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Abstract 

The kinetic of reduction of CuO to Cu2O with N2+O2 mixtures and the oxidation of 

Cu2O to CuO with O2 of a Cu-based oxygen carrier for the CLOU process has been 

determined in a TGA. For kinetic determination, the O2 concentrations were varied 

between 0 and 9 vol.% for reduction, and between 21 and 1.5 vol.% for oxidation 

reactions; temperature was varied between 1148 and 1273 K for the reduction and 

between 1123 and 1273 K for the oxidation. The oxygen carrier showed high reactivity 
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both in oxidation and reduction reactions. The nucleation and nuclei growth model with 

chemical reaction control properly described the evolution of solids conversion with 

time. The Langmuir-Hinshelwood model was able to describe the effect of oxygen 

concentration on reduction and oxidation rates. The reaction order was 0.5 for reduction 

and 1.2 for the oxidation. The kinetic constant activation energies were 270 kJ·mol-1 for 

the reduction and 32 kJ·mol-1 for the oxidation. The kinetic model was used to calculate 

the solids inventory needed in the fuel reactor for complete combustion of three 

different rank coals. It was possible to use a low oxygen carrier inventory in the fuel 

reactor (160 kg/MWth) to supply the oxygen required to full lignite combustion. 

However, to reach high CO2 capture efficiencies (≥95%), oxygen carrier inventories in 

fuel reactor higher than 600 kg/MWth were needed with the lignite. 

Keywords: CO2 capture, chemical looping, CLOU, copper, kinetic. 

1. Introduction 

Chemical Looping with Oxygen Uncoupling (CLOU) was proposed by Mattisson et al. 

[1] as an efficient way to burn solid fuels with CO2 capture avoiding the slow 

gasification step happening in the fuel reactor of a Chemical Looping Combustion 

(CLC) unit, which was usually required for converting carbon in char into gaseous 

compounds. CLOU process is based on CLC technology where the oxygen is 

transferred to the fuel by an oxygen carrier that circulates between two reactors; fuel 

and air reactors. CLOU process is based on the use of oxygen carrier materials which 

release gaseous oxygen and thereby allowing the solid fuel to burn with gas phase 

oxygen. These materials can be also regenerated at high temperatures in the air reactor. 
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CuO, Mn2O3 and Co3O4 have been identified as possible metal oxides with the property 

of release oxygen [1]. 

Fig. 1 shows a schematic diagram of a CLOU system. The fuel is physically mixed with 

the oxygen carrier in the fuel reactor. In the fuel reactor the fuel conversion is produced 

by different reactions. First the oxygen carrier releases oxygen according to: 

2 MexOy   ↔   2 MexOy-1  +  O2       (1) 

and the solid fuel begins to devolatilize producing a carbonaceous solid residue (char, 

mainly composed by carbon and ash) and volatile matter as gas product: 

Solid fuel   →   Volatile matter  +  Char (C)      (2) 

Then, volatiles and char are burnt as in usual combustion with gaseous oxygen 

according to reactions (3) and (4): 

Volatile matter  +  O2   →   CO2  +  H2O      (3) 

Char (C)  +  O2   →   CO2  +  ash       (4) 

After steam condensation, a pure CO2 stream is obtained from the fuel reactor. The 

reduced oxygen carrier is transported to the air reactor, where the oxygen carrier is 

regenerated to the initial oxidation stage with the oxygen of the air to be ready for a new 

cycle. Ideally, the exit stream of the air reactor contains only N2 and unreacted O2. The 

heat release over the fuel and air reactors is the same as for conventional combustion. 

Therefore CLOU process has a low energy penalty for CO2 separation and low CO2

capture costs are expected.  

Up to date, several materials have been proposed to be used as oxygen carriers in the 

CLOU process. Cu-based [2-4] and Mn-based materials mixed with Ca, Mg, Cu, Ni, Fe 

or Si [5] have focused great attention. Adánez et al. [6] and Mattisson [7] summarize the 
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oxygen carrier developed for CLOU and the facilities where have been tested. However, 

the proof of the concept of CLOU process burning coal in a continuous unit has been 

only demonstrated with a Cu-based oxygen carrier [8]. This oxygen carrier, consists of 

60 wt.% of CuO and 40 wt.% MgAl2O4 prepared by spray drying [8, 9], and it was 

named as Cu60MgAl. The effect of the coal rank was also analysed [10] in the CLOU 

unit using one anthracite, two bituminous coals, a lignite with high sulphur content [11] 

and biomass [12]. Complete combustion using a solids inventory in the fuel reactor of 

235 kg/MWth was reached. In conjunction, values close to 100 % of carbon capture 

efficiency were obtained at 1233 K with reactive coals and biomass. In all cases, the 

oxygen carrier particles showed good behaviour, as reactivity was unchanged and 

agglomeration problems did not occur.  

For the design of the air and fuel reactors of a CLOU unit it is necessary to know the 

kinetic of oxidation and reduction rates of the oxygen carrier together with the kinetic of 

coal combustion reactions in the operation window for CLOU process. Previous kinetic 

studies of Cu-based oxygen carriers were mainly carried out in the window of CLC 

conditions, in a range of temperature between 723 to 1073 K [13]. This temperature 

interval is lower than that needed in CLOU process. The main difference between the 

CLC and the CLOU process is that in CLOU process the oxygen carrier reduction is 

from CuO to Cu2O. This reaction is favoured at high temperatures as can be seen with 

the equilibrium diagram in Fig. 2, being the oxygen concentration at equilibrium a 

function of the temperature as: 

 
2
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,
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       (5) 

Thermodynamic equilibrium set the temperatures and oxygen concentrations suitable 

for the CLOU process. So, the oxygen concentration at equilibrium conditions must be 
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high enough to allow the O2 release in the fuel reactor and also the combustion of the 

fuel at the fuel reactor temperature. Moreover, the oxygen carrier must be able to 

oxidize by oxygen in the air reactor, but the oxygen concentration should be as low as 

possible in order to maximize the oxygen utilization. For example, with Cu-based 

materials the temperatures should be between 1173 to 1223 K in both reactors [8, 10] 

corresponding to oxygen concentration values at equilibrium conditions of 1.4 and 4.2 

vol.%, respectively. 

At high temperature and in an atmosphere with oxygen concentration lower than the 

equilibrium, the CuO is reduced to Cu2O generating gaseous oxygen. This fact makes 

that the oxygen concentration at equilibrium a thermodynamic restriction in the 

reduction reaction affecting to the reduction rate. Thus, the oxygen concentration must 

be in a range from 0 to the oxygen equilibrium concentration in the fuel reactor. 

Furthermore, in the CLOU process the reduction stops at Cu2O instead of at Cu, 

allowing to work at higher temperatures in CLOU than in CLC without the risk of 

oxygen carrier agglomeration by melting (Tfusion = 1508 K for Cu2O and 1357 K for Cu). 

Oxidation would be carried out at the air reactor in an oxygen concentration range 

between 21 vol.% O2 and the oxygen equilibrium concentration. 

There are some studies on the reduction, or oxygen uncoupling, and oxidation kinetic 

for Cu-based materials. Table 1 shows a resume of the main kinetic parameters studied 

in the literature for CLOU or similar processes for the reduction and oxidation 

reactions; also the oxygen carrier (CuO content, support and preparation method) and 

the model used were shown. Most of the works were focused on the evaluation of the 

effect of temperature on reaction rate, thus calculating the activation energy of the 

process. Two types of reaction rate equations have been used to represent the CuO 

oxygen uncoupling and Cu2O oxidation reaction for the CLOU process [14, 15]:  
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   Re 1·d OCr k f X           (6) 
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'
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n

d O eq OOC
r k C C f X           (7) 

It can be seen that in Eq. (6) the reduction rate only depends on temperature (included in 

the kinetic constant) and on oxygen carrier conversion, f(X). On the other hand, reaction 

rate also depends on the oxygen concentration in Eq. (7). Different values for the 

activation energy were obtained either Eq. (6) or Eq. (7) was considered. Thus, a global 

activation energy (E1) for k1 in Eq. (6) was calculated when the effect of temperature on 

both the chemical reaction barrier and the thermodynamic barrier was considered. But 

the kinetic activation energy was calculated for k2 in Eq. (7), which separates the 

thermodynamic barrier (Eth) from the chemical reaction barrier (E2). 

Eqs. (6) and (7) are also valid for the oxidation reaction considering the oxidation 

reaction rate,  Ox OCr , can be calculated by      '
Re1 n

Ox dOC OCr r   . If the reaction order 

is n’ ≈ 1, the global activation energy for k1 can be calculated approximately as 

1 2 thEE E ; , being Eth = 255·103 J/mol in Eq. (5). It can be seen that different values 

for the activation energy were obtained either Eq. (6) or Eq. (7) was considered. Thus, a 

global activation energy (E1) for k1 in Eq. (6) was calculated when the effect of 

temperature on both the chemical reaction barrier and the thermodynamic barrier was 

considered jointly. But kinetic activation energy due to chemical reaction barrier (E2) 

calculated for k2 in Eq. (7) was decoupled from the thermodynamic barrier (Eth) 

considered by the oxygen concentration at equilibrium condition. 

Respect to the reduction, Chadda et al. [16] did an analysis of the copper oxide capacity 

of storage chemical energy for a process similar to CLOU. They studied the same 

reaction of decomposition of CuO in a range of temperatures from 1033 to 1183 K. In 

this work, a global activation energy of 313 kJ/mol for the decomposition reaction was 
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found. Eyring et al. [17] studied the reduction kinetic for a pure CuO oxygen carrier in a 

TGA. They obtained a value of the activation energy for the reduction of 327 kJ/mol 

using an empirical first order reaction, developed for their purposes of modelling.  

Similar results were found by Clayton and Whitty [15]. They determined in a TGA the 

reduction kinetic rate for two different Cu-based oxygen carriers: 50 wt.%CuO/TiO2

and 45 wt.% CuO/ZrO2, prepared by mechanical mixing and freeze granulation 

respectively. The global activation energies determined were 284 kJ/mol (CuO/TiO2) 

and 264 kJ/mol (CuO/ZrO2). These values were slightly lower than the values obtained 

by Chadda et al. [16, 17] or Eyring et al. [16, 17], but they were still high when 

compared to results from others.  

Song et al. [18] studied in a TGA the kinetic of a Cu-based oxygen carrier with 18 wt.% 

of CuO supported on SiO2, prepared by impregnation for the Chemical Looping Air 

Separation (CLAS) process, which uses the same oxygen uncoupling property of some 

metal oxides to separate oxygen from air. They considered the best model to be the 

Avramie-Erofeev nucleation model (N=2) with two different zones as a function of the 

temperature range, for temperatures between 1073 to 1173 K the global activation 

energy was 315 kJ/mol and in the range 1173-1248 K they obtained a value of 176 

kJ/mol. This suggests that the temperature could affect to the calculated activation 

energy. This behaviour was also found for a CuO (50 wt.%) oxygen carrier with TiO2 as 

supporting material [19]. Thus, an activation energy of 284 kJ/mol was found in the 

1073-1173 K temperature interval [15], but it was lower (180 kJ/mol) if the range of 

temperature was increased to 1173-1273 K [19]. The same authors reported average 

activation energy for a Cu-based material supported on ZrO2 of 147 kJ/mol in the 

temperature interval of 1073-1273 K [19], but also a decrease in the activation energy 

with temperature could be seen from the Arrhenius plot they showed. Similarly, 
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Peterson et al. [20] prepared Cu-based oxygen carrier materials by impregnation on SiC. 

They obtained a value of global activation energy for an oxygen carrier with 42 wt.% of 

CuO in the middle interval (220 kJ/mol) when the temperature was varied from 1123 to 

1223 K. 

However, other authors have determined activation energy values in the lower range at 

the low temperature interval, and even high activation energy values in the upper 

temperature interval; see Table 1. The reasons for obtaining high or low activation 

energy values are not clear. Thus, comparing results obtained with similar materials, 

e.g. Cu-based oxygen carriers with copper content in the range 40-60 wt.% and using 

ZrO2 as inert material, activation energy values ranged from 147 to 281 kJ/mol [14, 15, 

19, 21]. Nevertheless, the global activation energy was calculated to be in the lower 

range in most of the works. Arjmand et al. [22] studied the kinetic in a batch fluidized 

bed reactor of a Cu-based oxygen carrier (40 wt.% of CuO and 60 wt.% MgAl2O4) 

prepared by freeze granulation. They obtained a value of the global activation energy of 

139 kJ/mol using the Avrami-Erofeev model (N=2). Wang et al. [21] studied the 

reduction reaction kinetic using three Cu-based oxygen carrier with 60 wt.% of CuO 

and 40 wt.% of three different supports (ZrO2, TiO2 and SiO2) for CLAS process. The 

oxygen carriers were prepared by mechanical mixing and tested in a TGA. They 

obtained a value of the global activation energy of 153 kJ/mol (CuO/ZrO2), 155 kJ/mol 

(CuO/TiO2) and 145 kJ/mol (CuO/SiO2) and they proposed to use the Avrami-Erofeev 

model (N=3). Similar global activation energy value of 170 kJ/mol was found for a 

CuO/SiO2 material by Whitty and Clayton [19]. 

Also, the equipment used for reactivity investigation seems to be of low relevance. For 

example, Whitty and Clayton [19] studied the effect of the temperature in the reduction 

of three Cu-based oxygen carriers: 20 wt.% CuO/SiO2, 50 wt.%CuO/TiO2 and 55 wt.% 
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CuO/ZrO2, prepared by incipient wetness, mechanical mixing and freeze granulation, 

respectively. They tested the oxygen carriers in 3 different reactor types (TGA, fluidized 

bed reactor and fixed bed reactor) obtaining similar results with the three facilities.  

If the kinetic and the thermodynamically barriers were separated, lower values of the 

kinetic activation energies were determined, as result of including the temperature effect 

on the thermodynamic barrier; see Eq. (7). Thus, the following values for the kinetic 

activation energy has been reported: 58 kJ/mol [15] for CuO/TiO2, and 67 kJ/mol [15] 

or 20 kJ/mol [14] for CuO/ZrO2. 

Moreover, Clayton and Whitty [15] studied the reaction order with respect to the 

oxygen partial pressure; they observed that the reaction rate decreased as the driving 

force decreased, and with an unexpected great decrease when the oxygen partial 

pressure was near the equilibrium pressure. However, only experiments far from the O2

equilibrium were considered to obtain a reaction order of 1. Sahir et al. [14] calculated 

the reaction order with respect to CuO and obtained a value of 0. 

Respect to the oxidation rate, Chadda et al. [16] did an analysis of the capacity of 

chemical energy storage with copper materials during the oxidation of Cu2O in a range 

of temperatures form 673-773 K. In this work, an activation energy value of 76.5 kJ/mol 

for oxidation was found. Zhu et al. [23] reviewed the oxidation rate of a Cu plate of 

very high purity in a high range of temperatures from 623K to 1323 K, for metallurgic 

purposes. They conclude that at high temperatures (> 1173 K, typical for CLOU 

operation) lattice diffusion controlled the copper oxidation, and the activation energy 

were between 173 to 98 kJ/mol as a function of the formation of a double- or single-

layer respectively. 

Also, some works have studied the kinetic behaviour during oxidation of Cu2O for 

CLC. Peterson et al. [20] observed that the oxidation rate decreased somewhat when the 
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temperature increases, due to the decrease of the driving force, i.e. the difference 

 
2 2 ,O O eqC C . Whitty and Clayton [19] obtained an activation energy of 202 kJ/mol in 

the temperature interval of 1123-1273 K when the driving force was maintained 

constant, which suggests that the activation energy of the thermodynamic barrier is 

some higher than the kinetic activation energy. The activation energy calculated by 

Whitty and Clayton [19] was higher than the values obtained by Zhu et al. [23]. They 

blame this higher apparent activation energy due to the presence of defects in the 

material that inhibits the lateral grown of the CuO grains [23]. Finally, Song et al. [18] 

studied the oxidation of different Cu-based oxygen carriers prepared by dry 

impregnation for CLAS (18, 29 and 48 wt.% of CuO). They evaluated the effect of the 

temperature in the oxidation rate, obtaining two different zones respect to the activation 

energy: in the range of 1073-1173 K the activation energy is positive with a value of 3 

kJ/mol, but at temperatures in the 1173-1248 K interval the value of the activation 

energy is -43 kJ/mol. They considered that the negative value is due to both the 

thermodynamic barriers of the Cu2O oxidation and the high diffusional barrier caused 

by the sintering effects at high temperatures [18, 23]. Also, they considered that the best 

model to describe the oxidation rate is a Boundary reaction model. Using this model 

they analysed the effect of the oxygen partial pressure during the oxidation and they 

obtained a reaction order for the oxygen partial pressure of 0.5. However, they use O2

partial pressures far from the equilibrium partial pressure. Whitty and Clayton, [19] 

observed the oxidation rate decreased when the O2 concentration decreased, but lower 

than they expected when the O2 concentration approached to equilibrium. Chuang et al. 

[24] studied the oxidation kinetic with a CuO/Al2O3 oxygen carrier prepared by co-

precipitation in a fluidized bed reactor. They studied the reaction order for the oxygen 

concentration and they observed that the order varied with the O2 concentration. They 



 11

explain that this behaviour is typical when the reaction rate is controlled by a Langmuir-

Hinshelwood mechanism. 

As a conclusion, very disperse values for the kinetic data of Cu-based materials for 

CLOU were found. These data were found from studies analyzing only temperature 

dependency or oxygen concentration but far away from equilibrium conditions. For 

these reasons, it is necessary to analyze the effect of temperature and oxygen 

concentration on oxidation and reduction reactions in a broad range of operation values. 

The aim of this work was to determine the kinetic of reduction in N2-O2 mixtures and 

oxidation reactions with O2 of a Cu-based oxygen carrier (Cu60MgAl) prepared by 

spray drying in the range of operation of the CLOU process. This material has been 

previously used to successfully prove the CLOU concept with several solid fuels. The 

effect of O2 concentration and temperature was investigated both for oxygen uncoupling 

and oxidation processes in TGA. The kinetic parameters obtained were used to 

determine the solids inventories needed in a CLOU system working with this Cu-based 

oxygen carrier. Kinetic parameters obtained in this work can be implemented in a 

design and optimization tool for CLOU process.  

2. Experimental 

2.1. The Cu-based oxygen carrier 

The oxygen carrier used in this work was a Cu-based material prepared by spray drying. 

Oxygen carrier particles were manufactured by VITO (Flemish Institute for 

Technological Research, Belgium) using CuO (Panreac, PRS) and MgAl2O4 spinel 

(Baikowski, S30CR) as raw materials. The particles were calcined 24 h at 1373 K. The 

CuO content was 60 wt.%. The particle size of the oxygen carrier was +0.1-0.3 mm. 
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From now on, the oxygen carrier is named as Cu60MgAl. Table 2 shows the main 

properties of this material, which were presented in previous works [2, 8-11, 25]. 

The oxygen transport capacity, ROC, is an important characteristic of the oxygen carrier. 

ROC has relevance on the solids circulation  rate and solids inventory in a CLC unit [26]. 

ROC was calculated in TGA in nitrogen atmosphere as ROC = (mOx-mRed)/mOx, being mOx

the mass of fully oxidized particles and mRed in the reduced form after oxygen 

uncoupling, i.e. when all CuO has been reduced to Cu2O.  

Preliminary results showed that this material has adequate values of reactivity and 

oxygen transport capacity in fluidized-bed conditions [9, 25]. High combustion rates 

with complete combustion to CO2 and H2O were obtained with this material using a low 

solids inventory in the fuel reactor of a CLOU unit burning different types of coal and 

biomass [8, 10]. 

2.2. Experimental set-up  

Multicycle tests to analyze the reactivity of the oxygen carrier during successive 

reduction-oxidation cycles were carried out in a TGA CI Electronics type described 

elsewhere [2]. The desired mass of oxygen carrier was loaded in a platinum wired mesh 

basket (14 mm diameter and 8 mm height). Initially, to establish whether 

thermodynamic limitations, external film mass transfer and/or inter-particle diffusion 

were affecting the reaction rate, the sample weight and the gas flow rate were varied in 

the range of 40 to 100 mg and from 10–40 NL/h. The composition of the gas flow were 

pure N2 for the reduction and air for the oxidation. It was found that using a sample 

mass lower than 70 mg, the control of gas diffusion inside the particles was avoided. On 

the other hand, it was found that the reaction rate was not controlled by interparticle 
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diffusion or diffusion through the gas film around the particle when N2 flow was higher 

than 20 NL/h. Therefore, gas flow rate of 25 NL/h and 50 mg of solids were used to 

reduce mass transfer resistance around the solid sample. As it was shown by Gayán et 

al., [2], the use of these conditions ensured the minimization of external film mass 

transfer and/or inter-particle diffusion effects in the TGA. Moreover, the temperature in 

the reaction zone can greatly affect to the reaction rate and it was carefully checked. 

Deviations lower than 2 K were found in all cases during the reaction period. Moreover, 

previous studies showed that oxygen carrier particles can be considered isothermal 

during reduction or oxidation [27]. 

The sample was heated to the set operating temperature in air atmosphere. After 

stabilization, the experiment started by exposing the oxygen carrier to alternating 

reducing and oxidizing conditions. The experiments were carried out at temperatures 

between 1123-1273 K for the reduction and oxidation reactions. These temperatures 

were selected as a function of the thermodynamic equilibrium of the CuO/Cu2O system, 

as shown in Fig. 2, being this temperature interval of interest for fuel and air reactors in 

CLOU process [8, 10].  

The reaction gas mixture was composed by O2 and N2 in different relations for the 

reduction and oxidation. Table 3 summarizes both temperature and oxygen 

concentrations used for reduction and oxidation tests. For the reduction, the amount of 

O2 varied from 0 to 9 vol.%. In the case of the oxidation, the oxidation reaction was 

carried out after reducing the oxygen carrier in N2 at 1273 K and the concentration of O2

was varied between 21 to 2.5 vol.%. These conditions allowed studying the effect of the 

oxygen concentration far away and near the equilibrium conditions. Three cycles of 

reduction and oxidation were carried out for each experiment. In all cases, reaction rate 
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was stable during cycles. Conversion vs. time curves showed in this work corresponded 

to the third cycle of each experimental condition.  

2.3. Data evaluation 

The release of O2 (reduction of CuO) and the oxidation of Cu2O is given by the 

following equilibrium: 

2 24 2CuO Cu O O�          (8) 

The oxygen carrier conversion was calculated for the reduction and oxidation as: 

Ox
Red

Ox Red

m mX
m m





         (9) 

1 Ox
Ox

Ox Red

m mX
m m


 


         (10) 

being m the mass of sample at each time, mOx is the mass of the sample fully oxidized 

and mRed is the mass of the sample in the reduced form, i.e. when copper was in the 

Cu2O form.  

The reaction rate for both, reduction and oxidation, are calculated from TGA conversion 

data using the following expressions: 

  Re
Re

d
d OCOC

dXr R
dt

           (11) 

  Ox
Ox OCOC

dXr R
dt

          (12) 
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3. Results 

To obtain the reduction and oxidation kinetic, TGA tests were carried out varying the 

temperature and the oxygen concentration in a wide range of values, from far away of 

the equilibrium to values near the equilibrium. 

3.1. TGA results for oxygen uncoupling (CuO to Cu2O) 

Fig. 3(a) shows conversion versus time curves for the Cu60MgAl oxygen carrier for 

different temperatures between 1148 to 1273 K, using pure N2 in the reacting 

environment during the reduction, and a O2 concentration equal to 0 vol.%. It can be 

seen that when the temperature increases, the reduction rate increases. Considering 

reduction rate given by Eq. (7), reaction rate increased with temperature because the 

increase of the kinetic constant and the oxygen driving force. Often, this effect is 

expressed by means of the difference between the oxygen concentration at equilibrium 

and the oxygen concentration in the system surrounding of the particles, i.e. 

 
2 2,O eq OC C . Thus, the reduction rate depends on the O2 concentration at the external 

surface of the particles and the O2 concentration at equilibrium conditions, which also 

increases with temperature following Eq. (5). 

Fig. 3(b) shows the conversion versus time curves obtained for the Cu60MgAl oxygen 

carrier for three different temperatures during the reduction, using a concentration of 1.5 

vol.% of O2 in N2. It can be observed that these curves were slower than the curves at 

the same temperature without oxygen. This figure confirms that the reaction rate 

decreases when the driving force decreases due to the approaching of the O2

concentration to the equilibrium concentration.  

To analyse the effect of the oxygen concentration on the reduction rate, Fig. 4 shows 

conversion vs. time curves for oxygen reduction reaction of Cu60MgAl obtained for O2
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concentration values from 0 to 9 vol.% at 1273 K. This interval of O2 concentration has 

been chosen due to the maximum O2 concentration is limited by the O2 concentration at 

equilibrium condition, e.g. 12 vol.% at 1273 K; so O2 concentration during TGA test 

was lower than equilibrium concentration. The oxygen uncoupling rate decreases when 

the O2 concentration increases due to the decrease in the driving force of the reaction. 

This decrease was more pronounced when the O2 partial pressure was close to the 

equilibrium concentration. Moreover, it was not possible to detect a change in the mass 

of the sample in the TGA when the O2 concentration was very close to the equilibrium 

(
2Oy > 9 vol.%), because the reaction rate was very slow. This behaviour was also 

described by Clayton and Whitty [15], during the reduction when the driving force was 

close to zero. 

3.2. TGA results for oxidation (Cu2O to CuO) 

Fig. 5(a) shows conversion vs. time curves obtained for oxidation of Cu2O in reduced 

oxygen carrier samples at oxygen concentration values from 21 to 2.5 vol.% at 1173 K. 

The oxidation rate was fast when the oxygen concentration was much higher than the 

oxygen concentration at equilibrium conditions, but quickly decreases as the oxygen 

concentration approach to the equilibrium concentration. This effect also was observed 

by Whitty and Clayton [19] when the driving force of the oxidation reaction decreased. 

Fig. 5(b) shows conversion vs. times curves for the Cu60MgAl oxygen carrier for 

different temperatures between 1123 to 1273 K, using air as reactant gas. It can be seen 

that reaction rate decreased when the temperature increased, being the slowest the 

reaction at 1273 K, due to the decrease in the driving force of the reaction, which in this 

case is  
2 2 ,O O eqC C . So, the oxygen driving force decreases as temperature increases 

due to 
2 ,O eqC  increases with temperature. This behaviour was observed by Zhu et al. [23] 
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for the oxidation of pure copper, but with an additional reason to justify their results. 

They considered that the decrease in the oxidation rate with the temperature was due to 

the high diffusional barrier caused by the sintering effects at high temperatures, 

additionally to the thermodynamic barriers of the Cu2O oxidation. 

3.3. Kinetic information from conversion curves 

With the different conversion vs. time curves obtained for the reduction and oxidation 

as a function of the temperature, it was possible to obtain the evolution of the reaction 

rate with solids conversion. The maximum values calculated for every curve was used 

to obtain the global activation energy for the reduction and oxidation rates from the 

Arrhenius plot; see Fig. 6. The calculated value of the global activation energy for the 

reduction reaction was 245 kJ/mol, which is in the same order than the values obtained 

by Sahir et al. [14] with a oxygen carrier 40 wt.% of CuO supported by ZrO2 (281 

kJ/mol), Peterson et al. [20] for a material with 42 wt.% CuO being SiC the support 

(220 kJ/mol), and Clayton and Whitty [15] for two Cu-based oxygen carriers with a 50 

wt.% and 45 wt.% of CuO supported on TiO2 (284 kJ/mol) and ZrO2 (264 kJ/mol), 

respectively. 

Following the same procedure, a value for the apparent activation energy of -37 kJ/mol 

was calculated for the oxidation reaction; see Fig. 6. This value is similar to the value 

obtained by Song et al. [18], who calculated a negative apparent activation energy of -

43 kJ/mol in the range of temperature 1173-1248 K. 

Moreover, from the conversion vs. time curves obtained at different oxygen 

concentrations, some information can be extracted about the reaction order with respect 

to the oxygen concentration considering Eq. (7). Fig. 7(a) shows the curve of the 



 18

 Reln d OCr  as a function of the  
2 2,ln O eq OC C . Considering Eq. (7), the reaction order 

corresponded to the slope in Fig. 7(a). However, a constant slope can not be calculated, 

which means that the reaction order changed with the oxygen concentration. 

Considering results showed in Fig. 7(a), an expression for the effect of oxygen 

concentration such Eq. (7), i.e.  
2 2

'

,( )
n

g O eq Of C C C  , seemed to be not valid when a 

wide range of values of oxygen concentration was considered.  

Similarly to the analysis of the reduction period, Fig. 7(b) shows the reaction rate as a 

function of the oxygen concentration. In this case a constant slope can be calculated. 

Therefore, the reaction order does not depend on the oxygen concentration, and it was 

found a n’ value of 1. However, Chuang et al. [24] observed a change in the reaction 

order with the oxygen concentration for the oxidation of a Cu-based oxygen carrier, 

similarly to what we found for the reduction in this work. Chuang et al. [24] suggested 

that this behaviour can be explained by using a Langmuir-Hinshelwood mechanism for 

the Cu2O oxidation.  

Subsequently, the Langmuir-Hinshelwood mechanism was considered in this work to 

determine the kinetic for the reduction reaction. To be consequent with the reduction, 

also a Langmuir-Hinshelwood mechanistic model was used to describe the oxidation in 

the CLOU process. In this way, results obtained here and found by Chuang et al. [24] 

could be adequately predicted for the oxidation reaction. 
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3.4. Kinetic model  

3.4.1. Reduction from CuO to Cu2O 

A surface reaction model using a Langmuir-Hinshelwood mechanism is here proposed 

to describe the CuO reduction reaction to Cu2O with O2 generation. The CuO in the 

surface decomposes into Cu2O by reaction with a active sites giving oxygen adsorbed in 

the surface. Then oxygen is desorbed to O2, regenerating the a active sites in the surface 

[28]. Applying this model to the decomposition of CuO, following equations are 

obtained: 

1. Chemical decomposition of CuO into Cu2O and adsorbed O2, which is a 

dynamic equilibrium between forward and backward reaction: 
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2. Desorption of adsorbed O2: 
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aL(O2) is one molecule of O2 chemisorbed on a active sites L. 

When the reaction is controlled by chemical decomposition, Eq. (13), the reaction rate is 

given by: 
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where θ is the fraction of actives sites occupied by O2. At these conditions, it is possible 

to use different adsorption isotherms to obtain the value of θ. García-Labiano et al. [29] 

selected the Freundlich isotherm to properly describe the CaCO3 calcination [29]. In this 

case, the use of the Freundlich isotherm successfully described the effect of CO2
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concentration on the CaCO3 calcination rate, which showed an effect of the CO2

concentration on the reaction rate similar to the O2 effect observed for the reduction 

reaction in this work. Thus, the Freundlich isotherm was selected in this work to 

describe the fraction of occupied active sites, i.e. θ parameter, which was calculated by 

the following equation: 

2

1 n
OcC            (16) 

0
c gE R Tc c e           (17) 

Combining Eq. 15 and Eq. 16, the reaction rate expression is as follow: 
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Different models have been used for the f(XRed) function in Eq. (18), including 

nucleation mechanism [18, 21, 22] or first order chemical reaction [14, 16]. The 

Langmuir-Hinshelwood mechanism is a surface reaction model widely used for gas-

solid catalytic reactions. Due to this surface reaction, in this work it was proposed using 

the nucleation model to describe the conversion dependency in the reaction at the grain 

surface of the oxygen carrier particles. 

The Avrami-Erofeev [30] equation corresponding to the nucleation mechanism is the 

following: 
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The final expression for the reduction reaction rate, including Eq. (19) for the 

conversion function, is the following: 
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By integration of Eq. (20), the following equation was obtained to calculate the 

conversion evolution with time: 

    2
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An effective kinetic constant was defined as: 

Re' '
Re Re Re ,0

d gE R T
d d CuO dk k S k e         (22) 

The kinetic model has four parameters at each temperature (N, n, '
Redk  and c), which 

must be calculated as a function of temperature. The value of N represent the type of 

nucleation and the nuclei growth in the model, which value is usually fixed between 1/4 

and 3. To calculate the best value of N, Fig. 8(a) shows a plot of   Reln 1
N

dX  vs. 

time for different values of N using conversion vs. time data of Fig. 3. Linear regression 

of each data shows the fit to a linear plot. Table 4 shows the values of the correlation 

coefficients for the different values of N. Best fitting to a linear curve correspond to N

equal to 3/4. This procedure has been done for the conversion data at each temperature 

and oxygen concentration analysed in this work, obtaining the same result of N for all of 

them. 

To determine the values of the chemical rate constant, '
Redk , and its variation with 

temperature, experiments carried out at different temperatures between 1148 to 1273 K 

with an atmosphere of 100 vol.% N2 were considered. In this case, Eq. (21) is simplified 

to   '
Re Reln 1

N
d dX k t     . Considering an Arrhenius dependence of '

Redk , Fig. 9 shows 

the Arrhenius plot for the reduction reaction, and Table 5 shows the kinetic parameters 

for pre-exponential factor and activation energies obtained. The value of the activation 

energy was 270 kJ mol-1. This value can not be compared with activation energy data 
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from the literature because the kinetic model here proposed has not been previously 

used. The activation energy determined depends on the number of temperature 

dependent parameters considered in the kinetic model. Thus, the global activation 

energy was calculated with only k1 as function of temperature, see Eq. (6). Kinetic 

activation energy was calculated with two temperature dependent parameters, i.e. k2 and 

2 ,O eqC  , see Eq. (7); in this work the activation energy had an additional parameter, c, 

affected by temperature in the kinetic model proposed. 

Parameters n and c in Eq. (21) were calculated considering the effect of the partial 

pressure of oxygen in the oxygen carrier reduction rate. After integration and some 

algebra with Eq. (20), the following expression was obtained: 
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Reaction rate was calculated for Re 0.2dX   due to a maximum conversion rate at this 

Xred value is reached using this model with N = 3/4. 

Plotting the left handside of Eq. (23), YR, parameters c and n can be calculated from the 

origin and slope of the plot YR vs. ln(
2OC ); see Fig. 10(a). From this, a value of 0.5 for n

(see Table 5) for all temperatures was found. Different values of c were obtained at each 

temperature. Considering an Arrhenius dependence of c, Fig. 9 shows the Arrhenius 

plot for the reduction reaction, and Table 5 shows the parameters for pre-exponential 

factor and activation energies obtained for c from Eq. (17). It can be seen that the value 

of the activation energy for the parameter c is negative (-240 kJ/mol), as it corresponds 

to an adsorption process. 
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The Freundlinch isotherm and the nucleation model were used to fit experimental 

conversion vs. time data for different O2 concentrations and temperatures. Fig. 3 (a) 

shows experimental and theoretical conversion vs. time curves at different temperatures 

and 0 vol.% of O2. Fig. 3(b) shows experimental and theoretical lines of conversion vs 

time for three different temperatures (1223, 1248 and 1273 K) during reduction period 

using an O2 concentration of 1.5%. Fig. 4 shows a comparison between experimental 

data and model predictions for different O2 concentrations at constant temperature. It 

can be seen a very good fit between experimental and theoretical curves with the 

proposed kinetic model for all the temperature and oxygen concentration intervals, 

including reaction conditions with O2 concentration far away and close to the 

equilibrium. This result indicates that the Freundlinch isotherm with a nucleation model 

with N = 3/4 was valid to describe the decomposition of the CuO in a broad range of O2

concentrations. Thus, the kinetic model here proposed properly prediced the reaction 

rates when the O2 concentrations was close to the equilibrium, where previous literature 

models had failed [15]. This condition is required in the fuel reactor of a CLOU unit to 

avoid unconverted compounds exiting the fuel reactor [8, 25]. 

3.4.2. Oxidation from Cu2O to CuO 

Also, a Langmuir-Hinshelwood mechanistic model has been used to describe the 

chemical reaction of Cu2O oxidation in the CLOU process. 

1. Adsorption of O2 over the surface of Cu2O: 
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     (24) 

2. Chemical reaction of Cu2O oxidation to give CuO: 
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When the reaction is controlled by the surface chemical reaction, Eq. (25), the reaction 

rate is given by: 
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Similar to the reduction analysis, value of θ was calculated with Freundlich isotherm, 

i.e. Eq. (16). The nucleation model was also considered for the oxidation reaction. The 

expression for the oxidation reaction rate, including the conversion evolution function, 

is the following: 
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Integrating Eq. (27) the following expression was obtained to calculate the conversion 

evolution with time: 
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Parameters kOx and c could not be calculated separately for oxidation reaction. In this 

case, an effective kinetic constant for oxidation reaction was defined as: 

2

' '
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Ox Ox Cu O Oxk k S c k e          (29) 

Thus, it is necessary to determine three parameters for each temperature: N, n and '
Oxk . 

To know the best value of N, Fig. 8(b) shows a plot of   ln 1
N

OxX  vs. time for 

different values of N. Linear regression of each data show the fit to a linear plot. Table 4 

shows the values of the correlation coefficients for the different values of N. Best fitting 
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correspond to N equal to 3/4. This procedure has been done for the conversion data 

obtained at each temperature analyzed in this work, obtaining the same result of N for 

all of them. 

Parameters n and '
Ok  for the oxidation reaction were obtained from a plot of YOx vs. 

 
2

ln OC  at 1173 K, as it was described by the following equation derived from Eqs. 

(27) and (29), for XOx = 0.2.  
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Fig. 10(b) shows the plot and the linear regression of YOx vs.  
2

ln OC . A value of n

equal to 1.2 was obtained. Experiments at different temperatures between 1123 and 

1273 K and 21 vol.% O2 were considered to calculate the temperature dependence of 

the kinetic constant. Considering an Arrhenius dependence of '
Oxk , pre-exponential 

factor and activation energy can be obtained. Fig. 9 shows the Arrhenius plot for the 

oxidation reaction, and Table 5 shows the kinetic parameters for pre-exponential factor 

and activation energy obtained. An activation energy of 32 kJ mol-1 was obtained in this 

work for the oxidation kinetic constant.  

Finally, Fig. 5(a) shows experimental and theoretical conversion vs. time curves 

obtained for different O2 concentrations. It can be seen that there was a good agreement 

between the experimental and predicted data by the kinetic model with the Freundlinch 

isotherm. The predictions were good in all the range of O2 concentrations used. This 

result indicates that the kinetic model with Freundlinch isotherm was valid to describe 

the oxidation of the Cu2O in a broad range of O2 concentrations, even at concentrations 

very close to the equilibrium conditions. On the other hand, Fig. 5(b) shows 
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experimental and theoretical conversion vs. time curves at different temperatures. It can 

be seen that a very good fitting was obtained with the nucleation model.  

We can conclude that with the kinetic model developed in this work, it is possible to 

predict the reduction and oxidation reaction rates at different oxygen concentrations and 

different temperatures in a broad range of operation conditions suitable for the CLOU 

operation process. 

4. Simulation of the CLOU process with kinetic data 

In order to design a CLOU system, the most important parameters are the solids 

inventory in the system and the oxygen carrier circulation rate. Both parameters are 

highly influenced by the material reactivity and its oxygen transport capacity. With the 

kinetic data determined in this work, the CLOU process was simulated by determining 

the carbon capture efficiency for different coals as a function of solids inventory and 

solids circulation rate. 

4.1. Solids inventory and solids circulation rate to transfer oxygen from air to 

fuel 

The solids circulation rate was calculated by an oxygen mass balance in the system. A 

simplified model was developed by the authors [26] and later modified for the iG-CLC 

process [31] for the use of solid fuels. The circulation rate of solids per MWth, OCm& , that 

depends on the composition and heat value of the solid fuel, can be calculated as: 

310
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OC OC
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&         (31) 
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mO being the mass of oxygen required per kg of solid fuel to full combustion, as for the 

case of the conventional combustion with air, LHV the lower heating value of the solid 

fuel and OCX  the variation of the oxygen carrier conversion in every reactor.  

The circulation rate of solids between both reactors was calculated as a function of the 

variation of the oxygen carrier conversion and it was shown in Fig. 11 when a lignite is 

used, with a corresponding mO = 1.2 kg oxygen per kg of coal and a LHV of 16250 

kJ/mol. The circulation rate is higher at low values of ΔXOC, and decreases quickly 

when the conversion variation of the oxygen carrier at the fuel reactor increases, 

reaching low values when the conversion is near to 1. Abad et al. [26] estimated the 

maximum circulation rate feasible in a CLC plant without increased costs and with 

commercial experience to be 16 kg s−1 per MWth. This means that the minimum value 

of ΔXOC must be 0.1 and it is necessary to operate at higher values. 

The minimum mass of solids in the fuel and air reactors per MWth of fuel, mOC, for the 

combustion of solid fuels was calculated by doing a mass balance to the fuel reactor 

[31]: 
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        (32) 

The average reactivity for each reactor was obtained considering the average gas 

concentration in the reactor and the solids residence time distribution in the reactor as 

perfect mixing.  

Different average oxygen concentration was assumed either in fuel or air reactor. In a 

CLOU process, the minimum solids inventory in the fuel reactor to transfer the required 

oxygen for fuel combustion corresponds to the condition where the oxygen uncoupling 

reaction rate is maximized. This condition is reached when the oxygen concentration in 
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Eq. (20) is considered to be zero, corresponding to the asymptotic limit in which all the 

O2 released is consumed by the fuel and there is not an excess of O2 in gases [25].  

On the other hand, the solids inventory in the air reactor was calculated considering an 

air excess of 20%. The average oxygen concentration in the air reactor was those that 

fulfil Eq. (33), in this case 11 vol.%; see reference [26] for more information. 
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The residence time distribution of particles in the reactor was also considered to 

calculate the average reaction rate. Assuming perfect mixing of solids in the reactors, 

the average reaction rate was calculated as [26]: 
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         (34) 

This equation considers particles enter to the reactor partially converted. The reaction 

time necessary to reach complete conversion will be tc, being this value the upper limit 

of the integration of Eq. (34). Following the method presented in [26], tc is defined here 

for the nucleation model as: 
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           (35) 

Thus, initial reaction rate was calculated for conversion Xred = 0, and tc corresponded to 

the time reaching complete reduction, in this case for Xred = 1 - Re ,d inFRX . 

The expression that describe the reactivity using a nucleation model is the following 
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Parameter k includes the kinetic constant and the function of the oxygen concentration. 
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tm is the mean residence time of the oxygen carrier particles in the fuel reactor, which is 

dependent on the solid recirculation rate and on the reactor size. 

, Re

Re

OC FR d
m

OC d

m Xt
m dX

dt


 

 
 
  

&
         (38) 

The average reactivity has been expressed to consider that the oxygen carrier can be 

introduced to the fuel reactor with a mean solid conversion reduction, Re ,d inFRX , higher 

than 0. Following nucleation model, it was assumed that the unconverted solid was in 

the surface of the particle. It is worth noting that the minimum oxygen inventory 

calculated in this section is a function of the oxygen carrier reactivity, and corresponds 

to the amount of solids to supply oxygen at the required rate determined by the coal 

feeding rate. Later on, the oxygen consumption by the coal will be further analysed, 

which will depend on the coal reactivity.  

The minimum oxygen carrier inventory in the fuel or air reactor was calculated 

considering complete conversion in each reactor. Fig. 11 shows the minimum oxygen 

carrier inventories for both fuel and air reactor as a function of the variation in the 

oxygen carrier conversion at 1223 K. It can be seen that low values of variation of 

oxygen carrier conversion gives high values of oxygen carrier circulation rate and low 

amount of solid inventories in both reactors. If a value of ΔXOC = 0.1 was assumed, the 

minimum values of oxygen carrier inventories are 160 kg/MWth and 95 kg/MWth for the 

fuel and air reactor, respectively. A high solid inventory in the fuel reactor (235 

kg/MWth) was experimentally used in combustion tests in a 1.5 kWth CLOU unit with 

this oxygen carrier [8]. However, there was an O2 excess at the fuel reactor exit, 
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therefore lower inventories would be possible in that unit with complete combustion of 

the fuel. 

4.2. Carbon capture efficiency for different fuels 

In addition to the solids inventory needed to transfer the required oxygen to full 

combustion determined by the coal feeding rate, it is necessary to reach high 

combustion efficiency in the fuel reactor. So, the solids residence time in the fuel 

reactor must allow the char conversion, which is related to the CO2 capture efficiency. It 

is worth noting that unconverted char in the fuel reactor reaches the air reactor, where it 

will be burnt to CO2 which is not captured. Thus, the CO2 capture efficiency would 

depend on the solid inventory in the fuel reactor. 

The performance of the fuel reactor in a CLOU system is influenced by the pseudo-

equilibrium reached between the oxygen released by the oxygen carrier and the oxygen 

consumed by fuel. Therefore, the oxygen balance in the fuel reactor must consider the 

oxygen release from the oxygen carrier and the different uses of this oxygen, for 

conversion of char, volatiles and O2 concentration in gas stream: 

       2 2 2 2O O O OOC C vol gas
r r r r           (39) 

The oxygen release rate depends on the oxygen carrier reactivity and the oxygen 

concentration in the reactor 
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The oxygen released from the oxygen carrier is used to: 
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1. To burn carbon in char particles. During TGA tests of char combustion with gaseous 

O2, constant reaction rate with time was observed [10, 32]. Thus, the char reaction rate 

can be calculated by 

  2
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        (41) 

2. To burn volatile matter. It is assumed complete combustion of volatile matter. The 

oxygen reacted with volatile matter is the difference between the oxygen demand of the 

solid fuel fed and the oxygen demand of the fixed carbon. 
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3. To accumulate in the exit gas stream. Oxygen can be present in the gaseous stream 

from the fuel reactor, but always at concentrations below the equilibrium concentration 

at the reactor temperature. The rate of oxygen release in the gaseous stream depends on 

the gas at the fuel reactor exit, which in turn depends on the gas inlet to the fuel reactor 

inlet. 

 2 2 2O O gas O outFRgas
r M F y            (43) 

 2O gas
r  only depends on oxygen concentration and  2O C

r also depends on char 

concentration in the fuel reactor. To determine the char concentration, a carbon balance 

was done considering the different streams where carbon is: carbon in fuel, carbon in 

volatiles, carbon in converted char in the fuel reactor, and carbon in the solids stream 

from the fuel reactor. 

 , , , ,1C SF C vol C C char C C charF F X F X F          (44) 

Each carbon flow is calculated as: 
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fC being the mass fraction of carbon in solids in the fuel reactor: 
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The char fraction fC affects to the solids transfer to the air reactor and the oxygen 

consumed in the fuel reactor. The effect of a carbon stripper efficiency, ɳCSS, on char 

conversion is also considered in Eq. (48). A carbon stripper makes a selective 

recirculation of uncorveted char particles to the fuel reactor from the solids stream 

exiting the fuel reactor in order to minimize the flow of unconverted carbon in the air 

reactor [32], thus obtaining high CO2 capture efficiencies [10, 32]. 

By fixing the mass of oxygen carrier in the fuel reactor, an iterative process can be done 

modifying the oxygen concentration and the mass fraction of carbon in the fuel reactor 

to obtain the oxygen generation rate and the consumption rate in Eqs. (40) and (41). The 

objective of the iterative process was to fulfil simultaneously the oxygen and carbon 

balances showed in Eqs. (39) and (44). Once each carbon flow is known, the CO2

capture efficiency, ηCC , can be obtained for the assumed solids inventory.  
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It is worth noting that the CO2 capture efficiency also depends on the solids circulation 

flow rate because: (1) the circulation of solids affects to the solids residence time, and 

therefore to the reactivity of oxygen carrier; and (2) affects to the carbon flow exiting 

the fuel reactor. 

In this work, three fuels have been considered for the analysis: a high reactive 

bituminous coal (HRB), a low volatile bituminous coal (LVB) and a lignite. These coals 

were tested before at the continuous CLOU 1.5 kWth unit [8, 10], showing different 

behaviour during the combustion tests. The char reactivity kinetic parameters needed for 

this study have been taking from Hurt and Mitchell [33]. Proximate and ultimate 

analysis and the corresponding kinetic parameters are shown in Table 6 for each coal. 

Fig. 12(a) shows the O2 concentration at the fuel reactor outlet as a function of the 

oxygen carrier conversion using the lignite fuel and different fuel reactor solid 

inventories (150, 250, 500 and 1500 kg/MWth). Fuel reactor temperature was 1223 K 

and the use of a carbon separation system ( η 0CSS  ) was not considered. The O2

concentration at equilibrium conditions is also included for comparison purposes. It can 

be observed that the oxygen concentration decreases when the variation of the 

conversion increases. This is due to the fact that more coal is converted in the fuel 

reactor and the average oxygen carrier reactivity decreases as ΔXOC increases, see Eq. 

(39). It can be also seen that the oxygen concentration increases when the solids 

inventory in the fuel reactor increases, because there is more oxygen in solids available 

for oxygen uncoupling. Underline that when the CO2 capture efficiency is low there are 

O2 at the fuel reactor outlet. This means, that this oxygen carrier is highly reactive and 

can release O2 although the residence time in the fuel reactor is not enough to convert 

completely the char. 
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Fig. 12(b) shows the CO2 capture efficiency as a function of the variation of the oxygen 

carrier conversion for same conditions. CO2 capture efficiency increases when the solid 

inventory and the oxygen carrier conversion increase due to the associated increase in 

the solids residence time. Note that all lines converge to a CO2 capture value of 24% at 

ΔXOC = 0 which corresponds to the combustion of the volatile matter of this coal. At 

high values of the solids conversion, the increase in the CO2 capture efficiency is 

smoother. This behaviour is due to two additive reasons: 1) the residence time in the 

fuel reactor is inversely proportional to the conversion variation, producing that the char 

conversion is not proportional to the variation of oxygen carrier conversion; 2) a less O2

concentration in the fuel reactor decrease the char conversion rate in the fuel reactor. In 

fact, the CO2 capture efficiency can decrease slightly at high values of ΔXOC. Therefore, 

a maximum in the CO2 capture efficiency for each solids inventory in the fuel reactor 

was observed by changing the solids conversion variation. This maximum is due to the 

oxygen concentration decrease toward 0, and the effect of low oxygen concentration on 

the decrease of the char combustion rate is higher than the beneficial effect of the 

residence time increase. 

CO2 capture efficiencies higher than 90% can be only reached with oxygen carrier 

inventories higher than 500 kg/MWth and ΔXOC > 0.5, without the use of a carbon 

separation system ( η 0CSS  ). Therefore, it is recommended to work with high values of 

ΔXOC, i.e. low solids circulation rate to obtain high CO2 capture efficiencies.  

Fig. 13(a) shows the O2 concentration at the outlet of the fuel reactor as a function of the 

fuel reactor solids inventory for the three different coals (HRB, lignite and LVB). Fuel 

reactor temperature was 1223 K and the use of a carbon separation system ( η 0CSS  ) 

was not considered. It can be observed that the O2 concentration increases with the 

inventory in the fuel reactor due to the increase of solids generating oxygen. The O2
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concentration is very similar for the lignite and LVB, but it is lower for the HRB, due to 

the high amount of volatiles that the HRB contains, which consume more O2. As an 

example, for fuel reactor solids inventories <600 kg/MWth, oxygen concentrations at 

fuel reactor outlet are of the order of 1 vol.% which are lower than that found in oxy-

combustion process for coal. 

The effect of fuel reactor solids inventory on the CO2 capture efficiency was also 

evaluated for the different coals: HRB, lignite and LVB. Fig. 13(b) shows the variation 

of the CO2 capture efficiency as a function of the solid inventory in the fuel reactor for 

these coals at the same conditions, but considering a solid conversion variation of ΔXOC

=0.7. In all cases the CO2 capture efficiency increases with the solids inventory because 

of a higher solid residence time and higher oxygen availability. It can be seen that for 

the high reactive coals, i.e. HRB and lignite, it is possible to reach high CO2 capture 

efficiencies ( ≥95%) with around 600 kg/MWth in the fuel reactor. However, for low 

reactive coals, i.e. LVB, it is necessary higher values of solids inventory to achieve high 

CO2 capture efficiency, with values near 1500 kg/MWth. Moreover, Fig 13(b) shows 

experimental results obtained in the 1.5 kWth continuous unit for CLOU process with 

different coals: HVB, lignite and LVB [8,10]. It can be seen that experimental results 

match with data obtained from the model for each coal simulated. Fig. 13(b) also shows 

the CO2 capture efficiency for a LVB when a carbon stripper with a 90% of efficiency 

was included in the simulation. It can be seen the important effect of this separation unit 

allowing high CO2 capture efficiencies even with low values of solids inventories, 99% 

with 700 kg/MWth. Therefore, for low reactive coals it is necessary to use a carbon 

stripper to reach high CO2 capture rates. But even for reactive coals, the use of an 

efficient carbon tripper reduces also the oxygen carrier inventories in the fuel reactor 

and the SO2 emissions in the air reactor [11, 34].  
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It is worth noting that the fuel reactor solids inventory needed to supply the 

stoichiometric oxygen flow rate to burn a lignite (about 300 kg/MWth, with XOC = 0.7; 

see Fig. 11) is lower than the solids inventory needed  to reach a CO2 capture higher 

than 95% without a carbon stripper (≈600 kg/MWth). This fact agree with previous 

results obtained from the analysis of the oxygen carrier reactivity [25] and results 

obtained in a CLOU unit [8, 10]. It can be concluded that the kinetic parameters 

determined together with the simulation tool developed in this work, configure a useful 

instrument for the design and optimization of CLOU process.  

5. Conclusions 

Reaction rates of reduction and oxidation of a Cu-based oxygen carrier (60 wt.% of 

CuO and 40 wt.% of MgAl2O4) for CLOU process has been measured by TGA to 

determine the redox kinetic. Relevant reactions were decomposition of CuO to Cu2O 

and oxidation of Cu2O to CuO. A nucleation model for the variation of the solid 

conversion with time and a Langmuir-Hinshelwood surface kinetic control together 

with Freundlich’s isotherm was valid to predict the experimental data in a broad range 

of O2 concentration and temperatures. In fact good predictions were obtained even at O2

concentrations very close to the equilibrium conditions.  

The kinetic model was further used to analyze the design and operation conditions of 

CLOU process using this oxygen carrier. Minimum solids inventory of 160 kg/MWth in 

the fuel reactor and 95 kg/MWth in air reactor were determined to transfer the oxygen 

flow demanded for full combustion of the coal. The CO2 capture efficiency as a 

function of the oxygen carrier circulation rate and the fuel reactor solids inventory for 

three different coals have been also estimated. For high reactive coals, i.e. HRB and 
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lignite, it would be possible to reach high CO2 capture rates ( ≥95%) with 600 kg/MWth. 

However, for low reactive coals, i.e. LVB, 1500 kg/MWth would be needed to achieve 

high CO2 capture efficiencies. These results highlight the need of using an efficient 

carbon stripper which allows CO2 capture efficiencies higher than 95% with low solids 

inventories. 

ACKNOWLEDGEMENT 

This work was supported by the European Commission, under the RFCS program 

(ACCLAIM Project, Contract RFCP-CT-2012-00006), the Spanish Ministry of Science 

and Innovation (MICINN Project: ENE2011-26354) and the European Union FEDER 

Funds. I. Adánez-Rubio thanks CSIC for the JAE fellowship co-financed by the 

European Social Fund. 



 38

NOTATION  

Symbols 
a  Active sites in the particles surface (-)
Ci Carbon concentration in the fuel reactor (mol·s-1) 
Ccoal  Carbon concentration in the coal (kg·kg-1) 
Cfix  Carbon concentration in the fixed carbon (kg·kg-1) 

2OC   Oxygen concentration (mol·m-3) 

2 ,O eqC   Oxygen concentration at equilibrium conditions (mol·m-3) 

2 ,O OxC   Oxygen concentration during oxidation reaction (mol·m-3) 

2 ,ReO dC   Oxygen concentration during reduction reaction (mol·m-3) 
c  Adsorption rate constant ((m3·mol-1)1/n) 
c0  Preexponenial factor of adsorption rate constant ((m3·mol-1)1/n)  
E1  Global activation energy (J·mol-1), Eq. (6) 
E2  Kinetic activation energy (J·mol-1), Eq. (7) 
EC  Activation energy of parameter c (J·mol-1) 
E0  Activation energy of char combustion reaction (J·mol-1) 
EOx  Activation energy of oxidation reaction (J·mol-1) 
ERed  Activation energy of reduction reaction (J·mol-1) 
Eth  Thermodinamic activation energy (J mol-1), Eq. (5) 
Fi  Molar flow of compound i (mol·s-1) 
fC  Mass fraction of carbon in solid in the fuel reactor (-) 
fC,fix  Mass fraction of fix carbon in coal (-) 
fC,vol  Mass fraction of carbon in volatiles (-) 
K1  Equilibrium constant of the chemical decomposition and adsorbed O2 (-) 
K2  Equilibrium constant of the desorption of adsorbed O2 (-) 
K3  Equilibrium constant of the adsorption of O2 over the surface of Cu2O (-) 
K4  Equilibrium constant of the oxidation of Cu2O to CuO (-) 
k  Kinetic parameter for simulation process (s-1), Eq. (37) 
k1  Kinetic constant (s-1), Eq. (6) 
k2  Kinetic constant (m-3·mol-1·s-1), Eq. (7) 
kf  Chemical reaction rate constant for the forward process in CuO-Cu2O 

equilibrium (mol·m-2·s-1) 
kb  Chemical reaction rate constant for the backward process in CuO-Cu2O 

equilibrium (s-1) 
kA  Constant desorption rate of adsorbed O2 (s-1) 
kD  Constant adsorption rate of O2 over the surface of Cu2O (s-1) 
kRed  Chemical reaction rate constant for the reduction of CuO to Cu2O (kg·m-

2·s-1) 
k0 Preexponenial factor of chemical reaction rate constant for the char 

combustion (m3·mol-1·s-1) 
kOx  Chemical reaction rate constant for the oxidation of Cu2O to CuO (kg·m-

2·s-1) 
k’Red  Effective chemical reaction rate constant for the reduction of CuO to 

Cu2O (s-1) 
k’Ox  Effective chemical reaction rate constant for the oxidation of Cu2O to 

CuO ((m3·mol-1)1/n·s-1) 
k’Red,0 Preexponenial factor of chemical reaction rate constant for the reduction 

of CuO to Cu2O (s-1)  
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k’Ox,0 Preexponenial factor of chemical reaction rate constant for the oxidation 
of Cu2O to CuO ((m3·mol-1)1/n·s-1) 

Mi  Atomic or molecular weigh of i elements or compound (kg·mol-1) 
m  Mass of the sample at each time in TGA (kg) 

coalm   Mass-based flow of coal fed-in to the fuel reactor (kg·s-1) 

C,FRm   Carbon inventory in the fuel reactor (kg·MWth
-1) 

mO  Stoichiometric mass of O2 to convert 1 kg of coal (kg·kg-1) 
OCm   Solids circulation rate (kg·s-1·MWth

-1) 

OC,im   Oxygen carrier inventory in the reactor i (kg·MWth
-1) 

mox  Mass of the oxygen carrier sample fully oxidized (kg) 
mred  Mass of the oxygen carrier sample fully reduced (kg) 
ms,FR  Mass of solids in the fuel reactor (kg) 
N  Nucleation reaction order (-) 
n  Langmuir-Hinshelwood reaction order (-) 
n’  Reaction order (-) 
p  Reaction order for char combustion (-) 
Rg  Gas constant (8.314 J·mol -1·K-1) 

OCR   Oxygen transport capability (-) 

2O C(- )r   Conversion rate of the char (s-1) 

2O gas(- )r  Oxygen release in gas stream (s-1) 

2O OC(- )r  Oxygen release rate of the oxygen carrier (s-1) 

2O vol(- )r  Conversion rate of the volatiles (s-1) 
(rOx)OC  Oxygen carrier oxidation rate (s-1) 
(-rRed)OC Oxygen carrier reduction rate (s-1) 
SCuO Specific surface area of CuO (m2·kg-1) 
T  Temperature (K) 
tc  Reaction time necessary to reach oxygen carrier complete conversion (s) 
tm  Mean residence time of the oxygen carrier particles in the fuel reactor (s) 
X  Solid conversion (-) 
XC   Char conversion (-) 

gX   Gas conversion at the air reactor (-) 

,g inX   Gas conversion at the air reactor inlet flow (-) 

,g outX   Gas conversion at the air reactor outlet flow (-) 
Re ,d inFRX  Inlet mean oxygen carrier reduction conversion to the fuel reactor (-) 

XRed   Oxygen carrier reduction conversion (-) 
XOx   Oxygen carrier oxidation conversion (-) 

2Oy   Molar fraction of oxygen (-) 

gX   Variation of the gases conversion 

OCX   Variation of the oxygen carrier conversion 

Greek letters 
CCη   Carbon capture efficiency (-) 

CSS   Efficiency of the carbon stripper (-) 
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   Characteristic reactivity (-) 
   Fraction of active sites occupied by O2 (-) 

Acronyms 
BET  Brunauer-Emmett-Teller 
BFBR  Batch Fluidized Bed Reactor 
CLAS  Chemical Looping Air Separation 
CLC  Chemical Looping Combustion 
CLOU  Chemical Looping with Oxygen Uncoupling 
FBR  Fix Bed Reactor 
HRB  High Reactive Bituminous coal  
LHV  Low Heating Value (kJ·kg-1) 
LVB   Low Volatile Bituminous coal 
TGA  Thermogravimetric analyser 
XRD  X-ray diffractometer 

Subscripts 
AR  Air reactor 
C,char  Carbon in the coal char 
C,coal  Carbon in the coal 
C,vol  Carbon in the volatiles 
FR  Fuel reactor 
OC  Oxygen carrier 
Ox  Oxidation reaction 
Red  Reduction reaction 
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Table 1. Relevant kinetic studies for CLOU conditions on CuO reduction and Cu2O 

oxidation. 

Table 2. Properties of the oxygen carrier Cu60MgAl. 

Table 3. Experimental conditions for TGA tests. O2 concentrations at thermodinamic 

equilibrium also shown. 

Table 4. Correlation coefficients of the linear dependence of (–ln(1-Xred))N vs time plots 

for various values of N for Cu60MgAl oxygen carrier. TRed = 1273 K; 
2 ,ReO dy  = 4 vol.%; 

TOx = 1173 K; 
2 ,O Oxy  = 6 vol.%;  

Table 5. Kinetic parameters determined in this work for Cu60MgAl. 

Table 6. Properties and kinetic parameters for the different coals considered taken from 

[33]. 
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Table 1. Relevant kinetic studies for CLOU conditions on CuO reduction and Cu2O 

oxidation. 

Oxygen carrier 
(wt.% CuO) Support Preparatio

n methoda dp(m) Facilityb T (K) EA(kJ/mol) Model Ref. Global Kinetic 
Reduction          

Pure ---- ---- 10 TGA 1033-1183 313 ---- First order [14] 
Pure ---- ---- 104-152 TGA 1123-1233 327 ---- First order [17] 

40 MgAl2O4 FG 125-180 bFBR 1123-1173 139 ---- Avrami-Erofeev 
(N=2) [22] 

42 SiC I 105-150 TGA 1123-1223 220 ---- First order [20] 

60 SiO2 MM 200-315 TGA 1073-1223 145 ---- Avrami-Erofeev 
(N=3) [21] 

20 SiO2 IW < 45 
75-125 

125-210 

TGA 
bFBR 
FxBR 

1173-1273 170 ---- First order [19] 

18 SiO2 I 106-150 TGA 1073-1173 
1173-1248 

315 
176 

---- Avrami-Erofeev 
(N=2) 

[18] 

60 TiO2 MM 200-315 TGA 1073-1223 155 ---- Avrami-Erofeev 
(N=3) [21] 

50 TiO2 MM < 45 
75-125 

125-210 

TGA 
bFBR 
FxBR 

1173-1273 180 ---- First order [19] 

50 TiO2 MM < 45 TGA 1073-1173 284 58 First order [15] 

60 ZrO2 MM 200-315 TGA 1073-1223 153 ---- Avrami-Erofeev 
(N=3) [21] 

55 ZrO2 FG < 45 
75-125 

125-210 

TGA 
bFBR 
FxBR 

1073-1273 147 ---- First order [19] 

45 ZrO2 FG < 45 TGA 1048-1198 264 67 First order [15] 
40 ZrO2 FG 125-180 bFBR 1173-1258 281 20 First order [14] 

Oxidation          
Pure ---- ---- disc (5 mm i.dc) TGA > 1173 173-98 ---- First order [23] 
Pure ---- ---- 10 TGA 673-773 76.5 ---- First order [14] 
18 SiO2 I 106-150 TGA 1073-1173 

1173-1248 
3 

-43 
---- Phase boundary 

reaction (N=2) 
[18] 

55 ZrO2 FG < 45 
75-125 

125-210 

TGA 
bFBR 
FxBR 

1123-1273 ---- 202 First order [19] 

aKey for preparation method: 
I = Impregnation 
IW = Incipient wetness 
MM = Mechanical mixing 
FG = Freeze granulation 

bKey for facility:                                          Ci.d = inner diameter
bFBR = batch fluidized bed reactor 
FxBR = Fixed bed reactor 
TGA = thermogravimetric analyzer 
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Table 2. Properties of the oxygen carrier Cu60MgAl. 

CuO content (wt.%) 60 

Oxygen transport capacity, ROC (wt.%)* 6 

Crushing strength (N) 2.4 

Skeletal density (kg/m3) 4600 

Porosity (%) 16.1 

Specific surface area, BET (m2/g)  < 0.5 

XRD main phases CuO, MgAl2O4

*Reduction from CuO to Cu2O 
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Table 3. Experimental conditions for TGA tests. O2 concentrations at thermodinamic 

equilibrium also shown. 

Reduction Oxidation 

T (K) 
2
(%)Oy 

2 , (%)O eqy T (K) 
2
(%)Oy 

2 , (%)O eqy

   1123 21 0.4 

1148 0 0.8 1148 21 0.8 

1173 0 1.4 1173 21, 11, 9, 4, 2.5 1.4 

1198 0 2.4 1198 21 2.4 

1223 0, 1.5, 2.5 4.2 1223 21 4.2 

1248 0, 1.5, 4 7.0 1248 21 7.0 

1273 0, 1.5, 4, 6, 8, 9 11.6 1273 21 11.6 

*N2 to balance 
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Table 4. Correlation coefficients of the linear dependence of (–ln(1-Xred))N vs time plots 

for various values of N for Cu60MgAl oxygen carrier. TRed = 1273 K; 
2 ,ReO dy  = 4 vol.%; 

TOx = 1173 K; 
2 ,O Oxy  = 6 vol.%;  

N Reduction Oxidation

3/2 0.9017 0.9570 

1 0.9769 0.9970 

3/4 0.9961 0.9977 

2/3 0.9951 0.9926 

1/2 0.9838 0.9703 
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Table 5. Kinetic parameters determined in this work for Cu60MgAl. 

Reduction 

'
Re ,0dk  (s-1) 3.6·109

ERed (kJ mol-1) 2.7·102

c0 ((m3 mol-1)1/n) 1.8·10-10

EC (kJ mol-1) -2.4·102

n 0.5 

Oxidation

'
,0Oxk  ((m3·mol-1)1/n·s-1) 6.2·10-1

EOx (kJ mol-1) 3.2·101

n 1.2 
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Table 6. Properties and kinetic parameters for the different coals considered taken from 

[33]. 

Lignite Low Volatile 
Bituminous 

High Volatile 
Bituminous 

Proximate Analysis (wt.%)    
Moisture 12.6 2.0 2.3 
Volatile matter 28.6 17.1 33.0 
Fixed carbon 33.6 68.8 55.9 
Ash 25.2 12.1 8.8 
Ultimate Analysis (wt.%)    
C 45.4 75.8 65.8 
H 2.5 3.7 3.3 
N 0.6 1.9 1.6 
S 5.2 0.4 0.6 
O(1) 8.5 4.1 17.6 
Kinetic parameters    
k0 (m3·mol-1·s-1) 2.7·107 1.8·107 1.5·105

E0 (kJ mol-1) 91.5 94.1 64.0 
p 0.5 0.5 0.5 
LHV (kJ/kg) 16250 28950 25000 
mO (kg O2/kg coal) 1.2 2.2 2.0 

(1)Oxygen to balance 
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Caption of figures 

Fig. 1. Schematic layout of the CLOU system. 

Fig. 2. Equilibrium oxygen concentration over the CuO/Cu2O system as a function of 

temperature. 

Fig. 3. Effect of temperature (a) 
2Oy  = 0 vol.%, and (b) 

2Oy  = 1.5 vol.%, on the oxygen 

carrier reduction rate using N2. Symbols, experimental data; continuous line, model 

predictions. 

Fig. 4. Effect of oxygen concentration (vol.%) at 1273 K on the oxygen carrier 

reduction, using N2+O2 mixtures. Symbols, experimental data; continuous line, model 

predictions. 

Fig. 5. Effect of (a) O2 concentration (vol.%) at 1173 K and (b) temperature with a 
2Oy = 

21 vol.%, on the oxygen carrier oxidation. Symbols, experimental data; continuous line, 

model predictions. 

Fig 6. Arrhenius plots to calculate global activation energy in Eq. (6): ●, reduction; ▲, 

oxidation; for the Cu60MgAl. 

Fig. 7. Effect of the oxygen concentration in the reaction order of Eq. (7) for: (a) 

reduction; (b) oxidation. 

Fig.8. Determination of N parameter using conversion data to calculate (–ln(1-X))N vs 

time (Eq.(21)) at (a) 1273 K, 4 vol.% O2 for reduction; and (b) 1173 K, 6 vol.% O2 for 

oxidation. 
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Fig. 9. Temperature dependence of kinetic parameters for Cu60MgAl: kinetic constant 

for oxygen uncoupling (●); kinetic constant for oxidation (▲); and adsorption 

parameter c for reduction (■). 

Fig. 10. Determination of (a) n and c parameters using Eq. (23) for reduction; and (b) n

parameter using Eq. (30) for oxidation reactions. 

Fig. 11. Minimum solids inventories per MWth: fuel reactor (- - -), air reactor (- ·- ·-); 

and specific circulation rate of solids (───) using a lignite as a function of the variation 

of the oxygen carrier conversion between the fuel and air reactors. T = 1223 K. Solids 

flux hydrodynamic limit (·····) also shown. 

Fig. 12. (a) O2 concentration at the fuel reactor outlet and (b) CO2 capture efficiency as 

a function of the variation of oxygen carrier conversion in the fuel reactor using lignite 

as fuel and different solids inventories in the fuel reactor: 1500(───), 500 (·····), 250  

(---) and 150 (-··-) kg/MWth. TFR = 1223 K, η 0CSS  . 

Fig. 13. (a) O2 concentration at the fuel reactor outlet and (b) CO2 capture efficiency, as 

a function of the fuel reactor inventory for three different coals: HRB (───), lignite 

(····), LVB (-----),TFR = 1223 K,CCS = 0%, XOC = 0.7. LVB with a η 90%CSS   also 

shown (-··-). Experimental points obtained in the 1.5 kWth continuous unit for CLOU 

process: HRB (▼) [8], lignite (●), LVB (▲) [10]. 
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Fig. 1. Schematic layout of the CLOU system. 
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Fig. 3. Effect of temperature (a) 
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carrier reduction rate using N2. Symbols, experimental data; continuous line, model 

predictions. 
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2Oy = 

21 vol.%, on the oxygen carrier oxidation. Symbols, experimental data; continuous line, 

model predictions. 
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time (Eq.(21)) at (a) 1273 K, 4 vol.% O2 for reduction; and (b) 1173 K, 6 vol.% O2 for 

oxidation. 



 61

1/T 104 (K-1)

7.8 8.0 8.2 8.4 8.6 8.8 9.0

ln
 k

' R
ed

 o
r l

n 
k'

O
x

-7

-6

-5

-4

-3

-2

-1

ln
 c

-2

-1

0

1

Fig. 9. Temperature dependence of kinetic parameters for Cu60MgAl: kinetic constant 

for oxygen uncoupling (●); kinetic constant for oxidation (▲); and adsorption 

parameter c for reduction (■). 



 62

ln(CO2)

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0
Y O

x

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

ln(CO2)

-4.0 -3.5 -3.0 -2.5

Y R
ed

-5

-4

-3

-2

-1

0
(a) (b)

Fig. 10. Determination of (a) n and c parameters using Eq. (23) for reduction; and (b) n

parameter using Eq. (30) for oxidation reactions. 
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Fig. 11. Minimum solids inventories per MWth: fuel reactor (- - -), air reactor (- ·- ·-); 

and specific circulation rate of solids (───) using a lignite as a function of the variation 

of the oxygen carrier conversion between the fuel and air reactors. T = 1223 K. Solids 

flux hydrodynamic limit (·····) also shown. 



 64

XOC

0.0 0.2 0.4 0.6 0.8 1.0

O
2 c

on
ce

nt
ra

tio
n 

(v
ol

.%
)

0

1

2

3

4

5

XOC

0.0 0.2 0.4 0.6 0.8 1.0
C

O
2 C

ap
tu

re
 E

ffi
ci

en
cy

 (%
)

20

40

60

80

100
O2 eq. (vol.%) (b)(a)

Fig. 12. (a) O2 concentration at the fuel reactor outlet and (b) CO2 capture efficiency as 

a function of the variation of oxygen carrier conversion in the fuel reactor using lignite 

as fuel and different solids inventories in the fuel reactor: 1500(───), 500 (·····), 250  

(---) and 150 (-··-) kg/MWth. TFR = 1223 K, η 0CSS  . 
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Fig. 13. (a) O2 concentration at the fuel reactor outlet and (b) CO2 capture efficiency, as 

a function of the fuel reactor inventory for three different coals: HRB (───), lignite 

(····), LVB (-----),TFR = 1223 K,CCS = 0%, XOC = 0.7. LVB with a η 90%CSS   also 

shown (-··-). Experimental points obtained in the 1.5 kWth continuous unit for CLOU 

process: HRB (▼) [8], lignite (●), LVB (▲) [10]. 


