ( Ln),

• L(M{1,t}) ⊂ L(F1,t) and there is no logic from IntΠ( Ln) in between,

• If t 6= r, then L(M{1,t}) and L(F1,r) are not comparable.

Proof. Observe first that from Lemma 11, if r, t ∈  LVn \ {0, 1} and r 6= t
then L(F1,t) and L(F1,r) are not comparable. Now the first item is an obvious
consequence of the fact that if L(M) is contained in the interval bounded by
 Ln and L(F1,t) then there must exist an element r such that L(F1,r) has to
be contained in L(F1,t). And this is only true if r = t. The second and third
items are obvious consequences of Lemma 11 as well, since it follows that
L(M{1,t})) is defined by conditions C1∧Ct, while L(F1,t) is defined by conditions
K1 ∨ (C1 ∧ Ct).
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With all the preceding results, we can provide an informal description of the
lattice of intermediate logics IntΠ( Ln):

- The top of the lattice is  Ln.

- In the second layer, we have the coatoms of the lattice, the logics L(F1,t),
also coatoms of the sublattice IntLF

Π ( Ln).

- In the third layer, just below the logics L(F1,t), we have the logics
L(M{1,t}), the coatoms of IntOF

Π ( Ln), and then we have as well as the
pairwise intersection of the logics of the second layer, that is, the logics of
the form L(F1,t1,t2).

- By repeating the same process, the rest of logics of the sublattices
IntLF

Π ( Ln) and IntOF
Π ( Ln) appear in lower layers together with all their

intersections.

- Finally, there also appear logics resulting from intersections of the previous
logics with some non-intermediate logics (hence outside Int( Ln)). These
new logics are of the form L(M) where the set M contains at least some
MT with |T | > 1 and max(T ) < 1.

Some interesting examples of logics belonging to the latter class can be
obtained by adding to  L≤n inference rules like the explosion rule and its general-
izations defined in previous sections. Thanks to Lemma 11, these logics can be
easily characterized as logics of some lattice filters over direct products of Ln.
Indeed:

• The logic  L≤n +(exp) is characterized by the condition

K r
n−1
∨ (C 1

n−1
∧ . . . ∧ Cn−2

n−1
∧ C1),

with r being the first natural such that r
n−1 > 1/2. This condition defines

the logic L(M) whereM = {F1, Fn−2
n−1

, . . . , F r+1
n−1

, F r
n−1 ,...,

1
n−1
}. For n > 3,

this logic belongs neither to IntLF
Π ( Ln) nor to IntOF

Π ( Ln). This is not

true if n = 3, since the logic  L≤3 +(exp) is in fact the logic L(F1,1/2), that
belongs to IntLF

Π ( Ln).

• The logic  L≤n +(exp−k ) is characterized by condition

K r
n−1
∨ (C 1

n−1
∧ . . . ∧ Cn−2

n−1
∧ C1),

with r the first natural such that r
n−1 > 1/k + 1. This condition defines

the logic L(M) where M = {F1, Fn−2
n−1

, . . . , F r+1
n−1

, F r
n−1 ,...,

1
n−1
}.

• The logic  L≤n +(exp+
k ) is characterized by conditions

K r
n−1
∨ (C 1

n−1
∧ . . . ∧ Cn−2

n−1
∧ C1),

with r being the first natural such that r
n−1 > k/k + 1. This condition

defines the logic L(M) where M = {F1, Fn−2
n−1

, . . . , F r+1
n−1

, F r
n−1 ,...,

1
n−1
}.
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• The logics  L≤n,r =  L≤n +(R̄r) are characterized by the condition

C t
n−1
∧ . . . ∧ Cn−2

n−1
∧ C1,

with t being the first natural such that t
n−1 ≥ r. This condition defines

the logic L(F) where M = {F1, Fn−2
n−1

, . . . , F t
n−1
}.

The logics  L≤n,r belong to the lattice IntOF
Π ( Ln), while the logics  L≤n +(exp−k ) and

 L≤n +(exp+
k ) belongs neither to IntLF

Π ( Ln) nor to IntOF
Π ( Ln), and moreover they

cannot be obtained as intersection of logics belonging to these Boolean lattices.
Actually, the logics  L≤n +(exp−k ) and  L≤n +(exp+

k ) are obtained as intersection
of logics of IntOF

Π ( Ln) with logics defined by lattice filters F{ r
n−1 ,...,

1
n−1} with

r < n − 1, and thus not belonging to IntLF
Π ( Ln), since the latter are logics

defined by filters FT where max(T ) = 1.
Moreover, the logics belonging to IntΠ( Ln) that are paraconsistent are char-

acterized in the following proposition.

Proposition 12. The paraconsistent logics of IntΠ( Ln) are the logics L(F1, Ft)
with t < 1/2 and all those contained in them.

Proof. Observe first that, since the logics L(F1,t) are semantically defined by
condition K1 ∨ (C1 ∧ Ct), it is obvious that these logics are explosive for any
t ∈  LVn \ {0, 1}. Indeed for any evaluation e, e(p ∧ ¬p) ≤ 1/2 < 1 and thus the
explosion rule is valid in that logic. On the other hand, the logics L(F1, Ft) are
semantically defined by the condition C1 ∧ Ct, and if t ≤ 1/2, there is at least
one evaluation e such that e(p ∧ ¬p) ≥ t. Since e(⊥) = 0, the explosion rule
is not compatible with the lattice filter Ft, hence it is not sound in L(F1, Ft).
So, the logic L(F1, Ft) is paraconsistent. Finally since any logic contained in a
paraconsistent one is also paraconsistent, the proposition is proved.

In the examples of Appendices A1 and A2 we can see that in IntΠ( L3) the

only paraconsistent logic is  L≤3 (since the only intermediate value, different from
0 and 1, is 1/2) while in IntΠ( L4) the paraconsistent logics are L(F1,1/3) and

those below it, L(F1/3, F1,2/3,1/3) and  L≤4 .

6.2 About the axiomatization of logics of IntΠ( Ln)

In order to obtain the desired axiomatizations, notice first that as a consequence
of Lemma 11, any logic L(M) defined by a family F of lattice filters over direct
products of  LVn is determined by conjunctions and disjunctions of conditions
Kt and Cr. Thus, for every logic in IntΠ( Ln) we can obtain a corresponding
condition in a simplified disjunctive normal form (DNF). Here, simplified is in
the sense that we remove disjuncts containing other disjuncts and that, due to
their semantics, conjunctions Kt ∧ Cr are simplified to Kt when t ≤ r.10

10It holds since, if t ≤ r, then Kt(Γ) implies Cr(Γ, ϕ), for every Γ and ϕ.
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Moreover, each atomic condition, either of the form Kt or Cr, determines a
set of pairs of values (v1, v2) ∈  LVn× LVn satisfying the condition in the following
sense: (v1, v2) satisfies Kt if v1 < t, and it satisfies Cr if min(v1, v2) ≥ r.
Then the set of pairs satisfying a disjunct of a DNF (a conjunction of atomic
conditions) will be the intersection of the sets satisfying each of its conditions.

On the other hand, it is clear that for any set A ⊂ ( LVn)2 there is a Mc-
Naughton function f on two variables over [0, 1]2 such that f(x, y) = 1 for all
(x, y) ∈ A and f(x, y) 6= 1 for all (x, y) /∈ A.

Having these observations in mind, we propose a method to axiomatize the
logics of IntΠ( Ln). Let F be a family of lattice filters over direct products of
 LVn. Then the method to axiomatize the logic L(F) can be sketched in the
following steps:

1. Take the “and” of the conditions that semantically determine the logics
L(FT ) for each FT ∈ F . Compute their simplified disjunctive normal
form, namely D1 ∨ . . . ∨Dk.

2. For each disjunct Di, compute the set Ai ⊆ ( LVn)2 of pairs of values
satisfying the condition Di, and build a McNaughton function MNi(x, y)
such that its restriction to ( LVn)2 has value 1 on the points of Ai and a
value less than 1 in points outside Ai.

3. The logic L(F) is axiomatized by the axioms and rules of  L≤n plus restricted
inference rules of the form

ϕ `MNi(ϕ,ψ)

ψ

one for each Di.

Proposition 13 (Soudness and completeness). The method described above
provides an effective way to come up with a sound and complete axiomatization
of the logic L(FT ).

The proof is rather similar to the proof of Proposition 8 and thus is not
repeated here. In the Appendix A we will illustrate the above method with the
examples for  L3 and  L4.

7 Towards the description of the full lattice
Int( Ln): the case of n− 1 prime

The introduction of lattice filters whose components are defined in different
subalgebras of  LVn makes the study of their logics much more complicated. In
this section we consider a relatively easy case, when n − 1 is a prime number
and hence when  LVn has a unique proper subalgebra, the two element Boolean
algebra  LV2.
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Throughout this section we assume n−1 to be a prime number. Taking into
account that the unique proper filter of  LV2 is {1}, we only need to consider
two types of  Ln-determination sets T of lattice filters, depending of whether
(1,  LV2) ∈ T or not. In the last section we have already studied logics L(FT )
when (1,  LV2) 6∈ T , i.e, when taking lattice filters over direct products of  LVn.
Now, next lemma gives a basic result in order to study logics L(FT ) when
(1,  LV2) ∈ T .

Lemma 11. Let T be a determination set for  Ln (with n− 1 prime) such that
(1,  LV2) ∈ T . Then we have:

• if T = {(1,  LV2), (1,  LVn))}, then L(FT ) strictly contains  Ln;

• otherwise the logic L(FT ) is not comparable with  Ln, i.e. it is not an
intermediate logic.

Proof. We begin with the proof of the second item. Suppose that
T = {(1,  LV2), t1, . . . , tk}.11 By definition,

Γ `MT
ϕ iff (∀e0,∀e1, . . . ,∀ek)

(
if

k∧
j=0

[ej(Γ
∧) ≥ tj ] then

k∧
j=0

[ej(ϕ) ≥ tj ]
)

where e0 ranges over evaluations over  LV2 and every ei for i > 0 ranges over
evaluations over  LVn. By splitting it for each component of the filter FT , this
is equivalent to: Γ `T ϕ iff

• ∀e0, if [e0(Γ∧) = 1 and (∀i > 0,∃ei : ei(Γ
∧) ≥ ti)] then e0(ϕ) = 1, and

• ∀ei, if [ei(Γ
∧) ≥ ti and (∀j > 0 and j 6= i, ∃ej : ej(Γ

∧) ≥ tj) and ∃e0 :
e0(Γ∧) = 1] then ei(ϕ) ≥ ti, for all i = 1, . . . , k

where again, e0 ranges over evaluations over  LV2 and every ei for i > 0 ranges
over evaluations over  LVn. Taking into account that the existence of an evalua-
tion over  LV2 with value 1 implies the existence of an evaluation over  LVn with
value 1, the former conditions can be simplified to:

• ∀e0, if e0(Γ∧) = 1 then e0(ϕ) = 1, and

• ∀ei, if [ei(Γ
∧) ≥ ti and ∃e0 : e0(Γ∧) = 1] then ei(ϕ) ≥ ti, for all i =

1, . . . , k.

Which in turn are equivalent to:

• ϕ follows from Γ in classical logic (i.e. under Boolean semantics), noted
Γ `CL ϕ, and

• either ∀e0 : e0(Γ∧) < 1, or ∀i = 1, . . . , k and ∀ei: if ei(Γ
∧) ≥ ti then

ei(ϕ) ≥ ti.
11Recall that this is a shortcut for T = {(1,  LV2), (t1,  LVn), . . . , (tk,  LVn)}.
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The first item makes explicit that `L(FT ) ⊆ `CL. Taking into account that e0

ranges over evaluations over  LV2, then the first part of the disjunction of the
second item implies that Γ `T ϕ when for any classical evaluation v, v(Γ∧) = 0,
i.e., ¬(Γ∧) is a classical tautology. From this observation it is easy to prove that
L(FT ) is not comparable with  Ln:

• clearly ϕ ` Ln ϕ2 but p 0L(FT ) p
2 for p being a propositional variable.

Indeed neither ¬p is a classical tautology nor for any evaluation e over
 LVn, if t 6= 1, e(p) ≥ t implies e(p2) ≥ t.

• on the other hand, we have 3(p ∧ ¬p) 0 Ln (p ∧ ¬p) but 3(p ∧ ¬p) `L(FT )

(p ∧ ¬p). Indeed let e(p) = k/(n − 1) with k being the biggest natural
such that k

n−1 ≤ 1
2 ≤ k+1

n−1 . Then it is clear that e(p∧¬p) = k/(n−1), but
e(3(p ∧ ¬p)) = 1, and so 3(p ∧ ¬p) 0 Ln

(p ∧ ¬p). Moreover it is clear that
¬(3(p∧¬p)) is a classical tautology12 and thus 3(p∧¬p) `L(FT ) (p∧¬p).

In order to prove the first item of the lemma we reason in the same way and at
the end we conclude that Γ `L(FT ) ϕ iff either ¬Γ∧ is a classical tautology or
Γ `Ln ϕ. Therefore it is obvious that  Ln ⊆ L(FT ). Finally, as proven before,
3(p ∧ ¬p) `L(FT ) (p ∧ ¬p) and 3(p ∧ ¬p) 0 Ln

(p ∧ ¬p), hence the inclusion is
strict.

Before going further we introduce a new notation.

Notation: In what follows, consider the following condition:

K2
1 (Γ): for every evaluation v over  LV2, v(Γ∧) < 1

In other words, condition K2
1 (Γ) is equivalent to require that ¬Γ∧ is a classical

tautology.

Corollary 6. If (1,  LV2) ∈ T ∩R, then L(FT ) ∩ L(FR) = L(FT∪R)

Proof. We need only to take into account that L(FT )∩L(FR) is determined by
the condition (K2

1 ∨
∧{Ct : (t,  LVn) ∈ T})∧ (K2

1 ∨
∧{Ct : (t,  LVn) ∈ R}) =

K2
1 ∨

∧{Ct : (t,  LVn) ∈ (T ∪R)}.

This means that the family of logics L(FT ) when(1,  LV2) ∈ T forms
a ∧-semilattice. Moreover all these logics L(FT ), except for T =
{(1,  LV2), (1,  LVn)}, are incomparable to Ln. But by intersecting these log-
ics with  Ln, we can obtain new intermediate logics.

Lemma 12. If T = {(1,  LV2), (t,  LVn)} with t 6= 1, then L(FT ) ∩  Ln is a new
logic that strictly contains L(F1,t).

Proof. The logic L(FT ) ∩  Ln is semantically defined by the condition

(K2
1 ∨ Ct) ∧ C1 = (K2

1 ∧ C1) ∨ (C1 ∧ Ct),

12That is, a tautology over  LV2.
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while L(F1,t) is defined by the condition K1 ∨ (C1 ∧Ct). But clearly K1 implies
both K2

1 and C1, thus the inclusion is proved.

This proof can be easily generalized to obtain the following corollary.

Corollary 7. If T = {(1,  LV2), t1, . . . , tn}, then L(FT )∩  Ln is a new logic that
strictly contains L(F1,t1,...,tn).

As a consequence of the previous lemmas, it follows that these new logics
form a sublattice in Int( Ln).

Proposition 14. The set of logics L(FT ) ∩  Ln, with (1,  LV2) ∈ T , forms a
Boolean lattice that will be denoted Int2

Π( Ln), whose maximum is  Ln and whose
minimum is L(FT∗) ∩  Ln, where T∗ = {(1,  LV2), 1

n−1 , . . . ,
n−2
n−1 , 1}.

Similarly to what has been done with IntΠ( Ln) in Section 6.1, we can provide
now an informal description of the full lattice Int( Ln) when n− 1 is prime:

- The top of the lattice is  Ln.

- In the second layer, we have the coatoms of Int2
Π( Ln), the logics

L(F(1, LV2),t) ∩  Ln = L(F) with F = {F(1, LV2),t, F1}.
- In the third layer, we have the coatoms of IntLF

Π ( Ln) (each coatom L(F1,t)
just below L(F(1, LV2),t) ∩  Ln), and the pairwise intersections of coatoms
of Int2

Π( Ln), that is, the logics L(F(1, LV2),t,r) ∩  Ln.

- In a fourth layer, we have the coatoms of IntOF
Π ( Ln) (each coatom

L(F{1,t}) just below L(F1,t)), the intersection of the coatoms of IntLF
Π ( Ln)

(the logics L(F1,t1,t2)), and the 3-place intersections of the coatoms of
Int2

Π( Ln), that are the logics of the form L(F(1, LV2),t,r,s) ∩  Ln for differ-
ent t, r, s ∈  LVn \ {0}.

- By repeating the same process, the rest of logics of the three Boolean
sublattices IntLF

Π ( Ln), IntOF
Π ( Ln) and Int2

Π( Ln) appear in lower layers
together with all their intersections.

- Finally, there also appear logics resulting from intersections of the previous
logics with some non-intermediate logics (hence outside Int( Ln)). These
new logics are of the form L(F) where the set F contains at least some
FT with |T | > 1 and max(T ) < 1.

As a final remark, observe that any logic L in Int2
Π( Ln) satisfies condition

K2
1 (that is, K2

1 (Γ) implies Γ ` ϕ, for every Γ and ϕ), and all such logics
are explosive. Indeed, for any crisp evaluation e, e(ϕ ∧ ¬ϕ) = 0, i.e., the
condition K2

1 ({ϕ,¬ϕ}) is verified, and hence ϕ,¬ϕ `L ⊥ for any L ∈ Int2
Π( Ln).

Nevertheles, we can obtain new paraconsistent logics by intersecting them with
paraconsistent logics of IntΠ( Ln). This is the case, for instance, of the logic
Λ7 = L(F(1,L2),2/3,1/3) ∩ L(F1, F1/3) shown in the graph of the all intermediate
logics for  L4 of Fig. 4 in Appendix B2.

In the Appendices B1 and B2, as a matter of example, we show the lattice
of all intermediate logics for  L3 and  L4.
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8 Concluding remarks

In this paper we have provided results towards a full study of intermediate log-
ics between the degree-preserving and the truth-preserving  Lukasiewicz logics,
both for the cases of the finite-valued and the infinite-valued logics. In the
infinite-valued case we have proved that there is at least a countable sequence
of paraconsistent logics between the minimal paraconsistent intermediate logic
 L≤ and the minimal explosive logic  L≤exp. Similarly, we have proved that there is
at least a countable sequence of explosive logics between the minimal explosive
logic  L≤exp and the maximal intermediate logic  L. We have also proved that
it is not possible to characterize these logics by matrices over [0, 1] defined by
lattice filters, with the exception of  L≤ and  L. This makes the characterization
of the full set of intermediate logics very difficult. Even when we have restricted
ourselves to the case to finite-valued  Lukasiewicz logics  Ln we have not succeded
in providing a full description of intermediate logics in general, only in the case
that n− 1 is a prime number we have provided a much more complete insight.
Nevertheless the examples of  L3 and  L4 are fully described and we show a way
for a general study of the case where n− 1 is a prime number.

The paper leaves a number of interesting questions for further research, for
instance:

1. When studying the intermediate logics for  Ln we have used some log-
ics that are not intermediate, that would be interesting to analyze. For
example, we have used the logics L(Ft) being 1 6= t ∈  LVn (that are
logics not comparable with  Ln), as well as the intersection of them with
 Ln. In the case of  L3 we can find the logic L(F1/3) that coincides with
the well-known paraconsistent logic J3 introduced by N. da Costa and I.
D’Ottaviano in [12]. Therefore, their study is also interesting in order
to obtain new paraconsistent logics from  Lukasiewicz logics and, perhaps,
like in the case of L(F1/3), some ideal paraconsistent logic in the sense
of [2].

2. When studying the intermediate logics defined by matrices whose algebras
are not direct products of  LVn, one needs to consider matrices defined
over subalgebras of  LVn as well. In the case of n− 1 prime, all the logics
defined by filters of type F(1, LV2),t1,...,tk , for either t1 < 1 or k > 1 are
explosive, and the full set of these logics forms a Boolean lattice anti-
isomorphic to the set of subsets of  LVn. Is it also true, or is there an
analogous result in the general case?

As a general conclusion we can say that the study initiated in this paper has
introduced a wide family of paraconsistent logics with nice semantics, that can
be enlarged when studying the logics described in first item above.

Finally, let us remark that, in the general setting of abstract algebraic logic,
the paper provides a large set of examples of admissible rules in the degree
preserving (finite or infinite-valued)  Lukasiewicz logics.
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Appendix A: The lattices IntΠ( L3) and IntΠ( L4)
of intermediate logics

A1: The lattice of intermediate logics IntΠ( L3)

In  LV3 the lattice filters are F1 and F 1
2
, defining the logics L(F1) =  L3 and

L(F1, F 1
2
) =  L≤3 , and there is only one lattice filter defining a different logic, the

lattice filter F1, 12
:

L(F1,1/2)

• Semantic condition: K1 ∨ (C1 ∧ C1/2)

• Axiomatization:

 L≤3 + (exp) =  L≤3 +
ϕ ` ¬(ϕ⊕ ϕ))

⊥

The lattice IntΠ( L3) is then the chain of three elements depicted in Figure 1,
where the sublattice IntLF

Π ( L3) is composed of the logics  L3 and L(F1, 12
), while

the sublattice IntOF
Π ( L3) is composed of the logics  L3 and  L≤3 . The only para-

consistent logic in IntΠ( L3) is obviously  L≤3 .

Figure 1: Logics between  L≤3 and  L3 in the lattice IntΠ( L3).

A2: The lattice of intermediate logics IntΠ( L4)

The lattice IntΠ( L4) contains the following logics:

• those belonging to the sublattice IntLF
Π ( L4), i.e. the four logics  L4,

L(F1,2/3), L(F1,1/3), and L(F1,2/3,1/3);

• those in the sublattice IntOF
Π ( L4), i.e. the four logics  L4, L(F1, F2/3),

L(F1, F1/3), and L(F1, F2/3, F1/3) =  L≤4 ;

• those obtained by intersection of logics in the two sublattices above, that
is, the logics L(F1, F2/3) ∩ L(F1,2/3,1/3) = L({F1, F2/3, F1,2/3,1/3}), and
L(F1, F1/3) ∩ L(F1,2/3,1/3) = L({F1, F1/3, F1,2/3,1/3});
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• those not appearing in the above items: in this case we only have the logic
L(F1, F2/3,1/3) =  L≤4 +(exp).

The lattice IntΠ( L4) is depicted in Figure 2, where the grey nodes correspond
to paraconsistent logics. Next we describe the logics with the conditions charac-
terizing them (we give the semantic conditions and their simplified disjunctive
normal form if they are different from the original semantic conditions) and
their axiomatization.13 In the following description we omit the logics  L4 and
 L≤4 , whose axiomatizations are already well known.

 L
4

 L4

{F1, F 1
3 , 2

3
}

{F 2
3
, F1, 2

3 , 1
3
}

{F1, 2
3 , 1

3
}

{F 1
3
, F1, 2

3 , 1
3
}

{F1, F 2
3
} {F1, F 1

3
}

{F1, 1
3
}{F1, 2

3
}

+(exp) L
4

Figure 2: All intermediate logics between  L≤4 and  L4 in the lattice IntΠ( L4).

1. Logics belonging to IntLF
Π ( L4):

L(F1,2/3)

• Semantic condition: K1 ∨ (C1 ∧ C2/3)

• Axiomatization:

 L≤4 +
ϕ ` ¬(ϕ3)

⊥ +
ϕ ` (ϕ→ ¬ϕ) ∨ (ϕ→ ψ)

ψ

L(F1,1/3)

• Semantic condition: K1 ∨ (C1 ∧ C1/3)

• Axiomatization:

 L≤4 +
ϕ ` ¬(ϕ3)

⊥ +
ϕ `MN2/3,1/3(ϕ,ψ) ∨ (ϕ→ ψ)

ψ

L(F1,2/3,1/3)

13In the axiomatizations we use the abbreviations: ϕk for ϕ ⊗ ϕ . . . ⊗ ϕ and kϕ for ϕ ⊕
ϕ . . .⊕ ϕ.
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• Semantic condition: K1 ∨ (C1 ∧ C2/3 ∧ C1/3)

• Axiomatization:

 L≤4 +
ϕ ` ¬(ϕ3)

⊥
2. Logics belonging to IntOF

Π ( L4):

L(F1, F2/3)

• Semantic condition: C1 ∧ C2/3

• Axiomatization:

 L≤4 +
ϕ ` (ϕ→ ¬ϕ) ∨ (ϕ→ ψ)

ψ

L(F1, F1/3)

• Semantic condition: C1 ∧ C1/3

• Axiomatization:

 L≤4 +
ϕ `MN2/3,1/3(ϕ,ψ) ∨ (ϕ→ ψ)

ψ

3. Logics obtained as intersection of logics of IntLF
Π ( L4) and IntOF

Π ( L4):

L(F1,2/3,1/3, F1, F2/3)

• Semantic condition: (K1 ∨ (C1 ∧ C2/3 ∧ C1/3)) ∧ (C1 ∧ C2/3) =
(K1 ∧ C2/3) ∨ (C1 ∧ C2/3 ∧ C1/3)

• Axiomatization:

 L≤4 +
ϕ ` ¬ϕ2 ∨ (¬ϕ3 ∧ 2ψ)

ψ

L(F1, F1/3, F1,2/3,1/3)

• Semantic condition: C1 ∧ C1/3 ∧ (K1 ∨ (C1 ∧ C2/3 ∧ C1/3)) =
(K2/3 ∧ C1/3) ∨ (C1 ∧ C2/3 ∧ C1/3)

• Axiomatization:

 L≤4 +
ϕ ` (¬ϕ3 ∧ 3ψ)

ψ

4. The remaining logic is related to the explosion inference rule:

L(F1, F2/3,1/3)

• Semantic condition: C1 ∧ (K2/3 ∨ (C2/3 ∧C1/3)) = K2/3 ∨ (C1 ∧
C2/3 ∧ C1/3)

• Axiomatization:

 L≤4 + (exp) =  L≤4 +
ϕ ` ¬(ϕ⊕ ϕ))

⊥
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Appendix B: The lattice of all the intermediate
logics for  L3 and  L4

B1: Intermediate logics for  L3

The Boolean lattice Int2
Π( L3) described in Section 7 contains only two interme-

diate logics,  L3 and L(F(1, LV2),1/2)∩ L3. As it can be proved, L(F(1, LV2),1/2)∩ L3

strictly contains the coatom of the Boolean lattice IntΠ( L3), i.e., it contains the

logic  L≤3 +(exp) = L(F1,1/2). Indeed, the condition defining L(F(1, LV2),1/2)∩  L3

is K2
1 ∨ C1/2, and the one defining L(F1,1/2) is K1 ∨ (C1 ∧ C1/2). In order to

show the inclusion it is now a simple computation to check that the derivation
ϕ ↔ ¬ϕ ` ⊥ holds in L(F(1, LV2),1/2) ∩  L3 (K2

1 ({ϕ ↔ ¬ϕ}) is verified) but not
in L(F1,1/2) (neither condition K1 nor C1 is satisfied).

Therefore the lattice of all intermediate logics for  L3 is the chain of four
elements depicted in Figure 3, where only  L≤3 is paraconsistent.

Figure 3: All intermediate logics between  L≤3 and  L3.

B2: Intermediate logics for  L4

The new intermediate logics obtained in Section 7 are the ones belonging to
Int2

Π( Ln) plus their intersection with the logics belonging to IntLF
Π ( Ln) and

IntOF
Π ( Ln). For n = 4, they are described below together with the conditions

defining them and their relation to the logics of matrices defined by lattice filters
over direct products of copies of  LV4 described in Appendix A2 and depicted
in Figure 2.

In order to have a complete description of the intermediate logics for  L4 we
have to consider the relation between the logics depicted in Figure 2 and the
ones obtained by intersecting logics of Int2

Π( L4) with logics of either IntLF
Π ( L4)

or IntOF
Π ( L4). The complete graph of the lattice Int( L4) is depicted in Figure 4,

where again the grey nodes correspond to paraconsistent logics and where the
new logics obtained (Λ1, . . . ,Λ7) are listed below together with their charac-
terizing conditions and their relative position in the graph. At the end of this
subsection we sketch a method to prove all the inclusions described below and
we show the proof for two particular cases (which are not consequence of results
of Appendix A2).
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4

 L4

{F1, F 1
3 , 2

3
}

{F 2
3
, F1, 2

3 , 1
3
}

{F1, 2
3 , 1

3
}

{F 1
3
, F1, 2

3 , 1
3
}

{F1, F 2
3
} {F1, F 1

3
}

{F1, 1
3
}{F1, 2

3
}

⇤1 ⇤2

⇤3

⇤4 ⇤5

⇤6 ⇤7

+(exp) L
4

Figure 4: All intermediate logics between  L≤4 and  L4.

1. Logics belonging to Int2
Π( L4) with their defining conditions, and their

relation to the logics of IntΠ( L4), depicted in Fig. 2:

Λ1 =  L4 ∩ L(F(1, LV2),2/3)

• Semantical condition: C1∧(K2
1 ∨C2/3) = (K2

1 ∧C1)∨(C1∧C2/3)

• This logic strictly contains L(F1,2/3) and it is not comparable
with L(F1,1/3).

Λ2 =  L4 ∩ L(F(1, LV2),1/3)

• Semantical condition: C1∧(K2
1 ∨C1/3) = (K2

1 ∧C1)∨(C1∧C1/3)

• This logic strictly contains L(F1,1/3) and it is not comparable
with L(F1,2/3).

Λ3 =  L4 ∩ L(F(1, LV2),2/3) ∩ L(F(1, LV2),1/3) =  L4 ∩ L(F(1, LV2),2/3,1/3)

• Semantical condition: C1 ∧ (K2
1 ∨ (C2/3 ∧ C1/3)) = (K2

1 ∧ C1) ∨
(C1 ∧ C2/3 ∧ C1/3)

• This logic is strictly contained in Λ1 and in Λ2, and it strictly con-
tains L(F1,2/3,1/3). Moreover, it is not comparable with L(F1,2/3)
and L(F1,1/3).

2. Logics obtained by intersection with logics of IntLF
Π ( L4):

Λ4 =  L4∩L(F(1, LV2),2/3,1/3)∩L(F1,2/3) = L(F(1, LV2),2/3,1/3)∩L(F1,2/3)

• Semantical condition: ((K2
1∧C1)∨(C1∧C2/3∧C1/3))∧(K1∨(C1∧

C2/3)) = (K1∧K2
1 ∧C1)∨(K1∧C2/3∧C1/3)∨(K2

1 ∧C1∧C2/3)∨
(C1∧C2/3∧C1/3) = 14K1∨ (K2

1 ∧C1∧C2/3)∨ (C1∧C2/3∧C1/3)

14Take into account that K1 implies K2
1 ∧C1, that is: K1(Γ) implies K2

1 (Γ)∧C1(Γ, ϕ), for
every Γ, ϕ.
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• This logic is strictly contained in L(F1,2/3) and strictly contains
L(F1,2/3,1/3). Moreover, it is not comparable with L(F1, F2/3).

Λ5 =  L4∩L(F(1, LV2),2/3,1/3)∩L(F1,1/3) = L(F(1, LV2),2/3,1/3)∩L(F1,1/3)

• Semantical condition: ((K2
1∧C1)∨(C1∧C2/3∧C1/3))∧(K1∨(C1∧

C1/3)) = (K1∧K2
1 ∧C1)∨(K1∧C2/3∧C1/3)∨(K2

1 ∧C1∧C1/3)∨
(C1 ∧C2/3 ∧C1/3) = K1 ∨ (K2

1 ∧C1 ∧C1/3)∨ (C1 ∧C2/3 ∧C1/3)

• This logic is strictly contained in L(F1,1/3) and strictly contains
L(F1,2/3,1/3). Moreover, it is not comparable with L(F1 ∩ F1/3).

3. Logics obtained by intersection with logics of IntOF
Π ( L4):

Λ6 = L(F(1, LV2),2/3,1/3)∩L(F1,2/3)∩L(F1, F2/3) = L(F(1, LV2),2/3,1/3)∩
L(F1, F2/3)

• Semantical condition: (K1∨(K2
1∧C1∧C2/3)∨(C1∧C2/3∧C1/3))∧

(C1∧C2/3)) = (K2
1 ∧C1∧C2/3)∨(K1∧C2/3)∨(C1∧C2/3∧C1/3)

• This logic is strictly contained in L(F1, F2/3) and strictly contains
L(F1,2/3,1/3) ∩ L(F1, F2/3).

Λ7 = L(F(1, LV2),2/3,1/3)∩L(F1,1/3)∩L(F1, F1/3) = L(F(1, LV2),2/3,1/3)∩
L(F1, F1/3)

• Semantical condition: (K1∨(K2
1∧C1∧C1/3)∨(C1∧C2/3∧C1/3))∧

(C1∧C1/3)) = (K2
1 ∧C1∧C1/3)∨(K1∧C1/3)∨(C1∧C2/3∧C1/3)

• This logic is strictly contained in L(F1, F1/3) and strictly contains
L(F1,2/3,1/3) ∩ L(F1, F1/3).

Now we describe a method to prove that a logic of the family above is strictly
contained in some other logic of that family. The basic idea is that, for any
given function f :  LV4 −→  LV4 such that f(0), f(1) ∈ {0, 1}, there exists a Mc-
Naugthon function fM : [0, 1]→ [0, 1] such that its restriction to  LV4 coincides
with f , and thus there is a logical formula that corresponds to this function.
Therefore to prove an inclusion it is enough to provide two functions f4 and g4

that ‘satisfy’ (abusing the language by identifying functions and formulas) one
condition and not the other. Here is one example.

We have claimed that the logic L(F(1, LV2),2/3,1/3)∩L(F1,2/3) is strictly con-
tained in L(F1,2/3) and strictly contains L(F1,2/3,1/3). Take the conditions defin-
ing these logics:

• L(F(1, LV2),2/3,1/3)∩L(F1,2/3) is defined by the condition K1 ∨ (K2
1 ∧C1 ∧

C2/3) ∨ (C1 ∧ C2/3 ∧ C1/3),

• L(F1,2/3) is defined by the condition K1 ∨ (C1 ∧ C2/3),

• L(F1,2/3,1/3) is defined by the condition K1 ∨ (C1 ∧ C2/3 ∧ C1/3).

To prove that L(F(1, LV2),2/3,1/3)∩L(F1,2/3) is strictly contained in L(F1,2/3) we
need to define functions f4 and g4 satisfying the condition of the second logic
but not the condition of the first one. Take f4(x) = x and g4(x) = 2/3 if x = 2/3
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and g4(x) = 0 otherwise. Obviously f4 neither satisfies K1 nor K2
1 , while both

f4 and g4 satisfy C1 and C2/3, but not C1/3. Thus f4 and g4 satisfy the condition
of L(F1,2/3) but not the condition of L(F(1, LV2),2/3,1/3) ∩ L(F1,2/3).

On the other hand to prove that L(F(1, LV2),2/3,1/3) ∩ L(F1,2/3) strictly
contains L(F1,2/3,1/3) we take the functions f4 and g4 defined as follows:
f4(0) = f4(1) = 0, f4(1/3) = 1 and f4(2/3) = 1/3, and g4(1/3) = 1 and
g4(x) = 0 otherwise. One can check that f4 satisfies K2

1 but not K1. Moreover
both functions satisfy C1 and C2/3 but not C1/3. Thus f4 and g4 satisfy the
condition of L(F(1, LV2),2/3,1/3)∩L(F1,2/3) but not the condition of L(F1,2/3,1/3).
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