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Abstract: Application of conducting polymers with additional functional groups for a solid 

contact formation and photocurable membranes as sensitive elements of solid-state 

chemical sensors is discussed. Problems associated with application of UV-curable 

polymers for sensors are analyzed. A method of sensor fabrication using copolymerized 

conductive layer and sensitive membrane is presented and the proof of concept is 

confirmed by two examples of solid-contact electrodes for Ca ions and pH. 
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1. Introduction 

The history of solid-state chemical sensors is a history of attempts to find materials and 

technological process that permit to obtain stable signal on miniaturized devices fabricated by mass 

production technologies. Here we may speak not only about a very large group of ion-selective 

electrodes (ISE) with inner solid contact and coated wire electrodes (CWE) but also sensors based on 

field effect transducers, like ion- selective field effect transistors (ISFETs), light addressable 

potentiometric sensors (LAPS) and electrolyte-insulator-semiconductor (EIS) capacitances. In the case 
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of electrodes the major challenge was to obtain a fast and thermodynamically reversible ion to electron 

transduction system that may fix the potential at the solid-contact/ membrane interface [1]. For field-effect 

sensors it was necessary to find materials with very strong adhesion to fix an ion-selective membrane 

on a solid substrate by methods that are compatible with microelectronic technology [2]. 

Most of the solid-type ion sensors based on field effect devices with a silicon oxide or silicon nitride 

upper layer have used PVC as a membrane polymer matrix. One of the primary causes of failure in 

these sensors is penetration of water through the membrane. Due to the water uptake, thin aqueous layers 

or pools of water can be formed at the membrane/electrode interface in potentiometric solid-contact ion 

sensors resulting in potential instability and poor membrane adhesion to the solid contact [3]. 

Today we can say that using conducting polymers as intermediate transduction layer for solid-state 

electrodes construction is one of the best solutions [4,5]. On the other hand, application of 

photocurable polymers as ion-selective membrane matrices for semiconductor based sensors, like 

ISFETs, ChemFETs and LAPS, as well as for their encapsulation is also very successful. So, may be it 

is possible to resolve the contact problems of solid state ISE by combine these two classes of materials? 

Can we use for solid contact conducting polymers with functional groups able to be co-polymerized with 

photocurable membranes as sensitive elements? This assumption is confirmed by the latest 

publications in the field [6–8]. The first attempt to obtain a solid-state ion sensor with acrylate-based 

membrane on a gold electrode modified with a monolayer combining both the ferrocene- and  

acrylate- terminated thiols to enhance the adhesion and prevent water layer formation was reported in [9], 

but this approach did not undergo further evolution. 

It may be possible to chemically bind the conducting polymer layer and acrylate based polymer 

membrane may be possible by modifying the redox polymer with acrylate groups that participate in 

photopolymerisation reaction. Introduction of photopatterning groups in polyanilines (PANIs) [8] or 

polythiophenes [7] has led to improvements in surface hydrophilicity, biocompatibility, and adhesion 

properties of these materials. Improvements of this type allow the polymer films to be used in many 

potential applications by combining the appropriate functional groups with a conjugated polymer 

backbone [6]. 

Photocurable polymers as an alternative material for membrane matrices for ISFETs, solid contact 

electrode (SCE) and coated wire electrode were introduced by different research groups in the middle 

of 1980s and early 1990s. Bibliographic data on application of photocurable polymers for chemical 

and ion sensor development are summarized in [10]. The use of photocured polymeric systems permits 

to employ a standard photolithographic process, which reduces significantly the time of membrane 

deposition and manual work required for it, items that are important for sensor mass production. At the 

same time conducting polymers with photopolymerizable groups applied by using of thin- and thick-films 

microfabrication technologies can result in cheap, mass-produced sensor arrays that can be integrated 

with control electronic in a straightforward way [11]. 

Another positive feature of these two classes of organic polymers is the opportunity to obtain an 

ISE membrane chemically attached to solid support and without leaching of its main components 

(ionophore, liphophilic additives, and plasticizer). This approach was applied some years ago by the 

group of D. Reinhoudt for modified polysiloxanes membranes [12,13] and by D.Harrison and  

co-workers [14] for PVC. However, the synthesis of these copolymerized compounds seems to require 

much effort. 
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In consideration of proposed idea the aim of this mini-review is to discuss some problems that may 

arise in the case of photocurable membranes application and present the proof of concept and some 

examples of solid-contact electrodes with copolymerized conductive layer and sensitive membrane. 

2. Possible Problems of Photocurable Polymers as Membrane Matrices 

2.1. Use of Porphyrins and Plasticizers with Nitro(–NO2) Functional Groups 

One of the problems related to photocurable polymer membrane matrices is the impossibility of 

using some plasticizers or ionophores especially in the case of radical initiation of polymerisation 

because they can inhibit this type of reaction. No polymerisation occurs when 2-nitrophenyl octyl ether 

(NPOE) or 4-nitrophenyl phenyl ether (NPPE), two most common plasticizer for bivalent ions like Ca 

or Mg, are used in membrane compositions [15]. In this case they should be replaced by some other 

plasticizer, like octyl [2-(trifluoromethyl)phenyl] ether. 

The presence of porphyrines and their derivatives, well known as a photosensitizers due to efficient 

photoinduced reactions with molecular oxygen [16], acting as ionophores in many anion selective 

membrane compositions, completely inhibits the photopolymerisation process too. This problem may be 

partly resolved by changing the type of photopolymerisation mechanism from radical to cationic [17,18] 

that is less susceptible to inhibition by these substances. As a photoinitiator of cationic polymerisation 

process a mixture of quinone derivatives and phenyliodonium salt is used. It must be taken into 

consideration that introduction of photoinitiators may affect analytical parameters of sensors. It is well 

known that a photoinitiator is not totally consumed in the reaction [19] and though its concentration in 

the membranes is not very high it is comparable with the concentration of an ionophore and lipophilic 

additives (1%–2% w/w). This may result in that the products of fragmentation and unreacted 

substances alter ion-selective properties of the resulting membranes. Usually the selectivity of 

membranes that were cured via cationic means is not very high [10]. 

2.2. Photobleaching of Membrane Components 

Another problem that may arise in the case of photocurable polymer membranes is a 

photobleaching of the membrane components upon extended UV exposure during the polymerization 

processes. It is known that the stability of tetraphenylborate ion is limited, especially in the presence of 

acids and oxidizing agents and under UV illumination [20]. Decomposition of tetraphenylborate 

derivatives takes place with the consumption of a proton, giving as a result neutral products. This 

means that the final concentration of tetrakis(p-chlorophenyl)borate ion, that is normally used in ion 

selective membrane formulations in order to reduce the electrical resistance of the membrane and to 

obtain better selectivity, may depend on UV exposure time. The extent of interference of highly 

lipophilic anions (e.g., CNS−) in solution may be used as an indicator for the K-TpClPB content in the 

membrane. In Figure 1 calibration curves of sensors with membranes containing plasticizer and  

K-TpClPB and polymerized with different exposure times are presented along with the calibration curve 

for membrane without lipophilic anion [2]. From this figure it is clear that with the increase of the 

exposure time the cationic response of the membrane switches to anionic at much lower concentrations 

of KCNS due to the lower concentration of K-TpClPB. 
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Figure 1. Calibration curves for polyurethane membranes containing K-TpClPB and  

a plasticizer in solutions of highly lipophilic anion (KCNS). The membranes differ in the 

UV exposure time used for polymerization: 1—2 min of irradiation; 2—10 min; 3—20 min; 

4—membrane without K-TpClPB and with 2 min of irradiation. Adapted from [2]. 

It must be taken into account that not only lipophilic additives but ionophore as well may be 

affected by photochemical reactions occurring during UV irradiation of the membrane matrix. It was 

shown in the case of pH selective photocurable membrane [21] that the optimal ionophore/lipophilic 

salt ratio differs significantly from that theoretically recommended for this type of ion-selective 

membranes [22]. In this work tertiary amines (NR3), where R is CH3(CH2)11, were used as H+-selective 

ionophores. These compounds are also widely employed as donors of protons in reactions of 

photopolymerization. At the same time in the membrane are present p-tetrachlorophenylborate anions  

(p-ClPh)4B−, which readily undergo photolysis, and the photoinitiator of radical polymerization  

(2,2'-dymetoxyphenylacetophenone). As a result, the process of irradiation leads to the formation of a 

radical pair between R3N+∙ and ∙B−(p-ClPh)4. This initially formed radical pair has a very short lifetime 

but may participate in different reactions of recombination, cleavage and propagation. As a 

consequence of these reactions real concentrations of the ionophore and lipophilic salt, determining the 

selectivity of the membrane, are different from the original, introduced into the membrane 

composition. 

2.3. Copolymerisable Plasticizers 

One of the advantages of photocurable membranes is the facility to obtain ‘mixed’ polymers by 

introducing different acrylated monomers that can be co polymerised to form membrane polymer 

matrix with required properties. Attempts to prevent the leaching of ion active components from thin  

(30–100 µm) membranes began with the synthesis of a so called copolymerizable plasticizers [14]. 

More lately ‘plasticizer-free’ [23] or ‘self-plasticizing’ [24] ion-selective membranes have been 

introduced. This type of ‘self-plasticizing’ polymer matrices, that were found to be compatible with 

most of commercially available ionophores, can be produced by free-radical polymerization, both 
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cationic and UV-induced, using different types of acrylate- or methacrylate-based oligomers. With 

these polymers sensors for potassium, sodium, chloride, calcium and pH were fabricated entirely by 

photocure procedures [25–27]. 

It must be noted that the absence of a free plasticizer within the membrane matrix may cause two 

problems. Firstly, the solubility of an ionophore and lipophilic additives in the membrane mixture will 

be decreased, which may seriously affect the sensor parameters like sensitivity, selectivity and limit of 

detection. Secondly, this will affect the mobility of charged species within the membrane phase which 

will result in very high membrane impedance (50–200 MΩ) [28,29]. 

3. Solid Contact Electrodes Based on Copolymerized Conducting Polymer and  

Photocurable Membranes 

As we mentioned earlier in the text, introducing of photopatterning groups into conductive polymer 

backbone may permit to copolymerize this material with the ion-selective membrane matrix during  

UV-polymerization step. Here we presented the proof of concept of a solid contact sensor based on 

conducting polymers with polymerizable functional groups as a solid contact and photocurable 

membranes as a sensitive element. Two examples of solid contact electrodes presented below used  

a monomer N-phenylethylenediamine methacrylamide (NPEDMA) to form a conductive layer. 

Resulting polymer contains both an aniline and a methacrylamide group, capable of polymerisation by 

free radical methods. The monomer may also be polymerised electrochemically onto a suitable 

electrode, giving a conductive polymer surface which can be modified on the next step by any of 

photochemical reactions of methacrylate moieties. Another possibility of polymerization is via 

chemical oxidative method with ammonium persulfate. 

As a membrane matrices we have used Ca-selective photocurable membrane with mixture of free 

(dioctyl sebacate, DOS) and copolymerisable (hexafluorobutyl acrylate, HFBuA) plasticizers and  

pH- selective membrane with copolymerizable plasticizer di-(n-hexyl)-itaconate (DHI), presented  

earlier [21,29]. 

More detailed information on the electrode construction and characterisation will be presented in a 

forthcoming publication [30]. Briefly, electrodeposition was performed with a 0.05 M water solution 

of monomer NPEDMA and 0.1 M 4-dodecylbenzenesulfonic acid (DBS), which was used as 

counterion. Thin film of the polymer (24 µm, as determined by confocal microscopy) was synthesized 

using a potentio-dynamic method by cycling the potential from −0.5 V to 0.8 V versus Pt during 100 

repeated cycles. We used a three-electrode cell configuration containing 24 mL of electrolyte solution, 

with a Pt foil as counter electrode and Pt wire as quasi-reference electrode. Chemical oxidative method 

was used as presented in [8]. In both cases thin film gold electrodes deposited by an e-beam on a 

Cyclic Olefin Copolymer (COP) substrate were used for sensor construction. Obtained polyNPEDMA 

films were characterized by cyclic voltammetry, electrochemical impedance, Fourier transform 

infrared attenuated total reflection (FTIR-ATR) analysis and contact angle measurements with results 

to be presented in [30]. 

Schematically electrode design is presented in Figure 2. Calibration curves for Ca-selective 

electrode and pH-electrodes are given in Figures 3 and 4, respectively. 
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In the case of Ca sensitive membrane calibrations curves were obtained in solutions with 0.1 M 

NaCl and 0.1 M KCl as a background. For pH membrane we used 0.05 M TRIS and changed the pH 

values by 6 M HCl. A double-junction Ag/AgCl reference electrode (Orion 90-02) was used as an 

external electrode with a 0.1 M solution of lithium acetate as a salt bridge in both cases. The standard 

electrode potentials, E0, of three identical electrodes were 329.1 ± 1.9 mV and 368.5 ± 2.1 mV, 

respectively for calcium and pH sensors, which may be regarded as a good reproducibility among those 

reported for solid contact electrodes with conducting polymers [31]. From the insert in Figure 3 we can 

see that the response time and potential stability of the solid contact sensor are the same order of 

magnitude as for the last examples of all-solid-state electrochemical platform based on conductive 

polymers, submitted recently [32]. 
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Figure 2. Solid contact electrode design and cross-section of the electrode area. 1—COP 

substrate; 2—thin film gold layer; 3—poly NPEDMA conductive polymer layer;  

4—polyurethane diacrylate based ion selective membrane; 5—encapsulating layer based  

on an acrylic pressure sensitive adhesive (PSA). 

 

Figure 3. Calibration curves for Ca-selective electrodes (mean values for 3 sensors) in 

solutions with 0.1 M NaCl and 0.1 M KCl as a background. Insert: Response time of the 

electrodes in pure solutions of CaCl2. 
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Figure 4. Calibration curve for pH electrode (mean of the values for 3 sensors). 

To test for a possible presence of an aqueous layer between the polymer membrane and the solid 

contact we used a quality control criteria introduced by E. Pretsch and coworkers [33] in which the 

potential drifts of studied electrodes in solutions of primary and interfering ions were recorded during 

more than 24 h. Results of this potentiometric aqueous layer test are presented in Figure 5 showing 

quick recovery of the sensor potential. This manifests that no aqueous layer is formed at the membrane 

interface with the contact layer. 

 

Figure 5. Aqueous layer test in 0.1 M primary ion (Ca2+) and interfering ion (Na+) solutions. 

4. Conclusions 

In this review, basing on our previous experience in the development of ion selective membranes 

for microelectronic devices, some problems that may arise in the case of application of photocurable 

membranes are discussed. Along with this, a new method of a solid contact ion sensor fabrication is 
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presented based on a copolymerization between the layer of conductive polymer with polymerizable 

functional groups and photocurable ion selective membrane as a sensitive element. The concept has 

been proofed by preliminary experimental results obtained on thus fabricated pH- and Ca2+- ion 

sensors. Taking to account the growing interest in the development of cheap, mass-produced sensors 

and sensors arrays combined together with microactuators (valve, pumps, channels, etc.) and micro 

flow cells, the concept presented here may be useful for construction of analytical systems of the next 

generation, like micro total analysis system (μ-TAS) or lab-on-a-chip devices. 
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