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Highlights  

 Unlike escitalopram, subchronic vortioxetine enhances PFC neuronal activity in rats 

 This effect occurs at clinically-relevant oral doses of vortioxetine  

 Vortioxetine increases neuronal discharge in prelimbic and infralimbic cortices 

 Effects in 5-HT-depleted rats suggest a non-canonical interaction with 5-HT3-R   

 These effects may underlie pro-cognitive and antidepressant actions of vortioxetine  
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Abstract 

 

Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT3-R, 5-HT7-R and 5-HT1D-R 

antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin transporter (SERT) inhibitor. 

VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction 

in major depressive patients. Here we compared the effects of 14-day treatments with VOR and 

escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial 

prefrontal cortex (mPFC).  Ten groups of rats (5 standard, 5 depleted of 5-HT with p-

chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or 

with two doses of VOR-containing food. Four groups were implanted with minipumps delivering 

vehicle or ESC 10 mg/kg·day s.c. The two VOR doses enable occupation by VOR of SERT+5-HT3-R 

and all targets, respectively, and correspond to SERT occupancies in patients treated with 5 and 20 

VOR mg/day, respectively. Putative pyramidal neurons (n=985) were recorded extracellularly in 

the mPFC of anesthetized rats.  

Sub‐chronic VOR administration (but not ESC) significantly increased neuronal discharge in 

standard and 5-HT-depleted conditions, with a greater effect of the low VOR dose in standard rats. 

VOR increased neuronal discharge in infralimbic (IL) and prelimbic (PrL) cortices. Hence, oral VOR 

doses evoking SERT occupancies similar to those in treated patients increase mPFC neuronal 

discharge. The effect in 5-HT-depleted rats cannot be explained by an antagonist action of VOR at 

5-HT3-R and suggests a non-canonical interaction of VOR with 5-HT3-R. These effects may underlie 

the superior pro-cognitive efficacy of VOR compared with SSRIs in animal models. 

 

 

 

 

Keywords:  5-hydroxytryptamine (serotonin); 5-HT3 receptors; antidepressants; medial prefrontal 

cortex; pyramidal neurons.  
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1. Introduction 

 

Vortioxetine (VOR) is a drug for the treatment of major depressive disorder (MDD) (Alvarez et al., 

2012; Sanchez et al., 2015) that shows pro-cognitive efficacy in animal models (Sanchez et al., 

2015; Wallace at al., 2014; Westrich et al., 2015) and improves aspects of cognitive dysfunction in 

MDD patients (Al-Sukhni et al., 2015; Katona et al., 2012; McIntyre et al., 2014; 2015; 

Mahableshwarkar et al., 2015a, 2015b; Rosenblat et al., 2015).  VOR is a 5-HT3, 5-HT7 and 5-HT1D 

receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist, and inhibitor of the 

serotonin (5-HT) transporter (SERT) (Mork et al., 2012; Sanchez et al., 2015). Analyses of target 

occupancies in rodent brain and SERT occupancy data from human PET studies support a dose-

dependent occupancy of all these targets at clinical doses of vortioxetine (Sanchez et al., 2015).  

VOR shows high affinity (3.7 nM) for 5-HT3-R (Mørk et al., 2012). 5-HT3-Rs are ion channels present 

in a subpopulation of cortical and hippocampal GABAergic interneurons located in the upper 

layers (Lee et al., 2010; Morales and Bloom, 1997; Puig et al., 2004). 5-HT3-R physiological 

activation by endogenous 5-HT markedly excites a subpopulation of PFC GABA interneurons (Puig 

et al., 2004).  

VOR administration was shown to increase extracellular concentrations of monoamines in the 

forebrain to a greater extent than escitalopram (ESC, selective serotonin uptake inhibitor –SSRI-) 

(Perhrson et al., 2013; Riga et al., 2016), likely as a result of reducing the efficacy of local and distal 

negative feed-back mechanisms on monoamine systems. Furthermore, co-administration of an 

SSRI and a 5-HT3-R antagonist was shown to increase extracellular concentrations of 5-HT in mPFC 

and hippocampus to higher levels than the SSRI alone (Mork et al., 2012; Riga et al., 2016). 

Moreover, acute VOR administration (but not ESC) dose-dependently was shown to enhance the 

discharge rate of midbrain-projecting pyramidal neurons in mPFC through a 5-HT3-R-dependent 

mechanism (Riga et al. 2016). Given the control of midbrain serotonergic neurons by the mPFC 

(Celada et al., 2001) this effect may translate into a greater 5-HT neuronal activity, as observed 

after VOR administration (Bétry et al., 2013).  

Given the action of VOR (but not ESC) on cognitive function in rodents, we examined the effect of 

subchronic VOR and ESC administration on neuronal discharge in the mPFC of rats in standard 
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conditions (drug naive) and in rats depleted of 5-HT with the 5-HT synthesis inhibitor p-

chlorophenylalanine (pCPA). This agent induces a cognitive deficit in rodents which is partially or 

totally reversed by VOR (du Jardin et al., 2014; Wallace et al., 2014). Likewise, in order to relate 

the effects of the present study with those in treated patients, VOR was administered in the food, 

at two doses that result in occupation at SERT + 5-HT3-R and all targets, respectively (Alan Pehrson, 

unpublished observations), and producing a SERT occupancy equivalent to that in patients treated 

with 5 mg/day and 20 mg/day VOR, respectively (Sanchez et al. 2015).  

 

2. Material and methods 

 

2.1 Animals  

Male albino Wistar rats (175‐200 g at the beginning of the treatment period) were used (Charles 

River, France). Animal care followed the European Union regulations (directive 2010/63 of 22 

September 2010) and was approved by the Institutional Animal Care and Use Committee.  

 

2.2 Drugs and treatments 

Vortioxetine (VOR) hydrobromide and escitalopram oxalate (ESC) were provided by H. Lundbeck 

A/S. 4‐chloro‐DL‐phenylalanine‐methylester hydrochloride (pCPA) was from Sigma‐Aldrich. VOR 

was administered p.o. in the food at doses of 0.26 g VOR/kg chow and 1.8 g VOR/kg chow. These 

doses evoke SERT occupancies in the rat (from 40‐50% to 80‐90%, respectively) similar to those 

achieved in patients treated with the clinical doses of 5 and 20 mg/day VOR (Leiser et al., 2015; 

Wallace et al., 2014). From 5 days before starting drug treatments, the regular rat chow was 

switched to Purina 5001 Rodent chow (control food), which had the same nutritional content as in 

the VOR-enriched chow (Leiser et al., 2015; Wallace et al., 2014). Animals were fed ad libitum. 

ESC was administered subcutaneously (s.c.) via osmotic minipump (Alzet, model M2L2) at the dose 

of 10 mg/kg·day (oxalate salt, corresponding to 7.5 mg/kg free base). Osmotic minipumps were 

implanted under anaesthesia (100 mg/kg Ketamine + 10 mg/kg Xylazine given i.p.). An analgesic 
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(Buprenorfine: 0.5 mg/kg p.o every 12 h) and a prophylactic antibiotic (Enofloxacina 7.5 mg/kg 

s.c.) were given during 2-3 consecutive days after surgery. 

At the beginning of treatments (day 1), animals were single‐housed and randomly assigned to one 

of the ten following experimental groups: 5 groups of standard rats treated with: 1) control food, 

2) VOR-enriched food at low dose, 3) VOR-enriched food at high dose, 4) vehicle minipumps and 5) 

ESC minipumps, and 5 groups of pCPA-treated rats treated with the same treatments (groups 6-

10). Treatments lasted two consecutive weeks (from day 1 to day 14).  In the 5-HT depleted 

groups, the irreversible inhibitor of tryptophan hydroxylase pCPA (86 mg/kg free base, s.c.) was 

administrated daily during 4 consecutive days (from day 11 to day 14) in order to induce cognitive 

impairment through inhibition of 5‐HT synthesis (du Jardin et al., 2014; Jensen et al., 2014; 

Wallace et al., 2014). Neuronal recordings were performed in the mPFC 24 h after the last pCPA 

injection (day 15).  

 

2.3 Electrophysiological recordings 

Single unit extracellular recordings were performed with glass micropipettes at day 15 in chloral 

hydrate anesthetized rats (induction: 400 mg/kg i.p.; maintenance: 50-70 mg/kg/h i.p. using a 

perfusion pump), as previously described (Lladó‐Pelfort et al., 2012; Riga et al., 2014, 2016).  

Putative pyramidal neurons in the mPFC were recorded during descending tracks performed at 

AP+3.2 to 3.4, L ‐0.7 from bregma; DV -1.5 to ‐4.8 mm from brain surface (Paxinos and Watson, 

2005). Once a spontaneously active neuron was detected at given AP and L coordinates, its 

discharge was recorded for at least 5 min. Then, the glass electrode was descended until a new 

spontaneously active neuron was detected and recorded. Individual firing rates were quantified by 

averaging the values of the last 2 min of each recording period.  Typically, 1‐4 tracks at different 

AP coordinates were performed during a 3‐4 h recording period. Recordings were made between 

10 a.m. and 4 p.m.  DV coordinates of all recorded neurons were used to identify their location in 

prelimbic (PrL) and infralimbic (IL) subdivisions of the mPFC. 

Single putative pyramidal neurons were selected on-line using standard criteria according with its 

long depolarization phase of the action potential and low symmetry (Lladó-Pelfort et al., 2012). In 

order to avoid a potential contribution of fast spiking interneurons (FSI) to the data, we performed 

a second off-line analysis, using built-in and self-developed MATLAB routines. The identification of 
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potential FSI was performed using the following characteristics of action potentials (average of 

spikes from 200 s in basal conditions): 1) duration of the depolarization phase (depolarization 

width, ms), 2) duration of the hyperpolarization phase (hyperpolarization width, ms) and 3) 

symmetry (ratio between depolarization (a) and hyperpolarization peaks (b); Fig. 1). Using these 

variables, neuronal clusters were made and compared with a cluster of FSI (n=17) previously 

recorded in the same setting (Lladó-Pelfort et al., 2012). FSI showed the following characteristics: 

depolarization phase width: 0.30±0.01 (SD=0.06) ms; hyperpolarization phase width: 0.77±0.07 

(SD=0.29) and symmetry 1.20±0.14 (SD=0.56). Neurons meeting at least two of the following 

criteria: depolarization width > 0.36 (mean+SD of FSI; ms); hyperpolarization width > 1.08 

(mean+SD of FSI; ms); symmetry < 0.64 or > 1.76 (mean±SD of FSI) were considered putative 

pyramidal neurons. A total of 985 neurons were included in statistical analyses. Table 1 shows the 

average number of neurons included from each experimental group. 

 

2.4 Histology 

At the end of the recording period, animals were euthanized by an anesthetic overdose. A piece of 

the mPFC ( ̴30‐100 mg) was dissected out, weighed and frozen at  ‐80ºC for subsequent analysis of 

the tissue 5-HT concentration, performed by high performance liquid chromatography (HPLC) of 

PFC homogenates, as described in Adell et al. (1989).  

 

2.5 Data and statistical analysis  

Pyramidal discharge was quantified by averaging the values of the last 2 min periods of each 

neuronal recording (5 min). Firing rate data are given as spikes/s. 

Tissue 5‐HT concentrations in control and pCPA‐depleted rats are given as fmol/mg tissue. 

Data are expressed as mean ± SEM. Statistical analysis was performed using Student’s t- test or 

two‐way ANOVA (weight, pre-treatment, treatment or mPFC area as main factors) followed by 

post‐hoc analysis using Duncan’s test, as appropriate. To examine drug effects on neuronal 

discharge, we carried out two different analyses, using all individual neurons recorded (n = 985) 

and a single average value per rat (n=50), as stated in Results. The second statistical analysis was 
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more stringent and was used to confirm the analysis using all recorded neurons. Statistical 

significance has been set at the 95% confidence level (two tailed). 

 

 

3. Results 

 

3.1 Effects of pharmacological treatments and implantation of subcutaneous minipumps on 

rat weight gain 

To assess whether the pharmacological treatments used (pCPA, VOR, ESC) and/or the implantation 

of subcutaneous minipumps alter food intake in rats, we compared the weight gain (weight at day 

15 - weight at day 1, in g) considering all experimental groups (10 groups, 5 rats per group) (Table 

2). Overall, pCPA pre-treatment altered rat weight gain, yet without significant differences 

between treatments. Hence, two‐way ANOVA revealed a significant effect of pre-treatment 

(F(1,40)=11.64; p<0.002), with no significant effect of the treatment (F(4,40)=1.66; p=0.1792) nor 

pre-treatment x treatment interaction (F(4,40)=2.40; p=0.0658). The lower weight gain was seen 

in 5-HT–depleted rats bearing ESC minipumps (p<0.05 vs control food in pCPA pre-treated rats and 

p<0.002 vs ESC minipumps in standard rats; post-hoc test). No significant differences emerged 

between drug treatments and their respective controls (low and high VOR vs control food; ESC vs 

vehicle controls) for any of the pre-treatments (Table 2).  

3.2 Characterization of putative pyramidal neurons in mPFC 

Putative pyramidal neurons were identified by comparing their action potential characteristics 

with those of a group of fast-spiking GABAergic interneurons (FSI) previously recorded in our 

laboratory (Lladó-Pelfort et al., 2012). Putative pyramidal neurons showed higher depolarization 

and hyperpolarization widths than FSI (depolarization width: 0.56±0.01 ms vs 0.30±0.01 ms; 

hyperpolarization width: 1.21±0.01 ms vs 0.77±0.07 ms) and lower symmetry than FSI (2.32±0.04 

vs 1.20±0.14, n=985 and n=17 for putative pyramidal neurons and FSI, respectively). Despite some 
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overlap in one or other variable, both neuronal subsets were grouped into 2 clearly different 

clusters (blue and red points for putative pyramidal neurons and FSI, respectively; Fig. 1).  

 

3.3 Effects of VOR and ESC on putative pyramidal neurons’ activity in mPFC in standard and 

pCPA‐treated rats 

The magnitude of 5‐HT depletion induced by pCPA in the PFC was 94% (804 ± 74 vs.48 ± 4 fmol/mg 

in control and pCPA-treated rats, respectively; n=25 each; p<0.00001) similar to that found in 

recent studies (du Jardin et al., 2014; Jensen et al., 2014).  

Sub‐chronic administration of low and high oral doses of VOR enhanced the discharge of the 

recorded neurons in standard and pCPA-treated rats (standard rats: 0.9±0.1, 2.1±0.2 and 1.3±0.1 

spikes/s in controls, low dose VOR and high dose VOR, respectively; pCPA-treated rats: 0.9±0.1, 

2.1±0.2 and 1.8±0.2 spikes/s, in controls, low dose VOR and high dose VOR, respectively; n=83-120 

neurons/treatment). On the contrary, sub‐chronic ESC treatment did not affect the firing rate of 

mPFC pyramidal neurons neither in standard nor in pCPA-treated rats (standard rats: from 0.8±0.1 

to 0.6±0.1 spikes/s; pCPA-treated rats: from 0.8±0.1 to 0.8±0.1 spikes/s, for VEH and ESC 

minipumps, respectively; n=90-108 neurons/treatment). Fig. 2 shows representative examples of 

the recorded neurons in each experimental group. 

Two‐way ANOVA revealed a significant effect of treatment on neuronal discharge (F(4,975)=39.99; 

p<0.00001; n=985), and no significant effect of pre-treatment (F(1,975)=3.39; p=0.659) and pre-

treatment x treatment interaction (F(4,975)=1.22; p=0.3011). Fig. 3A shows the results of post-hoc 

tests of VOR (all doses) vs. control food-treated rats (standard and pCPA pre-treatment groups) 

and of high VOR in standard vs. pCPA-pretreated rats. 

A more stringent statistical analysis was performed, by calculating the mean discharge value per 

each rat, thus reducing dramatically degrees of freedom (from n=985 to n=50). Two-way ANOVA 

of this data set yielded essentially the same result, with a significant effect of treatment 

(F(4,40)=28.49; p<0.00001; n=50), no significant effect of the pre-treatment (F(1,40)=2.99; 

p=0.0916) and pre-treatment x treatment interaction (F(4,40)=0.90; p=0.4727). Post-hoc analyses 

showed similar significant differences between groups as those found with all individual neuronal 

data (Fig. 3B).  
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Individual neuronal data plotted in a linear Y-scale (Fig. 3C) did not allow determination of 

whether the significant increase of discharge produced by VOR was a general effect or if it was due 

to a selective action on neurons with a very high discharge, which would then increase the mean 

value of the group. However, when the same data was plotted in a log scale (Fig. 3D), the whole 

set of neuronal discharges was increased, allowing exclusion of the above possibility.  

 

3.4 Differential effects of VOR on Prelimbic (PrL) and Infralimbic (IL) mPFC subdivisions 

Given the increasing evidence that PrL and IL areas of the mPFC play a different role in the 

pathophysiology of major depression and possibly in its treatment (see Discussion), the data from 

all recorded neurons were split into two subpopulations according to their DV coordinate (PrL: ‐1.5 

to ‐3.0; IL: ‐3.4 to ‐4.8; in mm from brain surface), excluding those in the border between both 

subdivisions (e.g., from -3.0 to -3.4 mm).  In standard rats, two‐way ANOVA revealed a significant 

effect of treatment (F(4,450)=23.84; p<0.00001, n=460), no significant effect of area 

(F(1,450)=0.63; p=0.4289) and significant area x treatment interaction (F(4,450)=2.42; p<0.05). A 

significant post‐hoc difference was observed between the effect of low‐dose VOR in PrL and IL, 

with a higher increase of the discharge rate in IL in standard rats (IL: 0.7±0.1 and 2.6±0.4; PrL: 

1.0±0.1 and 1.9±0.2 spikes/s, in control and low VOR dose rats, respectively) (Fig. 4B).  In pCPA-

treated rats, two‐way ANOVA revealed a significant effect of treatment (F(4,403)=13.25; 

p<0.00001, n=413), area (F(1,403)=5.29; p<0.03) but not of area x treatment interaction 

(F(4,403)=1.53; p=0.1914). Post-hoc analysis revealed a significant increase in discharge in IL (from 

1.2±0.2 to 2.4±0.5 spikes/s, for control and high VOR dose, respectively), but not in PrL, in rats 

treated with the high VOR dose (Fig. 4C). Interestingly, the differences in neuronal discharge 

between doses observed in IL of standard rats disappeared in the IL of pCPA-treated rats.  
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4. Discussion  

 

The present study shows that subchronic VOR treatment (but not ESC, given for the same time 

period at a dose that fully blocks SERT) increased the discharge of putative pyramidal neurons in 

rat mPFC. The oral VOR doses were chosen to mimic in the rat the levels of SERT occupancy 

achieved in depressed patients treated by a low and high clinical dose of VOR (5 and 20 mg/day, 

respectively). Previous studies have shown that the two oral doses result in a SERT occupancy in 

rat brain of approximately. 52.6 ± 2.2 % and 98.2 ± 0.2 % (Pehrson et al., 2014). According to the 

receptor occupancy data by vortioxetine (reviewed in Sanchez et al., 2015), this corresponds to a 

full occupancy of 5-HT3-R at the lower dose plus a partial occupancy of 5-HT1B-R, 5-HT1A-R and 5-

HT7-R at the higher dose. The observed effects are, therefore, hypothesized to be representative 

of effects of clinical doses, with the obvious limitations of species differences.  

The increased discharge was observed in a large number of neurons per treatment group (from 85 

to 120) and was very robust, since statistical analyses carried out with a single –average- value of 

neuronal discharge per rat (i.e., n=5 per group) revealed the same significant differences as 

analyses performed with the data from all recorded neurons. The large data deviation is unlikely 

to be caused by methodological reasons (chloral hydrate was continuously delivered by an 

infusion pump) and may reflect the diverse populations of pyramidal neurons recorded, in 

different cortical layers and with different inputs. The increase in pyramidal discharge was 

observed with low and high doses of VOR and in the two mPFC subdivisions, PrL and IL, although 

some differences between groups and treatments were noted. Likewise, VOR increased neuronal 

discharge in rats depleted of 5-HT with pCPA, which was used as a model of cognitive deficits (du 

Jardin et al., 2014; Wallace et al., 2014).  

The increased discharge of putative pyramidal neurons evoked by both VOR doses is in agreement 

with previous observations showing that cumulative i.v. doses of VOR dose-dependently increased 

the firing rate of midbrain-projecting pyramidal neurons in layer V of the mPFC (Riga et al., 2016). 

This effect is mediated by 5-HT3-R blockade since it was prevented by the administration of the 5-

HT3-R agonist SR57227A and was mimicked by the 5-HT3-R antagonist ondansetron and by ESC and 

ondansetron combinations (Riga et al., 2016). Although we did not directly demonstrate the 

involvement of 5-HT3-R in the subchronic VOR effect, we assume it based on the acute 



Riga et al. 
 

12 
 
 

experiments and on the receptor occupancy data produced by the low and high oral VOR doses.  

The cellular basis of this effect is the blockade of 5-HT3-R in a subpopulation of GABAergic 

interneurons located in upper cortical layers (Lee et al., 2010; Puig et al., 2004; Schweimer et al., 

2016) an effect resulting in a reduction of GABAA-R-mediated inputs onto pyramidal neurons and 

their subsequent disinhibition. In our previous study (Riga et al., 2016), we identified pyramidal 

neurons by antidromic stimulation from the midbrain, a technique that could not be applied here 

given the large number of neurons recorded. Therefore, we cannot exclude that the neuronal 

population included in the analyses contains a certain proportion of GABAergic interneurons, with 

discharge characteristics similar to that of pyramidal neurons. However, this proportion should be 

very low, in view of the following: 1) all GABAergic interneurons represent  15-20%  of all cortical 

neurons, 2) putative FSI, which are mainly located in deep layers, were excluded from analyses, as 

described above, and 3) 5-HT3-R-expressing interneurons are located in layers I-III, whereas tracks 

aimed at deep layers. Moreover, VOR reduces the discharge of the latter interneurons (Schweimer 

et al., 2016), whereas a general enhancing effect of VOR was observed on neuronal discharge.  

In agreement with these acute dosing experiments, subchronic VOR treatment increased neuronal 

discharge in standard rats. It also produced a similar enhancement in pCPA-treated rats, an 

observation difficult to reconcile with the antagonist character of VOR at 5-HT3-R (see below for 

extended discussion on this point). Interestingly, Wallace et al (2014) reported that VOR improved 

the deficit in reversal learning induced by pCPA in rats. Although this effect was interpreted in 

terms of the partial agonist activity of VOR at 5-HT1A-R and 5-HT1B-R, the present results allow an 

alternative explanation, as follows. Primate studies have shown that the neurobiological substrate 

of short-term -or working- memory (an essential component of executive functions and a 

necessary step in long-term memory) is the emergence and maintenance of patterns of persistent 

neuronal activity in the dorsolateral PFC (equivalent to the PrL PFC in rodents). Hence, in primate 

experiments using visual working memory, the animals must remember the position of a visual 

stimulus on a screen during a delay period in the absence of the stimulus (Curtis and Esposito, 

2003; Fuster and Alexander, 1971; Miller and Cohen, 2001; Wang et al., 2015). The moderate 

increase of neuronal discharge induced by VOR in PrL PFC may facilitate the maintenance of these 

activity patterns associated to short-term memory and therefore contribute to its pro-cognitive 

effects. In support of this view, 5-HT3-R agonists impair short-term and long-term memory in rats 

(Meneses, 2007) and the 5-HT3-R antagonists ondansetron and tropisetron improve memory 
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consolidation (Meneses 2003). On the other hand, the effect of VOR on neuronal discharge may 

counteract the fall in working memory induced by psychological stress, associated with a reduced 

dorsolateral PFC activity, (Qin et al., 2009). However, alternative explanations may be equally 

valid, since psychotomimetic drugs produce a very large increase of pyramidal neurons discharge 

in mPFC (e.g., Kargieman et al., 2007) and cognitive enhancers may act via different neuronal 

mechanisms (Husain and Mehta, 2011). In particular, the activation of 5-HT1A-R by VOR may play 

an important role. 5-HT1A-R agonists increase acetylcholine release (Izumi et al., 1994; Fujii et al., 

1997; Koyama et al., 1999), an effect that may explain the VOR-induced elevation of acetylcholine 

in acute microdialysis experiments (Mork et al., 2013). However, using the subchronic oral dosing 

regimen of the present study VOR failed to produce a sustained extracellular elevation of 

acetylcholine (Pehrson et al., 2016).  

The similar effects of subchronic VOR treatment on neuronal discharge in standard and 5-HT-

depleted rats suggest a similar antagonist action of VOR in both pre-treatment groups. However, 

an antagonist action is difficult to explain in rats with a very large degree (94%) of depletion of 5-

HT stores, as produced by this treatment regime with pCPA. This raises the possibility that VOR 

interacts in a non-canonical way with 5-HT3-R. Interestingly, the 5-HT3-R antagonist ondansetron 

can antagonize peristaltic movements in reserpinized guinea pigs (Sia et al., 2013). Although in 

different species and systems, both observations support the view that 5-HT3-R blockade may 

evoke cellular/molecular actions independent of the presence of 5-HT. 

VOR was characterized in vitro as a high affinity antagonist at rat and human 5-HT3A-R (Bang-

Andersen et al., 2011; Sánchez et al., 2012). However, 5-HT3B-R subunits are largely co-expressed 

with 5-HT3A-R in rodent brain (Doucet et al., 2007) and their association to 5-HT3A-R subunits 

modifies channel properties, including the duration of the agonist response as well as agonist and 

antagonist affinities (Dubin et al., 1999). More recently, it has been shown that the 5-HT3B-R 

subunit confers spontaneous channel opening and alters ligand interaction with the receptor. 

Hence, the 5-HT analog 5-hydroxyindole acts as a partial agonist at 5-HT3A-R and as an agonist or 

inverse agonist at 5-HT3AB receptors (Hu, 2015; Hu and Peoples, 2008). Likewise, the interaction of 

various 5-HT3-R ligands with palonosetron, a 5-HT3-R antagonist with slow dissociation kinetics, 

depends on the subunit composition (5-HT3A or 5-HT3AB) (Lumuis and Thompson, 2013). Overall, 

these observations raise the possibility that VOR –and possibly other 5-HT3-R antagonists- interact 

with 5-HT3-R in a non-canonical form, e.g., stabilizing the inactive –closed- form of the channel, 
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even in the absence of 5-HT. This possibility is supported by the slow dissociation kinetics of VOR 

observed in in vitro electrophysiology studies in oocytes ( Kristen Fredriksen, Lundbeck; personal 

communication) and would require appropriate experimental testing. Hence, it would be 

interesting to examine whether VOR and other 5-HT3-R antagonists (e.g., ondansetron, 

palonosetron) increase pyramidal neurons activity after acute treatment in rats depleted of 5-HT 

by various means (e.g., pCPA, 5,7-DHT, low tryptophan diet).  

The IL and PrL subdivisions of the mPFC project to different subcortical areas (Vertes, 2004) and 

exert mutual inhibitory control. Hence, the optogenetic stimulation of pyramidal neurons in IL 

inhibited pyramidal neurons in PL (Ji and Neugebauer, 2012). Despite this, VOR was able to 

increase the discharge of putative pyramidal neurons in both subdivisions. The increased discharge 

in PrL may be involved in the pro-cognitive actions of VOR, as discussed above. On the other hand, 

the IL subdivision is equivalent to the ventral anterior cingulate (vACC) in primate and human 

brain, which plays a key role in the pathophysiology and treatment of major depression. Hence, 

alterations of the energy metabolism have been reported in vACC (Drevets et al., 1997; 

Simonewicz et al., 2004; Drevets et al., 2008) and the deep brain stimulation of Broadman area 25, 

in the vACC, evokes a rapid improvement of major depressive patients refractory to 

antidepressant treatments (Mayberg et al., 2005; Puigdemont et al., 2011). In rodents, this area 

also appears to play a major role in antidepressant-like treatments. Hence, local application of the 

non-competitive NMDA-R antagonist ketamine in IL evoked rapid and persistent antidepressant-

like effects in rats, an action mimicked by the optogenetic stimulation of the same area (Fuchikami 

et al, 2015).  Likewise, the pharmacological blockade of the astroglial glutamate transporter GLT-1 

in rat IL (but not in PrL) also evoked antidepressant like effects in the forced-swim and the novelty-

suppressed feeding tests (Gasull et al., 2015). Overall, these reports suggest that the increase of 

excitatory neurotransmission in the IL may contribute to the antidepressant effects of VOR but not 

ESC, in addition to the increase of forebrain monoaminergic neurotransmission (Mork et al., 2012; 

Riga et al., 2016).  

Interestingly, the differences in neuronal discharge between doses observed in IL of standard rats 

disappeared in the IL of pCPA-treated rats. Given the different target occupancies by low and high 

VOR doses (SERT + 5-HT3-R and all targets, respectively), the different effect on IL discharge in 

standard rats, and the similar effect in pCPA-treated rats, the occupancy of non-5-HT3-R targets by 
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endogenous 5-HT at high VOR doses may be responsible for the inverse relationship between VOR 

dose and neuronal discharge in IL. 

 

5. Conclusions 

In summary, the present study shows that subchronic treatment with VOR, but not ESC, increases 

neuronal activity in the two subdivisions of the mPFC, PrL and IL, in standard rats and in rats 

depleted of 5-HT with pCPA. The effect in PrL may account for the pro-cognitive activity of VOR in 

animal models whereas that in IL may contribute to the antidepressant effects of VOR, given 

recent observations indicating that the increased excitatory neurotransmission in this area evokes 

antidepressant-like effects in rodents. The use of VOR doses resulting in target occupancies similar 

to those observed in patients at clinical doses suggest that the increased neuronal discharge may 

also occur in human brain. The use of neuroimaging techniques (e.g., positron emission 

tomography scan, functional magnetic resonance imaging ) for studies of these sub regions would 

allow the examination of vortioxetine effects on PFC activity in patients and whether they are 

associated to the improvement of cognitive deficits. 
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Table 1. Average number of recorded neurons per rat in the 10 experimental groups (5 standard 

conditions, 5 depleted of 5-HT with pCPA; 5 rats/ group) 

 

Groups Standard  pCPA  

Control food  19 neurons/rat 17 neurons/rat 

Low VOR 23 neurons/rat 18 neurons/rat 

High VOR 24 neurons/rat 18 neurons/rat 

VEH minipumps 19 neurons/rat 19 neurons/rat 

ESC minipumps 18 neurons/rat 22 neurons/rat 

All recorded neurons 516 neurons (25 rats) 469 neurons (25 rats) 
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Table 2. Weight gain in all experimental groups (5 rats/group).  

 

 Control food 

(g) 
Low VOR 

(g) 
High VOR 

(g) 
VEH minipumps 

(g) 
ESC minipumps 

(g) 

Standard 80.8±3.1 89±8.2 73.8±8.0 85.2±4.3 94.4±5.2 

pCPA 82.8±2.3 79.4±8.1 67.8±4.4  68.8±2.0 63.6±6.1 * # 

 

Data (g) are expressed as mean±SEM. * p<0.05 versus Control food in pCPA pre-treated rats; # 

p<0.002 versus ESC minipumps in standard rats.  
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Figure legends 

 

Figure 1. Characterization of putative pyramidal neurons in the mPFC. Plotting the symmetry of 

action potential (X) versus the hyperpolarization width (Y) versus the depolarization width (Z) 

creates 2 separate clusters grouping putative pyramidal neurons on one side (in blue) and 

GABAergic fast-spiking interneurons on the other (in red). Putative pyramidal neurons show higher 

depolarization and hyperpolarization phases of action potential and lower symmetry ratio (> 1) 

compared to GABAergic FSI (Lladó-Pelfort et al., 2012). The pyramidal and GABAergic FSI action 

potentials shown in the figure, are obtained by averaging 10 spikes and they correspond to the 

plot indicated by the arrows. 
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Figure 2. Effect of sub-chronic vortioxetine (VOR) and escitalopram (ESC) treatments on firing rate 

of putative mPFC pyramidal neurons. Representative histograms of recorded pyramidal neurons 

from standard and pCPA-treated rats administrated with control food, low and high VOR enriched 

food (0.26 and 1.8 g/kg of chow, respectively), vehicle (VEH) and ESC (10 mg/kg/day s.c.) filled 

osmotic minipumps. The firing rate (spikes/s) quantified by averaging the values of the last 2 min 

of each neuronal recording (5 min) is also shown.   
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Figure 3. Effect of sub-chronic vortioxetine (VOR) and escitalopram (ESC) treatments on firing rate 

of putative mPFC pyramidal neurons. A and B) Bar graphs showing the mean values of all neurons 

recorded (A) and the mean of neuronal average discharge per rat (B) in each experimental group. 

The number of neurons (A) or rats (B) in each experimental group is shown above the respective 

bars. C and D) Plot graphs representing the individual discharge rates of all neurons recorded in 

linear (C) and Log 10 (D) ordinate scale to better visualize effects on high and low discharge 

neurons, respectively. Note that sub-chronic VOR increases the activity of high and low discharge 

neurons. * p<0.03 and ** p<0.0005 versus Control food; # p<0.05 versus High VOR in standard 

rats; α p<0.002 versus Low VOR in standard rats; & p=0.056 (marginally) versus Control food. 
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Figure 4. Effect of sub-chronic VOR and ESC treatments on firing rate of putative pyramidal 

neurons in rat prelimbic (PrL) and infralimbic (IL) subdivisions of the mPFC. A) Plot graph 

representing the dorsoventral (DV) localization of the recorded pyramidal neurons grouped for 

treatment. Black boxes show pyramidal neurons selected in PrL  (‐1.5 to ‐3.0)  and IL (‐3.4 to ‐4.8; 

in mm from brain surface) and used in statistical analysis B) and C) Bar graphs show the effect of 

sub-chronic treatments with VOR and ESC in PrL and IL subdivisions in standard B) and pCPA-

treated rats C). The number of neurons recorded in each experimental group is shown above the 

respective bars.* p<0.03 and ** p<0.002 versus Control food; # p<0.02 versus Low VOR in PrL in 
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standard rats and # p<0.005 versus High VOR in PrL in pCPA-treated rats; α p<0.0001 versus Low 

VOR in IL; ß p<0.05 versus Low VOR in PrL. 

 

 

 


