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ABSTRACT: This study evaluates the effect of dietary selenium (Se) supplementation source 

(organic, Se-enriched yeast; SY vs. inorganic, sodium selenite; SS), dose (0.2: L vs. 0.4: H mg/kg) 

and the combination of Se and vitamin E (VITE+SS) for 26 days on drip loss, TBARS, colour 

changes, myofibrillar protein pattern and proteolysis in pork. The lowest water losses were observed in 

the SY-H group when compared to the others. SY-H and VITE+SS groups presented lower 

myofibrillar protein hydrolysis/oxidation. VITE+SS supplementation also resulted in higher PRO, 

TRP and PHE content at days 2 and 7, whereas the SY group showed increased GLY and CAR and 

tended to have higher TAU and ANS at day 2. The myofibrillar fragmentation index was not modified 

by the dietary treatment; however, at day 8, it tended to be higher in groups supplemented with SeY 

and VITE+SS. The results of the present study might indicate a possible relation between muscle 

proteolysis and water loss. 
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1. INTRODUCTION

Pork quality depends on important attributes such as water-holding capacity, colour and 

oxidative stability, which are decisive in terms of suitability for processing and storage. Unacceptable 

colour, water retention or stability of the fresh product are mainly important for their influence on 

consumer behaviour, but can also cause high economic losses in the processing industry. 

Feeding strategies are widely used in animals to improve meat quality (Andersen, Oksbjerg, 

Young & Therkildsen, 2005). Many interventions have focused on dietary supplementation with 

antioxidants such as selenium (Se) and/or vitamin E. Hence, vitamin E fed above dietary requirements 

has been reported to protect against lipid oxidation (Buckley, Morrissey & Gray, 1995) and to 

successfully improve the colour stability of fresh meat (Faustman & Wang, 2000) and other meat 

quality characteristics such as water-holding capacity (Ashgar et al., 1991). This reduction in meat 

drip losses has been attributed to the antioxidant activity of vitamin E, which may stabilise membrane 

integrity post-mortem, thus retaining sarcoplasmic protein in cells (Ashgar et al., 1991). 

Dietary Se supplementation has also been reported to have antioxidant activities and to be 

effective in delaying post-mortem oxidation reactions, especially the organic form (Mahan et al., 

2014). It has been suggested that organic selenium is more effective because it reaches tissues more 

efficiently (Mahan, Cline & Richert, 1999; Jang et al., 2010; Mahan et al., 2014) and consequently 

pork shows improved water-holding capacity and colour (Mahan et al., 1999; Zhan, Wang, Zhao, Li & 

Zu, 2007). However, there are no evident effects of selenium on membrane stability, and the 

mechanism by which Se acts, especially the organic form, remains unclear. Furthermore, selenite at 

high doses has been reported to act as a pro-oxidant (Shen, Yang, Liu & Ong, 2000). Organic Se (in 

the form of Se-enriched yeast) is taken up via methionine transporter mechanisms and can be 

incorporated into selenoenzymes or in place of methionine in general body proteins (Suzuki & Ogra, 

2002). The incorporation of selenomethionine (Se-Met) into proteins is non-specific and directly 

related to the dietary intake of selenium/Se-Met, whereas the incorporation of selenium into 

selenocysteine is specific and mediated at the ribosomal level (Schrauzer, 2000). As a rule, the 

replacement of Met by Se-Met does not significantly alter protein structure but may influence the 

activity of enzymes if Se-Met replaces Met in the vicinity of the active site (Schrauzer, 2000). Hence, 
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it has been described that the Se-Met-substituted thymidylate synthase of E.coli exhibited a 40% 

higher specific activity than the normal enzyme (Boles et al., 1991). 

In contrast to the general belief that drip loss is reduced by the protective effect of some 

antioxidants on the muscle membrane, Lonergan and Lonergan (2005) have proposed that proteolysis 

and even protein oxidation are key in influencing the moisture retention capacity of meat. Differences 

between animals and/or muscles in the oxidation of myofibrillar proteins and hence in the antioxidant 

defence system would influence calpain activity post-mortem (Lonergan & Lonergan, 2005; Rowe, 

Maddock, Lonergan & Huff-Lonergan, 2004). Since calpain enzymes contain histidine and SH-

containing cysteine residues at their active sites, they are particularly susceptible to inactivation by 

oxidation (Lonergan & Lonergan, 2005). Calpain activation produces a rapid fragmentation of 

intermediate protein filaments in meat (such as desmin, which links myofibrils to the cell membrane), 

preventing shrinking of the overall muscle cell membrane (Lonergan & Lonergan, 2005), and 

consequently reducing drip loss (Melody et al., 2004). Moreover, desmin not only links myofibrils to 

cell membrane but it also connects the adjacent myofibrils which are key to transfer the shrinkage of 

myofibrils and maintain the integral structure of muscles (Lonergan & Lonergan, 2005). However, 

protein degradation not always increase water holding capacity of pork (Lawson, 2004; Zhang et al., 

2006). 

Some previous studies have shown that dietary supplementation with antioxidants such as 

vitamin E influence proteolysis in meat (Rowe et al., 2004); however, to the best of our knowledge no 

information exists on the possible effects of dietary Se on post-mortem protein degradation. 

We hypothesise that in pigs, dietary organic Se may exert a different effect on myofibrillar 

protein hydrolysis/oxidation and proteolysis than the inorganic form or vitamin E dietary enrichment. 

The objectives of the present research were to study the effect of the selenium source (organic as Se-

enriched yeast vs. mineral as sodium selenite in feed) and dose (0.2 vs. 0.4 mg/kg) on muscle 

proteolysis, myofibrillar proteins and other meat quality characteristics such as drip loss, TBARS, 

colour changes and pigment oxidation. 

2. MATERIAL AND METHODS
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All experimental procedures performed in this study complied with Spanish guidelines for 

the care and use of animals in research (BOE, 2013) and were in accordance with the protocols 

approved by the Complutense University of Madrid. 

2.1. Animals, Experimental Diets and Sample Collection 

One hundred and eighty halothane-negative Large white x Landrage female pigs (Topigs 20 x 

L337) were randomly selected at an average live weight of 61.3 ± 0.5 kg, distributed into six groups 

and housed in an environmentally controlled, slatted-floor facility (Centenera del Campo, Soria, 

Spain). Pigs (n=10) were housed in an individual box during the experimental period; hence, each 

treatment was replicated three times. Diets were formulated to provide a nutrient composition above 

NRC (2012) recommendations (Table 1) and were identical in composition except for the selenium 

source: sodium selenite (Na2SeO3) (SS) or selenomethionine from a Se-enriched yeast diet 

(Saccharomices cervisae, Sel-Plex; Alltech, Spain; Commission Regulation (EC) Nº 1750/2006) (SY). 

In all cases, Se was added to the vitamin mineral mix to achieve a final concentration of either 0.2 

mg/kg (SY-L or SS-L) or 0.4 mg/kg (SY-H or SS-H) (Table 1). In addition, a positive control group 

was supplemented with vitamin E in the diet (100 mg dl-α-tocopheryl acetate/kg) (VITE-SS) and a 

negative control group received a basal level of vitamin E (15 mg/kg) but no selenium 

supplementation (CONTROL). Pigs were fed the experimental diets until the end of the experiment 

(26 days in total), with 120.4 ± 2.5 kg. Food and water were provided ad libitum for the duration of the 

study. 

At the end of the experimental period, pigs were sent to a commercial slaughterhouse 

(Incarlopsa, Tarancón, Cuenca, Spain) stunned with CO2 and slaughtered after a fasting period of 24 h. 

Then, carcasses were eviscerated and split down the centre of the vertebral column before being 

suspended in the air and chilled at 4°C (1m/s; 90% relative humidity) for 2 h. Next, 24 h after 

slaughter, electrical conductivity and pH were measured by means of a LFStar conductivity meter 

(Mattahäus Ingenieurbüro, Klausa, DE) and a portable pH meter pH*K21 (NWK Binar, Puergen, DE), 

respectively. Before pH measurement, the instrument was calibrated with pH 7.0 ± 0.02 and 4.0 ± 0.02 

buffers. Once carcasses had been jointed, the untrimmed hams, shoulders and loins were kept in a 

chilled room at 4°C for 24 h and then weighed. Samples of approximately 15 cm in size were taken 
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from the longissimus lumborum muscle at the level of the last rib and were stored in individual, 

vacuum-packed plastic bags at -20°C until analysis. 

2.2. Laboratory Analysis 

2.1.1 Moisture Determination in Muscle Samples (Standard ISO-1442). 

Muscle samples (5 g) were maintained in a dry heater at 100-105°C until constant weight. 

Humidity was determined gravimetrically at day 0 and after 8 days of refrigerated storage. 

2.2.2 Drip Loss in Muscle Samples. 

To determine weight loss during storage, approximately 1 cm
3
 of sample (weighing 

approximately 10 g) was taken from the longissimus lumborum muscle. After cutting, samples were 

weighed, put inside of a mesh and a plastic bag that was closed and placed under refrigerated 

conditions at 4°C in a saturated atmosphere. Samples were weighed again after 72 hours of storage. 

The difference between initial and final weights was used to calculate drip loss, which was expressed 

as a percentage of the initial weight (Honikel, 1997). Frozen samples were previously thawed before 

following the same procedure as described above. 

Weight loss was also gravimetrically quantified by sequenced weights of 2 cm
3
 samples at 20, 

40 and 60 hours during the lyophilisation process. 

2.2.3. Tocopherol Quantification in Muscle Samples. 

The α-tocopherol concentration in muscle samples was quantified by direct extraction as 

described by Rey, Daza, López-Carrasco & López-Bote (2006). Briefly, muscle samples were mixed 

with 0.054 M dibasic sodium phosphate buffer adjusted to pH 7.0 with HCl and absolute ethanol. 

After mixing, the tocopherol was extracted with hexane by centrifugation. The upper layer was 

evaporated to dryness and dissolved in ethanol prior to analysis. Tocopherols were analysed by reverse 

phase HPLC (HP 1100, equipped with a diode array detector; Agilent Technologies, Waldbronn, 

Germany) as described elsewhere (Rey & López-Bote, 2014). Identification and quantification were 

carried out using a standard curve (R
2 

= 0.999) of the pure compound (Sigma, Alcobendas, Madrid). 
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All samples were analysed in duplicate. The α-tocopherol concentration in muscle was assessed on 

days 0 and 8 of refrigerated storage at 4°C. 

2.2.4. TBARS Analysis of Muscle Samples. 

The susceptibility of muscle homogenates to lipid oxidation induced by iron-ascorbate was 

determined by a modification of the method described by Kornburst & Mavis (1980). Muscle 

homogenates in 1.15% KCl (0.1 g/ml) were incubated at 37°C in 40 nM Tris-maleate buffer (pH 7.4) 

with 1 mM FeSO4 and 2 mM ascorbic acid in a total volume of 10 ml. At fixed time intervals (0, 30, 

60, 90 and 120 minutes), aliquots were removed for measurement of TBARS. Absorbance was 

measured at 532 nm. TBARS were expressed as mM malondialdehyde (MDA)/ g sample. 

2.2.5. Glutathione Quantification 

Reduced glutathione (GSH) and oxidised glutathione (GSSH) were quantified 

spectrophotometrically at 405 nm in deproteinised muscle using the corresponding diagnostic 

colourimetric kit (Arbor assays, USA). The concentration of oxidised glutathione was determined 

from the 2-vinylpyridine-treated samples read off 2-vinylpyridine-treated standard curve. Free 

glutathione (GSH) concentrations were obtained by subtracting the oxidised glutathione (GSSH) 

levels obtained from the 2-vinylpyridine-treated standard from non-treated standards and samples 

(total GSH). The concentrations obtained were expressed as M of glutathione. 

2.2.6. Instrumental Colour Analysis 

Two-cm-thick samples were placed on trays and kept at 4ºC for colour measurement. Muscle 

colour was evaluated on days 1 and 7 after slaughter by means of a Chroma Meter (CM 2002, Minolta, 

Camera, Osaka, Japan) previously calibrated against a white tile in accordance with the 

manufacturer’s recommendations (CIE, 1976). The average of five random readings was used to 

measure lightness (L*), redness (a
*
) and yellowness (b

*
). Meat pigments (oxymyoglobin, 

deoxymyoglobin and metmyoglobin) were calculated by the isobestic wavelengths measured by 

means of the Chroma Meter. Hence, oxymyoglobin was calculated by the isobestic wavelengths of 
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deoxymyoglobin and metmyoglobin (610 nm/525nm); deoxymyoglobin by the isobestic wavelengths 

of oxymyoglobin and metmyoglobin (as the ratio of measurement at 474 nm/525 nm) and 

metmyoglobin by the isobestic wavelengths of deoxymyoglobin and oxymyoglobin (572 nm/ 525 nm) 

(Tang, Faustman, & Hoagland, 2004). Colour measurement and pigment concentrations in muscle 

were assessed on days 0, 4 and 8 of refrigerated storage at 4°C. 

2.2.7. Separation of Myofibrillar Proteins by SDS-PAGE 

Extraction of sarcoplasmic and myofibrillar proteins was performed as described by Molina 

and Toldrá (1992). Meat samples were homogenised with 30 mM phosphate buffer, pH 7.4 (dilution 

1:10, w/v), using a masticator (IUL Instruments, Barcelona, Spain) for 4 min. After centrifugation at 

10,000g for 20 min at 4°C, the supernatant containing the sarcoplasmic proteins was passed through 

glass wool and collected. The procedure was repeated twice in order to wash the pellet that was then 

resuspended in 9 vol of 100 mM phosphate buffer, pH 7.4, containing 0.7 M potassium iodide. The 

mixture was homogenised in the masticator for 8 min and then centrifuged at 10,000g for 20 min at 

4°C. The supernatant was collected for analysis of myofibrillar proteins. The protein concentration of 

both supernatants containing sarcoplasmic and myofibrillar proteins was calculated by using 

bicinchoninic acid (Sigma Aldrich) as reagent and bovine serum albumin as standard. 

Proteins were separated by 10% SDS-PAGE as described by Toldrá, Miralles and Flores (1992). The 

sarcoplasmic and myofibrillar extracts were mixed in a ratio of 1:1 with 50 mM Tris buffer, pH 6.8, 

containing 8 M urea, 2 M thiourea, 75 mM dithiothreitol, 3% (w/v) SDS and 0.05% bromophenol 

blue, heated at 100°C for 4 min and immediately chilled in ice and used for electrophoresis. The 

amount of protein injected into the gels was 12 µg per lane. Once proteins had been separated, gels 

were stained with coomassie brilliant blue R-250 (Laemmli, 1970). Standard proteins (Bio-Rad 

Laboratories, Inc., CA, USA) were run simultaneously for molecular mass identification. Stained 

bands in each gel were relatively quantified by densitometry, using the ImageJ Program 

(http://rsbweb.nih.gov/ij/). 

2.2.8. Determination of Free Amino Acids 
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Free amino acids were determined following the procedure described by Aristoy and Toldrá 

(1991). Meat samples (longissimus lumborum muscle) were cut and minced, and 5 g was homogenised 

with 0.01 M HCl 1:5 (w/v) in a masticator (IUL Instruments) for 8 min at 4°C. After centrifugation at 

10,000×g for 20 min at 4°C, the supernatant was filtered through glass wool and stored at −20°C until 

required. Once samples had thawed, 250 μL plus 50 μL of an internal standard solution (1 mM 

norleucine in 0.01 M HCl) was deproteinised using 2.5 volumes of acetonitrile and then centrifuged at 

10,000×g for 5 min. Amino acid derivatisation was carried out with phenyl isothiocyanate (PITC) 

according to Bidlingmeyer, Cohen, Tarvin & Frost (1987). Supernatant (500 μL) was vacuum dried, 

mixed with 15 μL of methanol: 1 M sodium acetate: triethylamine (2:2:1) (v:v:v) and dried again. 

Then, 15 μL of methanol:water:triethylamine:PTIC (7:1:1:1, v:v:v:v) was added, held for 20 min and 

then dried. Derivatised amino acids were dissolved in 300 μL of 0.005 M phosphate buffer, pH 7.4, 

containing 5% acetonitrile, and analysed by reversed-phase HPLC in a 1200 Series Agilent 

chromatograph (Agilent, Palo Alto, CA, USA) using a Pico Tag® column (3.9×300 mm) (Waters 

Corporation, Milford, MA, USA). Separation was achieved in 55 min at 52°C using a gradient 

between two solvents: 70 mM sodium acetate at pH 6.55 containing 2.5% of acetonitrile (solvent A) 

and water:acetonitrile:methanol (40:45:15) (solvent B), as described by Armenteros, Aristoy, Barat 

and Toldrá (2012). Separated amino acids were detected at 254 nm. 

2.2.9. Myofibrillar Fragmentation Index (MFI) 

The myofibrillar fragmentation index was performed in duplicate as described by Culler et al. 

(1978). Forty ml cold MFI buffer (100 mM KCl, 20 mM potassium phosphate at pH 7, 1 mM MgCl2 

and 1 mM NaN3 in distilled deionised water) was added to a blender containing the sample (4 g) and 

homogenised for 30 s. The homogenate was then centrifuged at 1000 x g for 15 min at 2°C and 

afterwards the supernatant was discarded. The pellet was resuspended in 40 ml cold MFI buffer and 

centrifuged at 1000 x g for 15 min. The pellet was again resuspended in 10 ml cold MFI buffer and 

vortexed until well mixed. Finally, the sample was poured through a polyethylene strainer to remove 

the connective tissue and the centrifuge tube was rinsed with an additional 10 ml cold MFI buffer. The 

protein content in each suspension was also measured by Biuret reaction. The extract (0.25 ml) was 
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mixed with 0.75 ml of MFI buffer and 4 ml of Biuret reagent (Sigma Aldrich, Alcobendas, Madrid). 

The mixture was vortexed and placed in the dark for 30 min. Bovine serum albumin (BSA) (Sigma 

Aldrich) was used as standard at concentrations of 0, 2.5, 5, 7.5 and 10 mg/ml. Once that the sample 

protein was determined, the amount of solution taken for MFI measurement contained approximately 

0.5 mg protein / ml solution. MFI was measured spectrophotometrically using a Thermo Scientific 

Multiskan GO (Thermo Fisher, Alcobendas, Madrid) UV/VIS spectrophotometer at 540 nm, and it 

was expressed as absorbance of a myofibrillar protein solution (concentration 0.5 mg/ml) multiplied 

by 200. 

2.2.10. Statistical Analysis 

The experimental unit for analysis of all data was the yard. Data were analysed following a 

completely randomised design using the general linear model (GLM) procedure contained in SAS 

(version 9; SAS Inst. Inc., Cary, NC). A comparative analysis between means was conducted using the 

following orthogonal contrasts: (1) Control vs. others; (2) Vitamin E vs. others; (3) Se source effect; 

(4) Se dose effect (5) Source x dose interaction; (6) Control vs. Se; (7) Vitamin E vs. Se; (8) Control

vs. vitamin E. Data were presented as the mean of each group and root mean square error (RMSE) 

together with significance levels (P value). Differences between means were considered statistically 

significant at P < 0.05. 

3. RESULTS AND DISCUSSION

3.1 Carcass Characteristics 

Carcass characteristics are presented in Table 2. Carcass, psoas major, longissimus thoracis et 

lumborum, ham and shoulder weights were not statistically affected by dietary treatments. Total lean 

percentage was also unaffected; however, the percentage of dorsal fat was lower (P= 0.031) in those 

pigs supplemented with organic Se at high doses (SY-H) or vitamin E+Se. Kim et al. (2012) reported 

that Se (in the form of sodium selenite) inhibits adipocyte hypertrophy and abdominal fat 

accumulation in rats. Other authors found that a combination of Se and vitamin E supplements 

partially modulated fatty acid distribution (Douillet, Bost, Accominotti, Borson-Chazot & Ciavatti, 
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1998). In addition, Podszun et al. (2014) found that dietary α-tocopherol reduced high-fat-induced 

lipid accumulation in the liver. These effects were recently related to the potential increase in cell 

resistance to insulin (Pinto et al., 2012). The lack of effect observed in groups SS-L, SS-H and SY-L 

in the present study may have been due to an insufficient dose or administration time for observing 

these effects, and SY-H and vitamin E+Se were the most effective treatments to reduce fat percentage. 

3.2 Electrical Conductivity, pH, Drip Loss and Meat Composition 

The electrical conductivity (EC), pH and drip loss of muscle samples were unaffected by 

either selenium source or dietary vitamin E supplementation (Table 2 and 3). However, a marked 

effect was observed of organic selenium on total water losses and evolution during the lyophilisation 

process. Hence, meat samples from groups supplemented with the organic source of Se showed lower 

water losses after 20 hours (P=0.009), 40 hours (P=0.037) and 60 hours (P=0.045) when compared to 

the mineral source of Se. This effect resulted in lower water losses during the initial water loss process 

during lyophilisation (lower percentage at 20 h, P=0.027). It is interesting to note that the lowest water 

losses were observed in the SY-H group. Organic Se has been reported to increase water-holding 

capacity (Mahan et al., 1999; Zhan et al., 2007; Li et al., 2011; Lisiak et al., 2014), although other 

authors have not found any effect in pork (Castro-Rios & Narvaez-Solarte, 2013; Bobcek et al., 2004). 

However, these latter authors used doses of 0.3 mg/kg or lower. In contrast, Li et al. (2011) used three 

different doses of selenium-enriched yeast (0, 0.3, and 3.0 mg Se/kg) and found a clearly lower drip 

loss in meat samples from pigs supplemented with 3.0 mg/kg, whereas the use of 0.3 mg/kg resulted in 

intermediate drip loss values that were no different from those obtained for samples from non-

supplemented pigs. Other authors who have observed an effect on drip loss used between 0.4-0.5 

mg/kg in the form of organic Se (Lisiak et al., 2014) or a supplementation time of 40 days using doses 

of 0.3 mg/kg (Zhan et al., 2007). Mahan et al. (1999) fed pigs from 55 to 105 kg with organic 

selenium and found lower drip losses with a dose of 0.3 mg/kg when compared with the inorganic 

form. In the present research it was observed that differences were not statistically significant in drip 

loss of frozen muscle. The vitamin E+SS-supplemented group showed intermediate water loss values 

that were the same as in the other groups, and a lower percentage of water loss at 60 hours (P=0.0013) 
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when compared to the control group. According to the results of the present study, vitamin E plus a 

low dose of SS seems to have a more limited effect as regards reducing water loss in muscle samples 

when compared to organic Se at higher doses. Several authors have found that high levels of vitamin E 

reduce the amount of drip loss in pork (Ashgar et al., 1991; Cheah, Cheah & Krausgrill, 1995) in 

samples from pigs carrying the halothane gene (Cheah et al., 1995) or in pigs of unknown halothane 

status. These effects have been attributed to the antioxidant capacity of vitamin E, which protects 

membrane integrity and thus reduces water loss (Ashgar et al., 1991). Conversely, other studies have 

shown no effect or contradictory results (Dirinck, Winne, Casteels & Frigg, 1996; Jensen et al., 1997). 

Moreover, other authors have reported no beneficial effect on meat quality when using a combination 

of dietary vitamin E (60 mg/kg) and Se at low doses (0.2 mg) (Kawecka, Jacyno, Matysiak, Kolodziej-

Skalska & Pietruszka, 2013). 

3.3. Tocopherol Accumulation 

The vitamin E concentration as affected by dietary treatment is presented in Table 3. As 

expected, muscle α-tocopherol content was affected by dietary α-tocopheryl acetate concentration, and 

groups supplemented with 100 mg/kg thus showed a higher concentration in meat samples (P=0.0001) 

than the other groups. Vitamin E was also affected by sample storage time, with all experimental 

groups showing a decrease.  This is because vitamin E plays an important role in lipid antioxidant 

defence in the cell membrane (Buckley et al., 1995). Moreover, it is interesting to observe that control 

samples presented the lowest content of vitamin E, even though these had been supplemented with the 

same vitamin E dose as the Se-supplemented groups; however, differences between these groups were 

not statistically significant. 

 3.4. Lipid Oxidation and Antioxidant Status 

To evaluate the oxidative stability of pork according to selenium source or dose when 

compared to a control or a vitamin E+SS-supplemented group, ferrous-induced oxidation was 

measured in muscle samples (Table 3). Muscle samples from pigs supplemented with dietary vitamin 

E at 100 mg/kg plus 0.2 mg SS/kg showed the lowest malondialdehyde (MDA) concentration at 0 min 
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(P=0.0004), 30 min (P=0.0001), 60 min (P=0.0010), 90 min (P=0.0001) and 120 min (P=0.0001) of 

incubation when compared to the other groups. Moreover, samples from pigs supplemented with 

vitamin E+SS had higher lipid stability (P< 0.05) than those supplemented with Se alone. Thus, MDA 

concentration in muscle was reduced by about 43% in vitamin E+SS-supplemented pigs and by 14% 

in animals fed a selenium-enriched diet when compared to control group. In addition, MDA 

production in the vitamin E+SS group was also reduced by 34% when compared to Se-supplemented 

pigs (P<0.005). α-Tocopherol which is mainly located in muscle membrane (Buckley et al., 1995) has 

been reported to be an effective antioxidant, capturing free radicals and other reactive substances 

(Dirinck, De Winne, Casyteels & Frigg, 1996). Selenium is also recognised as an essential trace 

element that plays an important role in antioxidant defences as a component of Se-dependent 

glutathione peroxidase (GSH-Px). This enzyme protects cells against damage caused by free radicals 

and lipoperoxides (Finkel & Holbrook, 2000). The effect of both compounds has also been studied and 

a synergistic action has been reported between vitamin E and Se to protect the cell (Saito, Yoshida, 

Akazawa, Takahashi & Niki, 2003). Harsini, Habibiyan, Moeini & Abdolmohammadi (2012) 

compared vitamin E (125 and 250 mg/kg) and Se (0.5 and 1 mg/kg) supplementation both separately 

and in combination (125 mg vitamin E/kg and 0.5 mg Se /kg), and found a higher reduction in MDA 

production in broilers fed with both compounds when compared to the control. However, they did not 

find differences between vitamin E or selenium when supplemented separately. Ebeid, Zeweil, 

Basyony, Dosoky & Badry (2013) also reported a similar antioxidant effect of organic selenium (0.3 

mg /kg) and vitamin E (250 mg/kg) in rabbits, and the combination of both was the most effective 

treatment to reduce TBARS. In contrast, other authors have not found any positive effect of organic Se 

at low doses (0.3 mg/kg) on the oxidative stability of pork muscle (Krska et al., 2001). 

In the present research, no differences were detected in TBARS production according to Se 

source or dose. In contrast, Zhan et al. (2006) reported a higher stability of muscle samples against 

lipid oxidation following supplementation with the organic form at a dose of 0.3 mg Se/kg 

administered for 40 days. Bobcek et al. (2004) also found an effect on TBARS production, but these 

authors used 0.3 mg of organic Se in pigs from 35 to 100 kg. 
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To confirm these results, antioxidant status was measured as the oxidised to reduced 

glutathione rate (GSSH/GSH). Glutathione reductase (GR) plays an important role in maintaining 

redox homeostasis by reducing GSSH (oxidised GSH) to GSH, and the increased GR activity 

produces more GSH under oxidative stress (Grant, Collisnson, Roe & Dawes, 1996). As observed 

before in TBARS content, meat from pigs supplemented with vitamin E+SS presented the lowest 

GSSH content (P=0.027) and the lowest GSSH/GSH ratio (P=0.054). Li et al. (2011) found a high 

correlation coefficient for TBARS content and glutathione peroxidase (GPX) activity. The results of 

the present study confirm that the vitamin E+SS group had the highest antioxidant capacity and that 

the different Se doses and sources had no effect on antioxidant capacity. Li et al. (2011) attributed the 

improvement in meat oxidative stability induced by Se to the protective effect of GPX against 

oxidative damage. In a proposed hierarchy of selenium usage, GSH-Px is one of the first needs to be 

satisfied (Hohe & Brigelius-Flohe, 2002). Mahan and Parret (1996) reported that although Se 

deposition in pig tissue was higher when the organic form of Se was fed, sodium selenite was more 

effective in attaining maximum GPX activity, particularly after feeding a diet with a low Se content 

over an extended period. Moreover, despite differences in GPX activity in organic selenium-

supplemented animals, some studies have reported little or no potential effect of organic Se on 

improving the oxidative stability of meat (Juniper, Phipps, Ramos-Morales & Bertin, 2008; Juniper, 

Phipps & Bertin, 2011). 

3.5. Colour and Pigment Stability of Muscle 

Colour changes, measured as L* (lightness), a* (red colour), b* (yellow-green colour), chroma 

(colour intensity or saturation) and hue (tone) after 1, 4 and 8 days of refrigerated storage, are 

presented in Table 4. The main changes in colour were observed in the group supplemented with 

vitamin E+SS, which showed higher a* (P=0.032), b* (P=0.048) and colour intensity (P=0.037), 

whereas colour tone was lower (P=0.044) at day 4 of storage when compared to the other groups. 

Hence, the use of both compounds (vitamin E+SS) yielded meat samples with 25% higher redness and 

8% more colour intensity than the use of organic or inorganic Se at high or low dose without vitamin 

E supplementation. The positive effects of dietary vitamin E have previously been reported by others 
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(Faustman et al., 1996; Monahan, Buckley, Morrissey, Lynch & Gray, 1992). Monahan et al. (1992) 

found higher redness in pork chops from animals fed a vitamin E-enriched diet when compared to a 

control. Furthermore, the combination of vitamin E and Se has also yielded colour improvements 

(Krska et al., 2001). However, neither Se source nor dose were observed to exert an effect in the 

present study, which is consistent with the results found for the TBARS numbers and may possibly be 

explained by the short supplementation period. Other authors have not found any effect of selenium on 

meat colour (Lisiak et al., 2014). Juniper et al. (2011) have suggested that once the Se content of tissue 

exceeds the requirements of antioxidant enzymes, further increases in tissue Se do not result in any 

noticeable improvement in meat quality. However, others found a favourable effect of the organic 

form on colour parameters when compared with the inorganic form (Zhan et al., 2007; Bobcek et al., 

2004; Mahan et al., 1999). 

The concentration of myoglobin was also quantified because it is the main heme protein 

responsible for meat colour (Table 5). As explained before, the main effect observed on meat pigments 

was found when pigs were supplemented with vitamin E at 100 mg/kg and low doses of inorganic Se. 

Thus, pigs from the vitamin E+SS group presented higher DeoxyMb (P=0.04) and OxyMb (0.04) at 

day 4 and a lower MetMb to DeoxyMb ratio (P=0.04) when compared with the other groups. The 

vitamin E+SS group also showed higher DeoxyMb (P=0.02) and OxyMb (P=0.025) at day 4 and 

DeoxyMb at day 8 (P=0.05) when compared with those groups supplemented with Se. These results 

are consistent with those observed for colour parameters and TBARS numbers. Furthermore, a Se 

source effect was observed whereby pigs fed SY had a lower MetMb to DeoxyMb ratio (P=0.03) than 

those supplemented with SS. 

3.6. Myofibrillar Proteins and Free Amino Acids 

The myofibrillar protein pattern is presented in Figure 1. Electrophoresis profiles were 

affected by the dietary treatment and the storage time. Meat storage essentially affected the troponin T, 

tropomyosin and 150 kDa bands, which partially disappeared after 7 days of storage. Other authors 

found similar results for storage time (Martinaud et al., 1997; Santé-Lhoutellier, Engel, Aubry & 

Gatellier, 2008) in bovine and lamb muscle. Martinaud et al. (1997) also found a concomitant 
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appearance of a 30 kDa band which was considered as a proteolysis index. However, as with Santé-

Lhoutellier et al. (2008), we did not detect this compound.  

The main effect observed between treatments was the greater decrease in MLC2, Tn-I, 

tropomyosin and Tn-T bands in control and SS-L treatments after 7 days of refrigerated storage when 

compared to the others. In addition, the 150 kDa band disappeared to a lesser extend in SS-H, SY-L, 

SY-H and VITE+SS after 7 days of storage. The disappearance of the myosin, troponin and 

tropomyosin bands could correspond to oxidation processes. Hence, dietary enrichment with organic 

selenium, synthetic selenium at high doses and vitamin E+SS exerted a strong effect on myofibrillar 

proteins in the present study. On the other hand, bands 98 and 105, which were already observed at 

day 2 of storage, were more marked after day 7 of storage in treatments SY-L, SY-H and VITE-SS. 

The effect of dietary vitamin E supplementation on myosin and tropomyosin bands has previously 

been reported (Aksu, Aktas, Kaya & Macit, 2005); however, no studies have investigated the effect of 

selenium. 

Also noteworthy was the presence of a higher number of bands between tropomyosin and Tn-I 

bands in the VITE+SS group, which may be the result of tropomyosin fragmentation or may be an 

indicator of lower losses or myofibrillar oxidation, bearing in mind the high antioxidant power of this 

diet. Aksu, Aktas, Kaya & Macit (2003) also found a similar effect of vitamin E supplementation on 

myofibrillar proteins when using 45 mg/day for 75 days in lambs. Servais, Letexier, Favier, Duchamp 

& Desplanches (2007) reported that vitamin E supplementation decreases the rate of muscle 

proteolysis by reducing the expression of calpains, caspases-3, -9 and -12, and E3 ubiquitin ligases. 

Calpains are non-lysosomal Ca2+-activated cysteine proteases that cleave titin and nebulin at sites 

near the Z-disc (Goll, Thompson, Li, Wei & Cong, 2003). Thus, the calpain system plays an important 

role in regulating proteolysis of muscle proteins under post-mortem conditions (Lonergan, Huff-

Lonergan, Wiegand & Kriese-Anderson, 2001). Additional new bands between MLC-1 and Tn-C and 

between MLC2 and MLC3 appeared in the SeY-H group after 7 days of storage, but not in the other 

groups. These new compounds may arise from the decomposition of myosin and troponin chains and 

may be indicators of a higher proteolysis activity in this group.  
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The free amino acid content of pork samples is shown in Tables 7 and 8. As expected, free 

amino acid content increased with meat ageing and was due to the action of muscle aminopeptidases 

(Moya et al., 2001). The group supplemented with vitamin E+SS had the lowest content of serine 

(SER) (P=0.011) and anserine (ANS) (P=0.006) at day 2 of storage and of SER (P=0.035), ANS 

(P=0.018) and carnosine (CAR) (P=0.009) at day 7 when compared to the other groups. In contrast, it 

is also of interest to observe that essential amino acids were higher in the group supplemented with 

VITE+SS when compared with the others. Hence, PRO (P=0.0001), TRP (P=0.0063), and PHE 

(P=0.0062) at day 2 and day 7 (P= 0.0001; P=0.0001 and P=0.0004, respectively) were higher in meat 

from pigs supplemented with the VITE+SS-enriched diet when compared with the other groups. These 

free amino acid contents (PRO, PHE, and TRP) were also lower in Se-enriched groups when 

compared with the group supplemented with VITE+SS, and no effects of the Se source or dose were 

found, which would indicate that the increase in the concentration of these essential amino acids was 

mainly due to vitamin E supplementation. This phenomenon has not been observed before. Taking 

into account the higher antioxidant power of the VITE+SS supplement found in the present study for 

MDA production, colour changes and myofibrillar protein, this result might be explained by a higher 

protective effect of vitamin E against protein and amino acid oxidation (Mercier, Gatellier & Renerre, 

2004). This protective effect of vitamin E would also maintain calpain activation post-mortem, which 

would increase proteolysis of filament proteins in meat. 

The Se source also affected the free amino acid content of meat. Meat from pigs supplemented 

with organic Se had higher content of glycine (GLY) and carnosine (CAR) at day 2 and also tended to 

have higher taurine (TAU) (P=0.098) and anserine (ANS) (P=0.051) at day 2 and alanine (ALA) 

(P=0.078) at day 7 when compared with the inorganic form. The dose effect was only observed in 

ALA content, which increased with the Se supplementation dose (P=0.036). Moreover, dietary Se 

supplementation resulted in higher SER (P=0.027 and P=0.026 at days 2 and 7, respectively), ANS 

(P=0.0005 and P=0.012 at days 2 and 7, respectively) and CAR (P=0.016 at day 2) when compared to 

vitamin E supplementation. As indicated before, no previous information exists on the effect of Se 

source or dose on muscle proteolysis. Carnosine is an important natural water-soluble muscle 

dipeptide that can contribute to the inactivation of lipid oxidation catalysts and free radicals in the 
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sarcoplasm (Decker & Crum, 1993). The different proteolytic effect of the Se sources should be 

highlighted since a higher proteolysis may be partially responsible for the increased water-holding 

capacity (WHC) observed in groups supplemented with organic Se when compared to the inorganic 

Se. Hence, Kristensen and Purslow (2001) hypothesised that the increase in meat WHC during storage 

time was due to post-mortem degradation of cytoskeletal proteins. They further postulated that the 

elution water flow rate is inversely related to the quantity of proteolysed cytoskeletal proteins with 

time post-mortem. In turn, Lonergan & Lonergan (2005) reported that the degradation of proteins such 

as desmin, talin or vinculin in the early post-mortem period allows water that is expelled from 

intramyofibrillar spaces to remain in the cell for a longer period of time. Consequently, the results of 

the present study would support the hypothesis that early post-mortem proteolysis of intermediate 

filament proteins can minimise the flow of water from within the cell to the drip channels. However, 

other studies showed that not always protein degradation could increase water holding capacity of 

pork (Lawson, 2004; Zhang et al., 2006). 

However, given that these proteins are substrates of calpains, which are directly involved in 

regulating proteolysis, and that it has been reported that calpain expression is reduced by vitamin E 

supplementation (Servais et al., 2007), higher drip loss would be expected in pigs that received a 

vitamin E-enriched diet. Conversely, it has also been reported that protein oxidation may reduce the 

functionality of calpains; thus, vitamin E might also protect muscle enzymes. This possible double 

effect described for vitamin E in inhibiting calpain oxidation and expression could be responsible for 

the intermediate effects observed for water loss in the present study. The possible effect of higher free-

essential amino acid content is unknown. These differences in muscle proteolysis by dietary vitamin E 

enrichment might in part explain the controversial effects of dietary vitamin E supplementation on drip 

loss reported in many studies in the literature. However, numerous other factors that could affect the 

calpain system must be taken into consideration, and further research is required to confirm these 

effects. 

3.7. Myofibril Fragmentation Index (MFI) 
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 In order to confirm the effect of Se on meat proteolysis, the myofibrillar fragmentation index 

(MFI) was measured (Table 8). At day 2 of storage, MFI was not modified by the dietary treatment. At 

day 8, the MFI was neither statistically affected. However, SeY and VITE+SS groups had the highest 

MFI values at day 8, even though differences were not statistically different (P=0.147 and P=0.125, 

respectively). The increase in MFI values with meat ageing has been reported by others (Dosler, 

Polak, Zlender, Gasperlin, 2007), since there is a relationship between muscle proteolysis and MFI 

values (Kristensen et al., 2002; Koohmaraie, Whipple, Kretchmar, Crouse & Mersmann, 1991). These 

results would be in accordance with the myofibrillar protein oxidation and free amino acid content 

described above. Hence, meat from groups supplemented with SeY and VITE+SS presented higher 

muscle proteolysis, which would explain the lower or intermediate water losses observed for these 

groups. 

In conclusion, dietary selenium source at 0.2 or 0.4 mg/kg administered for 26 days did not 

modify MDA production, GSSH concentration or colour parameters of meat. However, organic Se 

effectively increased WHC and post-mortem muscle proteolytic activity. The administration of 0.2 

mg/kg SS plus 100 mg VITE/kg was the most efficient treatment for stabilising colour, reducing MDA 

and GSSH production and decreasing myofibrillar protein hydrolysis/oxidation; however, this dietary 

supplementation was not as effective as organic Se administration in improving WHC. This result 

would confirm the relation between muscle proteolysis and WHC. 
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Figure caption 1.- Myofibrilar proteins of muscle samples as affected by dietary treatments (1: 

CONTROL, 2: SS-L; 3: SS-H; 4: SY-L; 5: SY-H; 6: VITE-SS). 
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Table 1.- Ingredients, major nutrients and analysed composition of the experimental diets 

CONTROL SS-L SS-H SY-L SY-H VITE 

Ingredients
1

α-Tocopherol, mg/kg 15 15 15 15 15 100 

Selenium (sodium selenite), 

mg/kg 0 0,2 0,4 0 0 0,2 

Selenium (Selplex), mg/kg 0 0 0 0,2 0,4 0 

Major nutrients 

Dry matter, % 89,8 89,8 89,8 89,8 89,8 89,8 

Crude protein, % 13,2 13,2 13,2 13,2 13,2 13,2 

Fat, % 6,2 6,2 6,2 6,2 6,2 6,2 

Crude fiber, % 4,2 4,2 4,2 4,2 4,2 4,2 

Ash, % 4,4 4,4 4,4 4,4 4,4 4,4 

Starch, % 46,3 46,3 46,3 46,3 46,3 46,3 

Lysine dig, % 0,7 0,7 0,7 0,7 0,7 0,7 

Met dig, % 0,2 0,2 0,2 0,2 0,2 0,2 

Met + Cis dig, % 0,4 0,4 0,4 0,4 0,4 0,4 

Thr dig, % 0,4 0,4 0,4 0,4 0,4 0,4 

EN, kcal/kg 2449 2449 2449 2449 2449 2449 

Analysed composition 

α-Tocopherol, μg/g 47,62 41,53 51,74 40,95 42,81 175,09 

Selenium, mg/kg 0,0004 0,19 0,42 0,22 0,39 0,21 

  

  
       
     

1 

Ingredients (g/kg)
: 

Barley, 484.4; Wheat, 25.0; Corn,  8.00; Soya cake 47,  6.00; Sunflower oil,  5.00; Mixed fats,  4.50 ; Calcium carbonate,  1.03; L-lysine, 

0.54; Sodium bicarbonate,  0.50; Bicalcium phosphate,  0.37; Salt,  0.26; Premix *
, 

0.20; L-Threonine,  0.08; Bactericide, 0.05; Fungicide,  0.03. 
* 

Premix  (per Tn of finished diet): Vitamin A: 8000000 IU; Vitamin D
3
: 1800000 IU; Vitamin E (all rac α-tocoferyl-acetate)**: 15000 mg; Vitamin B

1
: 0.5 g;

Vitamin B
2
: 1.5 g; Vitamin B

12
: 12 mg; Vitamin B

6
: 1 g; Nicotinic acid: 15 g; Calcium Pantothenate: 10 g; Vitamin K

3
: 0.5 g; Choline chloride: 100 g; Fe 

(ferrous carbonate): 70 g; Cu (pentahidrated sulphate): 15 g; Co (hidrate carbonate): 0.05 g; Zn  (oxide): 100 g; Mn (oxide): 40 g; I (potasium iodure): 0.5 g; 

Se (sodium selenite)***: 0.2 g (SS-L) or 0.4 g (SS-H); 6-fitase EC 4-12: 500000 FTU; xilanase 4-8: 24000000 BXU; BHT E321: 2 g; citric acid E330:  6,9 

g; sodium citrate E331: 0.2 g; sepiolite: 150 g.
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Table 2.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation on electric conductivity 

(EC) and pH after slaughter in muscle samples from pigs fed the experimental diets.  

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE1 P2 

Carcass characteristics 

Carcass weight, kg 95,23 94,48 94,37 96,01 91,85 91,74 5,942 0,2761 

Psoas major weight, kg 0,59 0,58 0,59 0,59 0,60 0,58 0,035 0,5435 

Longissimus thoracis et lumborum 

weight, kg 4,18 ba 4,11 ba 4,26 a 4,21 ba 4,14 ba 4,03 b 0,249 0,1941 

Ham weight, kg 12,64 12,55 12,56 12,99 12,33 12,43 0,881 0,3362 

Shoulder weight, kg 8,06 ba 7,93 ba 8,01 ba 8,07 a 7,95 ba 7,86 b 0,252 0,1984 

Total lean meat, % 57,00 56,24 56,46 56,59 57,86 57,80 2,728 0,4502 

Dorsal fat, % 24,81 ba 26,12 a 25,00 ba 24,93 ba 22,47 b 22,91 b 3,323 0,0310 

Meat characteristics 

pH at 3 h 6,40 6,37 6,39 6,48 6,45 6,44 0,253 0,8561 

pH at 20 h 5,69 5,75 5,67 5,68 5,66 5,67 0,158 0,6404 

pH at 36 h 5,71 5,76 5,68 5,68 5,68 5,69 0,154 0,6436 

EC at 20 h 2,47 2,75 2,41 2,22 2,30 2,11 1,214 0,7884 

EC at 36 h 3,83 4,19 3,78 3,47 4,47 3,59 1,412 0,4053 
1 RMSE: Root of the mean square error 

2 P: Differences were statistically significant when P<0.05 
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Table 3.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation on moisture, drip loss 

and water loss during lyophilisation in muscle samples from pigs fed the experimental diets.  

Probability of contrast2 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE1 1 2 3 4 5 6 7 8 

Moisture (%) 

Day 0 73,90 73,76 73,58 73,48 73,45 73,04 1,37 NS4 NS NS NS NS NS NS NS 

Day 7 73,63 73,37 73,22 72,95 72,42 73,35 1,16 NS NS NS NS NS NS NS NS 

Drip loss (g drip loss / 100 g sample) 

Fresh 6,83 7,47 6,74 6,61 6,67 7,46 1,53 NS NS NS NS NS NS NS NS 

Frozen 16,05 16,11 14,77 15,03 13,98 14,76 2,41 NS NS NS NS NS NS NS NS 

Water loss during lyophilization (g water/ 100 sample) 

20 h 71,87 71,65 70,62 68,98 68,15 69,28 2,87 0,0470 NS 0,0090 NS NS 0,0600 NS NS 

40 h 72,84 73,18 72,35 72,09 71,81 72,41 1,15 NS NS 0,0371 NS NS NS NS NS 

80 h 73,34 73,55 72,78 72,46 72,26 72,75 1,18 NS NS 0,0450 NS NS NS NS NS 

pc_20h3 97,99 97,40 97,03 95,20 94,27 95,19 3,26 0,0700 NS 0,0270 NS NS NS NS 0,0750 

pc_40h 1,33 2,09 2,39 4,29 5,11 4,32 3,32 0,0630 NS 0,0310 NS NS 0,0909 NS 0,0619 

pc_60h 0,68 0,51 0,58 0,51 0,62 0,48 0,14 0,0100 0,0538 NS 0,0550 NS 0,0244 NS 0,0013 
1 RMSE: Root of the mean square error 

2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose interaction; (6) 

CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P < 0.05 

3 Percentage of drip losses at 20 h; 4 NS: Not statistically significant 
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Table 4.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation on α-tocopherol (µg/g), 

ferrous-induced oxidation (mg MDA/g meat) and muscle glutathione (µM/g) in muscle samples from pigs fed the experimental diets.  

Probability of contrast2 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE1 1 2 3 4 5 6 7 8 

Vitamin E (μg/g) 

day 0 1,88 2,11 2,12 2,00 1,97 3,28 0,54 0,0384 0,0001 NS NS NS NS 0,0001 0,0001 

day 7 1,51 1,68 1,43 1,65 1,47 2,71 0,40 0,0666 0,0001 NS NS NS NS 0,0001 0,0001 

day 0-7 0,37 0,42 0,69 0,35 0,50 0,57 0,38 NS3 NS NS NS NS NS NS NS 

TBARS (mg MDA/g) 

0 min 1,65 1,26 1,28 1,46 1,29 0,87 0,37 0,0036 0,0004 NS NS NS 0,0229 0,0022 0,0001 

30 min 1,62 1,23 1,34 1,44 1,27 0,83 0,33 0,0020 0,0001 NS NS NS 0,0201 0,0002 0,0001 

60 min 1,71 1,53 1,44 1,58 1,46 1,03 0,40 0,0401 0,0010 NS NS NS NS 0,0028 0,0007 

90 min 1,93 1,65 1,55 1,81 1,53 1,14 0,35 0,0036 0,0001 NS NS NS 0,0304 0,0004 0,0001 

120 min 1,91 1,81 1,77 1,98 1,82 1,17 0,41 NS 0,0001 NS NS NS NS 0,0001 0,0003 

Muscle glutathione (μM/g) 

GSSH 1,47 1,03 0,86 1,25 0,51 0,41 0,99 0,075 0,094 NS NS NS NS NS 0,027 

GSHfree 34,00 35,51 37,02 29,09 33,29 32,11 8,04 NS NS 0,064 NS NS NS NS NS 

GSSH/GSH 4,22 2,80 2,63 5,02 1,54 1,29 0,006 NS 0,096 NS 0,089 NS NS NS 0,054 

1 RMSE: Root of the mean square error 

2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose interaction; (6) 

CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P < 0.05 

3 NS: Not statistically significant 
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Table 5.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation on 

colour  (CIELAB L*, a*, b*, chroma and hue values) of muscle samples from pigs fed the experimental diets  

Probability of contrast
2
 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE
1
 1 2 3 4 5 6 7 8 

L* 

Day 0 55,22 53,82 54,81 54,59 54,92 54,34 2,31 NS
3
 NS NS NS NS NS NS NS 

Day 4 55,36 54,87 55,86 55,28 55,58 54,63 2,50 NS NS NS NS NS NS NS NS 

Day 8 56,07 55,20 56,22 55,29 56,18 55,78 2,83 NS NS NS NS NS NS NS NS 

a * 

Day 0 0,60 0,93 0,11 0,66 0,55 1,32 1,17 NS 0,0858 NS NS NS NS 0,0894 NS 

Day 4 3,40 3,35 2,84 2,94 2,90 4,02 1,17 NS 0,0326 NS NS NS NS 0,0236 NS 

Day 8 2,03 1,43 1,09 1,64 1,78 2,45 1,21 NS 0,0597 NS NS NS NS 0,0385 NS 

b* 

Day 0 12,10 11,45 11,43 11,74 11,83 12,21 0,91 NS NS NS NS NS NS 0,0854 NS 

Day 4 12,02 11,81 11,63 11,39 11,59 12,42 0,98 NS 0,0484 NS NS NS NS 0,0317 NS 

Day 8 11,88 11,31 11,38 11,46 11,20 11,27 1,07 NS NS NS NS NS NS NS NS 

Chroma 

Day 0 12,21 11,53 11,53 11,84 11,87 12,31 0,95 NS NS NS NS NS NS 0,0875 NS 

Day 4 12,57 12,31 12,02 11,82 11,98 13,09 1,21 NS 0,0372 NS NS NS NS 0,0235 NS 

Day 8 12,09 11,45 11,51 11,68 11,36 11,57 1,21 NS NS NS NS NS NS NS NS 

Hue 

Day 0 87,74 85,60 89,89 87,13 87,38 83,98 5,45 NS 0,0792 NS NS NS NS 0,0894 NS 

Day 4 74,94 74,42 76,73 76,05 76,03 72,30 4,45 NS 0,0455 NS NS NS NS 0,0395 NS 

Day 8 80,66 83,23 84,91 82,42 81,05 78,13 5,16 NS 0,0262 NS NS NS NS 0,0166 NS 
1
 RMSE: Root of the mean square error; 

2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose 

interaction; (6) CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P < 0.05; 
3
 NS: Not statistically significant 
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Table 6.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation 

on pigment stability of muscle samples from pigs fed the experimental diets  

Probability of contrast
2 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE
1
 1 2 3 4 5 6 7 8 

Oxymyoglobin (OxyMb) 

Day 0 60,18 59,73 62,82 60,55 60,23 57,93 4,34 NS3 0,0861 NS NS NS NS 0,0786 NS 

Day 4 54,17 54,36 56,48 56,44 56,04 51,97 4,50 NS 0,0368 NS NS NS NS 0,0257 NS 

Day 8 59,14 61,66 64,61 63,26 62,22 60,51 5,34 0,096 NS NS NS NS 0,0625 NS NS 

Deoxymyoglobin (DeoxyMb) 

Day 0 69,86 69,83 69,17 71,03 69,78 71,48 1,98 NS 0,0378 NS NS NS NS 0,0439 0,0899 

Day 4 91,15 90,33 90,86 90,80 90,28 91,63 1,22 NS 0,0394 NS NS NS NS 0,0239 NS 

Day 8 83,66 80,33 81,46 84,07 84,63 86,70 5,41 NS 0,0562 0,0611 NS NS NS 0,0490 NS 

Metmyoglobin (MetMb) 

Day 0 135,87 135,84 135,04 135,49 135,95 135,77 2,14 NS NS NS NS NS NS NS NS 

Day 4 118,48 117,98 115,74 116,63 116,61 117,63 3,97 NS NS NS NS NS NS NS NS 

Day 8 114,38 117,70 108,70 107,07 107,63 105,08 9,38 0,140 0,0853 0,0673 NS 0,133 NS NS 0,0407 

MetMb / DeoxyMb 

Day 8 1,37 1,47 1,33 1,27 1,27 1,21 0,18 NS 0,0434 0,0288 NS NS NS 0,0585 0,0625 
1 RMSE: Root of the mean square error 

2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose interaction; (6) 

CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P < 0.05 

3
 NS: Not statistically significant 
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Table 7.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation 

on free non-essential amino acids (mg/100 g muscle) at 2 or 8 days of meat storage from pigs fed the experimental diets.  

Probability of contrast 
2

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE
1 1 2 3 4 5 6 7 8 

SER day2 5.75 4.73 5.16 5.00 5.68 4.25 0.99 0.0453 0.0112 NS NS NS NS 0.0273 0.0040 

SER day7 9.04 9.29 9.81 9.43 10.48 7.91 2.02 NS
3
 0.0355 NS NS NS NS 0.0260 NS 

ASN day2 2.41 2.14 2.36 2.20 2.54 2.15 0.43 NS NS NS 0.0709 NS NS NS NS 

ASN day7 3.77 3.88 4.16 3.93 4.34 3.47 0.78 NS 0.0778 NS NS NS NS 0.0554 NS 

GLY day2 8.72 7.78 7.93 8.25 9.34 7.86 1.32 NS NS 0.0509 NS NS NS NS NS 

GLY day7 8.86 9.04 9.76 9.57 10.09 8.91 1.47 NS NS NS NS NS NS NS NS 

GLN day2 42.11 41.12 40.75 42.49 46.70 37.06 8.95 NS NS NS NS NS NS NS NS 

GLN day7 41.04 43.94 45.15 45.94 47.78 41.46 7.89 NS NS NS NS NS NS NS NS 

β-ALA day2 6.87 6.90 6.67 8.46 7.46 5.98 2.23 NS NS NS NS NS NS NS NS 

β-ALA day7 5.15 5.69 5.83 6.02 5.16 4.66 1.74 NS NS NS NS NS NS NS NS 

TAU day2 29.63 30.75 28.98 33.45 35.67 30.24 7.86 NS NS 0.0989 NS NS NS NS NS 

TAU day7 25.03 25.98 26.79 30.74 28.58 27.66 6.65 NS NS NS NS NS NS NS NS 

ALA day2 19.95 16.92 18.20 18.09 19.66 17.53 3.32 NS NS NS NS NS NS NS NS 

ALA day7 20.17 19.71 22.43 22.04 23.92 22.01 3.00 NS NS 0.0789 0.0358 NS NS NS NS 

CAR day2 628.03 560.63 550.53 581.16 688.65 501.58 94.60 NS 0.0091 0.0224 NS 0.0860 NS 0.0162 0.0106 

CAR day7 515.03 543.24 569.80 551.60 567.67 481.03 105.89 NS NS NS NS NS NS 0.0727 NS 

ANS day 2 26.57 26.85 25.53 28.69 30.25 20.93 4.62 NS 0.0006 0.0512 NS NS NS 0.0005 0.0190 

ANS day7 22.41 24.51 23.81 25.11 24.30 19.76 4.50 NS 0.0185 NS NS NS NS 0.0119 NS 

ORN day2 0.52 0.53 0.47 0.36 0.40 0.42 0.13 NS NS 0.017 NS NS NS NS NS 

ORN day7 0.46 0.42 0.39 0.29 0.38 0.45 0.13 NS NS NS NS NS 0.0867 NS NS 
1
 RMSE: Root of the mean square error; 

2
 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose 

interaction; (6) CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P <0.05; 
3
 NS: Not statistically significant
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Table 8.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation 

on free essential amino acids (mg/100 g muscle) at 2 or 8 days of meat storage from pigs fed the experimental diets.  

Probability of contrast
2 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE
1 1 2 3 4 5 6 7 8 

HIS day2 2.45 2.57 2.28 2.44 2.72 2.18 0.69 NS NS NS NS NS NS NS NS 

HIS day7 3.64 3.52 3.38 3.78 3.81 3.17 0.73 NS NS NS NS NS NS NS NS 

THR day2 3.86 3.48 3.99 3.42 4.34 4.03 0.95 NS NS NS NS NS NS NS NS 

THR day7 6.08 6.16 6.20 6.50 7.15 6.26 1.36 NS NS NS NS NS NS NS NS 

PRO day2 3.49 3.13 3.49 2.88 3.25 4.82 0.85 NS 0.0001 NS NS NS NS 0.0001 0.0032 

PRO day7 3.70 3.57 4.06 3.55 3.94 5.64 0.97 NS 0.0001 NS NS NS NS 0.0001 0.0003 

TYR day2 4.41 3.77 4.04 3.42 3.89 4.47 0.96 NS NS NS NS NS 0.164 0.0764 NS 

TYR day7 6.85 6.79 7.04 6.54 6.62 7.67 1.30 NS 0.0819 NS NS NS NS 0.0815 NS 

VAL day2 4.17 3.52 4.03 3.43 3.63 3.71 0.73 0.0830 NS NS NS NS 0.0819 NS NS 

VAL day7 5.50 5.49 6.12 5.60 5.91 5.74 0.88 NS NS NS NS NS NS NS NS 

MET day2 2.36 1.96 2.42 1.99 2.03 2.11 0.55 NS NS NS NS NS NS NS NS 

MET day7 4.48 4.48 4.97 4.59 4.78 4.61 0.85 NS NS NS NS NS NS NS NS 

ILE day2 3.67 2.88 3.67 2.88 3.08 2.88 0.60 0.0139 NS NS 0.025 NS 0.0260 NS 0.0115 

ILE day7 5.22 4.91 5.49 4.92 5.03 4.69 0.87 NS NS NS NS NS NS NS NS 

LEU day2 4.98 4.24 5.15 4.08 4.05 4.25 1.17 NS NS NS NS NS NS NS NS 

LEU day7 7.77 7.76 8.53 7.75 8.13 8.25 1.54 NS NS NS NS NS NS NS NS 

PHE day2 3.78 3.38 3.92 3.21 3.35 4.54 0.91 NS 0.0062 NS NS NS NS 0.0045 NS 

PHE day7 5.70 5.64 6.07 5.48 5.60 7.52 1.23 NS 0.0004 NS NS NS NS 0.0006 0.0052 

TRP day2 1.05 1.00 1.02 0.86 0.93 1.29 0.28 NS 0.0063 NS NS NS NS 0.0046 NS 

TRP day7 1.29 1.35 1.37 1.22 1.22 1.89 0.36 NS 0.0001 NS NS NS NS 0.0001 0.0018 

LYS day2 3.60 3.21 3.56 2.65 3.14 3.03 0.86 NS NS NS NS NS NS NS NS 

LYS day7 5.39 5.43 5.64 4.25 4.78 5.72 1.50 NS NS 0.061 NS NS NS NS NS 
1 RMSE: Root of the mean square error; 2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose 

interaction; (6) CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS.. Differences were statistically significant when P < 0.05; 3 NS: Not statistically significant
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Table 9.- Effect of selenium source (organic, SY vs. mineral, SS), dose (low, L vs. high, H) and vitamin E supplementation 

on myofibrillar fragmentation index (MFI) from pigs fed the experimental diets.  

Probability of contrast
2 

CONTROL SS-L SS-H SY-L SY-H VITE+SS RMSE
1 1 2 3 4 5 6 7 8 

MFI 

Day 0 28.41 26.44 25.34 30.51 29.42 29.33 10.55 NS
3
 NS NS NS NS NS NS NS 

Day 8 64.16 57.86 55.93 61.89 78.52 78.76 21.21 NS NS NS NS NS NS NS NS 

1
 RMSE: Root of the mean square error; 

2 Probability of contrast: (1): CONTROL vs others; (2): VITE+SS vs others; (3): SeY vs SS; (4) S-L vs S-H; (5): Se source x Se dose 

interaction; (6) CONTROL vs. Se; (7) VITE+SS vs Se; (8) CONTROL vs. VITE+SS. Differences were statistically significant when P < 0.05 

3
 NS: Not statistically significant 
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Highlights 

 The influence of selenium source and dose on muscle proteolytic activity was studied.

 Organic Se effectively increased WHC and post-mortem muscle proteolytic activity.

 Dietary vitamin E+Se  supplementation was not as effective as organic Se in improving WHC. These results would confirm the relation between muscle

proteolysis and WHC.




