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Abstract 

The unzipping of temperature-induced multi-walled carbon nanotubes (MWCNTs) to 

yield graphene nanoribbons (GNRs) has been studied. These carbon nanomaterials 

consisting of MWCNTs and unzipped MWCNTs have been synthesized, thoroughly 

characterized, and subsequently evaluated for electrochemical sensing. Three 

temperatures (55, 65 and 75 ºC) yielding three carbon nanomaterial termed as GNR-55, 

GNR-65 and GNR-75, respectively, were carefully studied. Interestingly, GNR-65 

became the most suitable material for the electrochemical sensing of a wide range of 

model analytes displaying the best electrochemical response with independence of the 

analysed molecule. This electrochemical behaviour seems to be associated to the progress 

of the unzipping reaction that influences the balance between the Csp2/Csp3 ratio, the 

graphitic fraction and the type of functional groups introduced. These results revealed the 

importance of the temperature in the synthesis process, for tailoring carbon nanomaterials 

which could be used in a particular molecular detection application opening new 

opportunities for electrochemical sensing applications. 
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1. Introduction 

An exciting set of emerging nanomaterials with unusual nanoscopic structure-dependent 

properties has been largely developed over the last decades. Among them, low-

dimensional carbon allotropes, are the most widely investigated nanomaterials presenting 

promising applications in different fields [1-4]. Carbon materials offer a tremendous 

versatility, providing tailored electrochemistry for target applications [5]. This versatility 

is based on the selection of a target carbon nanomaterial, controlling its synthesis, 

functionalization and the chemistry behind its electrochemical behaviour, [6-8] which is 

going to determine the final electrochemical performance. Two relevant examples of 

carbon nanomaterials are carbon nanotubes (CNTs) and graphene oxide nanoribbons 

(GONRs). CNTs are nanomaterials with excellent geometrical, mechanical, electronic 

and chemical properties, which offer favourable features derived from the associated 

electron transfer enhancement and their strong adsorption capacity [9,10]. Graphene, on 

the other hand, is an atomically thin sheet of sp2 bonded carbon atoms forming a two-

dimensional (2-D) honeycomb lattice. This structure provides, this material, its 

extraordinary properties such as high surface area, theoretically 2630 m2/g for single-

layer,[11] and double than single-walled CNTs and high electrical and thermal 

conductivities, among others [12,13]. The chemically modified graphene materials 

employed for analytical electrochemistry include either graphene oxide or reduced 

graphene oxide when the carbon source is graphite, and GONRs when carbon nanotubes 

are unzipped [14-16]. 

GONRs are unzipped multi-walled carbon nanotubes (MWCNTs). Among the different 

routes used for synthesizing GONRs [17,18], the chemical oxidation of the CNTs [17] 

has been highly used in electrochemistry generating functionalities and defects in the 

GONRs. [8] GONRs present the inherent properties of graphene such as high surface area 

and high electrical conductivity plus the extreme reactivity due to the existence of defects 

in the open-ended graphene sheets [19-21]. 

The synergistic effects of the MWCNT and the GONR result in an improved 

electrochemistry, as shown in the detection of ascorbic acid, uric acid and dopamine [22], 

p-dihydroxybenzene [23], polycyclic aromatic amines [24] or in biosensing [25]. 

However, the roadblock in the preparation of these materials is the control of the reaction 

conditions. The oxidation of carbon materials is extremely difficult to control. While the 



temperature has to be high enough to promote the unzipping of the MWCNTs, the 

overoxidation has to be avoided. The balance between temperature and oxidation time 

seems to be critical to obtain electrochemically active hybrid nanomaterials [21]. 

In a previous work, we have reported the influence of the reaction time on the MWCNT 

unzipping at a fix temperature [21]. The reported results indicated that the reaction time 

had a huge influence in the oxidation, unzipping degree, structural characteristics and 

electrochemical behaviour. In that study, the sample obtained at 55ºC and the lowest 

reaction time showed the highest heterogeneous charge transfer constant and sensitivity 

towards H2O2 oxidation of all samples, as well as better electrochemical performance than 

the chemically and electrochemically reduced samples. The necessity of the carbon and 

electrochemistry communities to look for tailored nanomaterial for specific 

electrochemical applications, make us explore the temperature influence surrounding 

55ºC, the temperature previously used, and establish the particular structural 

characteristics that render this hybrid material more electrochemically active.  

Herein, we have explored the inherent possibilities offered by the chemical synthesis of 

the GONRs from the opening of MWCNTs. Our hypothesis is that, by controlling the 

chemistry involved in the synthesis process, we could improve its electrochemical 

performance and suggest advanced materials for electrochemical sensing. Thus, we 

propose new tools for electrochemical sensing, over the control of the opening and 

oxidation of MWCNTs at different temperatures. 



2. Experimental part 

2.1. Reagents and standards 

Sodium dihydrogen phosphate (141965) and disodium hydrogen phosphate (141679) to 

prepare a phosphate buffered solution (PBS), and potassium hexacyanoferrate (III) 

(131503) were purchased from Panreac (Badalona, Spain). Potassium chloride 

(PO01991000) was purchased from Scharlau (Barcelona, Spain). Potassium 

hexacyanoferrate (II) (P3289), hexaammineruthenium (III) chloride (262005) and 

hexaammineruthenium (II) chloride (303690) were purchased from Sigma Aldrich (St. 

Louis, MO, USA). 

Dopamine (DP) (H60255), uric acid (UA) (U2625), catechol (CT) (C9510), resorcinol 

(RS) (307521), hydroxytyrosol (HT) (H4291), L-tyrosine (TYR) (93829) and MWCNTs 

(406074) were purchased from Sigma Aldrich (St. Louis, MO, USA) and tyrosol (TYL) 

(79058) from Fluka Chemika (Buchs, UK). 

All standards solutions were daily prepared in 0.05 mM PBS pH 7.40 with ultrapure water 

(Millipore, Bedford, MA, USA), and protected from light. 

2.2. Apparatus and measurements 

All electrochemical and impedance measurements were performed, at room temperature, 

on an electrochemical station PGSTAT-204 (Autolab, Utrecht, Holland) using a 

conventional three-electrode system comprising of a platinum wire as an auxiliary 

electrode, a silver/silver chloride (Ag/AgCl), 3 M KCl as a reference electrode (CH 

Instrument, China), and a glassy carbon electrode (GCE) 3.0 mm in diameter (BAS 

Instrumental, Warwickshire, UK) as the working electrode. 

Elemental analysis was performed in a ThermoFlash1112 analyzer. For the determination 

of carbon, hydrogen, nitrogen, and sulfur, the sample was treated at 950 °C in an O2 flow 

and in the presence of V2O5. The combustion gas products pass through a CuO oxidant 

bed at 950 °C, which transforms them in to NOx, CO2, H2O, and SO2. Subsequently, the 

gases pass through a copper reducing bed at 500 °C, which converts NOx into N2. The 

resulting gases were separated in a polar chromatographic column, and quantified by gas 

chromatography using a thermal conductivity detector calibrated with sulfanilamide. For 

the direct oxygen determination, the pyrolysis of the materials was carried out at 1080 



°C. The evolved carbon gases were reduced to CO in a carbon black bed, water moisture 

was trapped in Mg(ClO4)2, and the other pyrolysis gases were separated in a polar 

chromatographic column. 

X-ray diffraction (XRD) was carried out in a Bruker AXS D8 Advance diffractometer 

using CuKα radiation. The angular range (2θ) for the XRD measurements was in between 

3 to 40º, step size 0.05º and time/step 5 s. Fourier Transform Infrared spectroscopy (FTIR) 

measurements were carried out in a Bruker Vertex 70 spectrometer. The samples were 

prepared by mixing small amounts of the powder samples with spectroscopic-grade KBr 

and pressing to form pellets. X-ray photoelectron spectroscopy (XPS), was performed in 

an ESCAPlus Omicron spectrometer provided with a Mg anode (1253.6 eV) working at 

150 W (15 mA, 10 kV), CASA software was used for the peak deconvolution. 

Thermogravimetric analysis (TGA) were carried out in a model Q600 from TA 

Instruments.  

Micro-Raman spectroscopy was performed in a HORIBA Jobin Yvon spectrometer 

(model HR 800 UV) working with a green laser at 532 nm. Raman measurements were 

carried out with a filter 06 leading to 0.6 mW of power, hole side 500 and 1800 grating. 

For each material, 5–6 representative spectra of different sample zones were considered. 

Raman frequencies were calibrated with the Si line at 520cm-1 and with the peak of highly 

oriented pyrolytic graphite at 1582cm-1. The estimated accuracy was 1 cm-1, and the 

spectral resolution was better than 3cm-1. The Raman spectra presented correspond to the 

raw data with only the base line correction with LabSpec 5 software. 

Transmission electron microscopy was performed in JEOL-200FXII equipment using 

C/Cu 200 mesh Lacey microscopy grids. Specific surface areas were calculated by the 

Brunauer–Emmett–Teller (BET) method from the nitrogen adsorption isotherms and for 

the hydrogen adsorption isotherms from the monolayer capacity using the diameter of the 

hydrogen molecule. Samples were out-gassed at 150 ºC and 3x10-3 mm Hg. Nitrogen and 

hydrogen isotherms were measured at the liquid nitrogen temperature in a Micromeritics 

ASAP 2020 equipment. 

2.3. Synthesis of carbon hybrid nanomaterials 

Carbon hybrid nanomaterials consisting of MWCNTs and GONRs were synthesized by 

unzipping commercially available MWCNTs (Aldrich 406074) using a slightly modified 



Tour method.[17,26] MWCNTs length is in the range of 0.5 to 10 µm with outer 

diameters between 7 to 12 nm. In a typical experiment, 150 mg of arc-discharge 

MWCNTs were dispersed by ultrasonication in 150 mL of concentrated H2SO4. 

Afterwards, the dispersion was heated up to the target temperature and 750 mg of KMnO4

were added. After 15 minutes, the dispersion of the hybrid material containing MWCNTs 

and GONRs was poured onto 400 g of ice and 10 mL of H2O2 solution was added. Three 

different temperatures 55°C, 65°C and 75°C were tested. The reaction product was 

vacuum-filtered through a 3.0 μm polycarbonate membrane, dispersed in 150 mL of 

ultrapure water, flocculated with HCl, filtered through a 3.0 μm polycarbonate membrane, 

redispersed in 150 mL of ethanol, flocculated with 150 mL ether + 15 mL hexane and 

filtered through a 10.0 μm PTFE membrane. Finally, it was dried at 60°C in a vacuum 

oven for 24 h. 

2.4. Preparation of the GONR-based electrodes 

MWCNTs and GONRs samples (0.50 mg/mL were dispersed in water (except MWCNTs 

in water-NH3 3 % v/v) by bath ultrasonication during 30 min followed by tip sonication 

using a VCX130 (Sonics, Newtown, USA) for 4 min at 50% amplitude. 

Prior to drop-casting deposition, the GCE were in turn polished using 0.1 and 0.05 µm 

alumina powders and sequentially sonicated in ultrapure water and anhydrous ethanol. 

The MWCNT and GONR-modified electrodes were prepared by casting of previously 

optimized volume of 5.00 µL on the GCE surface from the GONRs or MWCNTs 

dispersions allowing drying and solvent evaporation. The volume deposited was 

optimized and some of the results are detailed Figure S5.  

2.5. Electrochemical characterization of the GONR-based electrodes 

Electrochemical characterization by cyclic voltammetry (CV) was carried out using 5 

mM Fe(CN)6 
4-/3- and Ru(NH3)6

2+/3+ in 0.1 M KCl and 0.01 M PBS. CV voltammograms 

were recorded from -0.60 V to +0.80 V at scan rate of 50 mV/s. Electrochemical 

characterization of GONR-based electrodes by Electrochemical Impedance Spectroscopy 

(EIS) was carried out using 5 mM Fe(CN)6 
4-/3- and Ru(NH3)6

2+/3+ in 0.1 M KCl and 

starting at open circuit potential (OCP) using ac signals of amplitude 5 mV peak to peak 

in the frequency range of 109 Hz to 104 Hz. Differential pulse voltammetry (DPV) was 



used for the electrochemical sensing of the target molecules with a pulse amplitude of 70 

mV, a pulse width 0.05 s, a standing time of 2 s and at scan rate of 5 mV/s.  

3. Results and discussion 

3.1. Synthesis of carbon hybrid nanomaterials 

The carbon hybrid nanomaterials were synthesized from MWCNTs. Table 1 lists the 

carbon nanomaterial terminology, the oxidation temperature conditions for yielding each 

of the materials, the oxygen and carbon content from the element analysis and the weight 

loss from thermogravimetric analysis (TGA) (see further TGA data in Figure S1 from 

room temperature to 900 °C of the carbon nanomaterials studied). 

MWCNTs as synthetic source and the produced GONRs termed as GONR-55, GONR-

65 and GONR-75 subjected to the same oxidation time of 15 minutes at different 

temperatures of 55°C, 65°C and 75°C, respectively, were carefully studied. 

Table 1. Material terminology, oxidation temperature, carbon and oxygen elemental 

analysis and weigh loss from thermogravimetric analysis (TGA) for MWCNTs and 

GONRs.  

Material T (°C) % O % C C/O Total weight loss <900°C

MWCNTs --- 0.100 99.85 --- 0.20 

GONR-55 55 25.61 65.68 3.42 33.58 

GONR-65 65 30.50 61.28 2.68 40.45 

GONR-75 75 35.09 57.85 2.20 51.07 

The oxygen content steeply increases upon oxidation during de unzipping process 

likewise, C/O atomic ratio gradually decreases and the weight loss until 900ºC increases 

as the amount of functional groups as the oxidation progresses. MWCNTs weight loss is 

only 0.20 wt.% that agrees with the low oxygen and functional groups content. TGA 

profiles  for GONR samples (Figure S1) are similar showing a sharp weight loss decrease 

until 200ºC, a change in the slope between 200 and 300ºC that is more abrupt for 

GONR75 sample and finally a gradual weight loss from 400 to 800ºC. Besides, t The 

calculation of the Brunauer–Emmett–Teller (BET) surface area indicates also suggests a 

slightly increment with the oxidation from 18.3 m2/g for the starting MWCNTs to 42.4, 



45.0 to 44.2 m2/g for GONR-55, GONR-65 and GONR-75, respectively. As expected, 

due to the smaller size of hydrogen molecule, the physical area determined by performing 

hydrogen adsorption isotherms gave higher values than those obtained from nitrogen 

isotherms; 19 m2/g for the starting MWCNTs, and 85, 110 and 76 m2/g for GONR-55, 

GONR-65 and GONR-75, respectively. Hydrogen adsorption isotherms were fitted to the 

so-called unilan equation, which was developed by Honig and Reyerson [27]. The model 

is based on an uniform distribution of adsorption energies and the specific surface area 

can be directly calculated from the monolayer capacity knowing the diameter of the 

adsorbed molecule. The hydrogen hard sphere diameter (257 pm) is assumed for the 

calculation of specific surface areas. Sample GONR-65 showed the highest physical area 

for both hydrogen and nitrogen adsorption isotherms. 

3.2. Structural characterization of GONRs 

The synthesized carbon nanomaterials were fully characterized by different techniques 

such as XRD, Raman, FTIR, XPS and TEM to establish differences according to the 

different processing temperatures. 

Figure 1A depicts the XRD diffractograms of MWCNTs and GONRs materials. 

MWCNTs profile only shows one diffraction peak at 2θ ~ 26° corresponding to highly 

crystallized graphite. As the unzipping process progress a second XRD peak 

corresponding to a few layer graphene oxide is visible at 2θ ~10°. This peak became more 

prominent by increasing the temperature processing. We have estimated the unzipped 

fraction of MWCNTs as the graphitic fraction by calculating the ratio between the area 

of the peak at 2θ ~ 26° and the addition of the peaks at around 10° and 26° [21]. This 

graphitic fraction, correspondent to the quantity of unzipped MWCNTs, is 1 for 

MWCNTs and 0.64, 0.25 and 0.15 for GONR55, GONR65 and GONR75 materials 

respectively indicating both the progress of the unzipping process upon oxidation and the 

hybrid composition in both MWCNTs and GONRs in all assayed materials. 



Figure 1. (A) XRD diffractograms and (B) Raman spectra (532 nm) of MWCNTs, 

GONR-55, GONR-65 and GONR-75 materials 

Figure 1B shows the Raman spectra of pristine and unzipped MWCNTs. These spectra 

show the two characteristic bands of the graphitic-based materials; the G-band that 

appears from the sp2-hybridized carbon vibrations mode at about 1565 cm-1, and the D-

band at about 1340 cm-1 due to structural disorder and sp3-like defects in sp2-conjugated 

carbon atoms. The changes in the intensities ratio of the D-band and G-band have been 

associated to defects and disorders in the graphitic-based materials [28, 29]. Thus, the 

IG/ID ratio was the highest for pristine MWCNTs and decreased with the oxidation of the 

materials. While there was an important decrease in IG/ID intensity ratio in the MWCNTs 

material after the unzipping at 55°C and 65°C, the reduction was lower between 65°C 

and 75°C.  

To obtain further information about the oxygenated functional groups introduced in the 

oxidative treatment, FTIR characterization was carried out (see Figure S2). The raw 

MWCNTs spectrum presented a band at 3437 cm-1 usually associated to O-H stretching 

mode hydroxyl and very weak bands at 1634, 1580, 1384 and 1045 cm-1. The band at ≈ 

1600 cm-1 reflected the skeletal vibration of C=C aromatic stretching of aromatic rings 

[30] and the others bands at ≈1580 cm-1 and in the region of 1000-1300 cm-1, were due to 

various oxygenated functional groups. As the oxidation progressed and the oxygen 

content increased, see Table S1, the materials became more hydrophilic, particularly 

materials oxidized at 65 and 75°C, increasing the water content and the bands intensity at 

≈ 3400 cm-1 and at ≈1620 cm-1, this last one assigned to O-H of adsorbed water molecules, 

particularly in materials oxidized at 65 and 75°C. Likewise, a new band at 1723 cm-1
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(C=O stretching vibration) corresponding to lactone and carboxylic groups was visible in 

oxidized materials together with the carboxylate band at 1585 cm-1. The wide bands 

centred at 1385 cm-1 corresponded to O-H stretching of phenols or tertiary alcohols [31]. 

All the materials also showed the band at 1220 cm-1 assigned to the C-O stretch of phenol 

groups [32] and the band at 1050 cm-1 corresponding to C-O stretch of primary alcohols. 

Furthermore, the C-O- bands at ≈1250 and at 890–800 cm-1 could be assigned to the 

bending and stretching vibrations of epoxy and oxirane rings [32] were more evident in 

the material oxidized at 75°C. Overall, GONR-65 and GONR-75 FTIR spectra were 

similar showing the same band profile with different intensity. However, GONR-55 

material showed an extra band at 1180 cm-1 assigned to C-O stretch of secondary alcohols, 

which was not present in the materials obtained at higher temperatures, probably due to 

the oxidation of alcohols to ketones and carboxylic acids with the progress of the 

oxidation. 

To further elucidate the main oxygen functionalities of the materials, C1s and O1s X-ray 

photoelectron spectroscopy (XPS) characterization was also performed (see Figure S3

and Table 2). The C1s XPS spectrum of MWCNTs shows a main peak centered at 284.2 

eV assigned to sp2 graphitic carbon that has been fitted with the Doniach Sunjic line-

shape to an asymmetric peak shape typical of conductive graphite [33] and other 

contribution at 291.6 eV due to plasmon loss. The partially unzipped MWCNT at 55, 65 

and 75°C show the most dominant peak in C1s spectra at ~ 284.5 eV assigned to C-C 

bonds. This band consists of two components at ~ 284.3 eV and ~ 285 eV due to sp2

graphitic carbon and Csp3, respectively. The other band at higher binding energy, 

corresponding to oxygen functionalities, has been deconvoluted in three components; i) 

alcohols/phenols at 286.3±0.3 eV, ii) keto groups at 287.6±0.3 and iii) (H) O-C=O 

carboxyl at 289.1±0.3 eV and a small contribution at 291.3 ±0.3 due to plasmon loss. 

The amount of Csp2 decreases with the oxidation degree that is in agreement with the 

decrease of the Raman IG/ID ratio and with the increase of oxygen content, progressively 

anchored to the aromatic Csp2 network. On the contrary, the total Csp3 and the C-O 

contributions increase with the oxidation degree. Important observation is the low 

intensity of the COOH contribution at ~ 289 eV for the oxidized samples indicating that 

overoxidation has been avoided, probably as a consequence of the short reaction time. It 

is worth noting that the C1s XPS spectrum of GONR-65 material shows the maximum 



contribution of alcohols and phenols and the minimum contribution of the more oxidized 

keto groups. 

XPS O1s spectra of carbon materials are typically deconvoluted in several sub-bands 

[30]. Table 2 includes the oxygen group binding energies and area percentages of 

deconvoluted XPS spectra. The O1s XPS spectra confirm the low presence of carboxylic 

groups observed in C1s XPS. Remarkably, the highest contribution of alcohol and 

phenols in sample GONR65 shown in C1s spectra was confirmed by the highest 

contribution at ~ 532.3 eV corresponding to hydroxyls and C-O in ester and anhydrides. 

Table 2. XPS data for C1s and O1s: binding energies in eV and area percentages (in 

parenthesis). 

XPS C1s 
Material graphitic sp2 Csp3 Alcohols/phenols Keto groups (H)O-C=O 

carboxyl Plasmon loss 

MWCNTs 284.2 (97.2)    --- 290.6 (2.8) 
GONR-55 284.5 (48.3) 285.1 (14.3) 286.4 (17.8) 287.1(13.0) 288.8 (4.6) 290 (2) 
GONR-65 284.5 (40.9) 285.1 (15.5) 286.7(31.6) 287.8(6.5) 288.8 (4.0) 290.7 (1.5) 
GONR-75 284.1 (35.0) 285.0 (20.2) 286.5(28.0) 287.9 (9.7) 288.8 (5.3) 290.0 (1.6) 

XPS O1s 

Material C=O carbonyl Hydroxyls, ethers and C=O in 
esters, and anhydrides 

C-O esters and 
anhydrides Carboxylic groups 

MWCNTs 531.5 (47.9)  533.2 (52.1)  
GONR-55 531.4 (12.3) 532.2 (19.7) 532.9 (64.8) 535.2 (3.2) 
GONR-65 531.4 (5.5) 532.3(37.9) 532.9 (53.8) 535.3 (2.8) 
GONR-75 531.2(7.4) 532.1(22.5) 532.8 (63.1) 534.4 (6.9) 

Figure 2 shows TEM micrographs of the GONR materials, which confirm the presence 

of hybrid materials composed of unzipped MWCNTs and GONRs. GONRs show the 

presence of MWCNTs and thin layers of exfoliated ribbons transparent to the electrons 

fully opened with wrinkles and folded edges. There were also GONRs sheets stacked 

together due to strong interlayer van der Waals interactions. MWCNTs show internal 

diameter around 4-5 nm and external of 10-16 nm and Figure 2B and 2D show sheets of 

about 150 nm and more than 1 µm wide respectively that points out to the presence of 

scrolled MWCNTs as it has been reported by Wong and Pumera [34]. 



Figure 2. TEM images of (A) MWCNTs (scale bar 100 nm) and GONRs materials: (B)

GONR-55 (scale bar 50 nm), (C) GONR-65 (scale bar 20 nm) and (D) GONR-75 (scale 

bar 0.2 µm). 

3.3. Electrochemical characterization of GONRs  

Afterwards, the carbon nanomaterials were characterized by using electrochemical 

techniques. Prior to characterize all the modified surfaces, Table S2 illustrates the 

optimization study of the volume casted on the GCE showing the variation with the 

quantity of material, in terms of volume of dispersion drop-casted on the GCE, peak 

current ratio and peak potential separation redox differential potential for the studied 

Fe(CN)6
3-/4- redox system were evaluated. This redox probe allows modifications in the 

electrochemical behavior with small variations in the material content [35]. Figure 3(A-

B) shows cyclic voltammograms (CV) of Fe(CN)6
4-/3- and Ru(NH3)6

2+/3+ redox probes for 

each nanomaterials assayed, GONRs, MWCNTs and the bare glassy carbon electrode 

(GCE) using 0.1 M KCl. All the GONRs, MWCNT and bare GCE surfaces showed 

MWCNT showed a smaller intensity currents and higher peak potential separation redox 

differential potential, the GONRs and the bare GCE showed similar intensity currents and 

close anodic and cathodic redox potentials in both redox couples been more similar in 

Ru(NH3)6
2+/3+ for being this a outer sphere redox probe.[35] Consequently, we performed 

the CVs in 0.01 M PBS. At these conditions, see Figure S4(A-B) and Table S3, the 

differences in peak current ratio and peak potential separation redox differential potentials 

were more accentuated than with 0.1 M KCl. MWCNT displayed the lowest peak current 

ratio and the highest peak potential separation redox differential potential, GONR 65 

showed the best reversibility performance with a peak current ratio, close to 1 and 

ΔE=188 mV in comparison with GCE. These differences in between the materials were 

not extremely high. 



On the other hand, electrochemical impedance spectroscopy (EIS) is a useful technique 

to investigate the surface characteristics of the modified electrodes. Figure 3(C-D) shows 

the EIS results for the three target nanomaterials (GONR-55, GONR-65, GONR-75) and 

MWCNTs and GCE as controls using Fe(CN)6
4-/3- and Ru(NH3)6

2+/3+ as electroactive 

redox probes in 0.1 M KCl. In the case of Ru(NH3)6
2+/3+, all the materials showed a high 

conductive behavior indicated by showing a linear tendency indicating diffusive control 

in all cases. As for Fe(CN)6
4-/3-, GONRs and GCE did not show big differences, only 

MWCNTs showed an important influence on the resistance to charge transfer (Rct) of the 

modified electrode (Rct (Ω)=112.61,150.0, 84.4, 80.0 and 101.3; for GCE, MWCNT, 

GONR-55, GONR-65, and GONR-75; respectively, see Table S2). It was reflected in the 

diameter of the semicircle in Nyquist plot in lower frequency region and a linear zone in 

the region of higher frequencies, indicating a diffusive control throughout the frequency 

range studied. Lower diameters imply lower Rct and the better electrical conductivity of 

the electrodic surface. However, the use of 0.01 M PBS, due to the lower ionic strength, 

allow finding differences in between the materials studied, see Figure S4(C-D) and

Table S2. The higher Rct in the EIS experiments for Fe(CN)6
4-/3 could be associated to 

the more resistant character of the nanomaterial and to the electrostatic repulsion between 

the redox probe and the oxygenated groups of the nanomaterials. Certainly, while 

MWCNTs showed the highest Rct, 1811 Ω, GONR 55 and GCE showed lower values, 

172.8 and 73.5 Ω, respectively. Furthermore, the highest resistance found for MWCNTs 

could be attributed to the lower conductivity of CNTs compared to hybrid nanomaterials 

[22]. It is reflected in a general electronic equivalent circuit (Randles and Ershler model), 

see Figure 3(C-D inset), which is very often used to model interfacial phenomena. It 

includes the ohmic resistance of the electrolyte solution, Rs, the Warburg impedance, ZW, 

resulting from the diffusion of ions from the bulk electrolyte to the electrode interface, 

the double layer capacitance, Cd, and electron transfer resistance, Rct, that exists if a redox 

probe is present in the electrolyte solution. 



Figure 3. (A) CVs of 5 mM Fe(CN)6
4-/3- and (B) 5 mM Ru(NH3)6 

3+/2+ in 0.1 M KCl. (C)

Nyquist diagram of 5 mM Fe(CN)6
4-/3- and (D) 5 mM Ru(NH3)6 

3+/2+ in 0.1 M KCl (Inset: 

equivalent electrical circuit diagrams for impedance plots). GCE, MWCNTs, GONR-

55, GONR-65 and GONR-75. 

The electrochemical sensing of GONRs was also assayed for a variety of model analytes 

(see Figure S) by. Prior to the analysis, the quantity of nanomaterial deposited on the 

GCE (Figure S6) and DPV conditions (Table S5) were optimized. 

The rich chemistry obtained during the synthesis and preparation of carbon nanomaterials 

open novel avenues for a tailored nanomaterial for specific molecule detection. To this 

end, GONRs were assayed for the electrochemical sensing, by differential pulse 

voltammetry (DPV) because of its high selectivity and sensitivity, of target couples of 

analytes with significance in health (clinical and agro-food) sector, involving a wide 

variety of chemical structures with well-know electroactivity (see Figure 4). Prior to the 

analysis, the quantity of nanomaterial deposited on the GCE (Figure S5) and DPV 

conditions (Table S4) were optimized. 
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More specifically, the detection of the couple catechol (CT) and resorcinol (RS) was 

chosen to evaluate the response in compounds with different chemical structures and 

same chemical formula (Figure 4). The simultaneous detection dopamine (DP) and uric 

acid (UA) as well as UA and tyrosine (Tyr) was carried out for their significant role as 

biomarkers in the monitoring of relevant diseases. Furthermore, simultaneous detection 

of hydroxytyrosol (HT) and tyrosol (TYL) is very important since they are quality 

markers in olive oil samples. 

In all cases, GCE showed the lowest sensitivity and the highest oxidation potentials for 

the target molecules compared with the nanomaterial-modified GCE. Furthermore, the 

intensity currents increased on the GONRs and, in particular on GONR-65 surface as 

compared to MWCNTs, the initial carbon source (see Figure 4). For the detection of the 

couple catechol (CT) and resorcinol (RS) (Figure 4A), GONR 65 and GONR 75 showed 

the highest intensity currents and, clearly the lowest potential for CT oxidation of +0.160 

V as compared to GONR 55 material, MWCNT and bare GCE. The chemistry underlying 

the shifts in oxidation potentials in the electrochemical detection of the target molecules 

may be understood as follows. The oxidation of 1,2-benzenediol (CT) occurred at lower 

oxidation potentials whereas the oxidation of 1,3-diol (RS) is less favorable due to the 

lack of conjugation, thereby preventing the formation of the benzoquinone. We 

hypothesized that the availability of more π-π interactions in GONRs facilitated the 

electrocatalysis of CT and RS in comparison with GCE and, therefore, facilitated 

oxidation of both benzenediols with the GONRs.  

Simultaneous detection of dopamine (DP) and uric acid (UA) exhibited a much better 

performance on the GONR-65. GONR-65 exhibited an enhanced analytical sensitivity 

for UA 4-times and almost 2-times higher than the GCE and the hybrid counterparts, 

respectively (Figure 4B). DP, which basic structure derived from CT, displayed similar 

behavior for GONRs in comparison with GCE. Therefore, the predominant π-π 

interactions plus hydrogen interactions between the benzenediol group and the GONRs 

surfaces appeared to be responsible for the similar responses. 

Another couple of analytes, UA and tyrosine (Tyr), was studied, being only possible on 

the hybrid nanomaterial and not on the GCE the simultaneous resolution of both 

molecules. Furthermore, GONR65 showed the highest intensity currents 4-times higher 

than the GCE, 10-times higher than the MWCNT (initial carbon source) and 2-times 



higher than the GONR 55 and GONR 75 nanomaterials (Figure 4C). The oxidation 

process of L-Tyr was more difficult due to the presence of only one hydroxyl group. For 

this reason, the similar oxidation potentials observed on all carbon materials could be 

explained in terms of weak π-π interactions between the tyrosine and the carbon materials. 

In the detection of hydroxytyrosol (HT) and tyrosol (TYL), GONR-65 and GONR-55 

exhibited the best electrochemical performance with well-defined oxidation peaks at 

lower potentials and enhanced oxidation currents (Figure 4D). It is worth to highlight the 

strong shift in the oxidation potential found for HT on these materials at +0.129 V in 

comparison with those found in the others up to +0.150 V and up to +0.316 V for 

MWCNT and GCE. In this case, the oxidation of HT occurred at lower oxidation 

potentials whereas the oxidation of TYL was less favorable due to the lack of conjugation. 

Overall, these results revealed that GONR-65 become the best material for all the studied 

analytes. This improved performance in terms of sensitivity (improved intensity currents) 

and selectivity (due to the shifts in oxidation potentials) of GONR 65, in most of the 

studied target health biomarkers, highlight the selectivity that some oxygenated 

functional groups have provided to this hybrid material. 



Figure 4. DPVs for the detection of: (A) CT 0.25 mM (peak 1) and RS 1 mM (peak 2), 

(B) DP 0.05 mM (peak 1) and UA 0.1 mM (peak 2), (C) UA 1 mM (peak 1) and Tyr 1 

mM (peak 2) and (D) HT 0.3 mM (peak 1) and TYL 0.3 mM (peak 2). Background 

signal (using the GCE), GCE, MWCNTs, GONR-55, GONR-65 and GONR-75

Experimental conditions: 0.01 M PBS (pH=7.4), pulse amplitude 70 mV and scan rate 5 

mVs-1. (Structures of all the molecules under study). 

GONR-65 also exhibited a very good performance in terms of precision with extremely 

low values of RSDs≤1% for oxidation potentials and RSDs≤2% for intensity currents (see 

Table S3). Therefore, the studies revealed that GONR-65 contains controlled oxygen 



functionality with suitable electrochemical features for an improved analytical detection 

(revealed by DPV) of a variety of chemical structures. 

In comparison with previous works using graphene nanoribbons, [18] the synthesized 

hybrid nanomaterial, GONR 65 performed in many cases lower oxidation potentials. As 

example, for CT the potential decreased to +0.160 V in case of GONR 65 from the 

oxidation potential at +0.243 V for the so called, oxidized graphene nanoribbons 

containing a 44 % of oxygen content. Furthermore, in terms of sensitivity, molecules such 

as Tyr showed higher intensity currents 2-times higher than the so-called, reduced 

graphene nanoribbons (with a 14% of oxygen content) and 4-times higher than the 

oxidized graphene nanoribbons. In addition, the materials allowed the dopamine detection 

at lower oxidation potentials than in other works [36, 37] even in presence of uric acid 

and tyrosine. 

3.4. The chemistry behind the electrochemistry

This general electrochemical behaviour of GONR-65 sample for the target molecules 

revealed by DPV seems to be associated to the balance between the Csp2/Csp3 ratio and 

the introduced functional groups. The edge-to-basal plane ratio [38] or the 

nanostructuration [39] are some of the reasons previously explored for graphene 

materials. In our case, at the light of the structural characterization, the oxygen 

functionalization seems to be also of chief importance.  

As regard to the unzipping mechanism, potassium permanganate is an unusually selective 

oxidant for longitudinal cleavage of MWCNTs [26]. The first step is the formation of 

manganate ester as the rate-determining step. Pairs of oxygen atoms from the 

permanganate anion bind and break the internal C–C bonds in the CNT, the stretching of 

the bonds involved in the first attack weakens the neighbor parallel bonds making them 

more vulnerable for the next oxygen pair attack, which takes place longitudinally along 

the CNT [40]. After initial manganate ester formation, the vicinal diols that are formed 

will eventually cleave at the carbon-carbon bond between them giving dione and further 

oxidation of ketones to carboxylic acids takes place [17]. 

Temperature conditions seem to be critical for the GONRs formation and for the samples 

structure. Higginbotham et al. [26] have reported that exfoliated and highly oxidized 

GONRs are formed when temperature is maintained above 60ºC. From this reported data 



and our XPS results, it seems feasible that 55ºC is not enough temperature for the fast 

progress of the unzipping reaction. 65ºC is, under the conditions used, the optimum 

temperature to promote the MWCNTs unzipping and to avoid the excessive oxidation to 

diones of the vicinal diols formed in the basal plane of graphene during oxidation. As it 

can be seen from Table 2 (XPS), GNR65 sample shows the highest contribution at 286.7 

eV (C1s) and at 532.3 eV (O1s) that seems to make GNR65 the most electrochemically 

active material. 

The unzipping process involves the decrease of Csp2 due to the anchoring of oxygen 

functional groups in the conductive network of graphene backbone that disrupt the sp2 

structure. In addition to the reduction of Csp2/Csp3, the graphitic fraction as calculated 

from XRD, the type of functional groups introduced and possibly their position influence 

the sensitivity and the selectivity in the electrochemical performance as revealed by DPV. 

The highest selectivity could be ascribed not only to the type of functional groups but to 

their position. Certainly, under Lerf-Klinowski model, for graphene oxides, hydroxyl and 

ethers are mainly located in the inner part of the graphene layers while COOH and C=O 

are distributed along the boundaries [28]. The presence of hydroxyl (aliphatic and 

aromatic in higher amount in GONR65 seemed to be the main chemical difference in the 

structure. A further oxidation in GONR-75, led to overoxidation to diones with 

subsequent hole generation and higher oxygen content, but diffusion and migration 

limitations due to the loss of sp2 domains connectivity that leads to worse electrochemical 

performance. 

4. Conclusion 

The controlled-chemical oxidation of MWCNTs generating GONRs opens new gates in 

the edge chemistry of carbon nanomaterials to be exploited as novel materials for 

electrochemical sensing and biosensing of target relevant molecules. GONR-65 became 

an interesting material, containing specific oxygen moieties with suitable electrochemical 

features, and exhibited the best analytical performance in the electrochemical sensing of 

molecules with different chemical structure. These combined features yielded excellent 

electrocatalytic properties due to the effects of both the π-π and hydrogen bonds 

interactions between the molecules and the GONR-65. 



These carbon nanomaterials open new opportunities for electrochemical sensing 

applications and guide the process to the production of advanced materials to be used in 

an specific molecular detection application.  
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1. Thermogravimetric analysis for MWCNTs and GNR materials 

Thermogravimetric analyses (TGA) were performed to confirm the oxidation of the GONRs 
while increasing the temperature from 55 to 75º C. MWCNTs confirmed the low content of 
functional groups. 

Figure S1. Thermogravimetric analysis (TGA) thermograms of MWCNTs, GONR-55, GONR-
65 and GONR-75 materials. 
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2. Structural characterization

2.1. IR spectroscopy

To gain further insight into the oxygenated functional groups introduced in the oxidative treatment 

IR-FTIR characterization was carried out (see Figure S2 and Table S1)

Figure S2. IR-FTIR spectra of MWCNTs, GONR-55, GONR-65 and GONR-75 samples 

Table S1. Main FTIR bands (ν, cm-1) of MWCNTs and GONRs samples 

Functional Group MWCNTs GONR-55 GONR-65 GONR-75 

Hydroxyl groups 3437 3439 3430 3429 
Carboxyl groups - 1732 1732 1730 
Adsorbed H2O 1634 - 1620 1620 
Carboxylates 1581 1576 1587 1585 

OH bend phenols or 
tertiary alcohols 1384 1385 1387 1385 

C-O stretch phenols --- 1229 1228 1227 
C-O stretch, 

secondary alcohols --- 1165 --- --- 

C-O stretch, 
primary alcohols 1045 1070 1057 1057 

Aromatic C-H out-
of-plane bend --- 833 833 833 
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2.2. X-ray photoelectron spectroscopy 

Figure S3. Deconvoluted (A) C1s and (B) O1s XPS spectra of MWCNTs, GONR-55, 

GONR-65 and GONR-75 materials. Areas of the corresponding sub-bands in Table S2 
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3. Electrochemical characterization 

The electrode surface was characterized by cyclic voltammetry. 

Figure S4. (A) CVs of 5 mM Fe(CN)6
4-/3- and (B) 5 mM Ru(NH3)6 

3+/2+ in 10 mM 

phosphate buffer. (C) Nyquist diagram of 5 mM Fe(CN)6
4-/3- and (D) 5 mM Ru(NH3)6 

3+/2+ in 10 mM phosphate buffer (Inset: equivalent electrical circuit diagrams for 

impedance plots). GCE, MWCNTs, GONR-55, GONR-65 and GONR-75.

Table S2. Charge transfer resistance (Rct) in MWCNTs and GONRs samples and versus 

the GCE (Rct) for of 5 mM Fe(CN)6
4-/3-in 0.01 M PBS and in 0.1 M KCl. 

Material Rct () inPBS Rct () in PBS Rct () in KCl 
Rct () in 

KCl 

GCE 73.5 --- 112.6 --- 

MWCNT 1811.0 1737.5 150 37.4 

GONR-55s 172.8 99.3 84.4 -28.2 

GONR-65 794.1 720.7 80.0 -32.6 
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GONR-75 524.9 451.5 101.3 11.3 

Study of volume optimization using DPV. 

Figure S5. DPVs for the detection of: (A) DP 0.05 mM (peak 1) and UA 0.1 mM (peak 2), (B)
UA 1 mM (peak 1) and Tyr 1 mM (peak 2). GCE (in black) and different casting volumes of 
GONR-65 0.8 µL (grey), 3.0 µL  (green), 5.0 µL (blue), 7.0 µL (red), 10.0 µL (purple).
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Repeatability studies of selected molecules using DPV are listed in Table S3. 

Table S3. Relative standard deviations (RSDs, %) obtained for two selected molecules DP and 
HT on the GCE, MWCNTs and GONR-65 in terms of current and potentials. 

Analytes 

Repeatability, RSD (%) (n=10) 
GCE MWCNTs GONR-65 

Current Potential Current Potential Current Potential 
DP 7.1 2.0 3.1 3.1 2.0 0.9 
HT 3.3 2.1 1.9 1.2 1.0 0.6 

Optimization of DPV features is detailed in Table S4. 

Table S4. Study of pulse amplitude in the DPV, percentage shift versus 70 mV pulse 

amplitude for uric acid (UA) and tyrosine (Tyr) detection. 

Pulse amplitude, mV (%) I / I70 mV (UA) (%) I / I 70 mV  (Tyr)

100 100 100 
70 100 100 
50 60 50 
20 24 19 
10 11 7 
5 4 3 

Both modulation time in the range from 5 ms and 100 ms and pulse amplitude in the range 

from 5 to 70 mV were studied. When the pulse amplitude was increased, the sensitivity 

was enhanced reaching a constant value after 70 mV. However, the modulation time did 

not show differences at that optimized pulse amplitude value. 


