



# Our Astrochemical History CM1401 Book of abstracts



## First General Meeting in Prague May 25-29, 2015





UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

## **Small Linear Carbon Chains: Vibrational and Electronic States**



## R.Boussessi <sup>a,b</sup>, R.Domínguez-Gómez <sup>c</sup>, A.Benidar <sup>d</sup>, J. Cernicharo <sup>e</sup> and M.L.Senent <sup>a</sup>

<sup>a</sup> Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, SPAIN

<sup>b</sup> Laboratoire de Spectroscopie Atomique, Moléculaire et Applicationas, I: SMMALR01ES09, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisie.
<sup>c</sup> Departamento de Ingeniería Civil, Cátedra de Química, E.U.IT. Obras Públicas, Université de Tunis El Manar, 2092, Tunis, Tunisie.
<sup>c</sup> Institut de Physique de Rennes, Département Physique Moléculaire, UMR 6251 du CNRS - Université de Rennes 1, Bát. 1102, 263 av. Général Lecterc, 35042 Rennes Cedex, France.
<sup>e</sup> Grupo de Astrofísica Molecular. Instituto de CC. de Materiales de Madrid (ICMM-CSIC). Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain

### Introduction

The study of carbon chains type Cn and their ions has been attracted a significant effort due to their connection with the astrophysical observations, because pure carbon chains are abundant species in several sources such as the carbon rich circumstellar envelopes. In addition, they can play important roles in the reactivity of large systems containing carbon atoms. Carbon molecules have been considered responsible of the Diffuse Interstellar Bands (DIBs) [1]. Small chains are building blocks of larger species such as the fullerenes and the PAHs.

In spite of their astrophysical relevance, few bare chains have been observed in gas phase extraterrestrial sources. The shortest chain  $C_2$ , was the first detected, followed by  $C_3$  and the linear- $C_5$ [2-3]. Detections were performed through the analysis of Infra-Red active vibrational excitations or through their electronic transitions because they present a zero dipole moment. All the Cn chains present a large number of isomers, however, in this work we focus on the linear

ones. The large stability of charged linear chains was used as argument to predict the presence of anions in the interstellar medium. Special attention is given to the anions which relevance for reactivity is evident.

1- Structural Parameters, Rotational Constants and Harmonic Frequencies :

## Computational Details

For this work, we have employed highly correlated ab initio methods to determined vibrational and electronic energies. The following ab initio methods were used for computations: - The RCCSD(T)-F12 method implemented in MOLPRO, was employed to determine accurate equilibrium geometries and equilibrium rotational constants as well as harmonic frequencies of the small chains type Cn

(n=3,4,5,6,7). Multiconfigurational complete active space self-consistent field (CASSCF) calculations were performed to

determine vertical energies of the lowest electronic states involved in the nolecular reactivity. The energies were refined using multireference configuration interaction (MRCI) theory implemented in MoLPRO. Whereas all the valence electrons were correlated for C<sub>3</sub> and for large systems, the active space was reduced. We used 13 orbitals for C4, 16 orbitals for C5, 19 orbitals for C6 and 22 orbitals for C7.



## **Preliminary Results**

#### 2- Harmonic Stretching Frequencies:

| Tab<br>F | le 3: RC<br>requent | CSD(T)-F12<br>cies and MP | /aug-cc-pVTZ Harmonic \$<br>2/aug-ccpVTZ Intensitie | Stretching<br>es of C <sub>n</sub> |
|----------|---------------------|---------------------------|-----------------------------------------------------|------------------------------------|
|          | ω                   | Calc.                     | Exp.                                                | Intensity<br>(km/Mole)             |
| ~        | ω (σ <sub>g</sub> ) | 1200.2                    | 1224.49[10]                                         | 0                                  |
| 63       | ω (σ_)              | 2098.0                    | 2040.0192(6)[11]                                    | 521.6                              |
|          |                     | 2106.89                   | 2032(50)[12]; 2057(50)[13]                          | 0                                  |
| C4       | ω (0 <sub>g</sub> ) | 939.70                    |                                                     | 0                                  |
|          | ω (σ_)              | 1922.90                   | 1548.6128(4)[5]                                     | 638.9                              |
|          |                     | 1986.76                   |                                                     | 0                                  |
| CF.      | ω (0 <sub>9</sub> ) | 778.18                    | 798(45)[14]; 775.8[12]                              | 0                                  |
| Co       | ω (σ_)              | 2215.74                   | 2169.4410(2)[6]                                     | 1534.2                             |
|          |                     | 1453.17                   | 1446.6[15]                                          | 82.9                               |
|          | ω (σ_)              | 2140.67                   | 2061(10) [16]                                       | 0                                  |
|          |                     | 1705.10                   | 1694(50) [13]                                       | 0                                  |
| C6       |                     | 656.94                    | 637(50) [13]                                        | 0                                  |
|          | 6.3                 | 2201.88                   | 1959.85852(18) [7]                                  | 1804.0                             |
|          | ω (0 <sub>u</sub> ) | 1254.18                   | 1197.3 [17]                                         | 475.5                              |
|          |                     | 2166.5                    |                                                     | 0                                  |
| C7       | ω (σ_)              | 1564.4                    |                                                     | 0                                  |
|          |                     | 574.9                     | 548(90)[12]                                         | 0                                  |
| [8]      |                     | 2200.1                    | 2138.3152[9]; 2127.8[18]                            | 2436.8                             |
| •••      | ω (σ <sub>u</sub> ) | 1931.6                    | 1898.3758(8)[19,20]                                 | 596.2                              |
|          |                     | 1088.1                    |                                                     | 11.7                               |

| Table 4: RCCSD(T)-F12/aug-cc-pVTZ<br>Harmonic Stretching Frequencies and<br>MP2/aug-cc-pVTZ Intensities of C <sub>n</sub> |                     |            |                        |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------------------|--|--|--|--|--|--|--|
| anion                                                                                                                     | ω                   | calculated | Intensity<br>(km/Mole) |  |  |  |  |  |  |  |
| 0.0                                                                                                                       | ω (σ_)              | 1849.69    | 0                      |  |  |  |  |  |  |  |
| U3                                                                                                                        | ω (σ.)              | 3477.47    | 7183.4                 |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 3136.63    | 0                      |  |  |  |  |  |  |  |
| C4                                                                                                                        | ω (0 <sub>9</sub> ) | 2518.24    | 0                      |  |  |  |  |  |  |  |
|                                                                                                                           | ω (σ.)              | 4115.24    | 7322.3                 |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 1887.11    | ~0                     |  |  |  |  |  |  |  |
| CE-                                                                                                                       | ω (0 <sub>9</sub> ) | 754.97     | 0                      |  |  |  |  |  |  |  |
| 65                                                                                                                        | (7)                 | 1978.89    | 2402.7                 |  |  |  |  |  |  |  |
|                                                                                                                           | ω (ο <sub>u</sub> ) | 1430.63    | 7302.9650              |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 2171       | 0                      |  |  |  |  |  |  |  |
|                                                                                                                           | ω (σ_)              | 1857       | 0                      |  |  |  |  |  |  |  |
| C6 <sup>-</sup>                                                                                                           |                     | 654        | 0                      |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 2021       |                        |  |  |  |  |  |  |  |
|                                                                                                                           | ω(σω)               | 1215       | 1338.3                 |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 3148.6     | 0                      |  |  |  |  |  |  |  |
|                                                                                                                           | ω (σ <sub>9</sub> ) | 2027.5     | 0                      |  |  |  |  |  |  |  |
| C7 <sup>.</sup>                                                                                                           |                     | 840.8      | 0                      |  |  |  |  |  |  |  |
| [8]                                                                                                                       |                     | 4896.1     | 1206.2                 |  |  |  |  |  |  |  |
|                                                                                                                           | ω (σ.,)             | 2568.9     | 3058.7                 |  |  |  |  |  |  |  |
|                                                                                                                           |                     | 647.9      | 71.8                   |  |  |  |  |  |  |  |

**ipr** 

## Conclusions

\*\*\*\*\*

| C3 C4             |          | C4 <sup>.</sup>                 |      | C5                            |          | C6                           |          | C6 <sup>.</sup>               |          | C7[8]             |          | C7·[8]              |      |                               |          |
|-------------------|----------|---------------------------------|------|-------------------------------|----------|------------------------------|----------|-------------------------------|----------|-------------------|----------|---------------------|------|-------------------------------|----------|
| nmetry            | <u>E</u> | symmetry                        | E    | symmetry                      | <u>E</u> | symmetry                     | <u>E</u> | symmetry                      | <u>E</u> | symmetry          | <u>E</u> | symmetry            | E    | symmetry                      | <u>E</u> |
| 1Σ <sub>g</sub> * | 0        | x <sup>3</sup> Σ <sub>g</sub>   | 0    | X ²∏g                         | 0        | X 1Σ <sub>g</sub> *          | 0        | X <sup>3</sup> Σ <sub>g</sub> | 0        | X 2∏u             | 0        | X 1Σ <sub>g</sub> * | 0    | Х <sup>2</sup> П <sub>q</sub> | 0        |
| 3П                | 2.14     | 1Δ <sub>g</sub>                 | 0.40 | <sup>2</sup> Σ <sub>g</sub> * | 1.56     | 3П.                          | 2.37     | 1Δ <sub>g</sub>               | 0.32     | ²Σ <sub>g</sub> * | 1.56     | 3Σ_*                | 1.97 | 4П.                           | 1.93     |
|                   |          | 1 <sup>1</sup> Σ <sub>g</sub> + | 0.59 | 2Σ_*                          | 1.61     | 3Σ_*                         | 2.39     | 1Σ <sub>g</sub> *             | 0.47     | 2Σ_*              | 1.61     | зДu                 | 2.20 | 2П <sub>0</sub>               | 2.28     |
|                   |          | ЗПа                             | 1.06 |                               |          | 3П.                          | 2.44     | ³П                            | 1.35     |                   |          | 3П.                 | 2.20 | <sup>4</sup> Σ <sub>g</sub>   | 2.37     |
|                   |          | зП                              | 1.32 |                               |          |                              |          | з⊓а                           | 1.38     |                   |          | зПа                 | 2.21 | 4Σ,                           | 2.37     |
| C3                |          | 2 <sup>1</sup> Σ <sub>g</sub> * | 1.75 |                               |          | C5                           |          | <sup>1</sup> П <sub>.0</sub>  | 1.96     |                   |          | 3Σ.                 | 2.21 | <sup>2</sup> Φ <sub>u</sub>   | 2.41     |
| nmetry            | <u>E</u> | ۱П <sub>я</sub>                 | 1.86 |                               |          | symmetry                     | <u>E</u> | ۱Пa                           | 1.98     |                   |          | 1Δu                 | 2.36 |                               |          |
| . ²Π <sub>α</sub> | 0        | 10                              | 2.12 |                               |          | X 2∏u                        | 0        | 1                             |          |                   |          | 1Σ <sub>u</sub> -   | 2.43 |                               |          |
| ۴Σu               | 1.98     |                                 |      |                               |          | 4Π <sub>α</sub>              | 2.36     |                               |          |                   |          |                     |      |                               |          |
|                   |          |                                 |      |                               |          | 4Σ,                          | 2.41     |                               |          |                   |          |                     |      |                               |          |
|                   |          |                                 |      |                               |          | <sup>4</sup> Σg <sup>-</sup> | 2.49     |                               |          |                   |          |                     |      |                               |          |

## **Acknowledgments**

We acknowledge support from the Agence National de la Recherche (Anion Cos Chem ANR-14-CE33-0013 ), the COST Actions CM1405 "MOLIM" and CM1401 "Our Astrochemical History". We also acknowledge the CTI (CSIC) and CESGA for computing facilities

## **References**

 A.D. Douglas, Nature, 269, 130 (1977)
K. H. Hinkle, J. J. Keady, and P. F. Bernath, Science, 241, 1319 (1988)
J. Cernicharo, J.R. Goicoechea and E. Caux, Astrophys.J, 534, L199 (2000) [11] K Matsumura, H. Kanamori, K. Kawaguchi, F. Hirota, J. Chem. Phys. 89, 6, 3491 (1988) K. Matsumura, H. Kanamori, K. Kawaguchi, E. Hirota, J. Chem. Phys. **89**, 6, 3491 (1988)
J. Z. M. Ando, S. E. Bradforth, T. K. Kitspoulos, and D. M. Neumark, J. Chem. Phys. **95**, 6753 (1991).
M. Xu, C., Burton, G. R., Taylor, T. R., & Neumark, D. M., J. Chem. Phys. **107**, 3428 (1997).
H. T. N. Kitspoulos, G. J. Chiel, Y. Zhao, and D. M. Neumark, J. Chem. Phys. **95**, 6773 (1991).
Tel, T. N. Kitspoulos, G. J. Chiel, Y. Zhao, Xin D. M. Neumark, J. Chem. Phys. **95**, 6774 (1991).
R. H. Kanze and W. R. M. Graham, J. Chem. Phys. **96**, 571 (1992).
C. Ando, Y. Zhao, T. N. Kitspoulos, and D. M. Neumark, J. Chem. Phys. **97**, 6121 (1992).
C. K. H. K. M. Straham, J. Chem. Phys. **98**, 571 (1993).
K. H. Kanze and W. R. M. Graham, J. Chem. Phys. **98**, 571 (1992).
C. H. Hash, A. and Order, E. Kuo and R. J. Sayakuli, Chem. Phys. Lett **182**, 17 (1991).
J. Krieg, V. Lutter, F.-X. Hardy, S. Schlemmer, and T. F. Giesen, J. Chem. Phys. **132**, 224306 (2010). [4] A. Tanabashi, T. Hirao, T. Amano, P.F. Bernath, Astrophys. **J. 624**,1116–1120 (2005).
[5] N. Moazzen-Ahmadi, N., Thong, J. J., & McKellar, A. R. W. J. Chem.Phys., **100**, 4033 (1994)
[6] N. Moazzen-Ahmadi, A. R. W. McKellar, and T. Amano, J. Chem. Phys. **91**, 2140 (1989). 

#### Table 1: RCCSD(T)-F12/aug-cc-pVTZ Energies, Structural Parameters, Rotational Constants and Frequencies of Constants chains c3 c4 c5 C6 C7 [8] E (a.u) -113.871334 -151.84188 189.902731 -227.881957 -265.91522 1.2973 1.2934 1. 2854 1.2775 1.2756 R Structure (A°) R. 1.3127 1.2928 1.2901 1.2900 1.3040 1.2925 911.792 B\_(MHZ 12511.43 4945.984 2537.225 1444.290 B<sub>0</sub> exp (MHZ) 12908.712[4] 4979.882[5] 2557.628[6] 1453.364[7] 917.755[9] 2140.7; 1705.1; 656.9 2201.9; 1254.2 461.9; 461.8; 203.1; 203.0 358.4; 97.5; 97.3 2106.9; 939. 1922.9 355.3 169.8 1986.8; 778.2 2215.7: 1453.2 2166.5; 1564.4; 574.9 2200.1; 1931.6; 1088.1 ω (σ<sub>g</sub>) ω (σ<sub>u</sub>) ω (π<sub>g</sub>) ω (π<sub>u</sub>) 1200.2 2098.0 Frequencies 198.1 525.6; 115.4 469.6; 147.2 460.5; 227.7; 63.9 (in cm<sup>-1</sup>)

#### Table 2: RCCSD(T)-F12/aug-cc-pVTZ Energies, Structural Parameters, Rotational Constants and Frequencies of C<sub>n</sub>

|                                       |                                                                                          |                                  | • · ·                                                    |                                                                                 | •                                                                         |                                                                                                                         |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Anions                                |                                                                                          | C3-                              | c4 <sup>-</sup>                                          | c5 <sup>.</sup>                                                                 | с6 <sup>-</sup>                                                           | c7 <sup>-</sup> [8]                                                                                                     |  |  |
| E (a.u)                               |                                                                                          | -113.944512                      | -151.986434                                              | -190.006614                                                                     | -227.921074                                                               | -266.037098                                                                                                             |  |  |
| Structure (A°)                        | R <sub>0</sub>                                                                           | 1.3100                           | 1.3399                                                   | 1.2886                                                                          | 1.3291                                                                    | 1.2801                                                                                                                  |  |  |
|                                       | R <sub>1</sub>                                                                           |                                  | 1.2805                                                   | 1.3037                                                                          | 1. 2807                                                                   | 1.3111                                                                                                                  |  |  |
|                                       | R <sub>2</sub>                                                                           |                                  |                                                          |                                                                                 | 1.3284                                                                    | 1.223                                                                                                                   |  |  |
| B <sub>e</sub> (MHZ                   | )                                                                                        | 12271.011                        | 4951.093                                                 | 2501.059                                                                        | 1409.174                                                                  | 901.579                                                                                                                 |  |  |
| Frequencies<br>(in cm <sup>.1</sup> ) | ω (σ <sub>g</sub> )<br>ω (σ <sub>u</sub> )<br>ω (π <sub>g</sub> )<br>ω (π <sub>u</sub> ) | 1849.7<br>3477.5<br>397.2; 249.4 | 3136.6; 2518.2<br>4115.2<br>464.7; 418.2<br>228.8; 211.2 | 1887.1; 755.0<br>978.9; 1430.6<br>354.6; 258.7<br>554.2; 352.7; 142.4;<br>131.0 | 2171; 1857; 654<br>2021; 1215<br>560; 498; 261; 248<br>449; 408; 120; 115 | 3148.6; 2027.5; 840.8<br>4896.1; 2568.9; 647.9<br>488.9; 486.5; 180.5; 174.1<br>359.7; 345.3; 263.7; 260.9;<br>76.8; 70 |  |  |

#### 3- Electronic Excited States

| 63                  | 000000000 |                                 | 0100000000 |                               |          | ບວ                            |          | LO                            |          | LO                            |          | U/[0                        | 000000000000 | C/ [O                         |          |
|---------------------|-----------|---------------------------------|------------|-------------------------------|----------|-------------------------------|----------|-------------------------------|----------|-------------------------------|----------|-----------------------------|--------------|-------------------------------|----------|
| symmetry            | <u>E</u>  | symmetry                        | E          | symmetry                      | <u>E</u> | symmetry                      | <u>E</u> | symmetry                      | <u>E</u> | symmetry                      | <u>E</u> | symmetry                    | <u>E</u>     | <u>symmetry</u>               | <u>E</u> |
| X 1Σ <sub>g</sub> * | 0         | x <sup>3</sup> Σ <sub>g</sub>   | 0          | X ²Πg                         | 0        | X 1Σ <sub>g</sub> *           | 0        | X <sup>3</sup> Σ <sub>g</sub> | 0        | X ²∏u                         | 0        | X 1Σ <sub>g</sub> *         | 0            | X ²Πg                         | 0        |
| зП                  | 2.14      | ¹∆ <sub>g</sub>                 | 0.40       | <sup>2</sup> Σ <sub>g</sub> * | 1.56     | з⊓,                           | 2.37     | 1∆ <sub>g</sub>               | 0.32     | <sup>2</sup> Σ <sub>g</sub> * | 1.56     | <sup>3</sup> Σ_'*           | 1.97         | 4П.                           | 1.93     |
|                     |           | 1 ¹Σ <sub>g</sub> *             | 0.59       | 2Σ_0*                         | 1.61     | <sup>3</sup> Σ <sub>u</sub> * | 2.39     | 1Σ <sub>g</sub> *             | 0.47     | <sup>2</sup> Σ_u*             | 1.61     | <sup>3</sup> ∆ <sub>u</sub> | 2.20         | 2∏ <sub>u</sub>               | 2.28     |
|                     |           | 3Пg                             | 1.06       |                               |          | 3П₀                           | 2.44     | 3П₀                           | 1.35     |                               |          | 3П₀                         | 2.20         | <sup>4</sup> Σ <sub>g</sub>   | 2.37     |
|                     |           | з⊓                              | 1.32       |                               |          |                               |          | ЗПа                           | 1.38     |                               |          | ЗПа                         | 2.21         | <sup>4</sup> Σ <sub>u</sub> . | 2.37     |
| C3                  |           | 2 <sup>1</sup> Σ <sub>g</sub> * | 1.75       |                               |          | C5                            |          | <sup>1</sup> П <sub>0</sub>   | 1.96     |                               |          | 3Σ.                         | 2.21         | <sup>2</sup> Φ <sub>u</sub>   | 2.41     |
| symmetry            | E         | 1П.                             | 1.86       |                               |          | symmetry                      | E        | ۲Πg                           | 1.98     |                               |          | 1Δ <sub>u</sub>             | 2.36         |                               |          |
| X ²Πg               | 0         | <sup>1</sup> П <sub>и</sub>     | 2.12       |                               |          | X ²⊓u                         | 0        |                               |          |                               |          | 1Σ <sub>u</sub> -           | 2.43         |                               |          |
| 4Σ.                 | 1.98      |                                 |            |                               |          | 4∏g                           | 2.36     |                               |          |                               |          |                             |              |                               |          |
|                     |           |                                 |            |                               |          | 4Σ                            | 2.41     |                               |          |                               |          |                             |              |                               |          |
|                     |           |                                 |            |                               |          | <sup>4</sup> Σg <sup>*</sup>  | 2.49     |                               |          |                               |          |                             |              |                               |          |

 $E(C_6) = -227.666058 \text{ a.u} / E(C_6) = -227.804974 \text{ a.u} / E(C_7) = -265.624595 \text{ a.u} / E(C_7) = -265.724890 \text{ a.u}$ 

## **Small linear carbon chains: vibrational and electronic states**

R.Boussessi<sup>a,c</sup>, R.Domínguez-Gómez<sup>b</sup>, A.Benidar<sup>d</sup>, J. Cernicharo<sup>e</sup> and M.L.Senent<sup>c</sup>

<sup>a</sup> Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisie.

<sup>b</sup> Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid, Spain.

<sup>c</sup> Departamento de Química y Física Teóricas, I. Estructura de la Materia. IEM-CSIC, Serrano 121, Madrid 28006, SPAIN.

<sup>d</sup> Institut de Physique de Rennes, Département Physique Moléculaire, UMR 6251 du CNRS -Université de Rennes 1, Bât. 11C, 263 av. Général Leclerc, 35042 Rennes Cedex, France.

<sup>e</sup> Grupo de Astrofísica Molecular. Instituto de CC. de Materiales de Madrid (ICMM-CSIC). Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain

The study of carbon chains type  $C_n$  and their ions has been attracted a significant effort due to their connection with the astrophysical observations, because pure carbon chains are abundant species in several sources such as the carbon rich circumstellar envelopes. In addition, they can play important roles in the reactivity of large systems containing carbon atoms. Carbon molecules have been considered responsible of the Diffuse Interstellar Bands (DIBs) [1]. Small chains are building blocks of larger species such as the fullerenes and the PAHs.

In spite of their astrophysical relevance, few bare chains have been observed in gas phase extraterrestrial sources. The shortest chain  $C_2$ , was the first detected, followed by  $C_3$  and the linear- $C_5$  [2-3]. Detections were performed through the analysis of Infra-Red active vibrational excitations or through their electronic transitions because they present a zero dipole moment.

All the  $C_n$  chains present a large number of isomers, however, in this work we focus on the linear ones. The large stability of charged linear chains was used as argument to predict the presence of anions in the interstellar medium. We present computed molecular properties calculated using highly correlated ab initio methods (CCSD(T)-F12, MRCI/CASSCF). We determine structures, infrared frequencies and excitations energies to the lowest electronic states and electron affinities of the small chains type  $C_n$  (n=3,4,5,6,7). Special attention is given to the anions which relevance for reactivity is evident. Non-adiabatic effects and spin-orbit effects will be predicted.

[4] A. van Order and R.J. Saykally, Chem. Rev., **98**, 2313 (1998)

[5] M. Kolbuszewski, J.Chem.Phys., **102**, 3679 (1995)

[Escribir texto]

<sup>[1]</sup> A.D. Douglas, Nature, 269, 130 (1977)

<sup>[2]</sup> K. H. Hinkle, J. J. Keady, and P. F. Bernath, Science, **241**, 1319 (1988)

<sup>[3]</sup> J. Cernicharo, J.R. Goicoechea and E. Caux, Astrophys.J, 534, L199 (2000)