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ABSTRACT  

 

Analytical proteomics has experienced exponential progress in the last decade and can 

be expected to lead research studies on diagnostic and therapeutic biomarkers in the 

near future. Because the development of this type of analysis requires the use of a large 

number of human samples with a minimum of quality requirements, our objective was 

to identify appropriate indicators for quality control of plasma samples stored in 

biobanks for research in proteomics. To accomplish this, plasma samples from 100 

healthy donors were obtained and processed according to the pre-analytical variables of: 

a) time delay for the first centrifugation of the original blood sample (4 or 24 hours) and 

b) number of freeze/thaw cycles (1, 2 or 3) of the processed plasma samples. The 

analyses of samples were   performed by different and complementary methods such as 

SPE MALDI-TOF, DIGE, shotgun (iTRAQ, nLC MALDI TOF/TOF) and targeted nLC 

MS/MS proteomic techniques (SRM). In general, because the distribution of proteins in 

all samples was found to be very similar, the results shown that delayed processing of 

blood samples and the number of freeze/thaw cycles has little or no effect on the 

integrity of proteins in the plasma samples. 

SIGNIFICANCE 

The results of the present work indicate that blood proteins in plasma are broadly 

insensitive to such preanalytical variables as delayed processing or freeze/thaw cycles 

when analyzed at the peptide level. Although there are other studies related to protein 

stability of clinical samples with similar results, what is remarkable about our work is 

the large number of plasma samples examined and that our analyses assessed protein 

integrity by combining a wide set of complementary proteomic approaches performed at 

different proteomic platform participating laboratories that all yielded similar results. 

We believe our study is the most comprehensive performed to date to determine the 

changes in proteins induced by delayed sample processing and plasma freeze/thaw 

cycles. 

 

 

Keywords: Plasma, proteomics, biobank, sample, pre-analytical variables    
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INTRODUCTION 

 

The remarkable proliferation in biomedical research taking place is driving the need for 

increased quality of storage and handling of large numbers of biological samples, 

including tissues, tumors, cells, proteins, DNA, blood, serum, and urine, to insure 

suitability for further studies [1]. Biobanks house collections of biological samples 

intended for diagnostic or biomedical research and have the proper infrastructure and 

technology to ensure high quality of the samples [2]. To facilitate establishment of 

collaborations and joint projects among different researchers, biobanks collect samples 

from donors with a specific pathology and from healthy controls to reduce turnaround 

time and validation of investigations [3]. However, the sizeable storage of biological 

samples raises complex technical issues that affect different procedural steps, including, 

among others, sample collection, transport, identification, traceability, storage at 

different temperatures, recovery of the stored sample and processing of the data. 

Because it is essential that information on the handling of biological materials be 

complete and accurate, it is necessary to develop standardized protocols [4].  

 

Heterogeneity in sampling and storage procedures can introduce significant variability 

in the molecular composition of biological samples, thus interfering with or affecting 

reproducibility [5]. This issue becomes even more evident in research studies in which 

biological samples from different origins are employed. In fact, some authors have 

shown that differences detected in retrospective collections of biological samples are 

more dependent on pre-analytical factors (e.g., processes taking place at different points 

of the experimental workflow) than on the inherent differences among the samples [6]. 

For example, the Biospecimen Science Working Group of the ISBER (International 

Society for Biospecimen Science) [7] retrospectively reviewed several research studies 

using stored biological samples. They found that the heterogeneity in the protocols for 

collection and storage made it very difficult to draw reliable conclusions about the 

usefulness of the samples for the identification of biomarkers. Therefore, the 

identification of clinically relevant biomarkers can only be successful if biological 

samples are obtained, processed and stored according to strict standard protocols [8,                                                                                                                                                     

9]. 

 

Furthermore, in parallel with the definition of a standard protocol for collection and 
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storage of biological samples, it is essential to identify specific biomarkers that can be 

used as quality controls to assess the effects of pre-analytical factors on variability in the 

results [10]. However, quality criteria cannot be specifically defined because they are 

dependent both on the sample type and the experimental purpose.  

 

Plasma from human subjects is a promising source for biological markers of disease 

[11], it is a complex biological fluid containing various biomolecules (lipids, peptides, 

amino acids, cytokines, proteases, enzymes, antibodies, etc.) with very different 

physicochemical properties. Despite progress made in the study of the plasma proteome, 

to date, no usable protein markers for monitoring the quality of these samples have been 

described. Thus, it is necessary to define a panel of protein markers that establishes 

minimal quality standards for the analytical phase and excludes those samples whose 

integrity is compromised by a defective pre-analytical phase [12]. Among the variables 

involved in the collection, processing and storage procedures, we must first examine 

those that potentially compromise the quality of the samples and establish a set of 

parameters aimed at reducing variability at critical sampling points.  

 

Following blood sample extraction, the critical variables to consider include the time 

between sample collection and processing, the freezing protocol and freezing 

temperature, the storage duration and number of freeze/thaw cycles. In the time lapse 

between sample collection and processing, modifications of peptides and proteins or 

release of cell-derived substances may occur, suggesting that shorter processing times 

correlate with more reliable samples [13,14]. For example, serum values of the CD40 

ligand increased with delayed processing and prolonged storage of serum samples or 

decreased after prolonged storage of serum samples at elevated temperature [15]. The 

effect of repeated freeze-thaw cycles on sera was also analyzed in an inconclusive 

attempt to find a marker for the quality of serum cryopreservation [16]. Another 

important factor potentially affecting quality and stability of samples is storage time 

[17] and temperature [18]. It is known that some biomarkers are not sensitive to 

prolonged or inappropriate temperature storage, but others may degrade spontaneously. 

In spite of all the above-mentioned studies, we conclude that, thus far, the search for 

potential quality control indicators for plasma proteomics is far from completion. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 5 

Analytical proteomics has experienced extensive progress in the last decade because of 

the emergence of MS-based techniques (MALDI-TOF, iTRAQ) that combined with 

classical techniques for protein separation (e.g., chromatography, two-dimensional gel 

electrophoresis, etc.) facilitate the identification and characterization of proteins. 

Proteomics is expected to be the tool of choice for the search for diagnostic or 

therapeutic biomarkers and for the identification and characterization of the proteins 

encoded by the genome [19]. One of the main objectives of proteomics is the 

identification of markers of disease by comparing the protein status in normal and 

pathological conditions. It is noteworthy that the control of pre-analytical effects, which 

can produce a significant influence on the results of analyses, is a critical point for 

proteomic studies [5, 20].  

 

By using different complementary proteomic techniques in separate coordinated 

laboratories, the aim of this study was to search for quality markers that would allow 

assessment of the integrity and purity of plasma proteome samples. Thus, 

recommendations could be established to include or exclude samples of plasma for 

proteomic studies according to their quality parameters. 

 

MATERIALS AND METHODS 

 

DESIGN OF THE STUDY AND DONORS 

 

The study was carried out using prospectively obtained peripheral blood samples from a 

cohort of healthy donors through participation of seven different Spanish Biobanking 

Facilities. The sample population (n=100) was comprised of 50 men and 50 women. 

Distribution by age of the cohort was 20-40 (n=40), 40-60 (n=40), and 60-80 (n=20) 

years. This study was approved by the Ethics Committee of Clinical Investigation of 

Galicia (Spain). 

 

COLLECTION OF PLASMA SAMPLES FROM PERIPHERAL BLOOD 

 

EDTA-Blood samples (40 ml) from each donor were obtained and processed by the 

participating biobanks applying the same standard operating procedure (SOP) for 

collection and storage of platelet-poor plasma. The SOP was based on the 
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recommendations of the Human Proteome Organization (HUPO) [12], but including 

some variables detailed in the next section. Once obtained, the plasma samples were 

distributed into 200 µl aliquots (ProteinLoBind Tube 0.5 ml, Eppendorf AG
©

, 

Germany) and stored at -80°C for later analysis. 

 

VARIABLES STUDIED 

 

Briefly, EDTA-blood tubes were subjected to different pre-analytical conditions 

according to the following variables:  

1) Time between blood collection and processing, to evaluate the effect of the delay in 

the first centrifugation step in plasma protein composition. Two conditions were 

considered: a) Delay of less than four hours at room temperature after blood extraction 

(t≤4h) (representative of the daily routine of a laboratory of clinical analysis that 

process local samples) or b) 24 hours delay (t=24h) at 4º C (reflecting those samples 

arriving from external laboratories).  

2) Repeated freeze/thaw cycles, to evaluate the influence of this variable on plasma 

protein integrity. To that end, plasma samples (t≤4h) were subjected to 1, 2 and 3 cycles 

of freezing and thawing. Thawing was performed leaving the samples for 1h at room 

temperature. Thawing was for one hour at room temperature with any subsequent 

freeze/thaw cycle done after 24 h. 

 

For proteomics analyses, samples were pooled and compared as follows: a) Mix of 100 

plasma samples (t≤4h) that were subjected to one (P4.D1); two (P4.D2); or three 

freeze/thaw cycles (P4.D3); or b) mix of 100 plasma samples (t=24h) subjected to one 

cycle of freezing and thawing (P24.D1). Fig. 1 summarizes the whole work-flow. 

 

IMMUNODEPLETION OF ABUNDANT PROTEINS 

 

Prior to the proteomic analysis, pooled plasma samples were depleted of the most 

abundant plasma proteins using commercial immunoaffinity columns. Briefly, 30 µL of 

each sample pool was diluted to a final volume of 240 µL with mobile phase A (Agilent 

Technologies
©

, Santa Clara, CA, USA) and filtered through a 0.22 μm cellulose acetate 

membrane (CLS810, Costar Spin-X, Corning
©

, Tokyo, Japan) at 5000 x g for 15 

minutes to remove insoluble material and debris. The filtered flow-through was 
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collected and processed to deplete the fourteen most abundant plasma proteins using a 

M.A.R.S. Hu-14 (Agilent Technologies) in a 1200 HPLC system (Agilent, Wilmington, 

DE, USA), following the manufacturer's instructions.  Individual 150 μL injections were 

performed and the flow-through fractions (non-binding proteins) containing the lower-

abundance proteins were collected in a final volume of approximately 600 μL. The 

protein concentration was determined by direct absorbance measurement at 280 nm. 

Samples were then aliquoted and stored at -80
o
C until delivery to the participating 

laboratories. 

 

SOLID PHASE EXTRACTION (SPE) AND MALDI-TOF-TOF MS ANALYSIS 

 

After delivery, the depleted plasma samples were stored at -80ºC. Protein 

concentrations were normalized at 1 mg/mL (+/- 5%) by the addition of 0.1% 

trifluoroacetic acid (TFA) from Pierce (Thermo Fisher Scientific Inc
©

, Waltham, MA, 

USA) in water. The samples were divided into two sets, one set for each of the two SPE 

methods, using two different ZipTip (EMD Millipore
©

, Billerica, MA) affinities: C4 

and C18 reverse phase resins. 4 μL of each sample were added for each ZipTip affinity, 

and the flow-through was discarded. Following this step, samples were washed with 4 

μL 0.1% TFA, and finally, the peptides were eluted from the microcolumns with 4 μL 

of HCCA matrix (Alfa-Aesar
©

 Karlsruhe, DE), 5 mg/mL in 70:30 ACN:0.1% TFA, 

onto a 0.5 mL Eppendorf tube (Eppendorf AG
©

, Germany). Four technical replicates of 

1 μL for each sample were spotted, 1 μL each, onto an Anchorchip 800/384 (Bruker 

Daltonics
©

, Bremen, DE) MALDI target.  

 

An Autoflex III MALDI-TOF mass spectrometer was used in linear geometry for 

spectra acquisition up to 20.000 Th as previously described [21,22]. Spectral 

representation was made using ClinProt Tools 2.2 (Bruker Daltonics
©

, Bremen, DE) 

software. Spectra were mathematically processed by the following: baseline correction 

with Top Hat algorithm (using 5.0% of minimal linear base); smoothing with Savitsky-

Golay algorithm (using peak width of 2.0 (m/z) and 5 processing cycles); and 

recalibration using up to 10 of the most intense peaks. 

 

DIFFERENTIAL GEL ELECTROPHORESIS (DIGE) AND LC-MS/MS ANALYSIS 
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Two-dimensional (2D)-DIGE 

Fifty µg of each depleted pooled-plasma sample was labeled with 400 pmol of CyDye 

DIGE Fluor minimal dyes (GE Healthcare
©

, Little Chalfont, UK) according to the 

manufacturer’s instructions (Cy3 and Cy5 for samples and Cy2 for an internal control 

using equal parts of all samples). Pairs of samples were reverse-labeled to eliminate the 

possibility of dye-labeling bias and then resolved by 2D-DIGE as previously described 

[23]. Following Decyder analysis, differential spots were selected for protein 

identification when the p-value after ANOVA or t-test was <0.05. Proteins were 

visualized by staining with SYPRO Ruby Protein Gel Stain (Bio-Rad, Hercules, CA, 

USA) and differentially identified spots were excised manually. In-gel tryptic digestion 

was performed using 10 ng/µl sequencing grade modified trypsin (Promega 

Corporation
©

, Madison, WI, USA) in 50 mM ammonium bicarbonate overnight at 37ºC, 

after denaturation with DTT (10 mM, 30 min, 40ºC) and an alkylation step with 

iodoacetamide (25 mM, 30 min, room temperature). The resulting peptides were 

extracted with 1% formic acid, 50% ACN and evaporated to dryness prior to LC-

MS/MS analysis. 

 

LC-MS/MS analysis  

For each spot, a total volume of 5 μl of the solution of tryptic digestion peptides was 

injected with a flow rate of 300 nL/min in a nanoLC Ultra1D plus (ABSciex
©
, 

Framingham, MA, USA). A trap column, the Acclaim PepMap100 (100 µm x 2 cm; 

C18, 2 µm, 100Å) and an analytical column, the  Acclaim PepMap RSLC (75 µm x 15 

cm, C18, 5 µm, 100 Å) from Thermo Scientific (Thermo Fisher Scientific Inc
©

, 

Waltham, MA, USA) were used following the next gradient: 0–1 min (5% B), 1-50 min 

(5–40% B), 50-51 min (40-98% B), 51-55 min (98% B), 55-56 min (5% B), 56-75 min 

(5% B). (Buffer B: 100% ACN, 0.1% formic acid, Buffer A: 0.1% formic acid). MS 

analysis was performed on a Q-TRAP 5500 system (ABSciex, Sciex
©

, Framingham, 

MA, USA) with a NanoSpray® III ion source (ABSciex) using Rolling Collision 

Energy in positive mode. MS/MS data acquisition was performed using Analyst 1.5.2 

(AB Sciex) and submitted to Protein Pilot software (ABSciex) against 

UniprotKB/Swiss-Prot database, using the Paragon™ Algorithm and the pre-established 

search parameters for 5500 QTRAP. 

 

ITRAQ  ANALYSIS  
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Trypsin digestion and iTRAQ labeling 

 

12 ug of protein from each depleted plasma sample were precipitated using the 

methanol/chloroform method. Protein pellets were resuspended and denatured in 20 µl 7 

M urea, 2 M thiourea, 100 mM triethylammonium bicarbonate (TEAB) buffer, pH 7.5, 

reduced with 2 µL of 50 mM TCEP ((tris-(2-carboxyethyl)phosphine; ABSciex
©

, 

Framingham, MA, USA), pH 8.0, at 37°C for 60 min. Cysteines were then blocked by 

incubation with 1 µl of 200 mM methyl methanethiosulfonate (MMTS; Pierce, Thermo 

Fisher Scientific Inc
©

, Waltham, MA, USA). for 10 min at room temperature. Samples 

were diluted up to 140 µL to reduce urea concentration with 25 mM TEAB. Trypsin 

(Sigma-Aldrich Co
©

, Saint Louis, MO, USA) was added at a 1:20 ratio and digestion 

was left to proceed overnight at 37°C. The resulting peptides were subsequently labeled 

using the iTRAQ 4-plex kit (ABSciex
©

, Framingham, MA, USA) following 

manufacturer's instructions and identified: P4.D1, tag-114; P4.D2, tag-115; P4.D3, tag-

116 and P24.D1, tag-117. After labeling, the samples were pooled, speedvac dried and 

stored at -20°C for further analysis. 

 

Reversed phase HPLC 

The iTRAQ labeled peptides were fractionated by basic rpHPLC in a SmartLine 

(Knauer) HPLC system using an XBridge C18 column (100 × 2.1 mm, 5 μm particle 

diameter; Waters). Solvent A was 10 mM ammonium hydroxide (pH 9.4); and solvent 

B was 80% methanol, 10 mM ammonium hydroxide (pH 9.3). Peptides were 

fractionated using a linear gradient of 0–100% buffer B at 150 μL/min for 90 min. 

Thirty fractions were collected and pooled into 5 fractions using the fraction mixing 

strategy n+1 (i.e., fractions 1+6+11+16+21+26). The peptide fractions were vacuum-

dried, desalted using a SEP-PAK C18 Cartridge (Waters) and stored at −20°C before 

LC-MS analysis. 

 

LC-ESI-MS/MS and data analysis 

A 2 µg aliquot of each resulting fraction was subjected to LC-ESI-MS/MS analysis as 

described elsewhere [24], using a nanoLC Ultra 1D plus (ABSciex
©

, Framingham, MA, 

USA) coupled online to a 5600 Triple TOF mass spectrometer (ABSciex
©

, 

Framingham, MA, USA). The MS and MS/MS data obtained were analyzed as a 
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previously described workflow [24]. The confidence interval for protein identification 

was set to ≥95% (p<0.05) and peptides were filtered at a false discovery rate (FDR) ≤ 

1%. For the quantitative analysis a 5% FDR threshold was applied. 

 

SDS-PAGE FOLLOWED BY LC-ESI-MSMS  

 

Protein separation by SDS/PAGE and trypsin digestion 

Individual depleted pooled plasma samples containing 50 μg of protein were loaded 

onto and separated by pre-cast tris-gly gels of 4-20 % polyacrylamid (Thermo Fisher 

Scientific Inc
©

, Waltham, MA, USA ). After electrophoresis, the gels were stained with 

Coomassie blue and each lane was sliced just below the 20 kDa marker. Samples were 

digested with sequencing grade trypsin (Promega Corporation
©

, Madison, WI, USA) as 

described elsewhere [25]. The digestion was stopped with TFA (1% final concentration) 

and a double peptide extraction was done with ACN. The peptides were dried and 

dissolved with 9 µL of 2% ACN; 0.1% TFA. 

 

LC-MS/MS analysis  

The peptides were then analyzed by LC-MS/MS by loading 5 µl of each sample onto a 

trap column (NanoLC Column, 3 µ C18-CL, 75 µm x 15 cm ; ABSciex
©

, Framingham, 

MA, USA) and desalted with 0.1% TFA at 2 µl/min for 10 min. Afterwards, the 

peptides were transferred onto an analytical column (LC Column, 3 µ C18-CL, 75 µm x 

25 cm, ABSciex
©

, Framingham, MA, USA) equilibrated in 5% ACN 0.1% formic acid 

(FA). Elution was carried out with a linear gradient of 5-35% B (ACN, 0.1% FA) in A 

(0.1% FA) for 60 min at a flow rate of 300 nl/min.  Peptides were analyzed in a mass 

spectrometer nanoESI qQTOF (5600 TripleTOF, ABSciex
©

, Framingham, MA, USA).  

The tripleTOF was operated in an information-dependent acquisition mode, in which a 

0.25-s TOF MS scan from 350–1250 m/z, was performed, followed by 50 ms product 

ion scans from 100–1500 m/z on the 50 most intense 2-5 charged ions. 

 

Protein identification was performed with ProteinPilot v4.5 search engine (ABSciex©, 

Framingham, MA, USA).   ProteinPilot default parameters were used to generate a peak 

list directly from 5600 TripleTof wiff files. The Paragon algorithm of ProteinPilot was 

used to search the Expasy protein database with the following parameters: trypsin 

specificity, cys-alkylation, taxonomy restricted to human, and the search effort set to 
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“thorough”. Identified proteins were grouped in quartiles according to their expected 

molecular weights. The number of proteins and the coverage in each quartile were 

determined. 

 

LC-MALDI-TOF/TOF  

 

Protein separation by SDS-PAGE  

Individual depleted pooled-plasma samples of 30 μg of protein for each pool, in 

triplicate, were loaded and separated by SDS-PAGE in 10% acrylamide in-house gels in 

a Protean® mini-gel system (Bio-Rad, Hercules, CA, USA).  Following Coomassie blue 

staining to check protein integrity, each lane was size-fractioned into 6 sections below 

the 65 KDa molecular weight marker. Sections were subsequently processed 

independently. Each section was de-stained with methanol, diced into small pieces and 

in-gel digested following standard procedures [24]. Peptides were then extracted, 

vacuum-dried, reconstituted in 0.1% TFA and de-salted using home-made stage-tips 

[26]. 

 

LC- MALDI-TOF/TOF analysis 

 

Peptide fractions were separated using reversed phase chromatography in a nanoLC 

system (Tempo, Eksigent, Dublin, CA, USA) by loading through a trapping column into 

a C18 silica based column (New Objective, Woburn, MA, USA) with an internal 

diameter of 75 µm and a pore size of 300 Å. Peptides were eluted at a flow rate of 0.35 

μL/min during a 1 hour linear gradient from 2 to 36% ACN (mobile phase A: (0.1% 

TFA, 2% ACN; mobile phase B: 0.1% TFA, 95% ACN), mixed with α-cyano matrix (4 

mg/mL at a flow rate of 1.2 μL/min) and deposited onto a MALDI plate using an 

automatic spotter (SunCollect, Sunchrome, Friedrichsdorf, Germany). Chromatograms 

corresponding to each gel section were composed of 240 spots, each one comprising a 

15 s deposition. The MS runs for each chromatogram were acquired and analyzed in a 

MALDI-TOF/TOF instrument 4800 (ABSciex, Sciex©, Framingham, MA, USA) using 

a fixed laser intensity of 3400 kV and 1000 shots/spectrum. Automated precursor 

selection was done using a Job-Wide interpretation method (up to 20 precursors per 

fraction with a signal-to-noise lower threshold of 50) with a laser voltage of 4400 and 

2000 shots/spectrum at medium CID collision energy range.  
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The complete MS and MS/MS raw data were processed and peptide identification was 

performed against uniprot_sprot database (Release 2015_07 with 548,872 entries) using 

the Mascot server on-line (www.matrixscience.com). Search parameters included 

carbamidomethylation of cysteines (fixed modification), oxidation of methionine 

(variable modification, ≤4), up to one trypsin miscleavage, precursor ion mass range 

800–4000 Da, ±50 ppm tolerance on precursor and ±0.3 Da on fragmentation of ions. A 

Mascot server was used to calculate the exponentially modified protein abundance 

index (emPAI) [27] as an estimation of the absolute protein amount. The individual 

emPAI indexes from each of the three experimental replicates were then used to 

calculate an average emPAI index for each protein. 

 

SELECTED REACTION MONITORING (SRM)  

 

Proteins from depleted plasma samples were precipitated (Ready Prep Cleanup Kit-

BioRad) and the pellet was resuspended in 7 M urea and diluted 1:10 with 50 mM 

ammonium bicarbonate. 20 μg of protein was digested overnight as indicated 

previously. Peptide desalting, concentration and purification were performed using C18 

ZipTip® pipette tips (Millipore), according to the manufacturer’s instructions. The 

peptides were resuspended in 2% ACN / 0.1% formic acid. Each sample was spiked 

with an exogenous peptide (LVIDEPTK from bovine hepatoma-derived growth factor 

(HDGF)), which was used as an internal standard for chromatographic performance. 

Proteotypic peptides were selected by in silico digestion using MRM Pilot software 

(ABSciex©, Framingham, MA, USA). Peptides containing cysteine or methionine 

residues were excluded. Three to five transitions were programmed for each peptide: 

EFTPPVQAAYQK, LHVDPENFR, LLVVYPWTQR, SAVTALWGK, 

VLGAFSDGLAHLDNLK and VNVDEVGGEALGR for Hemoglobin B-Human. SRM 

experiments were performed on a 5500 QTRAP hybrid triple quadrupole/linear ion trap 

mass spectrometer (ABSciex©, Framingham, MA, USA) as described elsewhere [28]. 

Data analysis was performed using Analyst 1.5.2 and MultiQuant 2.0.2 software 

(ABSciex©, Framingham, MA, USA).The mean area of all transitions was obtained for 

each peptide. The value of area ratio (analyzed peptide/exogenous peptide) was 

calculated.  
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Variations in the levels of 33 peptides using the corresponding standards [29] that were 

spiked into each trypsin digested plasma sample (Supplementary Table 1), were 

monitored in a different laboratory using similar conditions (Supplementary Material 1). 

Data analysis was performed with Skyline [30]. 

 

 

WESTERN BLOT  

 

20 µg of non-depleted pooled samples were loaded into pre-cast tris-gly gels AnyKD 

(Bio-Rad Laboratories Inc
©

, Hercules, CA, USA).  After electrophoresis, the gels were 

incubated in transfer buffer (Bio-Rad Laboratories Inc
©

, Hercules, CA, USA) for 10 

min.  Transfer was performed in a Bio-Rad minitransfer system using a PVDF                           

membrane previously activated with methanol for 1.5 h at 200 mA.  After transfer, the 

gels were fixed in 40% ethanol / 10% acetic acid and stained. Membranes were blocked 

overnight with 5 % BSA (Roche Diagnostics
©

, S.L, Basilea, Switzerland) in TBS buffer 

(Bio-Rad Laboratories Inc
©

, Hercules, CA, USA) at 4º C. Membrane washing was 

performed with TBS buffer–Tween20 (5%). The primary antibodies were monoclonal 

antibodies anti-Apo A1 (Santa Cruz Biotechnology, Inc
©

, Dallas, TX, USA), anti-

kininogen 1 (Abcam
©

, Cambridge, UK) and anti-vitronectin (Abcam
©

, Cambridge, UK) 

all diluted in 5% TBS-Tween20. 

 

RESULTS  

 

Immunodepletion of plasma samples prior to proteomic analysis 

 

Factors in handling samples that we assessed by proteomic analyses were the influence 

of time from blood collection to plasma isolation, less than 4 h at RT or after a delay of 

24 h at 4°C, and the effect if 1, 2 or 3 freeze/thaw cycles. Prior to proteomic analysis, 

we subjected the plasma pools to chromatographic immunodepletion because this extra 

step permits wider coverage of the proteome of serum and other physiological fluids 

[31,32]. Initial preparatory experimental proofs showed a highly reproducible pattern of 

the depletions with no carry-over between injections (data not shown). Analytical 

injections were done randomly and blanks were inserted between samples. 
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Solid Phase Extraction (SPE) and MALDI-TOF MS analysis 

 

MALDI-profiling was used to find alterations in the mass patterns of the four pooled 

plasma samples studied. In all cases, the coefficient of variation (CV) during the 

extraction process and between the technical replicates did not exceed 21% and 6%, 

respectively (data not shown); this is in agreement with previous reports [21,33].  

 

The results, corresponding to a 1000-30000 Th. window, are represented in Figure 2. 

The spectral representation of the C4-enriched fraction showed no visible differences 

among the four samples (Fig. 2A). A principal component analysis (PCA) (Fig. 2B) did 

not reveal any significant segregation or hierarchical clustering, although some subtle 

differences were observed for the P24.D1 sample. 

 

The spectral representation of the C18-enriched fractions demonstrated, as expected, a 

decrease in the number of peaks in the 10000-30000 Th. range and an increase in the 

1000-10000 Th. range (Fig. 2C). Again, no significant differences were detected among 

the four samples and no segregation or hierarchical clustering was observed after PCA 

analysis (Fig. 2D). 

 

To summarize, defrost cycles in the samples tested using the MALDI-Profiling SPE 

with prior enrichment by reverse phase C4 or C18 resins showed no significant 

differences in the observed spectra profiles. Slight non significant differences were 

detected in the P24.D1 samples, suggesting that minor alteration in the proteins present 

in the plasma might occur after a 24-hour delay in processing. 

 

 

Differential in gel electrophoresis (DIGE) and selected reaction monitoring (SRM) 

analysis suggest that hemolysis occurs after delay in the processing of the initial 

blood samples 

 

The DIGE analysis was expected to detect plasma protein degradation, through the 

detection of increasing or decreasing spot intensities in the bi-dimensional gel 

electrophoresis protein map. The image analysis of the results (Fig. 3A) showed several 

low molecular weight isoforms appearing to be significantly more abundant in P24.D1 
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samples. Only four of these spots were identified by mass spectrometry (LC-MS/MS), 

corresponding to different isoforms of hemoglobin chains (Fig. 3B and 3C). These 

results would suggest that there is no proteolytic degradation associated with 

freeze/thaw cycles, although a certain degree of hemolysis can occur after a 24-hour 

delay in the sample processing. 

 

To validate these results, we performed SRM assays for hemoglobin B, which was the 

hemoglobin-related protein detected in the DIGE experiment with the highest MS/MS 

score. Six out of 13 putative proteotypic peptides were observed (Fig. 4A) in the 

enhanced resolution mode, and were subsequently used for quantification in the MRM 

mode. Quantification of the selected peptide areas (Fig. 4B and 4C) indicate that 

hemoglobin B is more abundant in the P24.D1 sample, thus confirming the DIGE 

results. 

 

Isobaric tags for relative and absolute quantification (iTRAQ) analysis 

 

iTRAQ technology was used for relative quantification of plasma proteins. Variation in 

protein abundance between samples would, if significant, suggest proteolytic 

degradation or the presence of undesired proteins. Results are presented in 

Supplementary Data 1. The concentrations of several typical serum proteins detected 

were relatively modulated among the different samples, as presented in the 

quantification summary.  

 

Selected Reaction Monitoring (SRM) using peptide standards  

 

Because a significant number of common plasma proteins were detected as modulated 

by the iTRAQ analysis, we decided to use a previously described peptide standard kit 

developed by the Borchers group [34] to validate a large number of proteins in the 

original non-depleted pooled samples using SRM (Fig. 5). In a single experiment, 37 

proteins were tested using a single proteotypic peptide per protein (Fig. 5A). In the four 

different samples tested, 33 proteins were detected and accurately quantified (Fig. 5B). 

The logarithmic representation of the heavy/light ratio suggests no major changes 

occurred in the amount of the proteins among the samples. A comparison of the 

individual ratios of each peptide with the average ratio of all the peptides 
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(Supplementary Data 2) revealed a group of six proteins, alpha-1-b-glycoprotein, 

apolipoprotein CIII, serotransferrin, vitronectin, alpha-2-microglobulin, and plasma 

retinol binding protein, whose profiles differed slightly from the average profile. 

 

Analysis of low molecular weight proteins 

 

If the integrity of plasma samples would be compromised, we would expect the 

appearance of protein fragments with lower molecular weight than the whole protein. 

Thus, fractionation of plasma proteins by SDS/PAGE should reveal a mobility shift of 

proteins due to the presence of fragments. In accordance, the number of identified 

proteins with higher molecular weight than expected in a gel slice should increase if 

plasma quality decreases. We fractionated complete and depleted plasma samples by 

SDS/PAGE and analyzed the low molecular weight (< 20 kDa) region of the gel. The 

identified proteins were arranged by their predicted molecular weight according to their 

sequence and grouped by quartiles (Supplementary Data 3). A slight but not significant 

increase in the number of identified proteins was observed in samples P4.D3 and 

P24.D1 of depleted plasma. However, there was no difference among the protein size 

groups (Fig. 6A and 6B), suggesting that the number of fragments from larger proteins 

is not increased by any of the treatments. It could be that the number of identified 

proteins would remain unchanged but with more peptides assigned to them, which 

would lead to an increase in their protein coverage.  To assess this possibility, we 

determined the protein coverage of each protein size group (Fig. 6C and 6D). The data 

did not show any significant change in protein coverage among samples in any protein 

size group. Overall, the results indicated that the treatments did not affect significantly 

the integrity of plasma proteins.  Although global changes were not observed, some 

individual proteins, particularly apolipoprotein B100 (ApoB100), appeared to increase 

their coverage in depleted plasma samples P4.D3 and P24.D1. We investigated the 

abundance of ApoB100 by western blot and SRM analysis but the results did not 

confirm any significant difference (not shown). 

  

LC-MALDI-TOF/TOF and western-blot validation of selected proteins 

 

After protein identification using Mascot, the emPAI score [27] was used to estimate 

the absolute amount of each protein in a particular sample (Supplementary Data 4). 
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Changes in the emPAI score would have revealed protein degradation or the presence of 

truncated isoforms. Fig. 7 represent the average emPAI score (Y axis) of all the proteins 

detected (X axis) fast (t≤4h) vs. delayed (t=24h) processing (Fig. 7A) or when 

comparing freeze/thaw cycles (Fig. 7B). 

 

The average emPAI score did not vary for most proteins when the samples were 

compared. However, among the few exceptions detected, suggesting that the amount of 

these proteins might vary among samples, three were selected (apolipoprotein A1, 

vitronectin and kininogen 1) for western blot validation in crude pooled samples. The 

results of this analysis did not reveal accumulation or degradation of the proteins (Fig. 

7C and 7D).  

 

DISCUSSION 

 

An increasing number of clinical biobank sample collections from large-scale 

population-based studies are currently available for research applications. Many 

proteomic studies for biomarker discovery have been developed based on access to 

these collections [35]. However, standardization of sample quality is a critically 

important requirement for valid use of the full potential of the collected samples [36]. 

The need for improved biomarker research has focused attention on the effects of pre-

analytical variable on collected samples as key parameters determining the obtained 

results [37]. Although this is particularly true for plasma profiling studies, the stability 

of most plasma proteins to pre-analytical variables remains unexplored. 

 

Biobanking faces standardization of a wide range of pre-analytical variables involved in 

sampling procedures of blood and plasma. Among these, acquisition, handling and 

storage may produce alterations of the proteome. In this work, we analyzed the 

influence of time from blood collection to plasma isolation (less than 4 h at RT or after 

a delay of 24 h at 4°C) and the number of freeze/thaw cycles (1, 2 or 3) performed on 

plasma samples using several standardized proteomic techniques: (SPE MALDI-TOF, 

DIGE, iTRAQ, LC-MS/MS or LC-MALDI-TOF/TOF) and targeted proteomic analysis 

(SMR) platforms. We systematically evaluated the effects in prospectively collected 

human platelet-poor plasma from a representative population of 100 healthy donors (as 

defined by pre-established criteria) divided by gender (50%) and by age group (20 to 
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40, 40 to 60, and 60 to 80 years). The proteomic comparisons were based on differences 

in mean intensity values of peptides/protein using plasma processed under the different 

conditions.  In general, following a thorough analysis of the results from the different 

analytic techniques, no detectable significant changes were observed as a result of delay 

in blood processing or number of freeze/thaw cycles.  

 

The Biospecimen Reporting for the Improved Study Quality (BRISQ) has released 

recommendations on collection and management of human biospecimens [38]. 

According to these guidelines, all samples included in our study were handled 

identically by the biobank participants to exclude any pre-variable besides those we 

wanted to analyze. We followed the recommendation and used platelet-poor plasma to 

prevent the effects of activation of platelets [12]. 

 

Samples collected for clinical analysis are either used immediately or stored in biobanks 

for future research use. Unfortunately, biobanks where samples are processed and stored 

are often not close to the clinic where samples are collected. Thus, geography can delay 

the processing of blood samples for hours or even days; this interval could produce 

alterations in the proteome due to cell metabolism and activation [39]. To determine the 

extent of these alterations, we examined the effects of elapsed time to processing from 

venipuncture and the temperature at which samples are maintained prior to first 

centrifugation. It is deemed essential that the time elapsed between blood acquisition 

and processing in the biobank be as short as possible (less than 4 h, when possible), but 

sometimes blood samples cannot be processed until the day following extraction; in this 

case it is recommended that samples be maintained at low temperature to minimize 

proteolytic activity. However, the extent to which time and temperature can affect blood 

samples remains unclear. Our results indicate that few non significant changes occurred 

in peptide and protein identifications in plasma from blood collected in EDTA-plasma 

tubes and processed within the first 4 h following collection or after storage for up to 24 

h at 4°C prior to plasma isolation. The distribution of proteins in all samples was very 

similar, and the only clear difference observed by DIGE was in the concentration of 

several hemoglobin isoforms when there was a delay in blood centrifugation. This 

finding has been further confirmed by targeted MRM analysis, and is in accordance 

with other studies demonstrating by mass spectrometry that the undesired presence of 

high levels of hemoglobin chains in biological fluids could be used as marker for blood 
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contamination [40]. Also, in a previous study specifically examining serum handling 

conditions over several hours, both transport time and temperature were found to affect 

SELDI profiles [41]. In that study, the effects of time delay were minimized in samples 

transported on ice, although, as demonstrated by our results, hemoglobin also displayed 

significant variability. Comparable results were obtained after time course studies on 

plasma from blood collected in EDTA-plasma tubes and stored for up to a week either 

at 4°C or room temperature prior to plasma isolation. These proteomic studies revealed 

few significant changes in peptide and protein identifications, semitryptic peptides and 

methionine-oxidized peptides [42]. Results obtained by Hassis et al. [43], utilizing 

iTRAQ, are in agreement that minimal impact of time and temperature on plasma 

occurred after specimen collection. In serum, other previous studies have demonstrated 

that a blood pre-centrifugation delay of 24 h at room temperature influenced the proton 

NMR spectroscopic profile, but, if during this delay the temperature is held at 4°C, there 

was no influence on the proton NMR spectroscopic profile [44]. However, Findeisen et 

al [45] proposed a “proteomics degradation clock” based in the monitoring of synthetic 

spiked reporter-peptides, since their concentration in both serum and plasma samples 

decay in a time-dependent manner along a 2 to 24 hours period.   

 

Another pre-analytical variable possibly affecting stability of plasma is the number of 

freeze/thaw cycles. There is no consensus on the effects of freezing and thawing on 

serum and plasma. The marked effects and dependence on the number of freeze-thaw 

cycles on serum profiles generated using magnetic bead-based SPE followed by 

MALDI-TOF has been shown [46], and repeated freeze-thaw cycles resulted in a trend 

towards increasing changes in peak intensity in MALDI-TOF studies [47]. However, 

other studies of serum samples reported minimal effect on detected peaks of repeated 

freezing and thawing of up to ten cycles, as only minor effects were seen on the 

proteome, based upon the analysis of about 100 peaks by MALDI-TOF MS [48] and 

similar results were obtained in analyses of plasma subjected to up to 25 freeze/thaw 

cycles [42].  In agreement with the latter report, our data indicate that up to three 

freeze/thaw cycles have no significant effect on the stability of proteins in the plasma 

samples. 

 

Overall, our results indicate that the integrity of proteins and peptides was resistant to 

alteration by the pre-analytical variables considered in this study. Although there are 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 20 

other studies related to protein stability of clinical samples with similar results, what is 

remarkable about our work is the large number of plasma samples examined and that 

our analyses assessed protein integrity by combining a wide set of complementary 

proteomic approaches performed at different proteomic platform participating 

laboratories that all yielded similar results. Thus, we were able to examine the stability 

at both the peptide and protein level of a far broader range of plasma proteins than 

previously possible using individual techniques and fewer specimens. The peptide-level 

analyses performed in our work provide a robust method for accurate protein 

quantization in plasma samples and a better understanding of the changes in proteins 

induced by delayed processing or plasma freeze/thaw cycles. We believe our study is 

the most comprehensive performed to date to determine the changes in proteins induced 

by delayed sample processing and plasma freeze/thaw cycles. 

 

This work indicates that the reevaluation of plasma collection protocols in clinical 

proteomics studies used to analyze biomarkers should be considered. Our data suggest 

that stability of plasma proteins under expanded clinical laboratory storage conditions 

(4°C for up to 24 h prior to sample processing) could be considered as an acceptable 

time frame for plasma collection. Thus, this sampling-preparation time frame could 

expand the current typical standard operating procedure (processing within 4 h of 

collection). In addition, the utilization of plasma samples subjected to up to three 

freeze/thaw cycles, at least in the case of controlled thawing times of no more than one 

hour, could be considered potentially acceptable for clinical proteomics studies. 

 

CONCLUSION 

 

In summary, although it is evident that pre-analytical variables may influence clinical 

proteomic studies using plasma, and these must be taken into account, the results of the 

present work indicate that blood proteins in plasma are broadly insensitive to such pre-

analytical variables as delayed processing or freeze/thaw cycles when analyzed at the 

peptide level. These findings do not mean that these pre-analytical variables do not 

affect other analyses, for instance, immunoassays directed at intact proteins, where 

collection protocols may have different requirements.  
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Figure 1: Work-flow for sample preparation and analysis.  

Blood samples were processed following standard procedures with less than four hours 

of delay after extraction (P4: t≤4h) and subjected to 1, 2 or 3 freeze/thaw cycles. 

Alternatively, blood samples were processed following a 24-hour delay (P24) at 4ºC. 

Samples were pooled and immuno-depleted to obtain the flow-through fraction enriched 

in lower-abundance proteins. Frozen samples were then distributed to the participating 

laboratories. 

 

Figure 2: Solid phase-extraction (SPE) and MALDI-TOF MS analysis of C4 and 

C18-extracted depleted samples. 

A, C) MALDI profiling of (A) C4- and (C) C18-extracted pools. The diagrams 

represent the intensity of the signal (Y axis, arbitrary units) along the correspondent 

mass window (X axis, Th) of the different technical and experimental replicates (Z 

axis). B, D) Principal component analysis (PCA) of (B) C4- and (D) C18-extracted 

pools to reveal putative segregation and hierarchical clustering of the samples. 

 

Figure 3: Differential in gel electrophoresis (DIGE) of depleted samples. 

A) Representative two-dimensional DIGE image of the samples showing spots 

designated as modulated following software analysis. B) Table summarizing the 

characteristics of the four identified spots. C) Relative abundance of the four identified 

spots comparing the different analyzed samples. 

 

Figure 4: Multiple reaction monitoring (MRM) analysis of hemoglobin B. 

A) List of theoretical proteotypic peptides generated with MRM Pilot software and the 

exogenous spiked peptide LVIDEPTK. B) Area ratio (corrected) expressed in arbitrary 

units corresponding to the six observed peptides in the four different analyzed samples. 

C) Numerical values corresponding to the corrected area ratio. LC=liquid 

chromatography; MS=mass spectrometry 

 

Figure 5: Multiple reaction monitoring (MRM) analysis using peptide standards of 

selected plasma proteins. 

A) Table showing the proteotypic peptides for the thirty-seven selected proteins tested 

in parallel. B) Graphical logarithmic representation of the heavy/light ratio for the 

thirty-three observed proteins (X axis) in the four different analyzed samples. 
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Figure 6: Analysis of plasma proteins integrity. 

A, B) The number of identified proteins in the low molecular weight region of a 

SDS/PAGE of (A) depleted and (B) complete plasma. C, D) The protein coverage of the 

identified proteins in the low molecular weight region of a SDS/PAGE of  (C) depleted 

and (D) complete plasma, respectively. Median molecular weight of quartiles 1-4: 14, 

29, 53, and 93 kDa for depleted plasma; and 11, 34, 53, and 82 kDa for complete 

plasma. 

 

Figure 7: LC-MALDI-TOF/TOF and western-blot validation of selected proteins. 

A) Average emPAI index (Y axis) of all the proteins detected (X axis) when comparing 

fast processing (P4) vs. delayed processing (P24). B) The average emPAI (Y axis) of all 

the proteins detected (X axis) when comparing freeze/thaw cycles. C) Western blot 

validation of the putative alteration of the amount of selected proteins, apolipoprotein 

A1, vitronectin and kininogen. D) Densitometry analysis of each protein normalized to 

the corresponding densitometry of the Ponceau staining (not shown) of the entire lane. 
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HIGHLIGHTS 

 The integrity of proteins is resistant to alteration by the preanalytical variables  

 Up to three freeze/thaw cycles have no effect on the integrity of proteins in 

plasma 

 Delayed processing of blood has no significant effect on the stability of proteins  


