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a b s t r a c t

Pseudopotential-based Density-Functional Theory (DFT) permits the calculation of material properties
with a modest computational effort, besides an acknowledged tradeoff of generating and testing pseud-
opotentials that reproduce established benchmark structural and electronic properties. To facilitate the
needed benchmarking process, here we present a pragmatic method to optimize pseudopotentials for
arbitrary materials directly from eigenvalue sets consistent with all-electron results. This method thus
represents a much needed pragmatic route for the creation and assessment of sensitive pseudopotentials
for DFT calculations that has been exemplified within the context of the SIESTA code. Comprehensive
optimized pseudopotentials, basis sets, and lattice parameters are provided for twenty chemical elements
in the bulk, and for both LDA and GGA exchange–correlation potentials. This method helps addressing the
following issues: (i) the electronic dispersion and structural properties for Ge, Pd, Pt, Au, Ag, and Ta better
agree with respect to all-electron results now, (ii) we provide the expected metallic behavior of Sn in the
bulk – which comes out semiconducting when using available pseudopotentials, (iii) we create a vali-
dated pseudopotential for LDA-tungsten, and (iv) we create the first Bi pseudopotential for SIESTA that
reproduces well-known electron and hole pockets at the L and T points. We investigated the transferabil-
ity of these pseudopotentials and basis sets, and predict a new phase for two-dimensional tin as well.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The search for new nanostructured materials is driven by Density
Functional Theory (DFT) [1,2]. In the original approach to DFT all
electrons are considered, but the electronic structure problem
becomes simplified by the use of pseudopotentials (PPs) that capture
the effect of the strong Coulomb potential from the nuclei and tightly
bound (core) electrons as an effective ionic potential acting on the
remaining (valence) electrons [3]. PPs are not unique: any PP leading
to the proper phase shift (modulus 2p) is a valid one [4]. The basic
requirement for a valid PP is the ability to reproduce all-electron
results such as the electronic dispersion and structural parameters.
The creation of accurate PPs is an ongoing endeavor, and two main
DFT teams have updated their PP databases as recently as this year
(Abinit [5] and Quantum Espresso [6]). The most recent Abinit PAW
[7] database [5] does not include LDA datasets, and the older Abinit
PAW dataset does not include Ge, Pd, Te, Ta, among other elements.
Here we extend this ongoing verification effort to Ref. [8] and
corroborate that, out of twenty explored elements, the PPs
available for C (atomic number 6), Al (13), Si (14), V (23), Cr (24),
Cu (29), Se (34), Nb (41), and Te (52) – translations of the
Abinit Fritz-Haber Institute Troullier–Martins [9] norm-conserving
PPs (FHI-TM) [10]– perform well for both LDA [11,12] and GGA
(PBE [13]) exchange–correlation potentials when compared to
VASP results. This excellent performance occurs regardless of the
specific basis set employed as long as the basis set is of DZP or
larger size.

At the same time, the PPs for Ge (32), Pd (46), Ag (47), Sn (50),
Sb (51), Ta (73), Pt (78), Au (79), and Bi (83) in Ref. [8] can be
improved, and we demonstrate a viable route towards solving
some of the following issues:

� Ge (LDA and GGA): While the Abinit FHI-TM pseudo opens a gap
for Ge, all-electron band structures display a metallic behavior.
It may be desirable to develop a Ge pseudo that reproduces all-
electron results, if only for consistency across different DFT
implementations.
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http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.commatsci.2014.11.026
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:sbarraza@uark.edu
http://dx.doi.org/10.1016/j.commatsci.2014.11.026
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


Pt LDA

-5

0

5

PP from Ref [8]
and default DZP 
basis set
PP from 
Ref [8] and tuned
DZP basis set
Abinit, FHI TM
ELK (AE)

-5

0

5
PP radii from Allan and 
Khein, and default
DZP basis set
ELK (AE)
This work

Pt LDA

Γ X L ΓW Κ

E−
E F (

eV
)

a0 (A)
o

4.113
SN: 0.05
ES: 0.003

4.071
SN: 0.15
ES: 0.02

3.969
3.923

3.925
SN: 0.15
ES: 0.02

3.933
3.937
SN: 0.16
ES: 0.007

Fig. 1. Upper subplot: the Pt PP available on Ref. [8] fails to reproduce all-electron
eigenvalues and a0 from ELK [20] (red dotted), and those from Abinit with FHI-TM
PPs (thick blue dashed line). This deficiency occurs regardless of DZP basis set
employed (variationally tuned – SN and ES are the PAO.SplitNorm and PAO.Ener-
gyShift (in Ry) parameters – or default: SN = 0.15 and ES = 0.02 Ry). Lower subplot
(better PPs): using the radii from D.C. Allan and A. Khein [21] in the Pt PP one
matches all-electron bands and shows the deficiency of the PP in Ref. [8]. We
employed a default, non-tuned DZP basis set to obtain these results (thin black
line). We propose here a pragmatic process to design PPs to match all-electron
results (thick orange solid line) valid for elements for which PPs from Ref. [21] are
not necessarily available. Further tuning of the NAO basis set does not diminish this
improvement; see the overlapping dashed green line, using a variationally
optimized DZP NAO basis set. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

P. Rivero et al. / Computational Materials Science 98 (2015) 372–389 373
� Ag, Pd, Pt, Au, (LDA and GGA): They have flatter lowermost bands
than their all-electron counterparts and also display overesti-
mated lattice constants a0.
� Sn (LDA and GGA): It appears gapped, semiconducting, while it

should be metallic.
� W (LDA and GGA): No PPs are available on the mentioned data-

base [8] (a W PP is provided by Artacho and coworkers in Ref.
[14]).
� Bi and Sb (LDA and GGA): Within the context of the SIESTA code

[15–17] it is not easy to reproduce the electron and hole pockets
[18] at the L and the T points induced by the spin–orbit interac-
tion (SOI) [19].
� Magnetic elements Fe and Ni have been studied as well.

Faulty PPs for certain elements tend to occur for both LDA
and GGA exchange–correlation potentials; this may be due to
the usage of identical cutoff radii of the LDA and GGA PP input
files for any given element. We also note that the PPs in Ref. [8]
have no relativistic corrections which are necessary for heavier
elements. For instance, the gap observed on bulk Sn closes down
as soon as relativistic corrections are added to the PP inputs in
Ref. [8].

The representation of a quantum mechanical state is not
unique and any complete basis set can be used to expand elec-
tronic wavefunctions. According to Martin [3] there are three
common choices for basis sets: plane waves, localized orbitals,
and ‘‘augmented’’ functions. Plane-waves are the (systematic)
basis set of choice in many DFT implementations (e.g., Refs.
[18,22–24]). The SIESTA DFT code is based on localized basis sets
known as Numerical Atomic Orbitals (NAOs) and it is formulated
in a ‘‘tight-binding’’ language [3] which facilitates methodologi-
cal developments for charge transport [25–28] and/or optical
applications, or to include the effects of electron–electron corre-
lations. The simulation speed goes down steeply in SIESTA as the
number of NAOs is increased. On the other hand, for simulations
containing only a few NAOs, the qualitative accuracy of the sim-
ulation depends on the choice of the PP and NAO parameters,
and an acknowledged drawback of localized basis sets [15–
17,29–35] is the lack of straightforward means for improving
them to arbitrary precision [36].

Nevertheless, while numerical localized basis sets can be opti-
mized following variational approaches [34], no method for the
practical optimization of SIESTA PP input parameters exists and
as seen in Fig. 1, upper subplot, no additional work on the basis sets
– e.g., larger size, variational optimization, and so on – will solve PP-
related issues.

Therefore, the objective of this Article is to lay out a practical
and reliable method for the generation of norm-conserving PPs
[37] to better reproduce all-electron bandstructures and structural
properties within the context of the SIESTA code, thus representing
a check and an update to Ref. [8].

The Article is structured as follows: We describe the problems
being addressed in Section 2. Our algorithm is presented in Sec-
tion 3. The results (Section 4) are divided in two parts: we tabulate
twenty PPs, basis sets, and structural parameters in Tables 1–3,
respectively, and provide a detailed discussion of these elements
with largest discrepancies. Transferability is discussed in Section 5,
and exemplified on a number of two-dimensional materials, the
topological insulators Bi2Se3 and Bi2Te3 in the bulk and slabs, and
magnetic dimers. We introduce the high-buckled phase of stanene
in Section 6 to show how the results given here quickly produce
novel Physics. We discuss execution times afterwards (Section 7),
and provide concluding remarks in Section 8. For completeness,
we share all those elements for which the PPs from Ref. [8] do
produce results that agree reasonably well with VASP results as
additional information.
2. Statement of the problem

2.1. The PP on Ref. [8] does not seem to match the Abinit FHI-TM one
[10]

As an example, Pt is an element for which one is unable to
reproduce ELK [20] all-electron results with SIESTA using the PP
in Ref. [8] regardless of basis set employed. We show in Fig. 1,
upper subplot, results using a default DZP basis set with no tuning
– brown thin solid line – and using a DZP basis set with PAO Energy
Shift = 0.0031 Ry and PAO Split Norm = 0.052 that minimizes the
total energy – green thin solid line. None of these results approach
the all-electron bands displayed by the dotted red lines in Fig. 1.
Further work on the basis set will not improve this situation.

We next perform an Abinit calculation using the Fritz-Haber-
Institute Troullier Martins norm-conserving PP [10] shown by the
blue dashed line in Fig. 1, upper subplot. The FHI-TM PP does lead
to results consistent with all-electron calculations: the dotted
Abinit and the dashed ELK band structures do overlap at almost
every k-point (still, the Abinit lattice parameter, a0 ¼ 3:969 Å,
overestimates the all-electron result (3.923 Å)).

SIESTA and Abinit calculations give different results using a PP
which is nominally the same [8] (Fig. 1, upper subplot). We find
this lack of agreement puzzling and problematic.

The lack of agreement among these SIESTA and Abinit results
originates from the Pt PP in Ref. [8]. To demonstrate this assertion,
we use the fdf input file employed in generating the SIESTA band
structures for the upper subplot in Fig. 1 unchanged, but generate



Table 1
Inputs of Troullier–Martins norm-conserving PPs developed here for the SIESTA DFT
code. To be compatible with the spin–orbit interaction, all PPs have relativistic
corrections. Unless indicated otherwise, PPs are of the (pe) type: i.e., they include core
corrections.

Element Configuration PP (rcut s, p, d, f; cfac, rcfac)

LDA
C (6) 2s22p2 1.64(2s), 1.51(2p), 1.62(3d), 1.47(4f), –, – (pg)
Al (13) 3s22p1 2.30(3s), 2.19(3p), 2.06(3d), 2.17(4f), –, – (pg)
Si (14) 3s23p2 2.40(3s), 2.41(3p), 1.95(3d), 2.45(4f), –, – (pg)
V (23) 4s23d3 3.22(4s), 2.86(4p), 2.31(3d), 2.93(4f), 0.010, 0.000
Cr (24) 4s13d5 2.32(4s), 2.22(4p), 2.27(3d), 2.25(4f), –, – (pg)
Fe (26) 4s13d7 2.07(4s), 2.08(4p), 2.02(3d), 2.28(4f), 0.000, 0.684
Ni (28) 4s23d8 2.92(4s), 2.52(4p), 2.25(3d), 2.32(4f), 1.311, 0.000
Cu (29) 4s13d10 2.45(4s), 2.48(4p), 2.13(3d), 2.24(4f), –, – (pg)
Ge (32) 3s22p1 2.87(4s), 2.84(4p), 2.62(4d), 2.88(4f), –, – (pg)
Se (34) 4s24p4 3.23(4s), 2.40(4p), 2.46(4d), 2.16(4f), –, – (pg)
Nb (41) 5s14d4 2.93(5s), 2.91(5p), 2.59(4d), 2.12(4f), –, – (pg)
Pd (46) 5s14d9 2.01(5s), 2.45(5p), 2.01(4d), 2.25(4f), 0.016, 0.000
Ag (47) 5s14d10 2.70(5s), 2.71(5p), 2.22(4d), 2.58(4f), 0.007, 0.000
Sn (50) 5s25p2 3.30(5s), 3.42(5p), 3.36(5d), 2.84(4f), –, – (pg)
Te (52) 5s25p4 3.48(5s), 3.19(5p), 3.00(5d), 3.17(5f), 0.012, 0.000
Ta (73) 6s25d3 3.39(6s), 3.68(6p), 2.53(5d), 2.43(5f), –, – (pg)
W (74) 6s25d4 2.83(6s), 2.95(6p), 2.41(5d), 2.29(5f), 1.000, 0.000
Pt (78) 5d96s1 2.70(6s), 2.70(6p), 1.98(5d), 2.54(5f), 0.013, 0.000
Au (79) 6s15d10 2.63(6s), 2.77(6p), 3.06(5d), 2.80(5f), 0.009, 0.000
Bi (83) 6s26p3 3.10(6s), 2.00(6p), 3.55(6d), 2.75(5f), 0.000, 1.078

GGA
C (6) 2s22p2 1.84(2s), 1.64(2p), 1.66(3d), 1.66(4f), –, – (pg)
Al (13) 3s22p1 3.08(3s), 2.20(3p), 2.38(3d), 2.69(4f), –, – (pg)
Si (14) 3s23p2 2.93(3s), 2.38(3p), 2.36(3d), 2.35(4f), –, – (pg)
V (23) 4s23d3 2.73(4s), 2.74(4p), 2.08(3d), 2.20(4f), 0.012, 0.000
Cr (24) 4s13d5 2.45(4s), 2.03(4p), 2.12(3d), 2.23(4f), 0.010, 0.000
Fe (26) 4s13d7 2.02(4s), 2.02(4p), 2.01(3d), 2.01(4f), 0.000, 0.645
Ni (28) 4s23d8 2.35(4s), 2.46(4p), 2.51(4d), 2.06(4f), 1.424, 0.000
Cu (29) 4s13d10 2.27(4s), 2.13(4p), 2.29(3d), 2.29(4f), –, – (pg)
Ge (32) 4s24p2 2.82(4s), 2.12(4p), 2.72(4d), 2.46(4f), –, – (pg)
Se (34) 4s24p4 2.11(4s), 3.80(4p), 2.16(4d), 2.59(4f), –, – (pg)
Nb (41) 5s14d4 2.72(5s), 2.48(5p), 2.68(4d), 2.56(4f), –, – (pg)
Pd (46) 5s14d9 2.48(5s), 2.48(5p), 2.16(4d), 2.48(4f), 0.014, 0.000
Ag (47) 5s14d10 2.19(5s), 2.83(5p), 2.40(4d), 2.82(4f), 0.010, 0.000
Sn (50) 5s25p2 2.59(5s), 2.15(5p), 3.75(5d), 2.69(4f), 0.008, 0.000
Te (52) 5s25p4 2.99(5s), 2.77(5p), 3.67(5d), 3.12(5f), 0.014, 0.000
Ta (73) 6s25d3 3.96(6s), 3.60(6p), 2.56(5d), 2.62(5f), –, – (pg)
W (74) 6s25d4 2.82(6s), 2.90(6p), 2.37(5d), 2.35(5f), 1.000, 0.000
Pt (78) 6s15d9 2.91(6s), 2.81(6p), 2.18(5d), 2.79(5f), 0.010, 0.000
Au (79) 6s15d10 2.50(6s), 3.42(6p), 2.98(5d), 3.42(5f), 0.012, 0.000
Bi (83) 6s26p3 3.10(6s), 2.00(6p), 3.55(6d), 2.75(5f), 0.000, 1.078
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a new LDA Pt PP input file (INP) using the Allan–Khein cutoff radii
[21] (no cutoff radii are directly available from FHI PP files) and
replot the bandstructure without any special handling of the DZP
basis set at the resulting equilibrium lattice constant a0 ¼ 3:925.
Both bandstructures and a0 match all-electron results now despite
the DZP basis set being rather generic. The conclusion is that the Pt
PP from Ref. [8] can be improved and, in this case, Allan–Khein [21]
is shown to be a better alternative for Pt–LDA than Ref. [8] already.

As it will be shown on this Article, there are similar discrepan-
cies on the electronic dispersion and the structural parameters for
other elements, for which Allan–Khein PPs [21] are not necessarily
available.

The process here described thus represents a viable answer to
these problems.

We generate PPs on the fly by matching eigenvalues and lattice
parameters versus VASP calculations with PAW PPs [38] which: (a)
reproduce all-electron results reasonably well, albeit at a cheaper
computational price, (b) are available for all chemical elements,
for many exchange–correlation potentials, and for many valence
electronic configurations. (Recall that Abinit has new PAW datasets
only for GGA exchange–correlation [5], and that the previous Abinit
PAW database lacks Ge, Pd, Te, and Ta PPs, which we successfully
dealt with as well.) It is important to mention that Vanderbilt, Rabe
and coworkers contrasted some of their results against VASP during
their recent PP deployment that was published on this Journal [6].

Pending the description of our algorithm, initial results are
displayed for Pt in the bulk by the thick orange line in Fig. 1, lower
subplot. The equilibrium lattice constant a0 ¼ 3:933 Å matches all-
electron results better than Abinit with FHI-TM PPs [10] and those
obtained with SIESTA using the PP input from Ref. [8]. To empha-
size the improvement of the PP despite of the basis set employed,
we show additional results with a variationally-tuned DZP basis set
– PAO Energy Shift = 0.007 Ry and PAO Split Norm = 0.16, dashed
green line – which, the reader will attest to, still remain closer to
all-electron results than those displayed in Fig. 1, upper subplot.
2.2. The FHI-TM PP [10] misses some all-electron features

Consider Ge next: other known Troullier–Martins PPs do not
close the electronic gap, thus failing to reproduce all-electron
results. Indeed, all-electron band structures render Ge metallic
and this behavior is reproduced by VASP too. This metallicity orig-
inates from the known underestimation of the electronic gap
within DFT. We wish to realize consistent results for Ge across dif-
ferent DFT implementations.

Not consistent with all-electron results in Fig. 2, Abinit with PPs
in Ref. [10] leads to a small gap for bulk Ge (LDA) and the PP from
Ref. [8] has a similar shortcoming. Indeed, a larger �1 eV electron
gap occurs as long as the PP in Ref. [8] is employed despite the use
of: (i) a default DZP basis set, (ii) a variationally tuned DZP basis set
with SplitNorm and EnergyShift parameters written down in Fig. 2,
and even (iii) a TZP basis set. This large gap is emphasized by the
brown vertical line with arrows in Fig. 2.

We realize a Troullier–Martins, norm-conserving PP for Ge with
a tendency towards closing this gap, in better agreement with all-
electron results (see zoom-in in Fig. 2, right, where basis set anal-
ysis has been provided as well). Once a better PP has been deter-
mined – i.e., a PP with a significant tendency of closing the
electronic gap – there is a basis set of DZP size that closes the
gap entirely too (Tables 1 and 2).

A third example concerns the Ge PBE band structure. As seen in
Fig. 3, left plot, the SIESTA dispersion with the PP in Ref. [8] and the
Abinit dispersion with FHI-TM PPs (Ref. [10]) agree with all-elec-
tron results almost perfectly. But importantly, while the zoom-in
indicates that Abinit resembles ELK all-electron data and yields a
metallic Ge, SIESTA closes the gap gradually, and the shape of the
bands around C is different from all-electron results. In contrast,
the subplot on the right of Fig. 3 shows that the SIESTA PBE Ge
dispersion with our PP input reproduces all-electron results and
a0 approaches its all-electron value too.

The results from Figs. 1–3 showcase the increased precision in
SIESTA calculations with properly crafted PP inputs. We describe
the process leading to those improved PPs next.
3. The algorithm: its origin, scope and limitations

It is good practice to benchmark SIESTA results with those
obtained with other codes. We have benchmarked against VASP
[39] in past work [40,41]. Back then, we found larger a0’s, and
flatter bands for bulk Au when compared to VASP results.

The algorithm described here originated with the goal of finding
NAO basis sets to better approach bandstructures obtained with a
plane-wave code. Though the process is not variational, our start-
ing assumption was that PPs from Ref. [8] are ‘‘good enough,’’ such
that the electronic dispersion from SIESTA and VASP could agree in
principle. But the initial conclusion was that an optimization pro-
cess that leaves PP inputs unchanged could never yield a genuine



Table 2
Optimized basis sets (a.u.). If so desired, readers can combine the PPs in Table 1 with other basis sets of their choice.

Element Basis set Yi (eV) Yo (eV) nb nk

LDA
C (6) 3.480, 2.761(2s), 3.758, 3.637(2p), 5.391(2d) 1061 1087 8 93

Al (13) 5.859, 4.513(3s), 6.809, 5.090(3p), 5.176(3d) 456 329 6 93

Si (14) 7.118, 6.130(3s), 6.517, 4.540(3p), 5.312(3d) 3248 3245 8 93

V (23) 6.804, 5.318(4s); 5.944, 4.203(3d); 4.435(4p) 3815 2868 8 93

Cr (24) 6.832, 6.332(4s); 5.551, 3.815(3d); 4.289(4p) 4471 3053 8 93

Fe (26) 8.100, 7.515, 6.632(4s); 6.001, 5.853(4p); 8.100, 5.037, 3.293 (3d) 69509 25519 10 213

Ni (28) 8.107, 6.006, 6.721(4s), 8.107, 5.042, 2.504(3d); 6.006, 5.713 (4p) 35298 34245 16 213

Cu (29) 6.622, 5.337(4s), 3.611, 2.469(3d), 4.643(3p) 1099 1004 8 93

Ge (32) 7.653, 5.861(4s), 7.494, 5.223(4p), 5.886(4d) 2875 2692 8 93

Se (34) 4.257, 3.619(4s); 5.331, 4.152(4p, polarized) 851 637 12 93

Nb (41) 6.619, 3.627(5s); 6.022, 4.292(4d); 5.711(5p) 3455 2413 8 93

Pd (46) 6.599, 6.097(5s), 4.735, 2.517(4d), 4.252(5p) 555 241 8 93

Ag (47) 6.520, 6.202(5s, polarized), 3.954, 2.553(4d) 1058 269 6 93

Sn (50) 5.275, 4.773(5s), 6.773, 5.615(5p, polarized) 2407 2615 8 93

Te (52) 5.106, 4.406(5s); 5.480, 4.507(5p); 5.464 (4d) 4043 3800 8 93

Ta (73) 6.008, 5.508(6s); 6.419, 4.260(5d); 4.008(6p) 2209 1772 8 93

W (74) 6.499, 5.181(6s); 6.311, 4.404(5d); 4.695(6p) – 3002 8 93

Pt (78) 5.837, 5.048(6s), 5.319, 4.072(5d), 4.196(6p) 1952 383 8 93

Au (79) 6.083, 5.644(6s, polarized), 4.287, 2.838(5d) 2156 493 8 93

Bi (83) 6.153, 5.190, 4.584(6s); 5.456, 4.230(6p); 6.325, 5.103(6d) 26464 25607 4 153

GGA
C (6) 4.067, 2.220(2s), 5.782, 3.641(2p), 3.395(2d) 992 1003 8 93

Al (13) 5.633, 2.542(3s), 4.762, 4.659(3p), 5.289(3d) 453 395 6 93

Si (14) 6.846, 4.925(3s), 6.676, 4.254(3p), 4.954(3d) 3202 3163 8 93

V (23) 4.632, 2.540(4s); 6.627, 3.927(3d); 4.824(4p) 3197 2438 8 93

Cr (24) 7.157, 5.157(4s); 5.555, 3.002(3d); 4.435(4p) 4402 3068 8 93

Fe (26) 8.100, 7.609, 6.715(4s); 6.001, 5.853(4p); 8.100, 5.037, 3.293(3d) 49770 24873 10 213

Ni (28) 8.107, 5.932, 6.721(4s), 8.107, 5.042, 2.504(3d); 6.006, 5.713(4p) 63151 59197 16 213

Cu (29) 5.501, 4.968(4s), 5.778, 3.996(3d), 4.431(4p) 931 776 8 93

Ge (32) 6.147, 5.009(4s), 7.392, 4.997(4p), 5.452(4d) 2688 2578 8 93

Se (34) 7.554, 4.189(4s); 5.810, 4.309(4p); 3.708(3d) 512 211 12 93

Nb (41) 6.299, 3.241(5s); 5.221, 3.133(4d); 4.861(5p) 3339 2716 8 93

Pd (46) 7.881, 3.823(5s), 7.555, 4.763(4d), 5.474(5p) 474 160 8 93

Ag (47) 5.777, 4.704(5s), 3.637, 3.137(4d), 6.514(5p) 1044 418 8 93

Sn (50) 7.275, 5.143(5s), 7.375, 4.490(5p), 4.170(5d) 2249 2121 8 93

Te (52) 4.836, 4.106(5s); 5.400, 4.697(5p); 5.877(4d) 1767 1481 8 93

Ta (73) 6.130, 3.094(6s); 6.594, 4.433(5d); 4.537(6p) 1782 1715 8 93

W (74) 4.052, 3.517(6s); 6.510, 4.342(5d); 5.459(6p) 3739 2832 8 93

Pt (78) 7.124, 5.621(6s), 4.161, 3.419(5d), 3.909(6p) 2086 249 8 93

Au (79) 6.083, 5.715(6s, polarized), 4.287, 2.838(5d) 2966 1027 8 93

Bi (83) 5.542, 5.348, 5.038(6s); 5.407, 4.562(6p); 6.601, 4.813(6d) 25967 24389 4 153
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agreement for Au. This triggered the question whether the Au PP in
Ref. [8] is ‘‘good enough’’.

To answer the question we took an unorthodox route by allow-
ing the PP input parameters to vary within the optimization cycle.
We found an immediate improvement of the dispersion and a0 for
bulk Au (the analysis for Au appears in Fig. 7): whenever a faulty
(i.e., improvable) pseudo in Ref. [8] has been identified and a suit-
able replacement PP is locked-in by our algorithm, further work on
the basis set does not change the closer agreement to all electron
band structures and lattice parameters significantly. We demon-
strate this by displaying additional band structures determined
with variational DZP basis sets for the LDA plots in Figs. 1–5, 7, 8.

With the exception of Bi – the heaviest and most challenging
element considered – we tuned LDA and GGA PPs separately. All
PPs on this Article were generated with relativistic corrections so
that they could be employed with the SOI implementation in
SIESTA [19].

SIESTA eigenvalues Es and structural parameters (a0; c, posi-
tions of basis vectors) depend on PP and basis set inputs
ðn1; . . . ; nmÞ (i.e., Es ¼ Esðn1; . . . ; nmÞ and a0 ¼ a0ðn1; . . . ; nmÞ) which
can be tuned. Despite these parameters being tuned, the electron
density is still subject to the standard DFT self-consistent cycle.
As indicated before, one pragmatic way to tune said inputs may
be to reduce the differences among eigenvalue sets on a dense
k-point mesh and band i ðESðn1; . . . ; nm; i; kÞ � EV ði; kÞ ! 0Þ while
ensuring that differences among structural parameters are small
too. Successful PP inputs outperform those from Ref. [8] regardless
of basis set used, and on systems different from those where tuning
took place.

The starting point of the process is familiar to the novice user:
We retrieve PP inputs from Ref. [8]; the basis set radii as specified
from a SIESTA run in which default DZP basis sets were generated
using said PP file; the starting DZP basis set takes default values
for all parameters specifying size and shape.

We guide the SIESTA PPs towards a better agreement of the
structural and electronic properties obtained with the VASP code
[7,24,42–44] – which in all cases studied here showed a close
resemblance to all electron results [20]. SIESTA uses numerical
atomic orbital (NAO) basis sets with a strict radial cutoff [17,34]
and core electrons are replaced by norm-conserving PPs [9]



Table 3
Lattice constants obtained with (i) Abinit and FHI-TM PPs [10], SIESTA with PPs from (ii) Ref. [8] and (iii) ours (Table 1), (iv) VASP with PAW PPs [38], ELK [20] using default inputs
and a 21� 21� 21 k-point mesh, WIEN2K [56,57], and experiment [105]. Values of c have been reported as well. Di. stands for Diamond, and Rh. for rhombohedral structures,
respectively. (Absolute percent discrepancies in parenthesis are indicated with respect to all-electron ELK values.)

Structure Abinit + Ref. [10] SIESTA + Ref. [8] & default DZP basis SIESTA + Tables 1 and 2 VASP ELK WIEN2K Expt. [105]

LDA
C (6) Di. 3.542(0.03) 3.553(0.28) 3.534(0.25) 3.543 3.536 3.57
Al (13) FCC 4.024(0.78) 3.959(0.85) 3.992(0.03) 3.993 3.983 4.05
Si (14) Di. 5.410(0.15) 5.415(0.06) 5.402(0.30) 5.418 5.407 5.43
V (23) BCC 2.887(1.80) 2.959(0.65) 2.910(1.02) 2.940 2.932 3.02
Cr (24) BCC 2.779(0.68) 2.805(0.25) 2.778(0.71) 2.798 2.88
Fe (26) BCC 2.889(4.86) 2.769(0.51) 2.749(0.22) 2.755 2.754 2.87
Ni (28) FCC 3.529(2.86) 3.535(3.03) 3.421(0.29) 3.431 3.423 3.52
Cu (29) FCC 3.609(2.12) 3.502(0.91) 3.523(0.31) 3.534 3.522 3.61
Ge (32) Di. 5.573 5.616(1.32) 5.676(0.26) 5.646(0.79) 5.691 5.625 5.66
Se (34) HCP 4.299,4.873 4.217,4.779 4.176, 5.142 4.37, 4.95
Nb (41) BCC 3.216(1.02) 3.214(1.08) 3.263(0.43) 3.249 3.250 3.30
Pd (46) FCC 3.942 3.922(1.69) 3.844(0.34) 3.840(0.44) 3.857 3.840 3.89
Ag (47) FCC 4.213 4.091(3.52) 4.014(1.57) 4.015(1.59) 3.952 4.007 4.09
Sn (50) Di. 6.457(0.12) 6.432(0.51) 6.475(0.15) 6.465 6.473 6.49
Te (52) HCP 4.363, 5.795 4.326, 5.745 4.268, 5.967 4.46, 5.92
Ta (73) BCC 3.245(1.25) 3.265(0.64) 3.245(1.25) 3.286 3.30
W (74) BCC 3.152(0.32) 3.129(1.04) 3.162 3.143 3.17
Pt (78) FCC 3.969 4.071(3.77) 3.933(0.25) 3.904(0.48) 3.923 3.909 3.92
Au (79) FCC 4.187 4.268(6.22) 4.080(1.54) 4.064(1.14) 4.018 4.047 4.08
Bi (83) Rh. 4.534 4.443 4.558 4.75

GGA
C (6) Di. 3.577(0.08) 3.584(0.28) 3.573(0.03) 3.574 3.575 3.57
Al (13) FCC 4.077(0.37) 4.027(0.86) 4.047(0.37) 4.062 4.041 4.05
Si (14) Di. 5.485(0.24) 5.466(0.11) 5.468(0.07) 5.472 5.475 5.43
V (23) BCC 2.999(0.10) 3.018(0.53) 2.980(0.73) 3.002 3.001 3.02
Cr (24) BCC 2.862(0.25) 2.897(1.47) 2.855(0.00) 2.855 2.88
Fe (26) BCC 2.918(3.07) 2.862(1.10) 2.832(0.04) 2.831 2.833 2.87
Ni (28) FCC 3.621(2.67) 3.582(1.56) 3.517(0.28) 3.527 3.518 3.52
Cu (29) FCC 3.602(0.41) 3.669(1.44) 3.628(0.30) 3.617 3.632 3.61
Ge (32) Di. 5.775 5.786(0.75) 5.818(0.21) 5.782(0.82) 5.830 5.763 5.66
Se (34) HCP 4.380, 4.963 4.493, 5.092 4.426, 5.066 4.37, 4.95
Nb (41) BCC 3.332(0.76) 3.294(0.39) 3.321(0.42) 3.307 3.312 3.30
Pd (46) FCC 4.038 4.021(2.47) 3.985(1.55) 3.946(0.56) 3.924 3.942 3.89
Ag (47) FCC 4.405 4.191(2.70) 4.089(0.20) 4.108(0.66) 4.081 4.152 4.09
Sn (50) Di. 6.664(0.44) 6.672(0.56) 6.647(0.18) 6.635 6.655 6.49
Te (52) HCP 4.486, 5.958 4.454, 5.915 4.508, 5.987 4.46, 5.92
Ta (73) BCC 3.340(0.36) 3.369(0.51) 3.306(1.37) 3.352 3.30
W (74) BCC 3.197(0.44) 3.195(0.50) 3.173(1.18) 3.211 3.191 3.17
Pt (78) FCC 4.042 4.176(3.93) 3.969(1.22) 3.973(1.12) 4.018 3.985 3.92
Au (79) FCC 4.323 4.370(4.10) 4.150(1.14) 4.174(0.57) 4.198 4.154 4.08
Bi (83) Rh. 4.659 4.518 4.640 4.75
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Fig. 2. The FHI parameterization of the Troullier–Martins norm-conserving PPs (FHI-NC-PPs) has shortcomings too: Ge is metallic within all-electron DFT, but Abinit band
structures have electronic gaps when using FHI-NC-PPs (thick blue dashed line). A 1 eV gap shows up with SIESTA too [8]; no improvement of the basis set will help close this
gap (DZP, TZP shown, gap is emphasized by a brown vertical line with arrows). Left: we create Troullier–Martins PPs for SIESTA that better reproduces all-electron band
structures and lattice parameters a0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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factorized in the Kleinman–Bylander form [45]. SIESTA PPs can
include scalar-relativistic effects and nonlinear partial-core (pe)
corrections [46]. Most NAO basis sets reported here are of
double-zeta plus polarization (DZP) size [15]. VASP is based on
partially-augmented wave (PAW) PPs [7,44] and a plane-wave
basis set [24,42,43]. Given different procedural approaches and
approximations, one does not expect exact agreement among
results obtained using these two codes. Nevertheless, the results
obtained with the ELK code [20] after the optimization cycle help
us corroborate the undeniable improvement in accuracy of the
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electronic dispersion and structural parameters arising from the
optimization process.

This algorithm helps define and/or verify sensitive inputs for
SIESTA calculations and, as featured in Figs. 1–3 already, it has
the power to assist novice and seasoned users alike.

Consider a set of m initial parameters ðnðiÞ1 ; . . . ; nðiÞm Þ that encom-
passes PPs and NAO basis set inputs. The first four parameters are
cutoff radii for the s; p; d, and f channels; i.e., they are the cutoff
radii r ¼ rc at which the logarithmic derivative of the all-electron
radial wavefunction RAE

l ðr; EÞ and the pseudo-wave function

RPP
l ðr; EÞ at energy E and angular momentum l agree for E close

enough to the all electron eigenenergy El [9]:

1
RPP

l ðr; EÞ
dRPP

l ðr; EÞ
dr

¼ 1
RAE

l ðr; EÞ
dRAE

l ðr; EÞ
dr

: ð1Þ
For example, nðiÞ1 is the (cutoff) radius (rc) for which Eq. (1) is satis-
fied for the l ¼ 0 (s-channel), nðiÞ2 is the (cutoff) radius (rc) for which
Eq. (1) is satisfied for the l ¼ 1 (p-channel), and so on. The first four
parameters produce a harder PP the smaller a given cutoff becomes.
Two additional parameters on the PP input are related to two dis-
tinct approaches to enforce core charge corrections.

The remaining parameters are cutoff radii rc for the NAO basis
set and they determine orbital localization/delocalization. A given
NAO /l;fðrÞ has zero electronic density for r > rc [33]:

/l;fðrÞ ¼ 0: ð2Þ

(We do not include soft-confining potentials nor other additional
parameters in our NAO basis set [34].) For example, a basis of stan-
dard size requires five cutoff radii, so the parameter space would
have a dimension m ¼ 5þ 5 ¼ 10. The points ðn1; . . . ; nmÞ on
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parameter space have physical bounds nmin
j 6 nj 6 nmax

j for
1 6 j 6 m. Specifically, we set the PP radii (1 6 j 6 4) to be in the
1:8 6 nj � 4:0 Bohr range, and the basis radii (6 < j 6 m) within
1.5 and 8.0 Bohr, which were deemed sensible limits based on
experience.

As extensively indicated, even though we vary both PP and basis
set parameters simultaneously, we lock a solid PP throughout the
process. The choice of the basis set is not important in comparison
because, as expected, in improving a faulty PP one reaches the most
substantial agreement among SIESTA and all-electron eigenvalues and
lattice parameters in spite of the particular basis set employed.

Our process to create PPs and basis sets is intuitive:

1. With the starting choice of inputs to be optimized described
previously, we first relax forces on bulk structures having a sin-
gle chemical species.

2. Then, we use the Simplex algorithm [47] to guide the search for
a parameter set ðN1; . . . ;NmÞ that best approximates VASP eigen-
values: the Simplex algorithm creates a sequential (systematic)
search on parameter space ðn1; . . . ; nmÞ such that a function Y
finds its smallest value; YðN1; . . . ;NmÞ 6 Yi � YðnðiÞ1 ; . . . ; nðiÞm Þ. Y
is defined below.

3. The PPs and basis sets necessarily evolve during the parameter
search. As a result, the equilibrium locations of atoms and the
lattice constant a0 must evolve as well: We obtain a new
relaxed bulk structure once optimized inputs YðN1; . . . ;NmÞ
are determined, and we report Yo ¼ YðN1; . . . ;NmÞ on such
relaxed structure.

Y is a weighted cumulative absolute discrepancy between
EV ði; kÞ and ESðn1; . . . ; nm; i; kÞ on nb (nb ¼ nl þ nu) bands around
the Fermi level EF and over a dense mesh that includes nk k-points:

Yðn1; . . . ; nmÞ ¼
Xnu

n¼nl

Xnk

k¼1

wi;kjEV ði; kÞ � ESðn1; . . . ; nm; i; kÞj: ð3Þ
Here EV and Es are VASP and SIESTA eigenvalues. The weight factor
wi;k P 0 in Eq. (3) becomes an additional control handle during
the optimization cycle. For example, in order to lock-in electron
and hole pockets for bulk Bi the weight factor was made
comparatively large for the conduction and valence bands at the L
and T k-points, where Bi electron/hole pockets are to be expected.
Nevertheless, we reset wi;k ! 1 for Yi and Yo when reporting those
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values on this Article for a quantitative and systematic measure of
the improvement on the electronic dispersion.

The algorithm works as follows: one runs VASP first to obtain an
EIGENVAL file on the equilibrium structure. For consistency, the
electronic configuration of the VASP PAW PP [38] will be identical
to the configuration of the SIESTA PP to be optimized (Table 2). This
means that the target for the SIESTA PP is to perform as well as the
PAW one with the same valence configuration (systems requiring
the promotion of core electrons into the valence – e.g., magnetic
oxides – may require PP files different from the ones here provided).
We create an input INP file for the ATM program, and another
input for the basis set which is stored on a basis.fdf file.

Upon execution, our algorithm first calls ATM to produce a
SIESTA pseudopotential (psf file) from the INP file. With the psf file
just created the algorithm calls SIESTA – which is executed in par-
allel mode – in order to generate an eigenvalue output file (EIG) on
a dense k-point mesh using the psf and basis.fdf files. The algo-
rithm records the absolute differences among the eigenvalues on
the EIG file and those stored on a VASP’s EVALUES file, over nb

bands around EF . (Care must be exercised that the k-point sets
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are consistent; this is accomplished by translating a SIESTA KP file
onto a VASP KPOINTS file beforehand.)

Based upon the Simplex algorithm for the optimization in mul-
tidimensional spaces, the code establishes a new set of input
parameters to continue to optimization cycle, and ATM and SIESTA
continue to be called until the Simplex search reaches a point of no
further improvement of the SIESTA eigenvalue sets.

The process described on this section streamlines the steps peo-
ple follow in optimizing PPs and NAO basis sets. But it turns what
tends to be a human-based, visually-driven, and non-systematic
parameter search onto a systematic, reliable, and quantitative
numerical algorithm to quickly explore a remarkably vast number
of input parameters.
3.1. Details of DFT calculations

A 400 eV energy cutoff was employed for VASP PAW [38] calcu-
lations. In SIESTA calculations, a 300 Ry cutoff was employed for
the majority of the optimization runs; exceptions were Bi, Ni,
and Fe, for which the cutoff was increased to at least 400 Ry.

Additional Abinit calculations with FHI-TM PPs [10] were per-
formed on a 15� 15� 15 k-point mesh, with a stringent cutoff
energy of 40 Ry. All-electron calculations with the ELK code were
done with standard input parameters and a 21� 21� 21 k-point
mesh. These additional calculations help identify substantial dif-
ferences among results obtained with PPs in Refs. [8,10] and help
monitoring the improvement in our results against an all-electron
reference too.
4. Results

Optimized PP input parameters can be found in Table 1. Sug-
gested basis sets can be found in Table 2. As usual within the
SIESTA methodology, the reader is free to create other basis sets
too. Values of Yi and Yo with PPs from Table 1 and basis sets from
Table 2 are displayed in Table 2; the ratio Yo=Yi quantifies the opti-
mization of the electronic dispersion. Structural information (lat-
tice constants) are presented in Table 3 but we also display
lattice constants on the figures for a quick visual assessment of
improvement.

The eigenvalues and structural parameters will necessarily
change with the use of a basis set different from the one in Table 2.
Yet – as demonstrated on LDA plots – changes on a0 and on the



a0 (A):
o

2.889 2.769 2.7552.749

a0 (A):
o

2.918 2.862 2.8312.832

-5

0

5

10

Fe LDA

Fe LDAFe LDA

Fe LDA

PP from Ref [8]
and default DZP 
basis set

ELK (AE)

VASP
This work
ELK (AE)

E−
E F (

eV
)

-5

0

5

10

Γ Η P NΓ Γ Η P NΓ

Γ Η P NΓ Γ Η P NΓ

Fe GGA

-5

0

5

10

Fe GGA

Fe GGA

Fe GGA

PP from Ref [8]
and default DZP 
basis set

ELK (AE)

VASP
This work
ELK (AE)

E−
E F (

eV
)

-5

0

5

10

Fig. 11. Spin-resolved electronic dispersion for bulk BCC Fe.

P. Rivero et al. / Computational Materials Science 98 (2015) 372–389 381
electronic dispersion (hence Yo) are small upon changes on a DZP
basis set or a basis set of larger size.

We focus the discussion on Ge, Ag, Pd, Pt, Au, Sn, Ta, W, Fe, Ni,
and Bi next.

4.1. Germanium

We have indicated that the dispersion for Ge agrees rather well
in between SIESTA and ELK. As seen in Table 3, the lattice constants
agree rather well too.

The important point here concerns the shape of the electron
bands around EF – zoom-in in Fig. 2. VASP displays a linear crossing
not seen on the all-electron results. Given that we optimized the PP
against VASP, the dispersion naturally reproduces VASP behavior.
Despite this observation, the PP in Table 1 does close the �1 eV
electronic gap and better reproduces all-electron results when
compared to the dispersion obtained using the PP from Ref. [8].
4.2. Metals with bulk FCC crystal structure

Metal clusters and nanowires have been extensively studied
with the SIESTA code (e.g., [48–52]). We now present results for
FCC metals Ag, Pd, Pt, Au which are spin-unpolarized in the bulk.

One common feature on the band structures of these metals
obtained with the PP from Ref. [8] concerns the lowermost band,
which lies consistently higher in energy with respect to VASP (thick
solid black lines) and ELK results (red dotted lines) in Figs. 1, 4–7.
This discrepancy is particularly acute for Pt (Figs. 1 and 6), Pd LDA
(Fig. 4), and Au (Fig. 7).

The agreement of the electronic dispersion and structural
parameters towards VASP and ELK values when employing the PP
inputs in Table 1 for Pt (Fig. 6), Pd GGA (Fig. 4), and Au (Fig. 7) must
be pointed out. Band structures, obtained with the augmented-
plane-waves method, can be found in Refs. [53–55] for Pd, Ag, Pt,
Au, and Pd.
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The PPs in Ref. [8] originate from Ref. [10], and Abinit calcula-
tions of bulk Pd, Ag, Pt, Au and Pd with PPs from [10] consistently
overestimate all-electron values for a0 (see Table 3 and Refs.
[56,57]). The Abinit team has put effort on deploying newer PAW
datasets [5] that supersede those from Ref. [10] and it makes sense
for the SIESTA community to evaluate its PP inputs and to super-
sede those that perform poorly too.

The core corrections on many PPs from Ref. [8] and ours are tiny
(e.g., V, Pd, Ag, Te, Pt, and Au), thus prompting questions whether
eggbox effects may arise. (Not shown) calculations of the atomic
separation of metallic dimers with the GGA-PBE exchange–correla-
tion potential – for mesh cutoffs as small as 50 and 100 Ry – display
a single stable minima thus discarding eggbox effects.

4.3. Metallic bulk tin

Tin (Sn) is a metal with a diamond structure and a strong spin–
orbit coupling under normal conditions. Sn films can be grown on
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semiconductor substrates [58,59]. As it turns out, the SIESTA dis-
persion for bulk Sn does not capture the metallic behavior with
the PP in Ref. [8] and a default DZP basis set. As we indicate in
the opening lines of this Article, it is crucial to make sure the ref-
erence electronic dispersion in the bulk is reproduced before
embarking on SIESTA calculations on other phases of Sn [60]. The
gaps on bulk Sn serve to emphasize a point to always check inputs
thoroughly.

4.4. Tantalum and tungsten

We discuss Ta next (Fig. 9). The lowermost band on the LDA plot
has a too narrow bandwidth when compared to Abinit, VASP, and
ELK; the upper-right subplot shows a solution.

We also provide optimized inputs for W taking as a starting PP
radii the GGA parameters in Ref. [14] (see Fig. 10). Using a standard
basis and the mentioned PP, a0 becomes 3.152 Å. The possibility of
creating reliable PPs – demonstrated for W-LDA here – increases
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dispersion for bulk FCC Ni.
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the value and usefulness of the present work. The LDA PP for W
could be useful for studies of the transition metal dichalcogenide
WSe2 (See Fig. 15).
4.5. Iron and nickel

As it turns out, our PPs for Fe (Fig. 11) do not differ substantially
from those in Ref. [61] after the optimization cycle, beyond some
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differences on the f-channel for the LDA case, and on the core
corrections determined from our optimization process for both
LDA and GGA PPs (see Table 1 and Ref. [61]). The lattice parameter
for Fe in Table 3 deviates from the VASP value by no more than 1%
[38], and it is close to the ELK value too. We find magnetic
moments l ¼ 2:01ð1:99Þ Bohr magnetons (lB) for Fe LDA, and
l ¼ 2:32ð2:19Þ lB in our SIESTA (VASP) calculations (lB is the Bohr
magneton). The reader must note the use of larger basis sets in
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Table 2 for magnetic elements in order to increase the variational
freedom.

The problem spotted for the up-channel of iron remains for
nickel (Fig. 12): the two bands below EF appear lower in energy
than they ought to be, and this will lead to inaccurate magnetic
moments as well. Using the PP from Table 1 and the basis from
Table 2, the magnetic moments are 0.51/0.58 lB for LDA and
0.51/0.67 lB for PBE with VASP/SIESTA.
4.6. Bismuth

Bulk Bi is a group-V semimetal with a rhombohedral A7 struc-
ture at ambient conditions. The SOI leads to a negative indirect
band gap of about 40 meV in between the high-symmetry L- and
T-points, creating electron and hole pockets [62–66]. Though this
process has been the most demanding of all, our algorithm guides
us towards a Bi PP for SIESTA that reproduces these pockets. The
structures are relaxed without explicit inclusion of the SOI, which
was turned on to obtain the electronic dispersion. In order to bring
to light the effect of the PP on the electronic dispersion we plot the
Bi bandstructures in Fig. 13 using both Ref. [8] and ours (Table 1)
with identical NAO basis sets on display in Table 2. This new Bi
PP may be useful in quantum transport calculations for which a
faithful description of the dispersion around EF is important [67].

5. Transferability tests

We have demonstrated that the electronic and structural prop-
erties of specific structures can improve towards all-electron val-
ues by seeking agreement with VASP results.

Cautious readers would demand additional analysis and tests of
these PPs on other systems. We report the transferability of these
PPs on the following cases. (i) Two-dimensional materials made
with these elements. (ii) Topological insulators Bi2Se3 and Bi2Te3.
(iii) Metallic dimers.

5.1. Two-dimensional materials

SIESTA allows the characterization of two-dimensional systems
at the DFT level with relatively large surface areas. The list of two-
dimensional materials continues to grow with some well-estab-
lished members (graphene [68–74], single-layer Boron Nitride
[75], single layer transition metal dichalcogenides [76]), and some
others materials being predicted or discovered just recently (e.g.,
Refs. [77–80]). An area of interest within 2D materials concerns
the development of quantitative theory to couple the physical
and chemical properties to non-planar geometries [81–86]: the
premise is that the properties of 2D materials can be tuned by geo-
metrical deformations.

5.1.1. Graphene
We next show the band structure of graphene [73,87] in Fig. 14.

5.1.2. Transition metal dichalcogenide WSe2

There is a growing literature on transition metal dichalcoge-
nides [88–94]. Transition metal dichalcogenides can acquire non-
planar shapes such as polyhedra [95] and nanotubes [96,97]. In
addition, being layered materials, they can be exfoliated to form
single layer phases too (e.g., Ref. [98]). We compare the VASP and
SIESTA band structures for single-layer WSe2 in Fig. 15. As it has
been found before, there is a direct gap at the K-point and the
valence band becomes spin-polarized due to the SOI.

5.1.3. Silicene and germanene
We display a comparison of band structures for silicene and

germanene [99] in Figs. 16 and 17.

5.2. Bi2Se3 and Bi2Te3 in the bulk and slabs

We next compare the electronic dispersion on an unrelaxed sin-
gle-unit cell of bulk Bi2Se3. For this purpose we use the experimen-
tal lattice constant 9.841 Å and the rhombohedral angle
a ¼ 24:49�, along with experimentally-derived atomic positions
[100]. The electronic dispersion clearly matches the VASP results
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for all bands below EF (Fig. 18(a)). The agreement is arguably better
around EF too, as seen in Fig. 18(b).

Having validated our set of input parameters, we relax forces on
these bulk structures, which is significantly more time-consuming
using VASP (SOI off). The lattice parameter becomes a0 ¼ 9:651 Å
(10.016 Å) after the structural relaxation for calculations with the
LDA (GGA) XC potential (a ¼ 24:49� remained unchanged). This
presupposes a contraction with respect to experiment by 1.9% for
the LDA structure, and a (symmetric) expansion of 1.8% for the
structure obtained using the GGA exchange–correlation potential,
which makes sense due to the known underestimation/overesti-
mation of structural parameters in LDA/GGA. The thin black lines
in Fig. 18(c) tell us that a lattice compression (LDA plot) opens
the semiconducting gap further, while an isotropic elongation
(GGA plot) closes it down with respect to its initial values (subplots
Fig. 18(b) and (c)).

The calculation of the electronic dispersion for Bi2Se3 slabs is a
more stringent transferability test. We display in Fig. 19 the
electronic dispersion for slabs with three, four, and five quintuple
layers relying on inputs from Tables 1 and 2. These slabs were built
using the experimental lattice constant without additional struc-
tural relaxation. To increase the variational freedom of the p-sur-
face states we added a ‘‘floating’’ p-orbital with a 6.5 Bohr radius
to the two Se atoms facing the vacuum only, whose NAO basis
description take this additional cutoff radius in addition to those
indicated in Table 2. The addition of these two ‘‘floating’’ orbitals
at the atoms facing the vacuum extend the variational freedom
of surface states to improve the electronic dispersion [101] (more
details on the effect of these ‘‘floating’’ p-orbitals will be given
when we discuss Bi2Te3 slabs later on). The relative location of
the Dirac point in Fig. 19 differs among SIESTA and VASP, with an
apparent rigid vertical downshift of the SIESTA dispersion with
inputs from Tables 1 and 2 with respect to the VASP dispersion
(in dashed black lines). We turn to Bi2Te3 next.

The electronic dispersion for bulk Bi2Te3 in the experimental
structure (a0 ¼ 10:476; a ¼ 24:35� [102]) is displayed in Fig. 20.
The dispersion does reflect VASP almost everywhere; the improve-
ment around EF is emphasized by zoom-ins in Fig. 20(b). We next
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Table 4
Magnetic moments and dimer lengths.

VASP SIESTA + Ref. [8] SIESTA + Table 1

Pt2 2.0 lB; 2.324 Å 2.23 lB; 2.400 Å 2.25 lB; 2.422 Å
Pd2 2.0 lB; 2.484 Å 0.66 lB; 2.601 Å 1.83 lB; 2.460 Å
Au2 0.14 lB; 2.525 Å 0.00 lB; 2.804 Å 0.00 lB; 2.604 Å
Fe2 6.00 lB; 1.983 Å 6.00 lB; 2.426 Å 6.00 lB; 2.016 Å
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relax the bulk atomistic structures and the cell parameters become
a0 ¼ 10:184 Å, a ¼ 24:53� (a0 ¼ 10:664 Å, a ¼ 23:80�) for calcula-
tions employing the LDA (GGA) exchange–correlation potential.

For Bi2Te3 slabs (Fig. 21) the crossing of linear bands occurs
at energies within the bulk gap [103,104]. The dispersion obtained
with SIESTA reproduces the VASP results; perhaps one discrepancy
in Fig. 21 among bands from VASP and SIESTA with our optimized
inputs occurs around the C-point at the highest energies on that
figure.

5.3. Dimers

A stringent test of transferability consists in taking the PPs from
the bulk and contrasting lengths and magnetic moments in dimers.
As reported in Table 4, our PPs agree with previously reported
results [106,107]. All calculations were carried out using a TZP
basis set, and with the GGA exchange–correlation functional. As
indicated prior, dimer calculations were used to discard eggbox
effects as well.

Put together, all the test on this section prove proper transfer-
ability of the PPs in Table 1.

6. Additional results

6.1. A new phase for stanene

Stanene is a single layer of tin with tunable electronic properties
by chemical functionalization [60]. From a fundamental perspec-
tive, ‘‘low-buckled’’ (LB) stanene realizes a single-layer two-dimen-
sional topological insulator with remarkable consequences from
geometrical and topological considerations [108]. The electronic
properties of ‘‘LB’’ stanene with LDA and GGA Sn PPs and the
spin–orbit interaction turned on are shown in Fig. 22.

The phase recently introduced [60] resembles ‘‘low-buckled’’
(LB) silicene and germanene [99]. But unlike silicene and german-
ene, stanene does have a stable ‘‘high-buckled’’ (HB) phase, as seen by
the phonon dispersion in Fig. 22 (lower-left plot). This new phase is
metallic. See Ref. [109] for more details. We expect the SIESTA
community to harness the validated PPs and basis sets on this
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manuscript with the expectation that many other relevant results
will be found.
7. Time and memory gains

The SIESTA Hamiltonian is sparse, which leads to drastic execu-
tion time savings in slab and molecular configurations given that
the vacuum does not have to be filled with plane waves, as clearly
illustrated in Table 5 for Bi2Se3. We employed a 350 Ry cutoff for
Table 5
Comparative execution times and memory usage for Bi2Se3 runs. Memory is given in
Gb. Time is given in iterations per minute, and the number of cores employed are
given in parenthesis. The word Qlayer stands for ‘‘quintuple layers.’’

System k-Points Precision Mem. Time

VASP
Bulk 9� 9� 9 Medium 0.55 1.08 (16)
Bulk 9� 9� 9 Accurate 0.58 3.49 (16)
Bulk 15� 15� 15 Medium 1.93 4.76 (16)
3 Qlayers 12� 12� 1 Accurate 1.48 7.73 (48)
4 Qlayers 12� 12� 1 Accurate 1.74 11.70 (48)

SIESTA
Bulk 9� 9� 9 – 1.51 0.36 (8)
Bulk 15� 15� 15 – 1.56 1.39 (16)
3 Qlayers 12� 12� 1 – 1.49 0.85 (16)
4 Qlayers 12� 12� 1 – 1.67 1.32 (16)
SIESTA calculations, and precision flags Medium and High on the
VASP code. SIESTA runs proceed sequentially on k-points, as
reflected on the almost identical memory usage regardless of the
number of k-points employed. The slabs had a 16 Å vacuum along
the vertical direction.

Regardless of calculation reported, we observe in Table 5 speed-
ups ranging from 3� (Bulk, 9� 9� 9, Medium precision) to 20�
(Bulk, 9� 9� 9, high precision) per core.

8. Conclusions

So far there is no known procedure to optimize SIESTA PPs in the
literature. As a result, the optimization procedures (when they are
carried out) become extremely time-consuming and prone to deli-
ver a non-optimized set of inputs that may lead to errors. This is a
de facto barrier for a more widely use of the SIESTA methodology.
This Article represents a comprehensive and validated database
of PPs for SIESTA DFT calculations. A thorough analysis has been
provided to highlight the virtues of the approach and its useful-
ness, as follows:

1. Gold, palladium, and platinum are three of the most used met-
als to make contacts to nanoscale devices: as it turns out, the
PPs in Ref. [8] do not reproduce lower features of the electronic
dispersion properly. Sn LDA appeared as an insulator, when it
clearly is a metal. The problem is remediated here.
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2. Some PPs are not available on Ref. [8], and a case example is W.
Here we create the PP and basis set for W. We validate the
pseudo and basis with a transferability test for the relevant
transition metal dichalcogenide WSe2.

3. The PP for Bismuth available on Ref. [8] does not produce the
electron–hole pockets for Bi. We remediated this problem here.

4. We present a new phase for stanene. These results become pos-
sible once valid and trusted PPs are available.

5. This Article highlights the use of spin–orbit-interaction within
the SIESTA code as well.

Extensive transferability tests guarantee the usefulness of these
pseudopotentials in other chemical environments. The algorithm
can be applied to arbitrary elements and compounds, thus provid-
ing a viable framework and quantitative guidelines for the optimi-
zation of pseudopotentials and basis sets in SIESTA-based
calculations. The extensive list of inputs aids the reader for imme-
diate studies of a large number of novel materials of undoubted
present-day relevance.
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