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Abstract

Computer simulation has become a powerful technique for assisting scientists in
developing novel insights into the basic phenomena underlying a wide variety of
complex physical systems. The work reported in this thesis is concerned with the
use of massively parallel computers to simulate the fundamental features at the
electronic structure level that control the initial stages of harvesting and transfer of
solar energy in green plants which initiate the photosynthetic process.

Currently available supercomputer facilities offer the possibility of using hundred
of thousands of computing cores. However, obtaining a linear speed-up from HPC
systems is far from trivial. Thus, great efforts must be devoted to understand the
nature of the scientific code, the methods of parallel execution, data communication
requirements in multi-process calculations, the efficient use of available memory,
etc. This thesis deals with all of these themes, with a clear objective in mind: the
electronic structure simulation of complete macro-molecular complexes, namely the
Light Harvesting Complex II, with the aim of understanding its physical behaviour.

In order to simulate this complex, we have used (with the assistance of the
PRACE consortium) some of the most powerful supercomputers in Europe to run
Octopus, a scientific software package for Density Functional Theory and Time-
Dependent Density Functional Theory calculations. Results obtained with Octo-
pus have been analysed in depth in order to identify the main obstacles to optimal
scaling using thousands of cores. Many problems have emerged, mainly the poor
performance of the Poisson solver, high memory requirements, the transfer of high
quantities of complex data structures among processes, and so on. Finally, all of
these problems have been overcome, and the new version reaches a very high per-
formance in massively parallel systems. Tests run efficiently up to 128K processors
and thus we have been able to complete the largest TDDFT calculations performed
to date. At the conclusion of this work it has been possible to study the Light
Harvesting Complex II as originally envisioned.



Laburpena

Konputagailu bidezko simulazioa da, gaur egun, zientzialariek eskura duten
tresnarik ahaltsuenetako bat sistema fisiko konplexuen portaera ulertzen saiatzeko.
Oinarrizko fenomeno fisiko horiek simulatzeko superkonputagailuak erabili dira tesi
honetan aurkezten den lanean. Konkretuki, punta-puntako konputagailuak erabili
dira fotosintesiaren lehen urratsak ulertzeko, landare berdeetan eguzki-energiaren
xurgatze-prozesua kontrolatzen duen molekula simulatuz.

Superkonputazio-zentroek ehunka milaka prozesatze-nukleo dituzten makinak
erabiltzeko aukera eskaintzen dute, baina ez da batere erraza azelerazio-faktore
linealak lortzea halako konputagailuetan. Hori dela eta, ahalegin handiak egin be-
har dira, informatikaren ikuspegitik, sistema osoaren ezagutza ahalik eta sakonena
lortzeko: kode zientifikoen izaera, beraren exekuzio paraleloen aukerak, prozesuen
arteko datu-transmisioaren beharrak, sistemaren memoriaren erabilera eraginko-
rrena, eta abar. Tesi honek aurreko arazo guztiei aurre egiten die, helburu argi
batekin: konplexu makromolekular osoen simulazioa, konkretuki Light Harvesting
Complex II sistemaren egitura elektronikoaren simulazioa, beraren portaera fisikoa
ulertu ahal izateko.

Sistema hori simulatu ahal izateko bidean, Europako superkonputagailu azkar-
renak erabili dira (PRACE partzuergoari esker) Octopus software-paketea ex-
ekutatzeko, zeina Density Functional Theory eta Time-Dependent Density Func-
tional Theory izeneko teorien araberako simulazio elektronikoak egiten baititu.
Lortutako emaitzak sakonki analizatu dira, milaka konputazio-nukleo eraginko-
rki erabiltzea oztopatzen zuten arazoak aurkitzeko. Problema ugari azaldu dira
bide horretan, nagusiki Poisson ebazlearen errendimendu baxua, memoria eskaera
handiak, datu-egitura konplexuen kopuru handiko transferentziak, eta abar. Azke-
nean, problema horiek guztiak ebatzi dira, eta bertsio berriak errendimendu han-
dia lortu du superkonputagailu paraleloetan. Exekuzio eraginkorrak frogatu ahal
izan ditugu 128K prozesadorera arte eta, ondorioz, inoizko TDDFT simulaziorik
handienak egin ahal izan ditugu. Hala, lan honen amaieran, hasierako helburua
bete ahal izan da: Light Harvesting Complex II sistema molekularraren azterketa
egitea.
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Chapter 0

Laburpena (Summary in Basque)

Contents
0.1 Sarrera eta motibazioa . . . . . . . . . . . . . . . . . . . . ii

0.2 Arloko egoera eta ikerketaren helburuak . . . . . . . . . iii

0.3 Lan-ildoak eta emaitzak . . . . . . . . . . . . . . . . . . . iv

0.4 Ondorioak . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

0.5 Etorkizunerako planteatzen den norabidea . . . . . . . . viii

Lan honek informatikako doktore-tesi bat laburbiltzen du, zeina informatika-
rien, fisikarien eta kimikarien arteko lankidetzan garatu den. DFT eta TDDFT
teoriak gauzatzen dituen Octopus software-paketea erabili da landareetan foto-
sintesia egiten duen molekularen simulazioak egiteko, Europako superkonputagailu
bizkorrenetakoak erabiliz. Helburu hori lortzeko, ordea, konputazioko hainbat ara-
zori aurre egin behar izan zaizkio, azelerazio-faktore egokiak eskuratzeko. Arazo
horiek gainditzea lortu da, eta, ondorioz, inoizko TDDFT simulaziorik handienak
egin ahal izan dira, milaka prozesadore eraginkorki erabiliz.
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0.1 Sarrera eta motibazioa
Informatikaren aurrerapenak medio, zientzialariak eta ingeniariak gauza dira pro-
zesu fisiko oso konplexuen portaera simulazio-tekniken bidez analizatzeko. Izan
ere, konputagailu bidezko simulazioak errealitatea aurreikusteko tresna ezinbeste-
koak dira gaur egungo industria eta ikerketa-laborategietan, problema berrientzat
soluzio berritzaileak sortzeko. Eta horretarako prest ditugu superkonputagailuen
konputazio-ahalmen itzela, zeinetan ohikoa baita 100.000 prozesadore baino gehi-
ago erabiltzea aplikazio oso konplexuak ebazteko. Zehazki, artikulu honetan fisika
kuantikoko simulazioei buruz arituko gara. Teoria jakin batzuetan oinarrituta (aur-
rerago azalduko ditugun DFT eta TDDFT), fotosintesiaren prozesua aztertu dugu;
izan ere, oraindik ez da erabat ulertzen nola xurgatzen duten argia landareek. Hala,
lan honen helburua jakintza horretan pauso bat aurrera egitea da, eta, horretarako,
Octopus [1, 2, 3, 4] software-paketea erabili dugu.

Landareen fotosintesiaren arduraduna Light Harvesting Complex II (LHC–II)
molekula da (ikus 0.1 irudia). Molekula erraldoi horrek hiru aldiz errepikatzen
den egitura simetrikoa du eta, orotara, 17.000 atomo baino gehiagoz osatua da.
Hiru aldeko simetria horrengatik, trimero deitzen zaio eta bere ataletako bakoitzari,
monomero. Monomero bakoitzaren zatirik garrantzitsuenak proteinak, karotenoi-
deak (xantofilak eta klorofilak) eta ur molekulak dira.

Irudia 0.1: LHC–II molekula. Landareetan fotosintesia egiten duen molekula. Monomero
bakoitza kolore batez adierazita dago, eta hiru monomeroek trimero bat osatzen dute. Azken
helburua mekanika kuantikoa erabiliz molekula erraldoi hau simulatzea da.

LHC–II bezalako molekula handiak simulatu ahal izateko, bai konputagailu kon-
plexuak eta programa aurreratuak behar dira, eta hori dena biltzen duen termi-
noa High Performance Computing (HPC) da. HPC arloan, azelerazio-faktorea da
kontuan izan beharreko neurri garrantzitsuenetariko bat. Oro har, konputazio-
baliabideak ugaldu ahala, programen exekuzio-denborak murrizten dira; idealki,
prozesadore kopurua bikoiztuta exekuzio-denbora erdira jaitsi beharko litzateke, hau
da, programak bi aldiz azkarrago exekutatzea lortu beharko genuke. Programa bat
zenbat aldiz azkarrago exekutatzen den zehazten duen neurri horri azelerazio-faktore
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edo speed-up deritzo, eta azelerazio-faktore ideala 0.2 irudiko marra beltz jarraituan
ikus daiteke.

Programa baten exekuzioa hainbat prozesutan banatu daiteke, zeinek programa
osoaren zati bana exekutatzen duten. Prozesu horiek aldi berean exekutatzen badira,
programa paraleloa dela esaten da. Baina, zoritxarrez, programa guztietan badaude
paraleloan exekutatu ezin daitezkeen zatiak, nahitaez seriean (prozesadore bakar-
rean) exekutatu behar direnak. Serieko zatiek errendimendua mugatzen dute, Am-
dahl-en legeak adierazten duen moduan [5]. 0.2 irudiko beheko marra berdeak adier-
azten du programa batek lortuko lukeen errendimendua %90 paraleloan eta %10 se-
riean exekutatuko balitz, benetan urria. Baina, zorionez, Gustafson-en legeak muga
hori gaindigarria dela iragartzen du [6]. Zientzialariak beti daude sistema geroz eta
handiagoak simulatzeko gogoz, eta, problemen tamaina hazten dugunean, serieko
atala bere horretan mantendu ohi da, paraleloan egin daitekeen lan-karga askoz
ere handiagoa izanik. Era horretan, baliabide berriei etekin hobea atera dakieke,
2.1 irudiko tarteko marra gorriak adierazten duen moduan. Problema errealak bi
hurbilpen horien artean egon ohi dira.

Oro har, beraz, prozesadore asko dituzten konputagailuak problema konplexuak
eraginkorki ebazteko erabil daitezke; esaterako, 64.000 prozesadoreko makina bat
problema jakin bat 64.000 aldiz azkarrago ebazteko (edo gauza bera dena, proze-
sadore batek zazpi urtetan egingo lituzkeen kalkuluak ordu bakar batean egitea).
Lan honetan munduko superkonputagailu azkarrenetako batzuk erabili ditugu; bes-
teak beste: Alemaniako Juqueen konputagailua (458.752 prozesatze-nukleo edo core),
Italiako Fermi konputagailua (163.840 nukleo), Alemaniako Hydra (65.320 nuk-
leo), Frantziako Curie konputagailua (11.520 nukleo), eta, Espainian, Bartzelon-
ako MareNostrum konputagailua (48.896 nukleo). Juqueen eta Fermi IBMren Blue
Gene/Q arkitekturako superkonputagailuak dira, hau da, propio diseinatutako maki-
nak konputazio-abiadura handienak lortzeko. Hydra, Curie eta MareNostrum, aldiz,
cluster motakoak dira, hau da, konputagailu “arrunt” ugari sare bizkor batekin lo-
tutako makinak. Punta-puntako superkonputagailuei buruzko informazio gehigarria
E. Strohmaier, J. Dongarra, H. Simon eta M. Meuer-ek urtean bitan argitaratzen
duten TOP5001 zerrendan aurki daiteke, non, LINPACK [7] proba-bankua exeku-
tatzen munduko superkonputagailu azkarrenak ageri baitira.

0.2 Arloko egoera eta ikerketaren helburuak
Octopus software-paketea simulazioak ab-initio egiteko erabili da, hots, beste ino-
lako hurbilpenik erabili gabe, teoria fisikoetan bakarrik oinarrituta. Funtsean, Oc-
topus kodean Density Functional Theory (DFT) [8, 9] eta Time-Dependent Density
Functional Theory (TDDFT) [10, 11, 12] teoriak erabiltzen dira atomo eta mole-
kulen simulazioak egiteko. Teoria horiek mekanika kuantikoaren birformulazio bat
dira, eta bai denborarekiko independente (DFT) nahiz menpeko (TDDFT) izan,
dentsitate elektronikoan oinarritzen dira, frogatu ahal izan baita sistema atomiko
baten propietate guztiak erator daitezkeela bere dentsitate elektronikoa ebatzita.

Kodean, orokorrean, elektroiak mekanika kuantikoari jarraiki simulatzen dira,
eta nukleoa klasikoki tratatzen da. Teoria horiek mekanika kuantikoaren konputazioa
ahalbideratu dute, bestela zuzenean ebatzi ezin diren ekuazio konplexuegiak sortzen

1http://www.top500.org

http://www.top500.org
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Irudia 0.2: Programa paralelo baten aurreikusitako errendimendu teorikoa: Ideala,
Amdahl-en legea eta Gustafson-en legea. Zehazki, Amdahl eta Gustafson-en legeen arteko
diferentzia ageri da, f = 0.9 kasurako (paraleloan exekutatzen den programaren za-
tia). Argi dago Gustafson-en legearen arabera azelerazio-faktore handiak lor daitezkeela,
Amdahl-en aurreikuspen ezkorrarekiko.

baitira, baita gaur egungo superkonputagailu bizkorrenarentzat ere. Bai DFT eta
TDDFT metodoak iteratiboak dira, hau da, sistema iterazioz iterazio ebazten da,
konbergentzia lortu arte. Iterazio bakoitzean funtzio berak exekutatzen dira, eta
bukaeran erabakitzen da simulazioko beste iterazio bati ekitea ala ez. Exekutatu
behar den funtzio horietako bat Poisson ebazlea da, zeinak potentzial elektrostatikoa
kalkulatzen duen dentsitate elektronikotik abiatuta.

Milaka atomoko sistemekin maila kuantikoan simulazioak egiteko gaitasuna izan
ezkero, fisikako, kimikako eta biologiako fenomeno asko ulertzea posible izango litza-
teke. Nahiz eta azken urteetan HPC arloan egin diren hobekuntzak handiak izan,
TDDFTrekin egin daitezkeen simulazioen tamainak mugatua izaten jarraitzen du,
eta erronka handia dira oraindik. Tamalez, hainbat arazo aurkitu dira milaka atomo
simulatu ahal izateko, eta arazo horiei nola aurre egin diegun azalduko dugu hur-
rengo atalean.

0.3 Lan-ildoak eta emaitzak
Octopus kodearen errendimendua hobetze aldera, hainbat azterketa egin dira.
Hasierako azterketa horien ondorioz, exekuzio paraleloan hainbat hutsune aurkitu
ziren simulazioan; aipagarriena, Poisson ebazlearen exekuzio ez optimoa izan zen
[13]. Funtzio hori ia seriean exekutatzen zen eta, ondorioz, exekuzio-denborak ez
ziren murrizten prozesu kopurua handitu ahala. 0.1 taulan ikus daiteke Poisson
funtzioa exekutatzeko behar zen denborak gero eta pisu handiagoa hartzen zuela
prozesu kopurua handitzen zenean (0.3 irudiak portaera bera berresten du; bai ezk-
errean zein eskuinean “OldISF” marra horizontal bihurtzen da). Horregatik, Pois-
son ebazleak galarazten zuen errendimendu optimoa lortzea prozesu asko erabiltzen
zirenean.

Hori horrela, hainbat aukera aztertu dira Poisson funtzio optimizatuagoa lor-
tzeko. Orotara, zazpi metodo aztertu dira, 0.3 irudian ikus daitekeen bezala. Lau
metodo aurrez inplementatuta zeuden: Interpolating Scaling Function zaharra (Old-
ISF), Conjugate Gradients (CG), Multigrid (MG) eta serieko Fast Fourier Trans-
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Prozesuak 512 1024 2048 4096 8192
Iterazioaren exekuzio-denbora (s) 44,89 34,03 19,61 11,74 8,81

Poisson funtzioaren exekuzio-denbora (s) 1,14 1,27 2,72 3,21 4,25
Poisson funtzioaren ehunekoa (%) 3 4 14 27 48

Taula 0.1: Poisson funtzioaren exekuzio-denbora, iterazio-denboraren ehuneko gisa, 1365
atomoko sistema baterako Blue Gene/P makinan exekutatuta.

forms (serialFFT); eta 3 metodo berri gauzatu dira Poisson ebazle gisa; aurrez
lehenetsia zen ISF metodoaren bertsio berria [14], Parallel Fast Fourier Transforms
(PFFT) [15] eta Fast Multipole Method (FMM) [16]. Lortutako errendimenduari
dagokionez, FMM metodoak paralelizazio maila ona erakutsi duen arren, exekuzio-
denbora altuak behar ditu. PFFT metodoa, aldiz, magnitude-ordena bat azkar-
ragoa da aurrekoa baino, pareko paralelismo maila lortuz. Hots, bi metodo horiek
azelerazio-faktore parekoa dute. Bestalde, ISF metodoa aurreko bi metodoak baino
azkarragoa da, baina, prozesu asko erabili behar direnean, errendimendua jaitsi
egiten da.
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Irudia 0.3: Poisson ebazlea 4.019.679 sareta-puntuko sistema bat Blue Gene/P superkon-
putagailuan exekutatuta. Prozesu gutxitan ISF metodoa da azkarrena. Aldiz, eskalagarri-
tasun hobea dela eta, Parallel Fast Fourier Transforms azkarrena da prozesu askotan.

Esfortzu berezia egin da FMM metodoa gure aplikaziora egokitzen. Modu diskre-
tuan lan egiteko pentsatuta dago, eta nolabait jarraitua den dentsitatera egokitu be-
har izan dugu. Hau da, FMM metodoak sareta bateko puntuetan balio zehatzak jor-
ratzen ditu; aldiz, dentsitate elektronikoa banatuago dago, eta hortik moldaketaren
beharra. Alde teknikoari dagokionez, Scafacos [17, 18] liburutegiari deia egiten zaio
eta lortutako emaitzari geuk garatutako zuzenketa aplikatu. Bestalde, ISF eta Paral-
lel Fast Fourier Transforms metodoak gauzatzerakoan, datu-transferentzia eraginko-
rrak lortzeko ahalegin berezia egin dugu, sarrerako dentsitate elektronikoa eta irteer-
ako potentzial elektrostatikoa modu desberdinean irudikatuak baitaude liburutegi
horietan eta jatorrizko kodean. Bi sareta desberdin horien artean (eta gainera, pun-
tuak modu desberdinean banatuak prozesuen artean) datu-mugimendua era azkar
eta eskalagarrian gauzatu dugu. ISF metodoa, berez, Poisson ebazlea da eta libu-
rutegiari deia egitea nahikoa da emaitza lortzeko (kontuan izanda aipatu berri dugun
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datu-transferentzia). Parallel Fast Fourier Transforms aldiz, Fast Fourier Trans-
forms liburutegi eraginkor bat besterik ez da, eta Poisson ebazle bezala funtziona
dezan bi dei egin behar dira eta, tartean, datuak eskalatu behar dira (aurrez kalku-
latutako balioekin biderketa bat aplikatuz).

Azterketa horren ondorioa garbia da, ISF metodoa aukeratu behar da prozesu
gutxi erabili behar direnean, eta Parallel Fast Fourier Transforms metodoa, or-
dea, prozesu askoren kasuan. Gainera, metodo berriek guztiek aurreko errore maila
berdindu edo hobetzen dute: hortaz, errendimenduarekin batera, zehaztasuna man-
tendu edo irabazi da. Beraz, emaitza garrantzitsua lortu dugu, Poisson ebazleak
azelerazio-faktore handiak lortzeko oztopoa ez izatea. [19] egileen lanean sakonago
azaltzen dira xehetasun guztiak.

Prozesadoreen erabilera eraginkorraz gain, programek erabiltzen duten memoria
kopurua ere oso aintzat hartzeko arloa da. Izan ere, gaur egungo superkonputa-
gailuek milaka edota milioika prozesadore dituzten arren, prozesadore bakoitzak
eskura duen memoria kopurua urria izan ohi da (1-8 GB inguru besterik ez). Progra-
mak behar duen memoria kopurua simulatu behar den sistema atomikoaren araber-
akoa da eta independentea behar luke erabilitako prozesu kopuruarekin. Erreali-
tatean, ordea, posible da horrela ez izatea, eta memoria-beharrak gero eta handi-
agoak izatea prozesadore kopurua handitu ahala. Octopus kodea prozesadore kop-
uru handietan exekutatu ahal izateko, hainbat memoria- eta errendimendu-arazo
konpondu behar izan dira. Hobekuntza horietako adibide gisa, geuk garatutako
saretako puntuen banaketa berria aipatuko dugu. Octopus-ek espazio errealean
egiten ditu simulazioak eta, horretarako, espazioa hainbat puntutan banatzen du,
hiru dimentsiotako sareta osatuz. Paraleloan exekutatu nahi denean, sareta-puntuak
prozesadoreen artean banatu behar dira. Gure lanaren aurretik, banaketa hori se-
riean egiten zen eta memoria asko eskatzen zuen. Orain, berriz, banaketa paraleloan
egiten da, ParMETIS liburutegia erabiliz [20]. Exekuzioa azkarragoa izateaz gain,
memoria gutxiago behar da. Hobekuntza horren eta beste hainbaten informazio
zehatza [21] lanean aurkitu daiteke.
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Irudia 0.4: 180, 650, 1365 eta 2676 atomoko sistemak Blue Gene/Q superkonputagailuan
exekutatuta (prozesu bat PUZ bakoitzean exekutatuta). Octopus kodeak eskalagarritasun
handia erakusten du.
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Optimizazio guztien ondoren, frogatu ahal izan dugu errendimendu handia lor
dezakegula prozesadore asko erabilita, 0.4 irudian ikus daitekeen moduan. Hainbat
proba egin dira LHC–II molekularen zati desberdinekin, hain zuzen ere, 180, 650,
1365 eta 2676 atomoko molekulekin (452.878, 1.282.324, 2.371.809 eta 4.106.680
sareta-puntu hurrenez hurren). Sistema txikiena kodearen errendimendu handiaren
erakusle da; 4 prozesutan banatuta exekutatu daiteke eta 8192 prozesura arte exeku-
tatu daiteke eraginkor. Hau da, azelerazio-faktore edo speed-up handia lortzen du
prozesu askorekin (2205eko azelerazio-faktorea du 8192 prozesurekin). Era berean,
sistema handienak portaera bera erakusten du, nahiz eta, jakina, exekuzio-denbora
handiagoak behar dituen, simulatu beharreko espazioa (sareta-puntu gehiago ditu)
eta kontuan izan beharreko elektroi kopurua handiagoak baitira. Aipagarria da, ha-
laber, 1365 atomoko sistema 65.536 prozesutan exekutatu ahal izan dugula, errendi-
mendu handia mantenduz. Tarteko 650 atomoko sistemak ere aurrekoen portaera
bera du. Erakusten diren emaitzak Blue Gene/Q superkonputagailuan lortu dira;
bestelako arkitekturetan ere pareko errendimenduak lortu ditugu.

Octopus kodea optimizatu eta errendimendu handia frogatu ondoren, proiek-
tuaren amaieran fisikaren ikuspuntutik interesgarriak diren simulazioak egin ahal
izan ditugu. Nahiz eta LHC–II molekula osorik exekutatzea erronka bat izaten jar-
raitzen duen, monomero osatua, eta, dimero eta trimero sinplifikatuak (proteinarik
gabekoak) simulatzea lortu dugu. Guk dakigula, sistema horiek dituzten 5759, 4050
eta 6075 atomo kopururekin sekula egin diren simulaziorik handienak dira. 0.5. iru-
dian ikus daitekeen bezala, simulazioetan frogatu ahal izan dugu teoria bat dator-
rela errealitatearekin; hots, simulazioan eta errealitatean molekula hauen xurgapen-
espektroak baliokideak direla.
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Irudia 0.5: LHC–II konplexuaren xurgapen espektroa; monomeroa (gorriz), dimeroa (ur-
dinez), trimeroa (berdez) eta esperimentua (grisez) [22] . Dimeroaren intentsitatea erdira
jaitsi da, hobe ikus dadin. Irudian, TDDFT metodoaren zehaztasuna ikus daiteke: zehaz-
tasun handiarekin ezkerreko tontorrean eta ezkerretara mugituta gainontzeko bietan.
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0.4 Ondorioak
Proiektu honetan kode zientifiko baten optimizazioan lan egin dugu. Nagusiki
alderdi informatiko batetik landu den arren, proiektua jakintza-arlo desberdinen
arteko lankidetzaren emaitza da: informatikarien, fisikarien eta kimikarien artekoa
hain zuzen ere. Octopus software-paketea sistema atomikoen portaera simulatzeko
tresna aurreratua da eta mekanika kuantikoko teoriak (DFT eta TDDFT) erabiltzen
ditu. Zoritxarrez, tamaina errealeko sistemak simulatzeko, exekuzio-denbora oso
handiak behar dira. Beraz, irtenbide bakarra superkonputagailuak erabiltzea da.
Makina horiek dituzten ehunka milako prozesadoreetan errendimendu handia lortzea
prozesu konplexua da, eta hori izan da proiektu honen helburua. Hori horrela,
hainbat arlotan jorratu da optimizazioa. Batetik, Poisson ebazlearen errendimendu
mugatu gainditu dugu, aukera berri eta eraginkorrak gauzatuz. Bestetik, memo-
ria erabilera, datu-banaketak eta beste hainbat atal ere optimizatu eta birmoldatu
ditugu.

Hobekuntza horien guztien ondorioz, inoiz egin diren DFT eta TDDFT sim-
ulazio handienak egitea lortu dugu, tamaina errealeko simulazioak ahalbideratuz.
Simulazio horiek aukera emango digute, lehen aldiz, fotosintesian gertatzen diren
lehenengo femtosegundoetako erreakzioak ulertzeko.

0.5 Etorkizunerako planteatzen den norabidea
LHC–II molekularen simulazioa egiteko gai garela ikusita, simulazioen emaitzak, fisi-
kako/kimikako alderditik aztertu behar dira orain. Oinarrizko egoera bakar batetik
abiatuta, kitzikapen desberdinak aplikatuko dizkiogu sistemari, eta bere portaera
ulertzen saiatuko gara. Lan honek guztiak denbora beharko du simulatu eta aztertu
ahal izateko. Izan ere, simulazio horiek aurrera atera ahal izateko milaka prozesadore
erabili behar dira, hainbat egunez gainera. Gerora, fisika berri bat aztertzen ari
garela kontuan izanda, lan nekeza da zer aurkituko dugun aurreikusten eta aukera
berrietara irekita egon beharko dugu.

Era berean, aplikazioan egin diren hobekuntzek atea ireki dute tamaina horretako
beste hainbat sistema simulatu ahal izateko. Software librea izaki, fisikarien eskura
dago kodea, eta ziur gaude beste hainbat fenomeno ulertzeko baliagarria izango dela.
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This doctoral thesis is the work done in the last five years at the University of the
Basque Country UPV/EHU, in collaboration between groups of Informatics Faculty
(ALDAPA) and Chemistry Faculty (Nano-bio Spectroscopy). A short stage at the
University of Coimbra also was carried out. Obviously, this is not a personal work,
but the result of a collaboration with many international scientist of the areas of
Informatics, Physics, Chemistry and Biology.
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This thesis is mainly focused in the computer simulations of physical phenomena
from the point of view of a computer engineer. Computer simulation has enabled the
possibility to do a vast variety of tests using few resources. Computer simulation
is also a great tool to predict the behaviour of any kind of experiment, before it
is actually done, saving a lot money and time. For that to be true, on the one
hand, the simulation code has to be written by mainly engineers and scientists. On
the other hand, due to always increasing demand of computational resources, big
computational centres have to be created. Those centres are managed nationally by
the Red Española de Supercomputación (RES) and internationally by Partnership
for Advanced Computing in Europe (PRACE). Nowadays, both requirements are
met and, therefore, in this project we can do a step forward in computer simulation.

1.1 Introduction
The importance of the simulation using computer has grow in recent years, until
reaching a vital importance in many research areas such as Chemistry, Physics,
Biology, Astrophysics, Applied Mathematics and different industries. Specially, the
understanding of phenomena at nanoscopic scale is a major goal of science since
the very moment of the appearance of quantum physics. Computer simulation is
an invaluable tool to study these types of phenomena, which otherwise can not
be understood. Currently, High Performance Computing (HPC) [23] enables the
simulation of atomic and molecular systems according to the fundamental equations
of quantum mechanics, opening a new world of opportunities.

The final aim of this project will be to improve a scientific code, which will enable,
at the end of the project, the simulation of a really complex molecular system. More
precisely, we want to simulate the absorption of the light, or in other words, how
the first steps of the photosynthesis are. The main objective of this research is to
obtain a highly efficient parallel version of a real scientific code.

The main phases of the project will be the following: (a) introduction of the
project and overview of the problem, (b) description of the working environment or
facilities, (c) understanding of the physical phenomena on the approach we chose,
(d) introduction to the actual scientific code Octopus, that we are going to use
in the following, (e) first executions and identification of the problems, (f) solving
of detected problems, (g) demonstration of the achieved performance, (h) real-case
run to do a scientifically relevant huge simulation, which was not possible before,
(i) conclusions.

The computational speed of supercomputers has grown significantly and steadily
in recent years, having already more than 30 system passed the petaflop/s barrier.
The main reason for the increase in performance lies in the use of massively parallel
systems with hundreds of thousands of processors, because improvements in indi-
vidual processors are already very low. This is owning to the fact that producing
ever-faster processors at this time implies that the cost and consumption grows non-
linearly, while the use of multiple processors increase computing speed in order to
maintain a linear scaling whole system. This trend is already well established and
will continue to expand in the future to other areas of computing, as, for instance,
with personal multicore computers.

Much of the scientific software that runs on supercomputers is not being able to
keep pace with the increasingly capabilities that offer machines with a large number
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of processors. There are several reasons for this, but certainly one of them is because
developing efficient parallel code is a very complex task that requires dedication,
knowledge and skills beyond those that are to be expected in people whose interest
is focused mainly on the scientific dimensions of his research. The massively parallel
code development must therefore be a multidisciplinary effort, involving researchers
from both areas as basic science as computers. The benefit of such collaboration
is twofold: on the one hand, the development of high performance scientific code,
and secondly, the development and improvement of techniques for parallelisation,
which can then be applied to other technical and scientific areas. This thesis is
a clear example of such synergistic collaboration between two scientific fields, in
which parallel programming experts will collaborate with researchers in physics for
the parallelisation of numerical code for simulating electron dynamics.

At the beginning of the project a deep analysis of that code must be done.
Firstly, we will evaluate the current state of the code and we will search for the
main problems that could prevent for the use of a high level of parallelism, before
starting to modify it.

To begin with, it is essential to learn how the scientific software works. We
have to be able to easily use and understand the software and all the related tools
(operating system, remote tools, queue system...). The atomic systems simulations
are not an easy task, and we have to involve in them.

So, we will measure the executions of the code and assess the performance,
searching for possible bottlenecks. Once problems have been identified we will pro-
pose a way to solve them. All the problems and solutions proposed are discussed in
detail in the next chapters.

1.2 Research environment
This work is the result of the collaboration of two research groups of the University of
the Basque Country, UPV/EHU: the Nano-bio Spectroscopy group (Fac. of Chem-
istry), composed mainly by physicists; and ALDAPA (Fac. of Computer Science),
whose members are computer engineers. Computer engineers are concerned with the
performance of parallel supercomputers, trying to optimise compilations processes,
computations, processor communications, the use of the memory hierarchy, etc. On
the other hand, physicists care about solving problems of increasingly complexity,
that require virtually unlimited computing time. Therefore, joining both expertises
we have the possibility of facing up to complex real problems that, otherwise, can
not be efficiently solved.

Computer engineers aim is to use the supercomputers to the limit of their max-
imum performance. The physicists care about the possibility to solve systems of
increase complexity, i.e. real problems, but while they are not able to take advantage
of all performance they need computer engineers help. In this manner, interesting
problems for the physicist could be solved effectively and efficiently.

1.2.1 Nano-bio Spectroscopy group

The Nano-bio Spectroscopy1 group activities are focused on the field of theory and
modelling of electronic and structural properties in condensed matter and on devel-

1http://nano-bio.ehu.es/

http://nano-bio.ehu.es/
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oping novel theoretical tools and computational codes to investigate the electronic
response of solids and nanostructures to external electromagnetic fields. Present
research activities are: new developments within many-body theory and TDDFT,
including ab-initio description of electron excitations, optical spectroscopy, time-
resolved spectroscopies, and lifetimes; novel techniques to calculate total energies
and assessment and development of Exchange-Correlation functionals for TDDFT
calculations; improvements on transport theory within the real-time TDDFT for-
malism; characterisation of the electronic and optical properties of solids, nanos-
tructures (in particular nanotubes, nanowires and semiconducting -clusters-) and
biomolecules. The director of the group as well as ETSF2 vice-president is Prof.
Angel Rubio.

The group is active in the development of the ETSF and hosts the Vicepresidency
for Scientific Development.

1.2.2 ALDAPA group

ALDAPA3 group focuses its research activity in the context of data mining and
parallelism. The team trajectory covers, on the one hand, supervised and unsuper-
vised learning paradigms, optimisation, prediction and diagnosis methods. And, on
the other, the development and tuning of high performance solutions using mas-
sively parallel computers (MPP, GPU...) to simulate complex systems in science
and engineering. Nowadays, a new research line is devoted to the study of Physio-
logical Computing Systems and Brain-Computing Interfaces. Research works have
been funded by the UPV/EHU, the Basque and Spanish Governments, and the Eu-
ropean Community; currently, ALDAPA belongs to a consolidate research group
recognised by the Basque Government.

1.2.3 Partnership for Advanced Computing in Europe

Partnership for Advanced Computing in Europe (PRACE) is an initiative that aims
to provide European scientists with world-class leadership supercomputing infras-
tructures. It is an international network that connects supercomputer facilities with
the research groups. The main tasks of PRACE is to decide who and how uses the
supercomputers, and, thus, resources are efficiently used by final researchers. Every
6 month PRACE grants access to high-end European HPC resources to the best
evaluated projects, to different research groups. It is established as an international
not-for-profit association. The biggest available systems are:

1.2.4 Red Española de Supercomputación (RES)

The Spanish Supercomputing Network (RES, Red Española de Supercomputación)
is a national supercomputer centres network. It was founded in March 2007 after
the first upgrade of the MareNostrum machine. The old machine was split among
different Universities, creating the network. Besides those HPC centres, the ma-
chines on the network are the new MareNostrum III and Magerit at Universidad
Politéctina de Madrid (UPM). The usage is awarded every 4 months to the best
submitted projects of the scientific community.

2ETSF: European Theoretical Spectroscopy Facility. http://www.etsf.eu
3http://www.sc.ehu.es/acwaldap/

http://www.etsf.eu
http://www.sc.ehu.es/acwaldap/
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System Name Hosting Centre Launch date Architecture Pflop/s
CURIE GENCI@CEA, France Q2 2011 Bullx cluster 2
Hermit GCS@HLRS, Germany Q3 2011 Cray XE6 5
FERMI CINECA, Italy Q2 2012 BlueGene/Q 2

SuperMUC GCS@LRZ, Germany Q2 2012 iDataPlex 3
JUQUEEN GCS@FZJ, Germany Q4 2012 BlueGene/Q 5

MareNostrum BSC, Spain Q4 2012 iDataPlex 1

Table 1.1: The most powerful computers in Europe can be accessed by PRACE.

1.3 Physical problem
Several aspects of the photosynthetic processes have been identified in recent years
as being of great potential value to the sustainable development of modern society in
the 21st century. A report commissioned by the US Department of Energy outlined
several grand challenges facing basic energy research, and highlighted, amongst these
the importance of understanding the quantum mechanical effects involved in energy
capture and transfer in photosynthetic systems [24, 25]. Similarly, the European
Science Foundation highlighted in the field of photonics in its report on Key En-
abling Technologies (KETs) for the coming century improvements in understanding
of photosynthesis as being vital for potential energy applications and developments
[26, 27]. Consequently, photosynthesis is a widely studied phenomena, both experi-
mentally and through simulations. One of the main aims of this project will be to
quantum mechanically simulate the very first steps of this complex process.

Central to the continued existence of life on Earth, the conversion of solar en-
ergy into a chemical form that can be stored until needed, transported to different
parts of the organism and released as required in order to drive the fundamental
processes of biology is one of the most highly studied of all biochemical phenomena.
The importance of developing a detailed understanding of the microscopic physical
phenomena that contribute to the processes of photosynthesis, however, goes far
beyond purely academic interest in biological function and has the potential to di-
rectly impact upon a wide range of technological applications from optimisation of
food crop production [28, 29] to aiding attempts to utilise aspects of photosynthetic
light harvesting to generate usable energy either directly in conventional solar cell
apparatus [30, 31] or alternatively through secondary processes such as combustion
of hydrogen produced by photosynthesis-driven (bio)reactor systems [32, 33, 34, 35].

More than 50% of the light captured by green plants for use in photosynthesis
is absorbed by the major Light Harvesting Complex II (LHC–II) [36]. LHC–II is a
trimeric protein assembly with three–fold symmetry (Figure 1.1). Despite the fact
that LHC–II has been the focus of sustained research activity for some time, many
important details such as how interaction with the protein environment modulates
the light absorption characteristics of individual chromophores within the complex
and how excitation energy is transferred between chromophore sites remain poorly
understood. An important barrier to this understanding is that in complex systems
such as LHC–II it is very difficult to obtain this information using experimental
methods. In cases like this, computational electronic structure methods such as
(TD)DFT become particularly valuable since calculation schemes can be devised
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Figure 1.1: Light Harvesting Complex II (LHC–II) molecule, responsible of doing the
photosynthesis. It has a three-fold symmetry and each of the parts is a monomer. Each
monomer has 14 chlorophylls, coloured in green and labelled from 601 to 614.

with which to investigate well defined aspects of the relevant photophysics. However,
although these methods may be suitable in principle for the purpose of studying large
systems like LHC–II there remains the problem of prohibitive computational cost
due to poor scaling behaviour of the available computer codes.

For testing purposes we have used different portions of the LHC–II molecule.
Our test systems consisted of 180, 441, 650, 1365 and 2676 atoms, and contained
several chlorophyll units (see Figure 1.2). Those systems have from 452,878 mesh
points and 250 electronic states to 4,106,680 points and 3,656 states. The space
is represented with cubic meshes with edge length 2Le containing these molecules,
where Le is the half of the edge of the parallelepiped mesh and the used values are
15.8, 22.1, 25.9 and 31.7, respectively.
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Figure 1.2: Different chunks of the LHC–II molecule, shown systems are composed by 180,
650, 1365 and 2676 atoms (brown, blue, green and pink respectively). Oxygen atoms are
coloured in red, nitrogen atoms in blue and hydrogen atoms in white. Remaining atoms
are carbon atoms.
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that will be used later in this document.
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2.1 Parallelism (main concepts)
Scientific investigations and developments are ones of the most computing time
consuming applications. Some of them —climate and weather prediction, geological
analysis, atomic physics, astrophysics, engineering simulations... — are pushing
ahead the limits of computer’s hardware and software every day. Despite modern
processors become more and more powerful, the only way to meet those needs is by
means of massive parallelism.

In supercomputers, a high number of processors are used in parallel to solve a
unique problem in a cooperative way. Parallel computers can be classified using
the Flynn’s taxonomy [37] according to two main parameters: the number of data
and instructions streams. Two cases are considered: only one stream or multiple
streams. Parallelism could be achieved applying the same instruction to different
data. Processor-arrays (distributed memory), vector-computers (shared memory)
and GPGPU [38] (General-purpose computing on graphics processing units) are of
this type. All modern processors have also some kind of vectorial instructions in its
machine language, like SSE or AVX in Intel [39] and 3DNow! instructions in AMD
[40]).

However, in the general case of the parallelism, p processors collaborate to solve
the same problem. There are lots of processes executing over different data, execut-
ing each one a different instruction. Two main architectures can be distinguished,
depending on the memory arrangement: shared or distributed. In the first category,
all the processors share a unique address space. In the nowadays common multicore
architectures, the shared memory is centralised, being accessed using the usual data
buses. Those systems are denoted as Simetric Multiprocessors (SMP) and because
of the memory organization, are limited to a reduced number of processors/cores.

To overcome this problem, the memory system must be physically distributed
among the processors, now connected by means of a high throughput network. If
the overall memory space remains virtually shared, we have a Distributed Shared
Memory (DSM) system, and the interconnection network is used for memory oper-
ations; to load/store data in remote memory modules, to maintain data coherence,
to synchronise processes, and so.

But if tens of thousands of processes must be used, the common way is to
use a private memory space for each process. As memory data are no longer
shared, interprocess communication must be done using explicit communication
functions (send/receive). These computers are denoted as Massively Parallel Pro-
cessors (MPP) or clusters. MPP systems are computers made by design to build
a supercomputer, composed by tens of thousands of processors (or even millions),
usually with a proprietary high performance communication network. They are
the most expensive computers. Clusters are made by commodity components and,
therefore, they are more affordable, with a better price-performance ratio. They can
be composed from few tens up to millions of processors and of-the-shelve communi-
cation hardware (10 Gbit Ethernet, Infiniband, Myrinet...).

The above mentioned architectures are the simplest ones. But modern computers
use more complex architectures, which can be considered as a mixture of all of them.
For instance, the distributed nodes of any supercomputer are not simple processors
but small SMP multicore systems, where all the cores (usually from 8 to 32) shared
a centralised or distributed memory system.
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Moreover, nodes also use coprocessors to accelerate specific computation. As
above mentioned, coprocessors use a type of SIMD parallelism. The two main
streams include, on the one hand, the use of GPU devices, and, on the other, the
use of multicore vector units (like in the Xeon Phi coprocessors). A high perfor-
mance GPU includes thousand of simple processing units that use a sophisticated
memory system. Fine grain parallelism is exploited using thousand of independent
threads in parallel, to overcome memory latencies and to maintain occupied all the
processing units. The Xeon Phi coprocessor uses another alternative, inherited from
the traditional vector processing. For instance, a common PHI coprocessor uses 60
cores each one with a vector processing unit of 512 bits. These 512 bits are pro-
cessed, for instance, as 16 words of 32 bits, being able to process simultaneously 960
of those words.

Although the implementations of these two approaches are quite different, the
underlying ideas are no so far. To have a clear idea about the computation power
of these systems, they can offer today up to 1 Tflop/s for some type of computation
(mainly, operations with very structured data sets, without dependences among
them).

The computers that we have used in this project are MPP machines, —like Fermi,
Juqueen and Jugene—, or clusters —Curie, MareNostrum, Vargas and Ganbo—.
Data level parallelism is used at both levels: inside the multicore chip and between
nodes with message passing model. The detailed description of the machines will
be shown below.

2.1.1 Performance of a parallel system

There are several ways to specify the performance of a parallel computer. The
simplest one is to measure the number of flop/s (floating point operations per second)
the computer can execute. If a superscalar processor can achieve today, for instance,
10-15 Gflop/s, a parallel computer with up to 10.000 processors could achieve 100-
150 Tflop/s (tera = 1012).

In addition to the peak performance of the system, three relative measures are
also used to qualify a parallel execution: the speed-up, the efficiency and the weak-
scaling.

Speed-up

The speed-up is the measurement of how much faster is a parallel program than
the serial one. The speed-up compares two execution times, usually the serial time
(with only one process) and the parallel time: Sp = Ts/Tp where, Sp: speed-up; Ts:
serial time; Tp: parallel time. Using a system with p processes, the speed-up should
range from 0 to p. Of course, the objective is to use p processes to execute our
application p times faster; unfortunately, there are several problems that must be
solved in order to obtain this result.

Efficiency

Efficiency is the achieved percentage of the maximum possible acceleration factor. It
measures how far we are from the ideal case: efficiency = Sp/p where, Sp: speed-up;
p: number of processes. So, this parameter will range from 0 to 1, and will tell us
how much of the theoretical parallelism of the computer system are we obtaining.
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Weak-scaling

Weak-scaling measures the ability of a program to scale with the number of parallel
processes at a fixed computing load, comparing the execution time of a problem
of size N using p processes with the execution time of the analogous problem of
size kN using kp processes. In this way, each process will use the same amount of
computational resources, regardless of the number of used processors. If the program
is mainly constricted by computational needs, then the execution times should be
very similar in both cases. On the other hand, if communication needs dominate
the parallel execution, then the execution times will grow with p, usually faster than
linearly.

2.1.2 Performance limits

When a program executed in parallel, we must take into account that, in any re-
alistic case, several problems that will limit the expected maximum speed-up or
peak performance of the parallel system must be overcome. Unfortunately, parallel
execution times will be always higher than the serial time divided by the number
of processes, because of some limits and overheads that must be paid. Limits are
related mainly to the existence of serial parts in the code and with the amount of
memory, and overheads include the needed to send and receive data among pro-
cesses, inefficient load balancing of the computation, replication of some operations,
synchronisation of the processes, the input/output processes, and so on.

The serial part of the code

Although the main part of a concrete application could be done in parallel, there
is always part of the code that is intrinsically serial or limited to a reduced level of
parallelism. The effect of these parts of a parallel code in the overall performance is
well established by the famous Amdahl’s law [41]. Considering that f is the fraction
of the code that can be perfectly executed in parallel (thus, the fraction 1− f must
be executed in serial), the obtained performance or speed-up can be expressed as:
p/[(1− f)p+ f ]

Thus, it will be limited by the serial part to a maximum of 1/(1− f). In other
words, if only a 1% of the code can not be executed in parallel, then the maximum
speed-up will be limited to 100, regardless of the number of processes we use (lower
green line in Figure 2.1).

This limit to the speed-up is very disappointing, because seems to limit the use
of parallelism to a reduced number of processes or only to “all-parallel” applications.
But massively parallel systems are used not only to speed the execution, but usually
to execute more accurately scientific and engineering applications, i.e. to process a
higher amount of data in a realistic time. For these cases, although the computation
amount grows (processing more data) the time devoted to serial processes does not
increase (at least not in the same amount). The effect is clear: for those cases, the
serial execution time fraction reduces as the problem size increase. This behaviour
is reflected in the Gustafson’s law [6], where the speed-up can be expressed as:
fp+(1−f) (red upper line in Figure 2.1). Amdahl’s and Gustafson’s laws represent
the two extremes of a parallel behaviour. Real applications will be between both of
them, allowing in most cases the use of massive parallelism.
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Figure 2.1: Differences between Amdahl’s and Gustafson’s laws, with a parallel portion of
f = 0.9. Clearly, there is a big improvement in the speed-up in Gustafson’s approximation.
Real problems are between both.

Communication among the processes

The main overhead added when executing in parallel are the explicit communication
functions that must be added to send data from process to process. Communication
time is negligible only for very simple cases, where it is limited to the initial and final
phases of the computation; Thus, the parallel execution time must be expressed as
Tp = Ts/Tp+Tcomm. While the execution time decreases with the number of processes,
communication time, needed to send and receive messages, goes up (in many cases
more than linearly). So a compromise in the number of processes must be found to
achieve the lowest possible time.

Load balancing

Processes to be executed in parallel must be equally distributed among the proces-
sors; otherwise, some processors will be idle while other are working and working.
The time a processor is idle is not used to do effective calculation, so parallel over-
all execution time increases. Different assignments are used to schedule processes
in a balanced way. The scheduling can be static (tasks are distributed at compile
time) or dynamic (tasks are distributed during the execution of the application).
Synchronization between processes (point to point, or global) is another source of
load imbalancing, where some processes wait for the others to obtain their results.

Input/output

Usually, parallel applications use and produce huge amounts of data, that must
be read and stored in external devices (discs) using the so called input/output
operations. Although parallel storage systems allow many simultaneous read/write
operations, they are very time consuming, so the performance of the input/output
system becomes crucial, mainly for those applications that must use external discs
very often. At any rate, parallel input/output operations must be used in almost
all real cases to save intermediate data for recovery purposes.

When different computing nodes share the same storage device, a shared in-
terface has to be created to access the data. The basic implementation is NFS,
which saturates quite soon when few tens of users are using it at the same time. A
known alternative is LUSTRE, which scales much better to many users and many
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computing nodes. Other proprietary alternatives also exist.

Amount of available memory

Whereas the peak performance of parallel systems is still increasing following the
Moore’s law [42], the RAM memory available for each parallel process fails to keep
pace with this evolution. Moreover, when we increase the accuracy of a physical
system simulation, memory needs per core grow usually more than linearly. There-
fore, memory becomes often the limiting factor when very big amounts of data must
be executed in parallel. If not enough memory is available, data must be retrieved
and saved in the external memory system, incurring in serious performance losses.
Consequently, many supercomputing centres has the policy to forbid this kind of
executions.

2.2 Supercomputers
Supercomputers are massively parallel computers, i.e. a combination of a set of
CPU/memory/HD (optional) repeated many times and connected with a high speed
and low latency network. Supercomputers are infrastructures that evolves rapidly.

2.2.1 TOP500

The TOP500 list is a manner to arrange the most powerful supercomputers in the
world. The performance obtained executing the LINPACK benchmark [7] is used
to rank the computers twice a year.
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Figure 2.2: Performance in Gflop/s for the computers ranked first, the average and the
last.

In Figure 2.2 can be seen the evolution over time of the performance obtained by
fastest computers in the world. As Moore’s law predicts, performance increases ex-
ponentially (for the first ranked, the last ranked and the average of the 500 systems).
Nowadays (November 2014), the fastest one is the Tianhe-2 (N.S.C., Guangzhou,
China), which obtains 33.9 Pflop/s (3.4 × 1015) using 3,120,000 cores and Intel
Xeon Phi coprocessors. The second is Titan (Oak Ridge N.L., USA), a Cray XK7
system which reaches 17.6 Pflop/s with 560,640 cores and NVIDIA K20 GPUs as
accelerators.
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In the last list, four systems overcome 10 Pflop/s and 50 go over the Pflop/s.
For comparison’s sake, the first supercomputer ever to reach the milestone of 1
Pflop/s was the IBM Roadrunner (Los Alamos, USA) in 2008. More than 80% of
the computers in the list are cluster, all the rest are MPP systems. They have
in average almost 50,000 CPU cores; the smallest has 3,036 cores and reaches 154
Tflop/s. Practically, all the computers run Linux. The 15% of the machines have
some kind of accelerator (mainly Nvidia GPU or Intel Xeon Phi).

2.2.2 Green500

Whereas the TOP500 takes only into account the performance (in flop/s) of the
system, the Green500 list also considers its energy consumption. Power consumption
is crucial for building an HPC system. There exist technology to build up systems
with more processors than existing ones, but the electricity power they consume
is preventing them from building. Not only the power that the processors require,
but also the need to cool them has to be taken into account (roughly, the bill is
the half for each them; machines consumption and its refrigeration). Consequently,
more efficient processors appear and better ways to cool them. A lower energy
requirement will not only reduce the electric bill, but also will help in the reliability,
availability, and usability [43]. Reductions on the maintenance and cooling systems
will also be benefited, allowing to create more powerful computers.
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Figure 2.3: Performance per power in Mflop/s for the computers ranked first, the average
and the last.

The base of the Green500 list is the TOP500 list, where computers are ranked
according to the obtained Gflop/s per watt. Currently (November 2014), the most
efficient system, at the GSI Helmholtz Center in Germany, is able to compute 5.3
Gflop/s consuming a watt; using 10,976 cores it reaches 316 Tflop/s and it is ranked
168 in the TOP500 list. As can be seen in Figure 2.3, the grow is also exponential;
for instance, the most efficient system in 2008, when Roadrunner bet the Pflop/s,
was able to compute only 0.48 Gflop/s per watt (and would be ranked 233 in the
last green list). Only the last systems of the TOP500 list are very inefficient, but
they are being rapidly replaced.



2.2. Supercomputers 16

2.2.3 Parallel Computers used in this project

In this project we have used the most advanced computers in Europe, indeed, the
fastest ones: Jugene (in 2009 and June 2010), Curie (November 2010) and Juqueen
(November 2012 and June 2013). The fastest of Italy: Fermi (in 2012 and 2013).
And also the Spanish fastest ones: MareNostrum II (from 2006 to 2010), Magerit
(June 2011), and MareNostrum III (fastest since 2012). Moreover, we have used a
local cluster (Ganbo), and a cluster in France; Vargas at IDRIS.

All the computers presented here as in all supercomputers facilities, inside a room
designed to cool the computer and managed by dedicated personal. Computing
nodes are accessed through common front-end or login nodes, which are used to
compile applications, submission of batch jobs, management of hard disks, etc. For
the batch submission LoadLeveler and SLURM [44, 45] software utilities are mainly
used. The scheduler is responsible for managing jobs on the machine by allocating
partitions for the user on the compute nodes, returning job output and error files to
the users.

Fermi // Juqueen (Blue Gene/Q MPP)

Both Fermi and Juqueen machines share the IBM Blue Gene/Q architecture [46].
It is a high-end architecture, nowadays 4 machines with this architecture are in
the top10 of the TOP500. Fermi machine is located at CINECA and it is the
most powerful system there. CINECA’s hardware resources are the most powerful
available in Italy and among the most powerful available in the world. Fermi is an
IBM Blue Gene/Q system composed of 10.240 PowerA2, totalling 163.840 compute
cores and a system peak performance of 2.1 Pflop/s. Fermi is one of the most
powerful machine in the world, and had ranked #7 in the TOP500 list in June 2012;
in November 2014 occupies the 23 position.

Figure 2.4 shows the overall structure of the Blue Gene/Q system. Each compute
card (or compute node) features an IBM PowerA2 chip with 16 cores working at a
frequency of 1.6 GHz, with 16 GB of RAM and the required network connections.
A total of 32 compute nodes are plugged into a so-called node card, and 16 node
cards are assembled in one midplane, which is combined with another midplane and
two I/O drawers to give a rack with a total of 16K cores. Fermi is composed by 10
of those racks, amounting a total of 160K cores.

Compute nodes use a light Linux-like kernel called Compute Node Kernel (CNK);
they are diskless, and I/O functionalities are provided by dedicated I/O nodes, that
provide a more complete range of OS services, e.g.: files, sockets, process launch,
signalling, debugging, and termination. Two of the 10 racks have 16 I/O nodes
each, implying a minimum job allocation of 64 nodes - 1024 cores (because of the
fact that a job must have at least one I/O node allocated to it). The other 8 racks
have 8 I/O nodes each (and, thus, a minimum allocation of 128 nodes – 2048 cores).

In addition to common login nodes, some service nodes perform system manage-
ment services (e.g., partitioning, heart beating, monitoring errors) and can be used
only by system administrators. Access to the compute nodes are mediated by I/O
nodes, since only they are able to interact with the file systems. The scheduler of
the FERMI system is LoadLeveler.
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Figure 2.4: Blue Gene/Q system overview.

Juqueen machine is at Jülich Supercomputing Centre (JSC),1 substituting the
next explained Jugene. The configuration of Juqueen is the same as Fermi, but
instead of having 163,840 CPU cores, it has 458,752.

Jugene // Genius (Blue Gene/P MPP)

Jugene (Jülich Blue Gene/P) [47] was a supercomputer located at Jülich Supercom-
puting Centre (JSC)2. It had 294,912 cores in 73,728 chips, each one with four IBM
PowerPC processor cores at 850 MHz [48]. Each chip was capable of 13.6 Gflop/s
and had 2 GB of RAM memory. In total, the machine had a peak performance of
1 Pflop/s and 144 TB of RAM memory.

The machine was composed in the following way: the base part of the machine
was the mentioned 4 cores chip, also referred as a processor. One chip was soldered
to a small motherboard, together with memory (DRAM), to create a compute card
(one node). The amount of RAM per compute card was 2 GB and they do not
had any type of hard disk. All this compute cards were plugged to a node card.
There were two rows of sixteen compute cards on the node card. A rack hold a total
of 32 node cards, and in total were 72 racks. This structure is similar to the one
illustrated in Figure 2.4.

Jugene machine had 5 communication networks and each compute node had 4

1http://www.fz-juelich.de/jsc/juqueen
2http://www.fz-juelich.de/jsc/jugene

http://www.fz-juelich.de/jsc/juqueen
http://www.fz-juelich.de/jsc/jugene
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network interfaces: (a) connections to the general point-to-point 3D torus network,
2 per dimension; (b) 3 connections to the collective communication network; (c) 4
connections to the barrier network; and (d) 1 connection to the control network.
I/O nodes, in addition, were connected to the a 10 gigabit Ethernet network.

Jugene used LoadLeveler queueing system [48]. There were small queues with a
minimum of 32 nodes to reserve and a maximum of 256, and a maximum wall clock
time of 30 minutes. There were also bigger queues, until 32,768, that they have the
maximum clock time in 24 hours [49].

A similar system, named Genius, with 16K cores was available at the Rechen-
zentrum Garching of the Max Planck Society, in Germany.

Hydra (x86-64 cluster)

This cluster is substituting the old Genius machine in the Rechenzentrum Garching
of the Max Planck Society. It is an IBM iDataPlex DX360M4, with Intel Xeon 2680
processor (20 cores per node) and 64 GB of main memory. In total, it has 65,320
cores and a theoretical performance of 1.5 Pflop/s (1.3 Pflop/s running LINPACK).
It has a consumption of 1,260.00 kW.

Curie (x86-64 cluster)

Curie is a supercomputer that belongs to the French Commissariat à l’Energie Atom-
ique (CEA) and that consists of Intel Xeon processors interconnected by an Infini-
band network. Each compute node has 32 cores (4 chips of 8 cores each) and 128
GB of RAM. In total 11,520 cores and almost 46 TB of RAM are available. The
shared file system is a General Parallel File System (GPFS) and it has a capacity
of 4 PB.

MareNostrum II & III (x86-64 cluster)

MareNostrum II was a supercomputer located in Barcelona, at the Barcelona Su-
percomputing Center. It was the most powerful until 2010 in Spain and it was the
fifth in the world in November 2006 [50]. It had 10,240 IBM PowerPC 970 (2.2 GHz)
processors connected with a low latency Myrinet network. The peak performance
was 94.2 Tflop/s, and running LINPACK it reached 63.8 Tflop/s.

The supercomputer was based on the IBM eServer BladeCenter JS20 [51] and it
was structured in this way:

• Blades : contains the basic components of a computer: processors (one or two
chips), hard disks and memory. Each one runs its own copy of the operating
system.

• Midplanes : it is a base that contains several blades and share common com-
ponents: power supplies, fans, CD-ROM, and floppy drives.

The MareNostrum III has replaced the old MareNostrum II at the Barcelona
Supercomputing Center, and it is the fastest supercomputer in Spain since 2012.
The new system has 3,056 nodes, each one with a 2 Intel Xeon E5-2670 (x 8 cores)
and 32 GB of RAM, connected with Infiniband FDR. It has a LINPACK performance
of 925.1 Tflop/s.
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Vargas (Power6 cluster)

Vargas was an IBM SP Power6 server located in France, at IDRIS, Institut du
Développement et des Ressources en Informatique Scientifique. It had 3,584 Power6
cores connected with an Infiniband network. The Power6 processor is a dual core
with a clock frequency of 4.7 GHz, and 3 levels of cache. The total amount of
memory was 17.5 TB. It had a peak performance of 67.3 Tflop/s.

Magerit (Power7 cluster)

Magerit is a IBM Power7 computer located in Cesvima, at the Universidad Poli-
técnica de Madrid. It is composed by 245 eServer BladeCenter PS702, connected
with a Infiniband DDR network. Each of the nodes has 2 Power7 of 8 cores at 3.3
GHz, and 32 GB of RAM, performing 422.4 Gflop/s. It has SUSE Linux Enterprise
Server SP1 for the operating system. In total it has almost 3920 CPU cores and a
maximum performance of 72 Tflop/s.

Ganbo (x86-64 cluster)

Ganbo is the computational cluster of the Nano-bio Spectroscopy group. This cluster
is structured as shown in Figure 2.5, with a management node and several computing
nodes.

Due to several upgrades of the system, it is composed by several islands of
computing nodes, listed below:

Nodes CPU Cores Processor Freq. RAM SSD HD
per node (GHz) (GB) (GB) (GB)

8 16 Xeon E5-2620 2.10 64 120 -
80 12 Xeon E5645 2.40 48 120 -
42 8 Xeon E5520 2.27 24 80 -
10 8 Xeon E5345 2.33 16 - 200
9 12 Xeon E5645 & 2.40 24 120 -

512 (GPU) 2 × Nvidia M2090 1.3 6

All the computing nodes are connected through a low latency Infiniband network,
with a tree topology. In total the cluster has 1612 CPU cores, 9216 GPU cores and
5.7 TB of RAM memory. For the storage the machine has, on the one hand, two
cabinets of NFS (with 10 and 16 TB) and, on the other, a fast I/O LUSTRE system
with 8.8 TB.

Management/Login/IO node

Main storage hard disks

Compute nodes

In
fi
n
ib

an
d

Figure 2.5: Overview of Ganbo cluster: one service node and 149 compute nodes.
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2.3 Parallel programming tools
Up to day, efficiently parallel programming is a complex task that must be carried
out by the programmers. Automatic parallelisation at compiling time is limited to
elementary codes. This is the reason why they exist different types of Application
Programming Interfaces (API) to take advantage of the parallel environment, just
as MPI, OpenMP, Cuda, OpenCL and others.

Scientific libraries are also widely used in HPC. Furthermore, profiling techniques
are used to get an idea of how is the execution of a program.

2.3.1 Parallel programming models

Although there are other options, OpenMP and Message Passing Interface (MPI) has
become the de facto standards to develop parallel applications, the former for shared
memory systems and the later for distributed memory systems. This classification
is not strict; for instance MPI can also be used for shared memory applications, and,
UPC (Unified Parallel C) is a known alternative [52] for programming distributed
shared memory applications. Besides, the best known approaches to write parallel
programs in the GPUs are OpenCL and CUDA.

OpenMP

OpenMP is a shared-memory API that “implements” the shared-memory parallel
programming paradigm, based on parallel threads. OpenMP is mainly devoted to
obtain loop parallelism. Specific pragmas must be introduced previous to loop, to
indicate the compiler that the loop can be safely executed in parallel. Several clauses
of the pragma indicate the scope of the variables (private, shared...), the scheduling
of loop iterations, etc. Using shared variables implies that threads must be synchro-
nized to ensure a correct access to these variables; hence, typical synchronization
functions, like critical sections, locks, barriers... are include in the API [53].

MPI

Message Passing Interface (MPI) is an standard API specification developed by the
Message Passing Interface Forum (MPIF) that implements message-passing model
between computers [54], and is widely used in supercomputers and clusters.

The processes that are in different nodes have separate memory addresses and
they have to communicate each other. In fact, MPI is mainly a library of communi-
cation functions. Briefly, communication can be point-to-point or global. Point-to-
point communication is carried out using send and receive functions; on the other
hand, global communication functions include broadcast, scatter and gather opera-
tions, to be able to distribute and collect data among all the processes.

UPC

Unified Parallel C (UPC) is an extension of the C programming language designed
for high performance computing on large-scale parallel machines with a common
global address space. The programmer is presented with a single shared, partitioned
address space, where variables may be directly read and written by any processor,
although each variable is physically associated with a single processor [55].



2.3. Parallel programming tools 21

Cuda // OpenCL

Cuda and OpenCL are the best known alternatives to write programs that will run
in accelerators (GPUs and coprocessors). Whereas Cuda is only valid for Nvidia
GPUs, the OpenCL standard could run in both AMD and Nvidia GPUs, and also
in Intel Xeon Phi coprocessors. Alternatively, Xeon Phi vector coprocessors uses
special vector instruction that can be used by the program or the compiler.

2.3.2 Scientific libraries

Some mathematical functions are used in practically all scientific applications. These
functions are implemented and optimized in parallel libraries, so the programmer
does not need to write code for them [56]. These are the most used ones:

Basic Linear Algebra Subprograms (BLAS) library is a sort of routines of basic
vector and matrix operations. Linear Algebra PACKage (LAPACK) is a library to
solve and analyse linear equations, linear lest-square problems and to compute eigen-
values and eigenvectors for several types of matrices. ScaLAPACK is the parallel
portable version of some of those routines. The Fast Fourier Transform in the West
(FFTW) is a C library to compute multidimensional, complex and discrete Fourier
transforms. Also, there are other efficient FFT implementations; Goedecker, Boulet
and Deutsch [57] is one of them.

Intel Math Kernel Library (MKL) is an example of a library of highly optimized,
extensively threaded math routines for science, engineering, and financial applica-
tions, that integrates BLAS, LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier
Transforms, Vector Math, and more libraries in only one package.

2.3.3 Profiling

When scientific software becomes a complex net of code —thousand of lines and lots
of files or subroutines calling each other even inside loops— it is quite hard to analyse
programs behaviour: what part of the code is the responsible of the execution time?
are we efficiently using the memory hierarchies?

This is specially true if the program is being executed in parallel, because the
execution of the program is not controlled by a unique control unit, communication
between processes introduces non deterministic effects, and the load balancing is
not assured.

To clarify the mess, the user can introduce instructions to trace the program
(printing some variables, collecting execution times...), but the most efficient way is
to use profilers, specific tools to thoroughly profile the execution of programs.

Profiling a program we obtain specific data about the program execution itself:
execution times, memory usage, communication patterns and time, etc. These data
can be used to tune the program in order to obtain faster executions, a better usage
of the memory, etc.; in other words, to execute programs more efficiently.

Profling can be “quite simple”, like Gprof (profiling of time in serial), Massif tool
of Valgrind package (it measures the memory usage per each process) or Jumshop
(profiling of MPI calls in parallel); or very complex and complete like TotalView or
Paraver (profilers for parallel programs).



2.3. Parallel programming tools 22

2.3.4 Other tools

Although next tools presented below are not inherit of a parallel programming,
these additional tools make easier every-day use of the working environment. Some
example are: Subversion, Buildbot, Trac and Doxygen

Subversion (also known as SVN or svn) is a revision control software. It is
aimed to be a repository of any kind of files within a project, having documented
all the versions. Whole repository has an unique identifier and any change can be
reverted. For every file it is stored the creation date, change time, author and the
description of the change, among other information. It is mainly used in the code
development or to maintain a web page.

Subversion has a client-server architecture. There are different clients to access
to the server, such as command lines, Windows explorer extensions (TortoiseSVN),
Eclipse plug-ins (Subclipse)...

We have saved a repository for the developed source code, and also, for article
editing and sharing.

Trac is mainly a web interface of the Subversion repository. But not only that,
it also creates a to-do list, manages tickets with the pending tasks, sends email in
every change in the repository, etc. http://www.tddft.org/trac/octopus

Buildbot is a tool to check the correction of a source code [58]. Checks can
be scheduled automatically. In our project, Buildbot can be found at http://www.
tddft.org/programs/octopus/buildbot/.

Doxygen is a tool to create documentation from the comments in the source.
It is a powerful tool: it is able to create complex diagram for calling and called
functions, for data-structure hierarchies, and so on. The documentation created
for this project can be found in the http://www.tddft.org/programs/octopus/doc/
doxygen doc/index.html

http://www.tddft.org/trac/octopus
http://www.tddft.org/programs/octopus/buildbot/
http://www.tddft.org/programs/octopus/buildbot/
http://www.tddft.org/programs/octopus/doc/doxygen_doc/index.html
http://www.tddft.org/programs/octopus/doc/doxygen_doc/index.html
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Due to the interdisciplinary nature of this PhD thesis, an introduction to the
used physical theories is needed. In this chapter we provide some basic definitions of
the quantum mechanics, namely, about DFT, TDDFT, LCAO and Poisson solvers.

23



3.1. Basic definitions 24

Understanding the behaviour of the Nature to be able to predict it, is one of
the major goals of the humans. Physics is one of such example, which studies the
matter, and its motions and reactions over the time and space. In this dissertation
we will focus in the study of the matter in a region where the motion is really fast
and the size is really small. More precisely, we will introduce the reader with some
basic concepts in first principle theories (which means that they do not depend on
other theories, called ab-initio) of the quantum mechanics.

In this small introduction we will conceptually introduce some basic theories that
apply to the matter in the quantum Physics approach. Even if the presented theories
are in principle exact, in order to be able to compute it, some approximations might
be needed. For example, it is negligible the error that appear treating classically
the nucleus, compared with the fast and lightweight electron.

After a general introduction of the main concepts, we will present the Den-
sity Functional Theory (DFT) and Time-Dependent Density Functional Theory
(TDDFT), with an special emphasis in the LCAO technique and Poisson solver.
The LCAO is required to properly initialise a DFT calculation. The Poisson solver,
denoted also as the electrostatic interaction between charges, is present inside both
DFT and TDDFT methods. Nonetheless, this interaction is one of the most com-
mon problems in scientific computing, therefore, it is present in atomic and molec-
ular simulations, and also in fields like quantum chemistry, solid state physics, fluid
dynamics, plasma physics and astronomy, among others.

The reader has a great introduction to quantum mechanics in the chapter 1 of
the book of Harrison [59].

3.1 Basic definitions
Before giving any further detail, we shall introduce some main concepts of physics
in quantum mechanics that we are going to use later on.

Functional: a function of a function. The input variable of functional G is f(x),
which is another function (f a function depending on x), so G(f(x)) and the result
is either a real or a complex number. So, G(f(x))→ K (K ∈ R|C).

An example of a functional is the integral. The input parameter of the integral
is a function, and the result is a number.

Electronic density: a measure of the probability of an electron occupying an
infinitesimal element of space surrounding any given point. It is a scalar quantity
depending upon three spatial variables, and it is denoted as ρ(~r). The electronic
density can be calculated from the system wavefunction:

ρ(~r) = N

∫
|Ψ(~r, ~r2, .., ~rN)|2d3r2, .., d

3rN (3.1)

were N is the number of elements (electrons) of the system, ~r is the position of
each element and Ψ is the system wavefunction.

Operator: mathematically, an operator is a mapping from one vector space or
module to another. In physics, an operator is a function over the space of physical
states.

Hamiltonian: is the operator corresponding to the total energy of the system.
The Hamiltonian sums up all the energies involved in the system in a unique term.
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In general is written as
Ĥ = T̂ + V̂ (3.2)

where T̂ is the kinetic energy and V̂ is the potential energy [60]. A general form
of the Hamiltonian is build taken into account the general five contributions [61],
shown in Figure 3.1: electron and nuclei kinetic energies, electron nuclei attraction,
electron electron repulsion, and nuclei nuclei repulsion.
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e: electron charge
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Figure 3.1: Hamiltonian example

Expectation value: the real number obtained from an operator, applying the
conjugate transposed wavefunction from the left and the wavefunction from the
right. For example the expectation value of operator Ô can be found as follow:

〈Ô〉 =

∫
Ψ∗(r1, .., rN)ÔΨ(r1, .., rN)dr1, ..drN (3.3)

Energy: the energy of a quantum system can be found from the expectation
value of the Hamiltonian:

E = 〈Ĥ〉 =

∫
Ψ∗(r1, r2, .., rN)ĤΨ(r1, r2, .., rN)dr1, dr2, .., drN (3.4)

Observable: it is a hermitian operator which its expectation value gives the
value for a measurable physical quantity. For example, observable is: any type
energy, potential, expectation value of the energy, electronic density.

State: the solution of the stationary Schrödinger equation are the eigenstates
(besides the eigenvalue (Energy)), which correspond to the states of the system.
Those states are a discrete set: only some permitted energy exists. The resulting
energy states are related to the frequency.

Orbital: the eigenstate of the system, when applied to atoms is equivalent to
atomic state.

Wavefunction: the state of a system is described by its wavefunction. Thereby,
any value or characteristic (observable or not) can be obtained from the wavefunc-
tion; or, to simplify it, the wavefunction can be thought as a black box to ask
whatever characteristic of the system, with the proper operator. More precisely, the
wavefunction represents the probability amplitude of finding the system in one state.
Ψ is in general a function that depends on space (x,y,z) and time (t) [62] and it is
depicted with complex numbers. |Ψ|2(~r) is a real number, the probability of finding



3.1. Basic definitions 26

x

∞ ∞

0 L

n = 1

n = 2

n = 3

Figure 3.2: Three first solutions (stationary states) for one single particle in 1D (from 0
to L). n = 1 solution has the lowest energy. Different number of oscillations, depending
on n, for the Stationary Schrödinger equation (3.5).

an electron in a given position at a given moment, thus, the electronic density. If
we assume a single-electron system and integrate all over space, the probability will
be 1, so:

∫
|Ψ(x, y, z, t)|2dxdydz = 1. Generalising, a N element system will be

integrated to N [63] Ψ : R3 → C. The wavefunction is not a physical observable.
Stationary Schrödinger equation: The Time-Independent Schrödinger equa-

tion describes the behaviour of a stationary system and it is denoted as;

ĤΨ = EΨ (3.5)

where E is the energy (eigenvalue) which has to be minimised, Ĥ is the Hamiltonian
of the system and Ψ is the set of wavefunctions, written also Ψ = Ψ(~r1, ~r2... ~rN)
where N is the number of elements of the system and ~r = (x, y, z) spatial Cartesian
coordinates. One can say that the solution of the stationary Schrödinger equation
is a set of wavefunctions. This solution will give the Ground State of the system,
or, e.i. the lowest possible energy of the system.

Schrödinger equation: In quantum mechanics, the time evolution of a system
can be described by the Schrödinger equation,

ĤΨ = i~
∂

∂t
Ψ (3.6)

where Ĥ is the Hamiltonian of the system, i is the imaginary number, ~ is the
Planck constant divided by 2π (which is known as the reduced Planck constant),
t is the time and Ψ are the wavefunctions of the system. The Hamiltonian and
the wavefunctions depend on the time and space, so: Ĥ = Ĥ(~r, t) and Ψ = Ψ(~r, t).
Although the solution of the Schrödinger equation (3.6) is exact, it can only be solved
for really small number of particles [11]. This is because many-particle wavefunctions
scale exponentially: Φ(~r1, ~r2, .., ~rN).
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3.2 Density Functional Theory

The need of the Density Functional Theory (DFT) [8, 9] comes from the fact that
the stationary Schrödinger equation (3.5) can not be solved in a real environment
for a many-body system. In the real world, each element of the system interacts
with all the rest, creating a O(N3) complexity problem.

To illustrate the complexity of a many-body system, we choose a simple system
of a single nitrogen atom, which has only 7 electrons. So, from equation (3.7) can
be seen that the system wavefunction has 21 coordinates.

Ψ(x1, y1, z1, x2, y2, z2...x7, y7, z7) (3.7)

Solving the Schrödinger equation in this many-body problem is too complex. In
this simple example, we discretise the wavefunction to 10 mesh points, and if we
create a rough table of 10 entries for each coordinate, it will have 1021 entries in
total. Assuming only 1 byte per entry, it will occupy one zettabyte, only for one
single nitrogen atom. Clearly, unaffordable.

The DFT comes to solve this problem and can be summarised with the next
main ideas:

• First theorem of Hohenberg-Kohn (HK): all observable properties of a N -
electrons system can be obtained from its Ground State electronic density (ρ).
In particular, the energy of this system can be expressed as

Egs[ρ] ≡ FHK[ρ] +

∫
Vneρ(r)dr (3.8)

where the first term contains the electronic kinetic energy and the electronic
interaction of the real system. The second term describes the nucleus-electron
electrostatic interaction.

• Second theorem of Hohenberg-Kohn (HK variational principle): the minimum
value of the energy of a N -electron system is achieved only if the test density ρ̃
corresponds to the real Ground State density (ρ). This means that any guessed
density’s (ρ̃) energy will be greater or equal to the GS, i.e. EGS 6 E[ρ̃].

• Levy-Lieb reformulation of the DFT: although HK formulation is strictly ab-
initio, universal expressions of the density and the external potential are un-
known. Levy-Lieb reformulate DFT finding the connection between the varia-
tional principle of quantum mechanics, which uses wavefunctions as variables,
and HK postulates. Levy-Lieb proposed a way to obtain the solution of equa-
tion (3.8): on the first step, between all possible wavefunction for a given
density, it minimises the energy. Once having them, in the space of densities
has to be found the minimum one. Levy and Lieb proposed a way to com-
pute the unknown HK function (FHK). However, this formulation loose the
attractiveness of original Density Functional Theory needing the calculation
of many-body wavefunctions (Ψ).

Next equation (3.9) represents that:

Egs = Minρ

[
MinΨ→ρ

〈
Ψ|T̂ + V̂ee|Ψ

〉
+

∫
Vne(r)ρ(r)dr

]
(3.9)
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• Kohn-Sham theorem: finally, Kohn-Sham (KS) proved that the Ground State
energy can be obtained from the electronic density of an equivalent non-
interacting system, avoiding then the problem to solve the calculation of
the many-body interacting system. Instead, a non-interacting wavefunction
(i.e. Slater determinant) should be construct on the basis of (non-interacting)
KS orbitals. Then, the KS potential, used to solve the Schrödinger equation
for the N -non interacting system, can be expressed as:

vKS(r1) = Vext +

∫
ρ(r2)

r12

dr + Vxc (3.10)

where Vext is the external potential, usually the electrostatic interaction be-
tween nucleus and electrons. The second term is the so called Hartree poten-
tial, that can be computed using Poisson solver. And the last term refers to
the Exchange-Correlation potential. This potential includes all the differences
between the real system and the proposed (non-interacting) KS system. This
term is computed as:

Vxc =

(
∂Exc[ρ]

∂ρ

)
ρ=ρ0

(3.11)

where, ρ0 is Ground State electronic density for an interacting N -electron
system. However, a universal expression for the Exchange-Correlation func-
tional (Exc[ρ]) is still unknown, and many approximations are reported on the
literature.

So, the essence of the DFT is that every observable value can be calculated from
a non-interacting GS electronic density, without having to calculate the many-body
wavefunctions. In other words, the solution of a non-interacting system has the
same properties as an interactive one [60]. In theory, this approach is exact. But,
in reality, the Hamiltonian has to be approximated; whereas kinetic, potential and
Coulombic energies can be exactly calculated, it is not the case for the exchange
and correlation.

The solution of the DFT is solved self-consistently; it is an iterative process,
shown in Figure 3.3, and it is known as Self Consistent Field (SCF) cycle. An initial
guess for the density is obtained from the molecular orbitals calculated with LCAO.
Molecular orbitals are used to construct the density, using the Slater determinant.
Having the density, the electrostatic potential is obtained after solving the Poisson
equation (more details about the Poisson solver are given in the next Section 3.5).
This potential is used to evaluate the convergence; if the system is not converged,
KS wavefunctions are constructed again and the process starts over.

3.3 Time-Dependent Density Functional Theory
DFT describes well the system that they do not change over time, but more interest-
ing phenomena happen over time. So, Time-Dependent Density Functional Theory
(TDDFT) [10, 11, 12] is the variant of the DFT considering also the time. We will
consider a system with N particles, which is involved over time and it reacts to a
external perturbation, such as a laser.
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Figure 3.3: Simplified scheme of a Self Consistent Field (SCF) cycle.

As alternative to the Scrödinger equation (3.6), the approximation given by
TDDFT is good enough.

Even if it is difficult to achieve the electronic density of an interactive system,
Kohn and Sham approximated it with a density of non-interactive system. Thus,
they create much simpler description that can be easily solved numerically.

DFT can be viewed as a re-writing of the Schrödinger equation for a many-
electron system in terms of its electronic density. It is therefore a fully ab-initio
approach. TDDFT is thus formally equivalent to the Time-Dependent Schrödin-
ger equation, and is used to model the evolution in time of any quantum system.
TDDFT has proven to be quite accurate even for biological chromophores, as the re-
sults obtained for fluorescent proteins [2-4], the Genji-Botaru luciferin [5], and other
biological systems (flavins, porphyrins, DNA, etc. [6]) show. Low-energy transitions
between bound states are usually quite well described with TDDFT, the error being
usually smaller than a few tenths of an eV. A few problems remain, most notably
charge-transfer excitations, and transitions to weakly bound states like Rydberg
states. Nevertheless, when properly validated, TDDFT calculations can be quite
reliable, and are increasingly used by non-experts to support and interpret exper-
imental results. Important reasons for the success of TDDFT in photochemistry
are its cost/performance ratio which is unmatched by traditional methods and the
relatively wide applicability range.

The process of light absorption (and emission) is quantum mechanical, and it is
not therefore accessible using the classical mechanics techniques usually applied in
biochemistry. This implies that the calculation of the absorption spectrum of a par-
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ticular molecule has to be performed with ab-initio methods. For small molecules,
these methods can be quantum-chemistry based or one can use TDDFT. For large
molecules the only viable option is the latter.

3.4 LCAO
The nature of the wavefunctions is in principle unknown. For that reason, we have
to approximate them. One such technique is the Linear Combination of Atomic
Orbitals (LCAO). LCAO is the assumption that the systems solution is the sum of
the solutions of its parts. One can argue that the approximation made by solving
independent particles (electrons in our case) is good enough to get an idea of the
atomic system. Molecular ortitals describe the “behaviour” of a molecule, exactly
the same way the atomic orbitals for atoms. Starting with atomic wavefunctions,
the molecular wavefunctions are constructed. So, the construction of a φ as a linear
combination of atomic wavefunctions ϕ, is knows as Linear Combination of Atomic
Orbitals (LCAO) [61], and it is denoted as:

φ =
N∑
i=1

aiϕi (3.12)

These guesses of the wavefunctions is used to initialise a DFT run.

3.5 Poisson solver
The electrostatic interaction is a key part in the DFT and TDDFT formulations
of quantum mechanics. In DFT the many-body Schrödinger equation is replaced
by a set of single particle equations, the Kohn-Sham equations, which include an
effective potential that contains the electronic interaction. Such effective potential
is usually divided into three terms: the Hartree potential, the Exchange-Correlation
(XC) potential, and the external potential. The Hartree term corresponds to the
classical electrostatic potential generated by the electronic charge distribution.

In the context of quantum mechanics, the electrons and their electric charge are
delocalised over space forming a continuous charge distribution ρ(~r). Such a charge
density creates an electrostatic (Hartree) potential v(~r), which is given by [64]

v(~r) =

∫
d~r ′

1

4πε0

ρ(~r ′)

|~r − ~r ′|
, (3.13)

where ε0 is the electrical permittivity of the vacuum, 1/4π in atomic units. When
considering the electric interaction in a medium, it is possible to approximate the
polarization effects by replacing ε0 by an effective permittivity, ε. In 3D, it is simple
to show that equation (3.13) is equivalent to the Poisson equation [65, 66]

∇2v(~r) +
ρ(~r)

ε0
= 0 . (3.14)

In fact, this equation provides a convenient general expression that is valid for
different dimensions and boundary conditions. For example, to study crystalline
systems, when periodic boundary conditions are usually imposed. It is also possible
to simulate a molecular system interacting with ideal metallic surfaces by choosing
the appropriate boundary conditions [67, 68]. Both formulations of the problem,
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i.e. equations (3.13) and (3.14), are quite useful: while some methods to calculate
the Hartree potential are based on the former, others rely on the latter.

In order to numerically calculate the electrostatic potential we need to discretise
the problem. To this end, we use a mesh representation, which changes the charge
density and the electrostatic potential to discrete functions, with values defined over
a finite number of points distributed over a mesh. Such an approach is used in many
electronic structure codes, even when another type of representation is used for the
orbitals. The direct calculation of the potential would take O(N2) operations, N
being the total number of mesh points. This is prohibitive for systems beyond a
given size. Fortunately, there exist a variety of methods — either using equation
(3.13) or (3.14) — that by exploiting the properties of the problem, reduce the
cost to a linear or quasi-linear dependency with a negligible accuracy drop. In this
work, we have selected several parallel implementations of some of the most popular
of these methods (Fast Fourier Transforms, Interpolating Scaling Function, Fast
Multipole Method, Conjugate Gradients, and Multigrid). In the next subsections
we introduce these methods and give a brief account of their theoretical foundations
and properties.

3.5.1 Fast Fourier Transforms

The Fourier Transform (FT) is a powerful mathematical tool both for analytical and
numerical calculations, and certainly it can be used to calculate the electrostatic
potential created by a charge distribution represented in an equispaced mesh by
operating as follows. Let f(~r) be a function whose Fourier transform f̂(~k) exists.

By construction f = f(~r), and f̂−1
(
f̂(~k)

)
(~r) = f(~r). This expression, plus the

convolution property of the Fourier transform, applied to equation (3.13), imply
that

v(~r) = v̂−1
(
v̂(~k)

)
(~r) =

1

4πε0
v̂−1
(
ρ̂(~k)/|~k|2

)
, (3.15)

where we have used that the Fourier transform of the function 1/|~r| is (̂1/|~r|)(~k) =

1/|~k|2 = 1/(k2
x + k2

y + k2
z) [66].

Since ρ(~r) is represented in discrete equispaced points (rj,k,l) at the centre of

meshes whose volume equals Ω, the Fourier transform of ρ(~r), i.e. ρ̂(~k), can be
calculated using its discrete Fourier transform

ρ̂(~k) := (2π)−3/2

∫
d~r exp(−i~k · ~r)ρ(~r) (3.16)

' (2π)−3/2Ω
∑
j,k,l

ρ(rj,k,l) exp(−i(kxj + kyk + kzl)) . (3.17)

The use of equation (3.16) in equation (3.15) results in a discretised problem,
which requires the use of a discrete Fourier transform plus an inverse discrete Fourier
transform. The expression of the potential in terms of discrete Fourier transforms
allows the application of the efficient FFT technique [69], so the problem can be
solved in O(N log2N) steps.

It is to be stressed that the use of the FT automatically imposes periodic bound-
ary conditions on the density, and therefore to the potential. When finite systems
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are studied, some scheme is required to avoid the interaction between periodic im-
ages. A simple way to solve this is to increase the size of the real-space simulation
mesh and set the charge density to zero in the new points. This moves the periodic
replicas of the density away, thus decreasing their effect on the potential [66, 70].

Another strategy is to replace the 1/(ε0~k
2) factor of equation (3.15), known as the

kernel of the Poisson equation, by a quantity that gives the free space potential
in the simulation region. This modified kernel has been presented in reference [71]
for molecules, one-dimensional systems, and slabs. This Coulomb cut-off technique
is very efficient and easy to implement. Therefore, we will consider fast Fourier
transform method that combines the two approaches, doubling the size of the mesh
and using a modified kernel [66, 71]. This results in a potential that accurately
reproduces the free space results. On the other hand, this method also imposes
some constrains. For example, in the case of molecules, the cut-off is spherical and,
therefore, it requires the enlarged mesh to be always cubic, regardless of the shape
of the original mesh.

The power of the FFT method has made it part of many algorithms for the
calculations of pairwise interactions. In the method summarised in this subsection,
we treat the whole contribution to the potential with FFT.

In one dimension, the discrete Fourier transform of a set of n complex numbers
fk (fk can be, for example, the values of ρ in a set of discrete points) is given by

Fl =
n−1∑
k=0

fk exp
(
−2πikl

n

)
for l = 0, . . . , n− 1 , (3.18)

with i being the imaginary unit. The inverse discrete Fourier transform is given
by

fk =
1

n

n−1∑
l=0

Fl exp
(
+2πikl

n

)
for k = 0, . . . , n− 1 . (3.19)

The definitions above enable computational savings using the fact that both the
input and output data sets (ρ(~r) and v(~r)) are real. Thus Fn−l = F ∗l , and we just
need to calculate one half of the n discrete Fourier transforms.

Solving the Poisson problem using equations (3.18) and (3.19) would require
O(N2) arithmetic operations (with e.g. N = n3), which would not represent any
improvement over the cost of evaluating the potential directly. However, in 1965,
J. W. Cooley and J. W. Tukey published an algorithm called Fast Fourier Transforms
(FFT) [69] that exploits the special structure of equation (3.18) in order to reduce
the arithmetic complexity. The basic idea of the radix-2 Cooley-Tukey FFT is to
split a discrete FT of even size n = 2m into two discrete FTs of half the length; e.g.,



3.5. Poisson solver 33

for l = 0, . . . ,m− 1 we have

F2l =
m−1∑
k=0

fk exp
(
−2πik2l

n

)
+ fk+m exp

(
−2πi (k+m)2l

n

)
=

m−1∑
k=0

(fk + fk+m) exp
(
−2πikl

m

)
; (3.20)

F2l+1 =
m−1∑
k=0

fk exp
(
−2πik(2l+1)

n

)
+ fk+m exp

(
−2πi (k+m)(2l+1)

n

)
=

m−1∑
k=0

exp
(
−2πi k

n

)
(fk − fk+m) exp

(
−2πikl

m

)
. (3.21)

If we assume n to be a power of two, we can apply this splitting recursively
log2 n times, which leads to O(n log2 n) arithmetic operations for the calculation of
equation (3.18). There exist analogous splitting for every divisible sizes [72], even
for prime sizes [73].

3.5.2 Interpolating Scaling Function

This method was developed by Genovese et al. [14] for the BigDFT code [74].
Formally it is based on representing the density in a basis of Interpolating Scaling
Functions (ISF) that arise in the context of wavelet theory [75]. A representation of
ρ from ρj,k,l can be efficiently built by using wavelets, and efficient iterative solvers
for the Hartree potential v can be tailored, e.g. from ordinary steepest descent or
conjugate gradient techniques [76]. A non-iterative and accurate way to calculate
v [14] is to use the Fast Fourier Transforms (FFT) in addition to wavelets. If we
represent

ρ(~r) =
∑
j,k,l

ρj,k,lφ(x− j)φ(y − k)φ(z − l) , (3.22)

where ~r = x, y, z and φ are Interpolating Scaling Function in one dimension,
then equation (3.13) becomes

vm,n,o := v(~rm,n,o) =
∑
j,k,l

ρj,k,lK(j,m; k, n; l, o) , (3.23)

where

K(j,m; k, n; l, o) :=

∫
V

d~r ′
φj(x

′)φk(y
′)φl(z

′)

|~rm,n,o − ~r ′|
, (3.24)

and V indicates the total volume of the system. Due to the definition of the ISF, the
discrete kernel K satisfies K(j,m; k, n; l, o) = K(j −m; k − n; l − o), and therefore
equation (3.23) is a convolution, which can be efficiently treated using FFTs (see
the previous subsection). The evaluation of equation (3.24) can be approximated
by expressing the inverse of r in a Gaussian basis (1/r '

∑
k ωk exp(−pkr2)), which

also enables efficient treatment. All this makes the order of this method N log2N .
Another important characteristic of the method is that it uses a kernel in equation
(3.15) that yields an accurate free space potential without having to enlarge the
mesh.
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3.5.3 Fast Multipole Method

The Fast Multipole Method (FMM) was first proposed in 1987 for 2D systems [77],
and it was soon extended to 3D problems [78]. Although only O(N) operations are
necessary to calculate the electrostatic potential, the first FMM versions had big
prefactors that in practice made the method competitive only for huge systems or
low accuracy calculations [79]. After thorough research, it was possible to develop
signficantly more accurate and efficient versions of the FMM [80, 81], making it a
largely celebrated method [82].

The original FMM was devised to calculate the potential generated by a set of
discrete point-like particles

v(~ri) =
1

4πε0

N∑
j=1,j 6=i

qj
|~ri − ~rj|

, (3.25)

which is different from the charge-distribution problem that we are studying in
this work. While extensions of the FMM to the continuous problem exist [83, 84, 85],
in order to profit from the efficient parallel FMM implementations we have devised
a simple scheme to recast the continuous problem into a discrete charge one without
losing precision.

We assume that each mesh point rj,k,l corresponds to a charge of magnitude
Ωρj,k,l, where Ω = h3 (h being the mesh spacing) is the volume of the space associated
to each mesh point (mesh volume). Using the FMM we calculate at each point the
potential generated by this set of charges, vFMM

j,k,l . However, this is not equivalent to
the potential generated by the charge distribution, and some correction terms need
to be included (see Appendix D.IV for the derivation of these corrections). The first
correcting term (self-interaction term) comes from the potential generated at each
point by the charge contained in the same mesh

vSI
j,k,l = 2π

(
3

4π

)2/3

h2ρj,k,l . (3.26)

Additionally, we apply a correction to improve the accuracy of the interaction
between neighbouring points, which has the largest error in the point-charge ap-
proximation. This correction term is derived using a formal cubic interpolation of
the density to a finer mesh, obtaining a simple finite-differences-like term

vcorr.
j,k,l = h2

(
27/32 + (α)2π(3/4π)2/3

)
ρj,k,l

+ (h2/16)
(
ρj−1,k,l + ρj+1,k,l + ρj,k−1,l + ρj,k+1,l + ρj,k,l−1 + ρj,k,l+1

)
− (h2/64)

(
ρj−2,k,l + ρj+2,k,l + ρj,k−2,l + ρj,k+2,l + ρj,k,l−2 + ρj,k,l+2

)
.

(3.27)

Here α is a parameter to compensate the charge within the mesh (j, k, l) that is
counted twice. The final expression for the potential is

vj,k,l = vFMM
j,k,l + vSI

j,k,l + vcorr.
j,k,l . (3.28)

Now we give a brief introduction of the FMM algorithm. More detailed explana-
tions on the FMM can be found in Refs. [77, 78, 86, 80]. To introduce the method
we use spherical coordinates in what remains of this subsection.
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Consider a system of l charges {qi, i = 1, . . . , l} located at points {(τi, αi, βi), i =
1, . . . , l} which lie in a sphere D of radius a and centre at Q = (τ, α, β). It can be
proved [80] that the electric field created by them at a point P = (r, θ, φ) outside D
is

v(P ) =
∞∑
n=0

n∑
m=−n

Om
n

(r′)n+1
Y m
n (θ′, φ′) , (3.29)

where P −Q = (r′, θ′, φ′) and

Om
n =

l∑
i=1

qiτ
n
i Y
−m
n (αi, βi) , (3.30)

with Y m
n (α, β) known functions (the spherical harmonics). If P lies outside of a

sphere D1 of radius a+ τ (see Figure 3.4A) the potential of equation (3.29) can be
re-expressed as

v(P ) =
∞∑
j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ) , (3.31)

where

Mk
j =

j∑
n=0

n∑
m=−n

(3.32)

Ok−m
j−n i|k|−|m|−|k−m|

√
(j − n− k +m)!(j − n+ k −m)!

√
(n−m)!(n+m)! τn Y −mn (α, β)√

(j − k)!(j + k)!
.

Note that the “entangled” expression of the potential of equation (3.25), in which
the coordinates of the point where the potential is measured and the coordinates
of the charge that creates the potential are together, has been converted to a “fac-
torised” expression, in which the coordinates of the point where we measure the
potential are in terms (Y k

j (θ, φ)/rj+1) that multiply terms (Mk
j ) which depend on

the coordinates of the charges that create the potential. It is this factorisation which
enables efficient calculation of the potential that a set of charges creates at a given
point by using the (previously calculated) expression of the potential created by this
set of charges at other points.

If the set of l charges described above is located inside a sphere DQ of radius a
with centre at Q = (τ, α, β), where τ > 2a (see Figure 3.4B), then equation (3.29)
implies that the potential created by these charges inside a sphere D0 of radius a
centred at the origin is given by

v(P ) =
∞∑
j=0

j∑
k=−j

Lkj r
j Y k

j (θ, φ) , (3.33)

where

Lkj =
∞∑
n=0

n∑
m=−n

Om
n i|k−m|−|k|−|m|

√
(n−m)!(n+m)!

√
(j − k)!(j + k)! Y m−k

j+n (α, β)

(−1)n τ j+n+1
√

(j + n−m+ k)!(j + n+m− k)!
.

(3.34)
The evaluation of the equations above requires truncation of the infinite sums

to a given order, which can be chosen to keep the error below a given threshold.
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A) B)

D1

O

P (r, θ, φ)

D

Q(τ, α, β)

a

D0 O

P (r, θ, φ)

Q(τ, α, β)
aDQ

a

τ > 2a

Figure 3.4: A) A set of point charges (black circles) inside a sphere D of radius a centred
at Q = (τ, α, β) creates a potential outside the sphere D1 of radius (a + τ) and centred
in the origin that can be expressed with equation (3.31). B) A set of point charges (black
circles) inside a sphere DQ of radius a centred at Q = (τ, α, β) creates a potential inside
the sphere D0 of radius a and centred in the origin that can be expressed with equation
(3.33) (provided that τ > 2a). In both A) and B), O represents the origin of coordinates,
and P = (r, θ, φ) is the point where the potential is measured. In our systems, the charges
lie in equispaced mesh points.

The equations (3.31) and (3.33) enable the efficient calculation of the potential
experienced by every charge of the system due to the influence of the other charges.
In order to calculate it, the system is divided into a hierarchy of boxes. Level 0 is a
single box containing the whole system; level 1 is a set of 8 boxes containing level 0;
and so on (a box of level L consists of 8 boxes of level L+ 1). Different boxes at a
given level do not contain common charges. The highest level (Nl) contains several
charges (in our case, each lying in a mesh point) in every box. The procedure to
calculate the potential in all mesh points can be summarised as follows:

• For every box in the highest box level Nl (smallest boxes), we calculate the
potential created by the charges in that box using equation (3.29).

• We gather 8 boxes of level Nl to form every box of level Nl-1. We calculate
the potential created by the charges of the (Nl − 1)-box using the potentials
created by the eight (Nl)-boxes that form it. To this end, we use equation
(3.31).

• We repeat this procedure (we use equation (3.31) to get the potentials created
by box L-1 by using those of box L) until all the levels are swept.

• Then, the box hierarchy is swept in the opposite direction: from lower to
higher levels, the equation (3.33) is used to calculate the potential created by
the boxes (the potential given by equation (3.33) is valid in regions that are
not equal to those where equation (3.31) is valid).

• Finally, the total potential in every mesh point (vFMM
j,k,l ) is calculated as an

addition of three terms: the potentials due to nearby charges are directly
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calculated with the pairwise formula of equation (3.25), and the potentials
due to the rest of the charges are calculated either with equation (3.31) or
with equation (3.33), depending on the relative position of the boxes which
create the potential and the box where the potential is evaluated.

In the whole procedure above, the charge in the mesh point (j, k, l) is Ωρj,k,l. This
scheme corresponds to the traditional version of FMM [80]. Later in this project,
we will use a slight modification of it [16] which not only converts multipoles be-
tween consecutive levels, but also within every given level, which enables further
computational savings.

3.5.4 Conjugate Gradients

In this subsection and in the following one we present two widely used iterative
methods to calculate the electrostatic interaction: Conjugate Gradients (CG) and
Multigrid [87]. These methods are based on finding a solution to the Poisson equa-
tion (3.14) by starting from an initial guess and systematically refining it so that
it becomes arbitrarily closer to the exact solution. These two methods have the
advantage that if a good initial approximation is known, only a few iterations are
required.

When using a mesh representation, the Poisson equation can be discretised using
finite differences. In this scheme the Laplacian at each mesh point is approximated
by a sum over the values of neighbouring points multiplied by certain weights. High-
order expressions that include several neighbours can be used to control the error in
the approximation [88]. The finite-difference approximation turns equation (3.14)
into a linear algebraic equation

L̃~x = ~y , (3.35)

where L̃ is a sparse matrix (taking advantage of the sparsity of a system of
equations can greatly reduce the numerical complexity of its solution [89]), ~y is a
known vector (y = −ρ/ε0, in this case) and ~x is the vector we are solving for, in this
case the electrostatic potential. Equation (3.35) can be efficiently solved by iterative
methods that are based on the application of the matrix-vector product without the
need to store the matrix.

Since the matrix is symmetric and positive definite, we can use the standard
CG [90] method. In the CG method, ~x is built as a linear combination of a set of
orthogonal vectors ~pk. In every iteration, a new term is added

~xk+1 = ~xk + αk~pk , (3.36)

which attempts to minimise

f(~x) :=
1

2
~xT L̃~x− ~xT~y , (3.37)

whose minimum is the solution of equation (3.35). The term added to the
potential in iteration k is built so that ~x moves in the direction of the gradient
of f , but being orthogonal to the previous terms. The gradient of f(~x) satisfies,
−∇f(~x) = ~y − L̃~x. Therefore the search direction in iteration k + 1 is
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~pk+1 = ~rk+1 +
|~rk+1|2

|~rk|2
~pk . (3.38)

with ~rk+1 = ~rk − αkL̃~pk and ~p0 = ~r0 = ~y − L̃~x0, being ~x0 arbitrary. The
coefficient associated with each direction, αk, is obtained from the minimization
condition, yielding

αk =
|~rk|2

~pTk L̃~pk
. (3.39)

The equations above show that the CG method has a linear scaling (O(N)) with
the number of points N for a given number of iterations whenever the matrix L̃ has
a number of non-zero entries per row that is much lower than N (as is the usual case
for the Poisson equation). Bigger exponents in the scaling can appear, however, in
problems where the number of performed iterations is chosen to keep the solution
error below a given threshold that depends on N [91].

An issue that appears when using the finite-difference discretisation to solve the
Poisson equation are boundary conditions: they must be given by setting the values
of the points on the border of the domain. For free space boundary conditions we
need a secondary method to obtain the value of the potential over these points; this
additional method can represent a significant fraction of the computational cost
and can introduce an approximation error. In our implementation we will use a
multipole expansion. Such an expansion concerns not only the boundaries: all the
charges of the system are decomposed into two contributions: the first contribution
is obtained with using a multipole expansion, and the corresponding potential is an-
alytically calculated [66]; the potential created by the rest of the charge is calculated
numerically with either the Conjugate Gradients method or the Multigrid method.
Splitting methods like this are commonly used in the literature [70].

3.5.5 Multigrid

Multigrid (MG) [92, 93, 94, 95, 96, 87] is a powerful method to solve elliptic partial
differential equations, such as the Poisson problem [97], in an iterative fashion. MG
is routinely used as a solver or preconditioner for electronic structure and other
scientific applications [98, 99, 100, 101]. In this subsection we will make a brief
introduction to a simple version of the MG approach that is adequate for the Poisson
problem. MG, however, can also be generalised to more complex problems, like non-
linear problems [96] and systems where there is no direct geometric interpretation,
in what is known as algebraic Multigrid [102]. It has also been extended to solve
eigenvalue problems [103, 100].

MG is based on iterative solvers like Jacobi or Gauss-Seidel [87]. These methods
are based on a simple iteration formula, that for equation (3.35) reads

~x← ~x+M−1(~y − L̃~x) . (3.40)

The matrix M is an approximation to L̃ that is simple to invert. In the case
of Jacobi, M is the diagonal of L̃, and for Gauss-Seidel, M is upper diagonal part
of L̃. These methods are simple to implement, in particular in the case of the
Laplacian operator, but are quite inefficient by themselves, so they are not practical
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as linear solvers for high-performance applications. However, they have a particular
property: they are very good in removing the high-frequency error of a solution
approximation, where the frequency is defined in relation to the mesh spacing. In
other words, given an approximation to the solution, a few iterations of Jacobi or
Gauss-Seidel will make the solution smooth. In MG the smoothing property is
exploited by using a hierarchy of meshes of different spacing, and hence changing
the frequency that these smoothing operators can remove efficiently.

A fundamental concept in MG is the residual of a linear equation. If we have x̄
as an approximate solution of equation (3.35), the associated residual, ~b, is defined
as

~b = ~y − L̃~̄x . (3.41)

We can use the residual to define an alternative linear problem

L̃~a = ~b . (3.42)

Due to the linearity of the Laplacian operator, finding ~a is equivalent to solving
the original linear problem, equation (3.35), as

~x = ~̄x+ ~a. (3.43)

If a few iterations of a smoothing operator have been applied to the approxi-
mate solution, x̄, we know that the high-frequency components of the corresponding
residual ~b should be small. Then it is possible to represent ~b in a mesh that has, for
example, two times the spacing without too much loss of accuracy. In this coarser
mesh equation (3.42) can be solved with less computational cost. Once the solution
~a is found on the coarser mesh, it can be transferred back to the original mesh and
used to improve the approximation to the solution using equation (3.43).

The concept of calculating a correction term in a coarser mesh is the basis of
the MG approach. Instead of two meshes, as in our previous example, a hierarchy
of meshes is used, at each level the residual is transferred to a coarser mesh where
the correction term is calculated. This is done up to the coarsest level that only
contains a few points. Then the correction is calculated and transferred back to the
finer levels.

To properly define the MG algorithm it is necessary to specify the operators
that transfer functions between meshes of different spacing. For transferring to a
finer mesh, typically a linear interpolation is used. For transferring to a coarser
mesh a so-called restriction operator is used. In a restriction operator, the value
of the coarse mesh point is calculated as a weighted average of the values of the
corresponding points in the fine mesh and its neighbours.

Now we introduce the Multigrid algorithm in detail. Each quantity is labelled
by a super-index that identifies the associated mesh level, with 0 being the coarsest
mesh and L the finest. We denote Sl as the smoothing operator at level l, which
corresponds to a few steps (usually 2 or 3) of Gauss-Seidel or Jacobi. Iml represents
the transference of a function from the level l to the level m by restriction or interpo-
lation. Following these conventions, we introduce the algorithm of a MG iteration in
Figure 3.5. Given an initial approximation for the solution, we perform a few steps
of the smoothing operator, after which the residual is calculated and transferred
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Multigrid v-cycle
Input: ~y, ~̄x
Output: ~̄x

~yL ← ~y
~xL ← ~̄x
for l from L to 0 do

if l 6= L then
xl ← 0 {Set initial guess to 0}

end if
~xl ← Sl~xl {Pre-smoothing}
if l 6= 0 then
~bl ← ~yl − L̃l~xl {Calculate the residual}
~yl−1 ← I l−1

l
~bl {Transfer the residual to the coarser mesh}

end if
end for
for l from 0 to L do

if l 6= 0 then
~xl ← ~xl + I ll−1~x

l−1 {Transfer the correction to the finer mesh}
end if
~xl ← Sl~xl {Post-smoothing}

end for
~̄x← ~xL

Figure 3.5: Algorithm of a MG v-cycle.

to the coarser mesh. This iteration is repeated until the coarsest level is reached.
Then we start to move towards finer meshes. In each step the approximate solution
of each level is interpolated into the finer mesh and added, as a correction term,
to the solution approximation of that level, after which a few steps of smoothing
are performed. Finally, when the finest level is reached, a correction term that has
contributions from the whole mesh hierarchy is added to the initial approximation
to the solution.

The scheme presented in Figure 3.5 is known as a v -cycle, for the order in which
levels are visited, some more sophisticated strategies exist, where the coarsest level
is visited twice (a w -cycle) or more times before coming back to the finest level [96].
Usually a v -cycle reduces the error, measured as the norm of the residual, by around
one order of magnitude, so typically several v -cycles are required to find a converged
solution.

When a good initial approximation is not known, an approach known as Full
Multigrid (FMG) can be used. In FMG the original problem is solved first in the
coarsest mesh, then the solution is interpolated to the next mesh in the hierarchy,
where it is used as initial guess. The process is repeated until the finest mesh is
reached. It has been shown that the cost of solving the Poisson equation by FMG
depends linearly with the number of mesh points [96].
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In order to be able to efficiently carry out computer simulations, source code
have to be carefully written and optimised. This project focuses in the usage and
optimisation of the TDDFT software-package Octopus, and this chapter provides
a description of it.
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The simulation at a quantum level of systems consisting of thousands of atoms
makes it possible to understand a wide variety of physical, chemical and biological
phenomena. Despite the remarkable recent improvements in scientific codes and
HPC infrastructures, the size of the systems that can be simulated using TDDFT
is still very limited, and performing calculations with thousands of atoms is still a
significant challenge.

It has been proven that the capacity of such theories to provide accurate results
on the description of a big variety of phenomena at a relatively cheap computa-
tional cost; specially, TDDFT is being used to accurately predict, ab-initio, the
optical absorption spectra of biological systems. When properly validated, TDDFT
calculations can be quite reliable, and they are increasingly used by non-experts to
support and interpret experimental results.

4.1 Octopus code: main overview

Octopus [2, 3, 4] is a very efficient scientific software package used to study by first
principles the properties of the excited states of large biological molecules, complex
nanostructures, and solids. The code is mostly developed for Density Functional
Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) calcula-
tions, which are convenient quantum-mechanic approaches to study the electronic
structure of molecular systems and its time evolution behaviour, as explained in the
previous Chapter 3. It is released under the GPL license, so it is freely available to
the whole scientific community for use, study and modification. The code has been
created around 2000 in the group of professor Angel Rubio who, at that moment,
was as the University of Valladolid and used and developed extensively (included
also the University of the Basque Country UPV/EHU) in the last years to study
systems up to hundreds of atoms.

Over the past years, Octopus has evolved into a fairly complex and complete
tool, and is now used by dozens of research groups around the world. Due to the
open nature of the project, it is hard to measure the total number of users. However,
an estimate can be made from the number of downloads (an average of over 200
downloads per month), and from the number of participants in the users mailing list
(300 participants). Even in this short time-scale, there were a considerable amount
of papers published or submitted by independent groups presenting calculations
performed with Octopus.

For several tasks the code relies on external libraries. For example, linear alge-
bra operations are handled using the BLAS and LAPACK libraries, and the Poisson
equation is solved using very efficient massively parallel libraries (either Interpolat-
ing Scaling Function (ISF) [14] or Parallel Fast Fourier Transforms (PFFT) [15]).
Also the Laplacian of the states has to be evaluated for every mesh point. Octopus
calculates it by finite differences, usually using a star-stencil with 24 neighbours.
Support for BLACS and SCALAPACK is also available, but it has not been opti-
mised yet.

The code is written mainly in Fortran 95 (trying to be as close as possible to the
object oriented paradigm), with some parts in C, and using API of OpenCL [104],
OpenMP and MPI. Currently it consists of 200,000 lines of code (excluding external
libraries).

Since the code is publicly available, it is essential to provide documentation so
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users can learn how to use it. The Octopus website1 contains a user manual and
several tutorials that teach users how to perform different types of calculations,
including some basic examples. Additionally, all input variables have their own doc-
umentation that can be accessed through the website or from a command line utility.
A mailing list is also available, where users can get help with specific questions about
Octopus from the developers or other users.

One of the most important points in developing a scientific code is to ensure
the correctness of the results. When a new feature is implemented, the developers
validate the results by comparing them with known results from other methods
and other codes. To ensure that future changes do not modify the results, we use
an automated system (Buildbot) that runs the code periodically and compares the
results with reference data. A short set of tests is executed each time a change is
made in Octopus while a long one is executed every day. The tests are run on
different platforms and with different compilation options, to ensure that the results
are consistent for different platforms. Users should also run the testsuite to validate
the build on their machine before running real calculations.

To avoid users inadvertently using parts of the code that are being developed
or have not being properly validated, they are marked as “Experimental.” These
experimental features can only be used by explicitly setting a variable in the input
file. In any case, users are expected to validate their results in known situations
before making scientific predictions based on Octopus results.

4.2 Physics of Octopus
Octopus is a code that simulates the dynamics of electrons and nuclei under the
influence of Time-Dependent fields. The electronic degrees of freedom are treated
quantum-mechanically within TDDFT, while the nuclei are considered to behave
as classical point particles. In this code, all quantities are discretized in real-space
using a uniform mesh, and the simulations are performed in real time.

The main equation to solve is the Time-Dependent Kohn-Sham equation; the ini-
tial condition is typically obtained solving a ground state density functional theory
problem, also using Octopus. The main quantities to represent are three dimen-
sional functions: the electronic density and the single particle orbitals (Kohn-Sham
states, or just, states). For big systems these are the most memory demanding
variables.

In the code the functions are represented in a real-space mesh, and differential
operators are approximated by high-order finite differences. The propagation of the
time-dependent Kohn-Sham equation is done by approximating the exponential of
the Hamiltonian operator by a Taylor expansion.

Octopus is used to calculate the excited states of an atomic system. This ex-
cited state is calculated after solving the Ground State (GS). Also, this GS can be set
up arbitrarily, and can be used, for instance to analyse the reactivity of the system,
or the absorption... these latter simulations are called nonequilibrium physics. After
solving the GS, different kind of perturbations may be applied (mechanical, elec-
tronic field, light, protons...) to the same initial state. In fact, real-time TDDFT is
a versatile method to model the response of an electronic system (molecular or crys-

1http://tddft.org/programs/octopus/

http://tddft.org/programs/octopus/
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talline [105]) to different kinds of perturbations. It is useful to calculate properties
like optical absorption spectra [106, 107], non-linear optical response [108, 109], cir-
cular dichroism [110, 111], van der Waals coefficients [112], Raman intensities [113],
etc. The numerical advantage of real-time TDDFT is that the propagator preserves
the orthogonality of the states [114]. In practice, this allows us to propagate each
one of the states in an independent manner, which is ideal for parallelisation. Since
the method does not require expensive orthogonalisation steps, the numerical cost
scales with the square of the size of the system and not cubically as many other
methods [115].

4.2.1 Hamiltonian

In Octopus never is build the Hamiltonian explicitly, since it is not very efficient to
store the finite difference operator and the pseudopotential projectors as a matrix
(even a sparse matrix). It is more efficient to apply them using a routine that
knows about the details of the operator. For example, the coefficients for the finite
difference operator are the same for all points, so for a typical problem we only need
to store 25 values instead of the 25×npoints that a sparse-matrix representation will
use.

Octopus uses Kohn-Sham (KS) formulation of DFT, which leads to a coupled
set of single-particle equations whose solution yields the many-body electronic den-
sity n(~r, t). For example, for the TD case these equations read (atomic units are
used throughout this document)

i
∂

∂t
ϕi(~r, t) =

[
−1

2
∇2 + vext(~r, t) + vHartree[n](~r, t) + vxc[n](~r, t)

]
ϕi(~r, t) (4.1)

n(~r, t) =
occ∑
i

|ϕi(~r, t)|2 (4.2)

where ϕi(~r, t) are the single-particle KS states (also called KS orbitals), vext(~r, t)
is the time-dependent external potential that can be the potential generated by
the nuclei, a laser field, etc.; vHartree[n](~r, t) is the Hartree potential that describes
the classical mean-field interaction of the electron distribution; and vxc[n](~r, t) is
the Exchange-Correlation (XC) potential that includes all non-trivial many-body
contributions.

It is true that the KS equations are an exact reformulation of quantum me-
chanics, both for Time-Independent and for Time-Dependent. However, the exact
form of the XC functional is unknown and, therefore, has to be approximated in
any practical application of the theory. In Octopus different approximations for
this term are implemented, from local and semi-local functionals to more sophisti-
cated orbital dependent functionals, including hybrids [116] and the optimised effec-
tive potential approach [117]. Asymptotic correction methods are also implemented
[118]. The used local and local and semi-local XC functionals are implemented in
a separate library, Libxc [119]. Currently it contains around 180 functionals for the
exchange, correlation, and kinetic energies belonging to the local-density approxi-
mation (LDA), the generalised-gradient approximation (GGA), the meta-GGA, and
hybrid functional families. Functionals for systems of reduced dimensionality (1D
and 2D) are also included.
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4.3 Meshes
Octopus uses a real-space mesh discretisation to represent fields such as the Kohn-
Sham states and the electronic density. Each function is represented by its value
over an array of points distributed in real-space and, internally, it is saved in a
1D vector. Differential operators are approximated by high-order finite-difference
methods [88] while integration is performed by a simple sum over the mesh point
coefficients.

The real-space mesh approach does not impose a particular form for the bound-
ary conditions, so it is possible to model both finite and periodic systems directly.
Moreover, in Octopus the mesh boundaries can have an arbitrary shape, avoiding
unnecessary mesh points. For example, for molecular calculations the default box
shape corresponds to the union of spheres centred around the atoms (see Figure 4.1
for an example).

Spacing = 0.5

Radius = 5

Figure 4.1: Simple 2D Octopus adaptive mesh with a radius of 5 and a spacing of 0.5.

One of the main advantages of the real-space mesh approach is that it is possible
to systematically control the quality of the discretisation. By reducing the spacing
and increasing the size of the box, the error is systematically decreased, and can be
made as small as desired, at the cost of an increased computational cost. This is of
particular significance for response properties [120, 121].

While the real-space scheme results in a large number of discretisation coefficients
when compared with localised basis set representations, the discretised Hamiltonian
is very sparse. In fact, the number of non-zero components depends linearly on the
number of coefficients. Moreover, the Hamiltonian only requires information from
near neighbours, which is advantageous for parallelisation and optimisation.

Finally, since the description of the core regions is expensive with a uniform-
resolution discretisation, in Octopus the ion-electron interaction is usually mod-
elled using norm-conserving pseudopotentials [122]. At the moment, the code can
read pseudopotentials in several formats: the Siesta format [123], the Hartwigsen-
Goedecker-Hutter format [124], the Fritz-Haber format [125] and its Abinit version
[126], and the Quantum Espresso universal pseudopotential format [127]. Relativis-
tic corrections, like spin-orbit coupling, can also be included by using relativistic
pseudopotentials[128, 129]

4.4 Parallelisation of Octopus
Octopus simulations involve a huge amount of computation and memory when
obtaining electronic properties of molecules with a big number of atoms. Thus, a
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parallel version of Octopus must be used to obtain precise results with realistic
size systems in a reasonably bounded time. Octopus applies multi-level paralleli-
sation, using MPI for message-passing among nodes, and OpenMP for intranode
(core) shared memory parallel computation. It can also take advantage of GPU
architectures. There are three levels of parallelisation that are relevant for the kind
of systems we want to study:

• First, the real-space is divided in domains assigned to different processors.
The application of differential operators requires the boundary regions to be
communicated. This is done asynchronously, overlapping computation and
communication. The scaling of this strategy is limited by the number of points
in the mesh which increases linearly with the system size.

The mesh is the data-structure used to represent the space. The real-space
has to be bounded and discretised, and it can be done in one, two or three
dimensions. On top of this mesh are represented such things as the potential
energy (ν), the electronic density of the system (ρ), the system wavefunction,
etc. Technically, the observables are implemented in a 1D vector, from 1 to
mesh%np in every running process. This vector also runs globally with indexes
from 1 to mesh%np global (but this is hardly build during the execution).

The mapping between those two representations (3D global to 1D internal) is
done with the lxyz vector in one direction and with lxyz_inv in the other.
The lxyz vector is a 2D vector, where the first index the global internal point
(N <= mesh%np global) and the second index is the chosen Cartesian index
(x = 1, y = 2, z = 3); the resulting value will be the Cartesian point. To
do the opposite mapping there is the lxyz_inv 3D vector, each dimension
Cartesian index. From mesh 3D indexes (x, y, z), the corresponding internal
point is obtained.

a) Adaptive b) Parallelepiped c) Spherical

Figure 4.2: Different mesh partitions for the benzene molecule. The mesh is partitioned
in 6 domains using adaptive, parallelepiped and spherical shapes.

The shape of the mesh data-structure can be adaptive, parallelepiped or spher-
ical (Figure 4.2). In the former case (which is the default) the mesh is made
by an union of spheres centred in the atoms of the simulated system; in the
other two cases the shape is regular: a parallelepiped and a sphere, respec-
tively. Two parameters define the mesh: the radius (from each atom in the
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adaptive case; the length of each edge in the parallelepiped case; and from the
centre in the case of the sphere, an example can be found in Figure 4.1) and
the spacing, which is the distance between two consecutive mesh points. All
the mesh points are usually taken to be equally spaced.

• Then, the processors are divided in groups, each of one gets assigned a number
of states (orbital). This is a very efficient scheme, since the propagation of
each orbital is almost independent. The limitation to scalability is given by
the number of available states, but this number increases, as in the previous
case, linearly with the system size. An example of those independent orbitals
can be found in Figure 4.3

A state is the representation of an electronic orbital. Each one of the electronic
states under study is defined by a concrete data-structure, which is represented
over the mesh.

Figure 4.3: Example of different atomic orbitals (Kohn-Sham state) for a benzene
molecule, which can be calculated mainly independently.

• Also, an auxiliary data-structure, called cube, is used to to solve Fast Fourier
Transforms (FFT), which are needed to calculate the electrostatic Hartree
potential. The evaluation of FFTs in 3D demands to represent the data in
parallelepiped meshes. In addition, the cutoff technique [71] used in Octopus
to reduce the effect of the undesired periodic images of the inverse FFT also
requires cubic meshes.

The edge of the cube is by default twice the length of the largest axis of the
mesh; thus, it is at least 8 times bigger than the corresponding mesh. The
cube is filled with the mesh points (explained in the next section), and all the
extra points are padded with zeros.

• Finally, each process can run several OpenMP threads. The scalability is lim-
ited by regions of the code that do not scale due to limited memory bandwidth.
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• An additional parallelisation level also exists. For independent particles, the
Schrödinger Hamiltonian can be exactly partitioned according to the k-point
and spin labels. This means that each one of the subproblems, i.e. for each
k-point and spin label, can be solved independently of the others, reducing
thereby the dimension of the Hamiltonian and the computational complex-
ity. Mathematically, in (Time-Dependent) DFT this is no longer true as the
subproblems are mixed by the density. However, a large part of the numer-
ical solution can still be partitioned effectively, making the parallelisation in
k-points and spin very efficient as little communication is required. Such a
scheme does not always help for scaling, unfortunately. For example, for fi-
nite systems only a single k-point is used and in many cases we are interested
in spin-unpolarised calculations. In this extreme case, there is absolutely no
advantage in this parallelisation level.

As the size of the system grows, two factors affect the computing time: first, the
space region to simulate is larger, and second, there are more electrons to simulate
(which is directly related to the number of electronic states). By dividing each of
these degrees of freedom among processors, multi-level parallelization ensures that
the total parallel efficiency remains constant as we increase the system size and the
number of processors.

A lower bound of the memory requirements of the simulation can be estimated
from the number of simulated states × number of mesh points.

Thanks to its current parallel capabilities, Octopus was chosen as a benchmark
code for the Partnership for Advanced Computing in Europe (PRACE) initiative.
This means, as shown, that for the execution of this project the researcher has
access to several supercomputing systems, including prototype machines, and has
collaborated with experts of supercomputing centres.

4.5 Execution modes
Octopus simulates physical systems basically in two phases : firstly, the electronic
Ground State is calculated, and secondly, the converged Kohn-Sham wave-functions
are propagated in time under the effect of an external perturbation. The Ground
State (GS) is obtained applying Density Functional Theory (DFT), whereas the
TDDFT theory is used to obtain the Time-Dependent (TD) solution.

Memory needs increase (roughly) quadratically with the system size under simu-
lation. Generally, the GS requires the use of real numbers for quantum states, while
the TD runs require the use of complex numbers. Thus, the amount of memory
in a time-dependent run usually doubles that of the corresponding Ground State.
On the other hand, total computation amount (flop/s) does not increase in the
same way for the two modes: the Ground State increases roughly as S5/2, while the
Time-Dependent increases as S3/2 (S is the system size, i.e., the number of atoms).

These two run modes scale differently with respect to the number of processes,
and pose different problems. More precisely, the Time-Dependent run mode scales
better than the Ground State calculation, as we will see in the next chapters. The
different scalabilities are due to the specific parallelisation schemes available in each
run mode.
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4.6 Profiling in Octopus
Profiling techniques and infrastructure are already embedded inside the Octopus
code. The main functions of Octopus could be profiled and the user has only to
change a variable in the input file, in order to have profiling results.

To profile itself, there are some auxiliary functions that are called twice in every
important function: one at the beginning and other at the end. When the program
is close to finish, some statistics are calculated, including the time between those two
calls. Profiling output is shown in text files and one file is generated for every MPI
process. Exhaust statistics could be taken from this huge amount of information.

We can demonstrate that the ad-hoc profiler is good enough at estimating the
memory usage. Assuming that the result of the Valgrind Massif profiler [130] is
acceptable, Octopus shows only a small discrepancy (which can also be justified).
Internal profiler makes a tiny underestimation because it can not take into consid-
eration memory allocated by the external libraries.
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Chapter 5

First experiments and obtained
results
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In this chapter we will explain the initial tests we have made to analyse the be-
haviour of the parallel execution of Octopus, and to get the speed-ups for different
problem sizes. As the final objective is to be able to efficiently execute Octopus
using tens or hundreds of thousands of processors, we need to do previously a care-
ful analysis of the executions, varying the number of processors and the size of the
simulated physical systems.
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As mentioned in Chapter 4, Octopus simulations are divided in two parts:
first, a Ground State (GS) must be obtained, and, then, this initial state is used
to perform a Time-Dependent (TD) run. For the GS calculation, two types of
executions have been developed: a GS test, to explore the more adequate number
of computing nodes for the atom system under examination, that involves a few
iterations; and the full GS calculation, an iterative process that obtains the GS,
the starting point of any Time-Dependent simulation. Unfortunately, this iterative
process has resulted a very time-consuming process, specially for the bigger systems.
But the most relevant executions for this type of research are the TD ones, and, as
we will see, the obtained speed-ups are very good, and we will try to go further,
identifying problems and finding solutions.

The simulated systems are chunks of the LHC–II molecule. Different computers
and number of computing nodes have been used to obtain the parallel speed-ups.

5.1 Previous tests
Before this project had started, other tests were made to analyse the behaviour
of the parallel Octopus code. The starting point was encouraging enough to go
ahead, like Figure 5.1 shows.

For that previous tests to analyse the parallel scalability of the method in High
Performance Computing architectures, a smaller part of the LHC–II molecule was
simulated, composed of 650 atoms. The calculation of the absorption spectra re-
quired approximately 12 hours in 512 cores in Vargas. The scaling for this calcula-
tion in two different supercomputers —MareNostrum II and Vargas— can be seen
in Figure 5.1.
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Figure 5.1: Octopus speed-up on previous tests (done by X. Andrade, 2009).

The growth of the computational cost is quadratic with the number of atoms,
since both the number of states and the size of the domains increase linearly. So
it was expected the complete system (around 10 times bigger) to require around
100 times more CPU time, and, since the parallelisation is over the two degrees
of complexity (domains and states), they expected to maintain the level of parallel
efficiency over an equivalent increment of two orders of magnitude in the number of
processes.

Considering that the complete system has 10,000 Kohn-Sham states, if we al-
locate 10 states per process and divide the real space in 128 or 256 domains, we
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could expect the implementation in Octopus to scale reasonably beyond 100,000
processes. This makes it an ideal case for a large massively parallel supercomputer.

5.2 Computers and atomic system sizes
The machines used for this study are Vargas, MareNostrum II, Jugene and Ganbo
(presented in Chapter 2, Section 2.2.3).

The computer architecture and its configuration determine the sizes of the atomic
systems we can simulate. These atomic systems are chunks of the LHC–II molecule,
and they are composed of 180, 441, 650, 1365, 2676 and 5879 atoms. To simulate
them, the main constraint is the memory per node that is available, that limits
the maximum size of the system. So, depending on the computer we use, we have
tested different sizes of atomic systems. A resume of the executed systems can be
found in Table 5.1. At this beginning point, we had problems converging systems
bigger than 1365 atoms, so we could only do TD and GS calculations and speed-up
measurements for equal or smaller systems.

No. of atoms
180 441 650 1365 2676 5879

Machine Ganbo yes yes - - - -
Vargas yes yes yes - - -

MareNostrum II yes yes yes - - -
Jugene yes yes yes yes - -

Table 5.1: Computers and atomic system sizes.

We have, also, another limit: the size of jobs we could reserve in the machines.
For example, the minimum size of the partition to use in Jugene is 32 nodes, since it
is a HPC machine for parallel jobs. Each node has 4 cores, so the minimum number
of cores can be reserved is 128. This force us to normalise speed-ups to this number.

5.3 Results of the experiments
A great amount of tests have been done in within the initial stage of this project to
explore the use of new computers and higher atomic systems. We will summarise
all the tests here; all the remaining explanations can be found in appendix C.II.

The tests are divided into two main groups: the Ground State calculation (GS),
and the Time-Dependent (TD) simulations. The results of a Ground State must be
calculated before starting different TD simulations. In fact, TD simulations are the
physically interesting objectives of Octopus.

5.3.1 The Ground State calculations

First of all, we have to measure how long take the GS executions and how they scale
with the number of processes. Once the GS tests are done, real calculation of the
GS, until convergence, have to be done.

The GS calculation is an iterative process that obtains the basic state of an
atomic system. But before starting those iterations, some initialisations are required,
to create the mesh, to reserve memory, to prepare the MPI environment... So, the
overall execution time is the sum of both parts (initialisations + iterations). In fact,
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this overall time is not very meaningful, because: (1) it changes only a bit with
different number of processes, and (2) the initialisation has a big influence, as we
have limited the GS test to only a few iterations (Figure 5.2). So, we have focused
in the iteration times.

Tinit Titer

Tinit Titer Titer Titer

Execution time
(GS tests)

Execution time
(real GS)

Titer...

Figure 5.2: The total execution time of GS tests and real GS (initializations + iterations).
For the tests the initialization part has a big influence, while in a real GS it is negligible.

The GS calculations can only be parallelised in domain; it is not possible to
parallelise them in states. Domain parallelisation, as mentioned in the introduction,
is the division of the real-space into domains, that are assigned to different processes.
This type of parallelisation is limited by the number of points in the mesh, so, in
principle, the scaling could not be very important, because, beyond certain point,
we do not get more precision with a finer mesh.
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Figure 5.3: GS iteration time (A), and efficiency and speed-up (B), in the Jugene machine.
X axis is the number of MPI processes. Every line represents an experiment with a different
number of atoms. The speed-ups are normalised to 32 processes. For the three system sizes,
only a moderate speed-up is shown until 256 processes; with 512, the efficiency is only 20%;
and with 1024, 10%.

The first set of test was devoted to analyse the speed-up with a small atomic
system and a reduce number of processes, because the HPC resources are quite ex-
pensive and limited. The significant part of the code of the GS is the Self Consistent
Field (SCF), where iterative calculations are done; Figure 5.3 shows the obtained
results. We obtain a moderate increment in the speed-up until 256 processes. The
speed-up seems to reach a plateau near 512-1024 processes, with an efficiency of only
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0.1 with 1024. Therefore, we have found the limit of the parallelisation of the GS
calculation between 512 and 1024 processes, independently of the number of atoms
used.

In summary, Ground State tests were need to obtain the more adequate number
of processors for an efficient GS parallel execution. We have estimated that number
in between 256-512 processes (efficiency of 0.36 and 0.2 respectively), because we
obtain a fast execution without wasting too much resources. As mentioned, that
final GS execution must be done only once, and it is the starting point for different
and longer TD calculations.

5.3.2 Time-Dependent (TD) calculations

In a second step, we have measured the execution time of the Time-Dependent
simulations: the elapsed1 time of all the programs, and also, the time of one iteration
(to be more precise, we did 10 iterations and calculate the average). The Octopus
code has to do initializations (create the mesh, reserve memory, prepare the MPI
environment...) before can start doing actual simulations.
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Figure 5.4: Execution time of a TD iteration. Two systems are shown: 180 atoms in
(A) and 1365 atoms in (B) and two machines (Ganbo and Jugene). In Ganbo, as it
has 8 cores per node, we can either use 1 processor (8 cores) for each MPI process (and
use the 8 cores for OpenMP parallelisation), or we can use a core for each MPI process.
“Tuned” label indicates that each processor is using 22 states. A deep argumentation of
this option is shown below. “Domain” label means that domain parallelisation is used, and
“domain+states” indicates that both parallelisation schemes are used.

1Elapsed time: is the global execution time of a function, including all the function calls inside
it.
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The overall execution time is not very meaningful, there is no great improve-
ment in that overall time and sometimes is even worse with more processors. So
we focused our effort to measure the execution time of an iteration, as Octopus
does an iterative process to find a solution. Like in the GS calculations, we limited
our tests to a fixed number of iterations (Figure 5.2 is also valid for TD calcula-
tions; the initialization part is important in these tests, while it is negligible in real
calculations).

Figure 5.4 shows the execution time for one iteration of the TD calculation, using
two different machines (Jugene and Ganbo) and a small and a big atomic system,
of 180 and 1365 atoms respectively. Figure 5.5 shows the achieved speed-ups.

1

10

100

4 16 64 256 1024 4096

S
p

ee
d
-u

p

MPI processes

Ideal 1365

1365 domain

1365 domain + states tuned

1365 domain + states

Ideal 180

180 domain

180 domain + states

Figure 5.5: TD iteration speed-up in Jugene. Two systems are shown (180 and 1365
atoms). The speed-ups are normalised to 4 in the 180 atoms system and to 512 in the
1365 atoms system.

The obtained results show that speed-ups are not growing linearly, and so, the
efficiency of the execution is very low when the number of processors is high. For
the system with 1365 atoms, it is not worth to use more than 2-4K processors, and
for the system with 180 atoms that maximum value is 512. For these maximum
values the last efficiencies are below the 40% and suggest us a limit. If a deeper
parallelisation must be achieved, we need to study why the system do not scale
linearly or, at least, more efficiently. We have to find issues and get more detailed
information.

Parallelisation strategies

But, before going forward, we have to find the best parallelisation strategy. So,
we have made tests tuning the available parallelisation levels; domain and states
parallelisations are the alternatives that we can work with. The options that we
have tried are:

• Parallelisation over domains. The mesh is split over all the processes.

• Automatic parallelisation over domain + over states. We let the code decide
the number of nodes used for each kind of split.
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• Manually optimised parallelisation over domain + over states. We have done
some tests to decide the best number of nodes for each parallelisation.

We have obtained the best results (less time for the execution of an iteration)
manually tuning the nodes for parallelisation and doing domain and states paral-
lelisation (Figure 5.6).
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Figure 5.6: An execution of the 1365 atoms system in Jugene, using 512 processes, varying
the number of nodes dedicated to split the domain or to split states. The representation we
used in X axis label is par domains|par states. The first part of the label is the number of
nodes that are dedicated to split the domain. The second part of the label is the number of
nodes that split the states. The columns in the graphic show the number of states that has
each process in average (with this system we have approximately 1800 states, that have to
be divided with the second number of the label).

We get the best result when we split the mesh in such a way that we let each
processor run 22 states. Figure 5.6 shows that the best way to do the split can be
either 8|64 or 16|32 (processes for domains|processes for states). But, as we know
from previous experience, the ideal split used to be around 10 states per node and
the most efficient nearest value in this case is 22 states per node; so, we have decided
to use the 8|64 partition. When we increase the number of nodes we will keep the
number of states per node fixed (in this case, 22).

Poisson solver

Using the profiling infrastructure of the Octopus code we have done a more de-
tailed analysis. In this manner, we have been able to obtain the execution times of
each function. As we are running in a big amount of processes, an equivalent num-
ber of files are generated. These files have been processed to obtain the adequate
information. We have selected two kind of functions to generate Figure 5.7: those
that need a big amount of time, and those that have a big variance.

From Figure 5.7 we can argue that almost all the functions scale efficiently,
i.e. they need less execution time with more processes. However, one of them, the
Poisson solver function, shows an “anomalous” behaviour; instead of decreasing its
execution time with more processes, it increases. Moreover, this analysis shows that
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Figure 5.7: Cumulative execution time for all the most important Octopus functions for
the 1365 atoms system in Jugene. All the functions but the Poisson solver function are
scaling quite well.

Processes 512 1024 2048 4096 8192
Iteration execution time (s) 44,89 34,03 19,61 11,74 8,81

Poisson solver execution time (s) 1,14 1,27 2,72 3,21 4,25
Poisson solver percentage (%) 3 4 14 27 48

Table 5.2: Poisson solver execution time as a percentage of the TD iteration execution
time, for a system of 1365 atoms in Blue Gene/P.

the Poisson function accounts only for a little percentage of the execution time of an
iteration when few processors are used. But, when a huge number of processors is
used, it comes up until the 50% of the iteration time (Table 5.2 shows this evolution).
Whereas we have previously only mentioned the limited speed-up of the TD run,
now we can expose that the Poisson solver is the main source of this weakness.

This function solves a Poisson equation that needs to work with “global” data.
Previous to the calculus, the data distributed among the processes must be collected
in one process (executing a MPI function: MPI ALLGATHER, all the other calls are
shown in Figure 5.8). In this function the Poisson equation is solved using an old
version of the Interpolating Scaling Function (ISF) method. Since this method uses
Fast Fourier Transforms (FFT), two MPI ALLTOALL have to be done [57]. After
collecting all data (MPI ALLGATHER), at the end of the function, the results have
to be distributed again to all the nodes (a MPI SCATTER is needed for that).

ALLGATHER ALLGATHERALLTOALL ALLTOALL SCATTER

Figure 5.8: MPI calls inside the Poisson subroutine.

All those MPI calls involve all the processes solving the equation, so we could
suggest that, in principle, the scaling could not be good. Because the number
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of processes is increasing, although each process has less computation to do, the
communication time will maintain or increase. A reduction of the computation has
to be followed by a reduction of the communication cost, which is really difficult
using MPI global communication functions, such as gather and scatter.

5.4 Memory and execution time constraints
Octopus is a complex piece of software, with a lot of interrelated functions that
need to be carefully tuned if good parallel efficiency must be reached. Of course, the
behaviour of the parallel version of these functions can change with the number of
processes. Besides the mentioned problems in the tests, it is important to mention
the limitations we have had with the memory and execution times.

5.4.1 Memory limitations

RAM memory of current processors ranges from 1 GB up to 32 GB; therefore, a
parallel supercomputer offers us a great amount of total memory, usually lots of TB.
Despite this huge amount of RAM memory, some applications can be limited by the
memory of an individual computing node. This is the case of Octopus, where the
data structures representing an atomic system must be loaded in every process. In
fact, as memory per computing node in Jugene is not very high (2 GB), we have
been not able to simulate the biggest atomic system that we had.

Although the atomic system simulation could fit in memory, we found problems
to converge the system, i.e. to get the real GS. After we have done the GS tests we
have to converge the atomic system to begin with the TD tests. These simulations
until convergence were not as we expected, and we had to customise input variables
to get a real GS.

5.4.2 Execution times

The time spent executing the different tests has been huge (much more than 1,500,000
core hours), and we have already mentioned the two main reasons: problems to fit
systems in memory (we have had execution allocation errors) and the difficulties
to converge the GS in the firsts attempts. For those reasons, we have used a lot
of computational time and we had reached the limit in assigned hours in Jugene
supercomputer. Appendix C.I shows an analysis of the consumed execution times.
Therefore, to be able to finish these preliminary tests, we asked the manager of
Jugene for more computing time.

5.5 First alternatives to improve the Poisson solver
The results of the tests we have executed in different computers and with different
system sizes show that if high speed-ups —in the range 10,000-100,000— are to be
obtained, we must improve the efficiency of the Poisson solver. We can try several
ways to obtain this objective. The very first approach, but not the better one, is
to limit the number of nodes we use to solve the Poisson equation, so bounding
the execution time of this part of the code. This strategy can offer a solution for
moderate size computers, but will fail with the highest ones (Amdahl’s law).

To obtain a better performance, we have to change the algorithm that solves the
Poisson equation. There are several approaches. First, we could use the Fast Multi-
pole Method (FMM) [80]. This method consists in splitting the mesh into different
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sub-grids. In this manner, the closest point calculations are done exhaustively, and
approximations are used for further points. Applying this method we can save a lot
of computation.

Time

P

P

P

E1

E1

E1

E2

E2

E2

Corr.

Corr.

Corr.

1st TD iteration 2nd TD iteration 3rd TD iteration

Figure 5.9: Approximated propagator for the Poisson solver. Each TD iteration has one
Poisson solver (P box in the Figure) and two exponential (E1 and E2). As the first
exponential depends on the Poisson solver and is calculated at the same time as the Poisson
solver, a correction has to be applied later (Corr.). In this way, we overlap the executions
of P and E1.

Another possible solution could be to try to pipeline different functions. It is
likely that the execution can continue with some calculations without attending the
final results of the Poisson solver, making an approximation at the beginning and
applying a correction later.

In fact, a TD iteration consists in applying (1) the Poisson solver, plus two
exponential functions: (2) exp

(
− i∆t

2
H(t + ∆t)

)
and (3) exp

(
− i∆t

2
H(t)

)
. In

principle, these functions have to be done sequentially. But, there is a way that
we can shift to the beginning the (2) exponential and calculate it together with
the (1) Poisson solver, using an approximation. After (1) and (2) are calculated, a
correction has to be applied to the result of the (2) exponential, before calculating
the (3) exponential (Figure 5.9). This correction is not very heavy computationally,
so overlapping the two executions, (1) and (2), we could perform faster. Even if
implemented, this solution was later dismissed, in favour of more efficient solvers.
Nevertheless the scalability of this strategy will be limited by the Amdahl’s law.

5.6 Conclusions
The work presented in this chapter was mainly done in my master thesis. The aim
was to do an initial efficiency analysis of the parallel version of Octopus code.
The test we have done helped us to identify the bottlenecks that prevents the code
scaling efficiently with the number of processes beyond 512-1024. We have checked
the scaling of the program varying the number of processes in four supercomputers
(Jugene, MareNostrum II, Vargas and Ganbo), with four different system sizes.

All the Octopus executions have an initialisation part and iterative part (Figure
5.2); we have focused our analysis in the iterative part of the executions. Three types
of experiments have been done:
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1. GS tests: tests to measure the times needed to obtain the ground state of an
atomic system, in order to tune the most adequate number of processes to
do the real GS calculation. The scalability of these tests was poor. In any
case, we have obtained moderate speed-ups, so we could use around 256-512
processes efficiently to do such calculations.

2. Real GS: is an execution until convergence of the atomic system to start with
TD simulations. It has to be done only once and with the best number of
processes, as mentioned above. We have used more computer time than the
ideal, because of problems with the lack of memory and with the convergence
of the system.

3. TD tests: tests to measure the execution times of the Time-Dependent iter-
ations (average of 10 iterations), the most important one for the project and
from the physical point of view.

In the TD tests the scalability was high until 2-4K processes (Figure 5.5), but
with more processes the efficiency was poor (less than 40%). Using profiling tech-
niques, we have analysed the code and identified the problem. We found some
bottlenecks that prevent us going further and we conclude that we have to improve
the Poisson solver function, if massively parallel execution want to be done. That
solver accounts for a little percentage of the total execution time when using few
processes, but for instance, in 8K processes it is the half of the iteration execution
time (Table 5.2).

In the next chapter we will see a complete survey of different Poisson solvers and
how we have overcame this problem.
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In the previous chapter we conclude that the Poisson solver is the source of the
most important bottleneck. Therefore, we are going to analyse different available
alternatives with more detail, in order to be able to find the best option. At first we
give the specifications of the implementation, and, after, we compare their results.
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The Poisson solver or the calculation of the potential associated to a charge distri-
bution is an important step in many numerical implementations of DFT/TDDFT.
In addition, the calculation of the electrostatic potential associated to a charge
density can appear in other contexts in electronic structure theory, like the ap-
proximation of the exchange term [131, 132, 118], or the calculation of integrals
that appear in Hartree–Fock [133, 134] or Casida [135] theories. It is understand-
able that the calculation of the electrostatic potential has received much inter-
est in the recent past within the community of electronic structure researchers
[136, 137, 71, 138, 14, 139, 140].

Since at present the complexity of the problems requires High Performance Com-
puting platforms [23], every algorithm for a time-consuming task must not only be
efficient in serial, but also needs to keep its efficiency when run in a large number
of processors (e.g. more than 10,000 CPUs). The electrostatic interaction is non-
local, and thus the information corresponding to different points interacting with
each other can be stored in different computing units, with a non-negligible time
for data-communication among them. This makes the choice of the algorithm for
the calculation of the Hartree potential critical, as different algorithms also have
different efficiencies. Thanks to the efficiency offered by the current generation of
solvers, the calculation of the Hartree potential usually contributes a minor fraction
of the computational time of a typical DFT calculation. However, there are cases
where the Poisson solver hinders the numerical performance of electronic structure
calculations. For example, in parallel implementations of DFT it is common to
distribute the Kohn-Sham orbitals between processors [141]; for real-time TDDFT
and molecular dynamics in particular, this is a very efficient strategy [142, 143, 2].
Nonetheless, since a single Poisson equation needs to be solved independently on the
number of orbitals, the calculation of the Hartree potential becomes an important
bottleneck for an efficient parallelisation [13, 2] as predicted by Amdahl’s law, if it
is not optimally parallelised. Such a bottleneck also appears in other contexts of
computational chemistry and physics, like Molecular Dynamics [144].

In this chapter we will analyse the relative efficiencies and accuracies of some
of the most popular methods to calculate the Hartree potential created by charge
distributions. Our purpose is to provide estimates on the features of this solvers that
make it possible to choose which of them is the most appropriate for the electronic
structure calculations. First, we discuss the details of our implementation and the
parallel computers we use. Following, we present the results of our numerical ex-
periments. We finish by stating our conclusions. Remember that the theoretical
introduction to the Poisson equation is given in the Chapter 3 (Section 3.5). More
specific derivations and analysis are provided in the Appendix D.

6.1 Poisson implementations
For our tests on the features of Poisson solvers in the context of quantum mechanics,
we chose the Octopus code [3, 4, 2] —presented in Chapter 4—, since it is repre-
sentative of the trends for quantum ab-initio simulation for the Poisson problem.

Because the block of calculating the Hartree potential is made in a real-space
representation in most simulation packages, the results of our comparison are not
particular to Octopus and are rather general and package independent. However,
other implementations could show slight differences in their performance features.
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To ensure a fair comparison between the methods, we tried to use implementations
as efficient as possible. In particular, state-of-the-art massively parallel implementa-
tions were used in the case of the FFT, ISF, and FMM methods. The corresponding
packages are publicly available, and they can be integrated into other codes. The
Conjugate Gradients and Multigrid solvers are less portable, since they are ad hoc
implementations for our code (they do not appear in isolated libraries). Although
there exist more competitive implementations of Conjugate Gradients and Multi-
grid, our tests of them are expected to provide conclusions that can be extrapolated.

Further details about each implementation are given next.

6.1.1 Parallel Fast Fourier Transforms

In three dimensions, a discrete FT of size n1 × n2 × n3 can be evaluated using
1D FFTs along each direction, yielding a fast algorithm with arithmetic complex-
ity O(n1n2n3 log2(n1n2n3)). In addition, the one-dimensional decomposition of the
3D-FFT provides a straightforward parallelisation strategy based on a domain de-
composition strategy. We now present the two-dimensional data decomposition that
was first proposed by H. Q. Ding et al. [145] and later implemented by M. Elefthe-
riou et al. [146, 147, 148].

The starting point is to decompose the input data set along the first two di-
mensions into equal blocks of size n1

P1
× n2

P2
× n3 and distribute these blocks on a

two-dimensional mesh of P1 × P2 processes. Therefore, each process can perform
n1

P1
× n2

P2
one-dimensional FFTs of size n3 locally. Afterwards, a communication step

is performed that redistributes the data along directions 1 and 3 in blocks of size
n1

P1
× n2 × n3

P2
, such that the 1D-FFT along direction 2 can be performed locally on

each process. Then, a second communication step is performed, that redistributes
the data along direction 2 and 3 in blocks of size n1 × n2

P1
× n3

P2
. Now, the 3D-FFT

is completed by performing the 1D-FFTs along direction 1. This algorithm is il-
lustrated in Figure 6.1. For n1 ≥ n2 ≥ n3 the two-dimensional data decomposition
allows the usage of at most n2 × n3 processes.

P2
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n2
n1

n3
T

P2

P1

n2
n1

n3

T
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P2
n2
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n3

Figure 6.1: Distribution of a three-dimensional dataset of size n1 × n2 × n3 = 8 × 4 × 4
on a two-dimensional process mesh of size P1 × P2 = 4× 2.

Since it is not trivial to implement an efficient FFT routine in parallel, we rely on
an optimised implementation. Fortunately, there are several publicly available FFT
software libraries based on the two-dimensional data decomposition. Among them
are the FFT package from Sandia National Laboratories [149, 150], the P3DFFT
software library [151, 152], the 2DECOMP&FFT package [153, 154], and the PFFT
software library [15]. Other efficient implementations exist, but unfortunately they
are not distributed as stand-alone packages [155]. Our test runs are implemented
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with the help of the PFFT software library [15], which utilises the FFTW [156, 157]
software package for the one-dimensional FFTs and the global communication steps.
PFFT has a similar performance to the well-known P3DFFT, as well as some user-
interface advantages [15], so we chose it for our survey.

6.1.2 Interpolating Scaling Function

For the ISF solver we used the latest version of the original package provided by
its authors [14]. This version is distributed as part of the BigDFT code [74], but
can be compiled as a standalone library, and we will therefore refer to it as libISF.
This library includes its own parallel FFT routine [76], which divides the mesh into
smaller parallelepiped plane-like domains disjoints in its x (or y or z) coordinate, so
we expect this part of the solver to have different scaling properties than the solver
based on the PFFT library.

The accuracy of the ISF solver is defined by the choice of expanding the 1/r
kernel into 81 Gaussians. Choosing a larger number of Gaussians would result in
more precision, without any increase in the computations (only the initialisation will
be slightly slower), yet the default value of 81 is appropriate for our purposes.

6.1.3 Fast Multipole Method

In this case we have used a massively parallel version of the Fast Multipole Method
[81], which we will denote as libFMM. The concrete implementation used in this
work is explained in [16, 81] and it is included in the Scafacos package (“scalable fast
Coulomb solver”)[17, 18], which is a general parallel library for solving the Coulomb
problem. Additionally to the libFMM library, it also provides other state-of-the-art
methods with a common interface.

Effective parallelisation of this method is attained by a domain decomposition.
Moreover, libFMM allows the user to tune the relative error of the calculations. Its
expression is the quotient (Eref−En)/En, where En is the Hartree energy calculated
with the FMM method and Eref is an estimation of what its actual value is. We
chose for our calculations a relative error of 10−4. Note that this error corresponds
only to the pairwise term of the Hartree potential, before the correction for charge
distribution is applied (see Section 3.5.3 and Appendix D.IV).

6.1.4 Conjugate Gradients and Multigrid

Different versions of the Conjugate Gradients and Multigrid algorithms can have a
big efficiency difference for some problems [158]. In this work, we chose the semi-
nal version of Conjugate Gradients [90] and the standard version of Multigrid using
Gauss-Seidel smoothing (with 1 cycle for presmoothing and 4 cycles for postsmooth-
ing). We choose them because they are at present widely used. The Hestenes ver-
sion is among the most popular versions of Conjugate Gradients [159, 160, 161] and
it is commonly used in programs and libraries seeking efficiency [162, 159]. The
Multigrid algorithm with Gauss-Seidel smoothing is also quite popular at present
[163, 164, 158]. The fact that our implementations of Multigrid and Conjugate Gra-
dients might not be the fastest available is because of their accuracy issues: on the
one hand, both methods fail when the shape of the simulation mesh is not compact
and the nuclei are not far from its border (which precludes most of the practical
cases); on the other hand, even for such boxes, the accuracy of the calculations
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for both methods is much lower than that of the most competitive solvers (i.e. ISF,
FMM, and PFFT), as will be shown in Section 6.2.1. The limited accuracy of Multi-
grid and Conjugate Gradients for our problem did not make it advisable to focus on
thorough implementations for them. Therefore, the efficiency properties of Multi-
grid and Conjugate Gradients presented in Section 6.2.2 must be understood as an
estimate of the properties of the corresponding solver families, in contrast to the
efficiency properties of the most accurate methods (ISF, FMM, PFFT), whose im-
plementations correspond to libraries thoroughly selected among the most efficient
existing ones.

It is to be stressed that the Multigrid and Conjugate Gradients solvers do not
produce appropriate results when the set of mesh points corresponds to adaptive
shape (the default case in Octopus), and must be used with compact shapes, such
as spherical or parallelepiped. This is because in adaptive mesh we impose the value
of the density to be strictly 0 in some points, and representing it with a smooth series
as a multipole expansion can lead to very steep changes in the density, and therefore
to errors.

With respect to the parallelisation of our CG implementation, it is based on the
domain decomposition approach, where the mesh is divided into subregions that
are assigned to each process. Since the application of the finite-difference Laplacian
only requires near-neighbour values, only the boundary values need to be shared
between processors (see refs. [3, 2] for details). Since our implementation can work
with adaptive shape meshes, dividing the meshes into subdomains of similar volume
while minimising the area of the boundaries is not a trivial problem, so the Metis
library [165] is used for this task.

Just as in the case of Conjugate Gradients, the parallelisation of Multigrid is
based on the domain decomposition approach. However in the case of Multigrid some
additional complications appear. First of all, as coarser meshes are used the domain
decomposition approach becomes less efficient as the number of points per domain is
reduced. Secondly, the Gauss-Seidel procedure used for smoothing should be applied
to each point sequentially [96] so it is not suitable for domain decomposition. In
our implementation we take the simple approach of applying Gauss-Seidel in parallel
over each domain. For a large number of domains, this scheme would in fact converge
to the less-efficient Jacobi approach.

Concerning the chosen input parameters for our test calculations, we fix the
multipole expansion (the order of the multipole expansion of the charges whose
potential is analytically calculated [66]) to 7 for Multigrid and Conjugate Gradients.
In addition, for Multigrid we have used all available Multigrid levels (number of
stages in the mesh hierarchy of the Multigrid solver). Further information about
the concrete parameters can be found in the Section D.II of the Appendix D.

6.2 Results
In this Section we present the results of our tests to measure the execution time and
accuracy of the methods discussed in Chapter 3 (Section 3.5). Although in principle
the accuracy should not depend significantly on the particular implementation of
the method used, the same is obviously not true for the execution time. Therefore,
in order to avoid any ambiguity, whenever the term Poisson solver is used in the
following, it always refers to a particular implementation of a given method. The
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chosen parameter for the tests presented here are show in Chapter D (Section D.II).
Our tests consist of the calculation of the Hartree potential v for a given charge

density ρ, but the efficiency conclusions would be also valid for cases where a classical
generalised potential ((v,A), analogous to the Hartree potential) is calculated as
a function of the charge density and the magnetisation ((ρ,m), or equivalently
(ρ↑, ρ↓)). This is because such a “classical magnetic term” would be also pairwise.

6.2.1 Accuracy

All the quantities involved in ab-initio calculations have to be calculated with as
lowest possible errors to ensure the desired accuracy of the final result, and the
Hartree potential is not an exception. In order to gauge the accuracy of the anal-
ysed solvers, we calculate the Hartree potential created by Gaussian charge distri-
butions. Such potentials can be analytically calculated, and hence the error made
by any method can be measured by comparing the two results: numerical and
analytical. The chosen input charge distributions correspond to Gaussian func-
tions ρa(~r) = exp(−|~r|2/α2)/α3π3/2, with α chosen to be 16 times the spacing,
i.e. 3.2 Å (this guarantees that the smoothness of the Gaussian test function is
similar to the smoothness of densities of general physical problems). Such charge
distributions are represented in cubic meshes with variable size (2Le) and constant
spacing between consecutive points (spacing = 0.2 Å) in all three directions. The
use of other values for the spacing does not alter the accuracy in a wide value range,
and increases the numerical complexity proportionally with the corresponding in-
crease of the mesh points (see Figure D.1 (page 137) of the Appendix D.II). We use
two different quantities to measure the accuracy of a given method, the error in the
potential, Ξv, and the error in the electrostatic energy, ΞE. We define them as

Ξv :=

∑
|va(r)− vn(r)|∑
|va(r)|

, (6.1a)

Ea =
1

2

∫
dr ρa(r)va(r) = − 2

α3π1/2

∫ ∞
0

dr r exp(−r2/α2) erf(r/α) , (6.1b)

En =
1

2

∑
ρ(r)vn(r) , (6.1c)

ΞE :=
Ea − En
Ea

, (6.1d)

where ~rijk are all the points of the analysed mesh, r = |~r|, and erf stands for the
error function. va is the analytically-calculated Hartree potential, vn is the potential
calculated numerically, and Ea and En, respectively, are their associated electrostatic
energies. These quantities provide an estimate of the deviations of the calculated
potential and energy from their exact values. Ξv gives a comprehensive estimate of
the error in the calculations of the Hartree potential, for it takes into account the
calculated potential in all points with equal weight, while ΞE provides an estimate
of the error in the potential in high-density regions.

In Table 6.1 we display the errors in the potential and the energy for the tested
methods. The FFT and ISF methods provide in general best accuracies. Our imple-
mentation of the Multigrid solver does not work for big mesh sizes due to memory
limitations. The errors in energy ΞE are less sensitive to local deviations than the
errors in potential Ξv, since the former are weighted with the density. ΞE varies
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just lightly with the different sizes for the most reliable methods (ISF, FFT, and
FMM, though FMM is less accurate than the other two). The values of Ξv are also
essentially constant for ISF and FMM. However, for the FFT method an increase
of the accuracy with the system size is clear. This is because the solution of the
FFT corresponds to the superposition of infinite periodic images; for smaller sizes,
the neighbour images are closer from the centre of the mesh where we measure
the potential, and therefore the images contribute more significantly to distort the
potential (the closer the centres of two Gaussian functions, the bigger their superpo-
sition). The errors in both potential and energy of the Multigrid method oscillate a
bit, as a consequence of the different number of used multigrid levels. The errors for
the Conjugate Gradients method increase with the size of the system because the
bigger the number of points, the harder it is for the multipolar expansion (see Chap-
ter 3, Section 3.5.4) to adapt to all the mesh points. As stated in Section 6.1, the
Multigrid and Conjugate Gradients methods do not provide acceptable accuracies
whenever the simulation mesh is not compact. The accuracy of the FMM method
is mainly limited by the approximation of the charge densities as sets of discrete
charges (the results obtained with the FMM are almost identical to those of direct
pairwise summation).

Potential error, Ξv:
Le (Å) FFT ISF FMM CG Multigrid

7.0 3·10−4 6·10−9 9·10−5 3·10−5 1·10−6

10.0 2·10−8 1·10−9 2·10−4 3·10−5 3·10−7

15.8 1·10−8 1·10−9 2·10−4 5·10−5 4·10−6

22.0 2·10−10 2·10−9 4·10−4 5·10−4 8·10−7

25.8 < 9 · 10−13 3·10−9 4·10−4 6·10−3 —
31.6 < 9 · 10−13 3·10−9 4·10−4 1·10−2 —

Energy error, ΞE (eV):
Le (Å) FFT ISF FMM CG Multigrid

7.0 2·10−8 2·10−8 5·10−6 2·10−5 1·10−6

10.0 1·10−8 2·10−8 6·10−6 5·10−6 4·10−7

15.8 1·10−8 2·10−8 6·10−6 5·10−5 2·10−6

22.0 1·10−8 2·10−8 5·10−6 5·10−4 6·10−7

25.8 1·10−8 2·10−8 7·10−6 3·10−3 —
31.6 1·10−8 2·10−8 6·10−6 6·10−3 —

Table 6.1: Potential, Ξv, and energy, Ξv, errors of different methods in the calculation
of the Hartree potential created by a Gaussian charge distribution represented on cubic
meshes of variable edge 2Le Å and spacing 0.2 Å.

In order to assess how the accuracy of the Poisson solver affects an actual DFT
calculation, we calculated the GS of a system of one chlorophyll containing 180
atoms (smallest system of Figure 1.2 of the Section 1.3). To this end, we used
pseudopotentials (Troullier and Martins type), so 460 electrons are treated in the
calculation. The mesh shape was a set of spheres of radius 4.0 Å centred at the nuclei,
and the mesh spacing was 0.23 Å. The Exchange-Correlation (XC) functional used
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was the VWN-LDA functional [166]. In Table 6.2 we display the value of the Hartree
energy, the highest eigenvalue, and the HOMO-LUMO gap1. The FFT method is
expected to provide the most accurate results (by considering the results of Table
6.1). The maximum difference in the Hartree energy divided by the number of
electrons is less than 0.015 eV. The maximum difference in the HOMO-LUMO gap
is less than 0.0092 eV. In this test case, the differences among all five methods can be
considered negligible (much lower than the errors introduced by the XC functional,
the pseudopotentials and the discretisation). However, note that the deviation of
the Hartree energy for the Multigrid and Conjugate Gradients methods with respect
to the most accurate method (FFT) is rather larger than that of the ISF method,
and so are the HOMO and the HOMO-LUMO gap.

Hartree energy (eV) HOMO (eV) HOMO-LUMO gap (eV)
FFT 240,820.70 -4.8922 1.4471
ISF 240,821.48 -4.8935 1.4489
FMM 240,817.29 -4.8906 1.4429
CG 240,815.01 -4.9009 1.4521
Multigrid 240,814.69 -4.8979 1.4506

Table 6.2: Influence of the different methods on the Hartree energy, HOMO energy level
and HOMO-LUMO gap corresponding to the ground state (calculated through DFT with
pseudopotentials) of a chlorophyll stretch with 180 atoms.

6.2.2 Execution time

In order to gauge the performance of the Poisson solvers, we have measured the
solution time for each solver as a function of the number of processes. This measured
time only includes the operations directly related to the solution of the Poisson
equation, and excludes the initialisation time of the Poisson solver. The selected
machines are two Blue Gene/P (Jugene and Genius), Curie and Ganbo (presented
in Chapter 2, Section 2.2.3). We ran one MPI process per node on Blue Gene/P’s
due to limited amount of memory per node, and one single MPI process per CPU
core on Curie and Ganbo. In the latter two, further tests of the efficiency of OpenMP
were also done2. Runs up to 4096 MPI processes were made in Genius, Jugene and
Curie machines. Whereas, runs up to 512 were made in Ganbo.

In our efficiency tests we calculated the potential created by Gaussian charge
distributions as those explained in Section 6.2.1. These charge distributions are
represented in parallelepiped meshes with edge length 2Le, for Le equal to 7.0, 10.0,
15.8, 22.0, 25.8 and 31.6 Å respectively. The mesh points were equispaced with a
spacing of 0.2 Å (additional tests with variable spacing are presented in Appendix
D.II). The smallest simulated system, with Le = 7.0 Å, contained 357,911 mesh
points, while the largest one with Le = 31.6 Å contained 31,855,013 mesh points.

1The HOMO-LUMO gap is often used to test the accuracy of a calculation method [167] because
it provides an estimate for the first electronic excitation energy [168]. The HOMO itself provides
an estimate for the ionization energy [169].

2Multithreading is implemented in PFFT and libISF, our Conjugate Gradients solver shows
only a small improvement, and the libFMM and Multigrid solvers do not take advantage of this
feature.
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Figure 6.2: Execution times for the calculation of the Hartree potential created by a
Gaussian charge distribution on a Blue Gene/P machine as a function of the number of
MPI processes for six different Poisson solvers and for different simulated system sizes
(number of mesh points).
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Due to memory constraints, the serial FFT was limited to Le = 15.8 Å (4,019,679
mesh points), Multigrid to Le = 22.0 Å (10,793,861 mesh points) and the parallel
runs for all solvers in the Blue Gene/P were limited up to Le = 25.8 Å (17,373,979
points). As explained in Section 3.5.1, the FFT method requires an enlarged cell
when applied to finite systems. The size of this mesh ranges from 1433 to 6373 points
(up to 5253 on Blue Gene/P).

As stated in Section 6.1, the efficiency properties of our implementation of the
Multigrid and Conjugate Gradients solvers presented in this section must be under-
stood as an estimate of the properties of the corresponding methods, in contrast
to the efficiency properties of the most accurate methods (ISF, FMM, and FFT),
which correspond to highly optimised (state-of-the-art) algorithms and implemen-
tations (libISF, libFMM, and PFFT).

Figure 6.2 presents the execution times obtained in tests on a Blue Gene/P
machine, each graph representing a different problem size. As can be observed there,
the tests show a similar trend with regard to the system size and the number of MPI
processes: execution times decrease with the number of processes until saturation,
and larger systems allow the efficient use of a higher number of parallel processes,
i.e., the solvers “saturates” at a higher number of processes. This is especially true
for the PFFT and libFMM solvers. Thus, this behaviour leaves the way open to
simulate physical systems of more realistic size if tens of thousands of cores are
available.

For a given system size (N points), libISF is the fastest solver if the number of
processes used in the solution is low-medium. One of the reasons for this behaviour
is that, in contrast to the FFT method, libISF does not require the box size to
be increased for accuracy reasons. This advantage should nevertheless disappear
when dealing with periodic systems. The execution time of libISF decreases with
the number of MPI processes until a saturation point (pm processes) is reached. pm,
the congestion point, is proportional to Ncx (or Ncy or Ncz) being Ncx ×Ncy ×Ncz

the number of points of the minimal parallelepiped mesh containing the original
mesh (such an auxiliary mesh is necessary for the discrete Fourier transform which
is carried out by libISF). This is because libISF divides such a parallelepiped into
smaller parallelepiped plane-like domains disjoints in its x (or y or z) coordinate.
Since the minimal width of one of these domains is 1 (one point in direction x), the
maximum number of MPI processes to use in a parallel run is roughly Ncx (actually
the minimal execution times commonly happens for a number of MPI processes
which is slightly bigger –e.g. 10% – than Ncx; this is because the Goedecker’s
FFT used by ISF works only for particular values of mesh sizes, so the mesh must
often be slightly enlarged to match a doable size). Using more MPI processes leads
to increased execution times, because all the processes take part in the internal
MPI Alltoallv communications, even if they have not done any useful work.
This behaviour can be delayed using OpenMP threads inside MPI processes. As we
will see later in Figure 6.10, the best efficiency is achieved with a combination of
MPI processes (that are limited by the mesh size) and OpenMP threads, thus using
a higher number of cores in parallel.

The Conjugate Gradients and libFMM solvers seem to be very efficient ap-
proaches in terms of scalability. Particularly attractive is the good performance
obtained with the PFFT solver. If the number of processes is high enough, the
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execution times are always lower than the corresponding to other solvers. A bet-
ter approach to the data distribution and highly effective communications are the
reasons behind. Furthermore, the prefactor of the FFT method is small by construc-
tion, and this largely compensates the fact that FFT does scale with N log2N (so,
higher than N). Nevertheless, when the number of processes is low enough, PFFT
is not as fast as libISF, since the FFT method requires the box size to be increased,
as explained above.

The execution times obtained using the Multigrid solver depend on the chosen
number of multigrid levels, being faster when the number of levels is high. The
number of levels in the Multigrid solver is equal to blog8Nc − 3, where N is the
total amount of mesh points. However, for a fixed problem size, the number of
levels in practice must be reduced as the number of processes increases, due to the
need to assure a minimum workload to each processor. Results (see Figures 6.2 and
6.3) show that the Multigrid solver offers the poorest performance even when using
a high number of levels. Every processor needs a minimum number of points to
work with; this implies a maximum number of usable multigrid levels for a given
number of processors (and this number may be lower than blog8Nc − 3). When
this optimal number of multigrid levels is not reachable (e.g., for a high number of
processors), then the convergence of the Multigrid solver is slower, and the execution
time increases (see Figure 6.2). This saturation point appears with a relatively low
number of parallel processes.
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Figure 6.3: Execution times of the Poisson solvers (Le = 15.8 Å - 4,019,679 mesh points)
in Ganbo (A) and Curie (B) supercomputers as a function of the number of MPI processes
(each one executed in a CPU processor core). The execution times for the libISF solver
correspond to the fastest MPI+OpenMP combination (see Figure 6.10 for more details).

The Multigrid and Conjugate Gradients methods require the calculation of a
correction due to the multipolar expansion used. The calculation of this correction
implies a similar time for both our solvers, and represents between 0.2% and 8% of
the Conjugate Gradients solver total execution time, and between 1.7% and 3.2%
in the case of the Multigrid solver. In essence, it does not add a significant extra
time. Further details can be found in Appendix D.III.



6.2. Results 74

0.01

0.1

1

10

100

1 4 16 64 256 1024 4096

t
(s

)

MPI processes

Genius (BG/P)
Curie (x86-64)

Ganbo (x86-64)

Figure 6.4: Execution times of the PFFT solver in Genius (Blue Gene/P architecture),
Curie and Ganbo (x86-64) for a system size of Le = 15.8 Å (4,019,679 mesh points) as a
function of the number of MPI processes.

A similar overall behaviour of the different solvers, with minor differences, is also
shown in the other two machines, Curie and Ganbo. Nevertheless, one appreciable
difference is that the networks are not as efficient as in Blue Gene/P, and when a
solver saturates, the execution time increases substantially. Figure 6.3 presents the
obtained results for a particular case: Le = 15.8 Å (4,019,679 mesh points). As it
can be observed, the best results are obtained again with the PFFT solver for a high
number of parallel processes and with libISF for a lower-medium number of processes
(the libISF solver needs to combine OpenMP and MPI approaches, otherwise the
time increases heavily when using a high number of processes). Relative performance
between the solvers varies slightly from the above analysed cases, but the conclusions
are very similar.

For the serial case, executions are between 1.4 and 5 times faster in Curie than
in Ganbo for the different solvers and system sizes, but this difference tends to
disappear in the parallel versions, where communication times must be added to
computing time. These differences can be attributed to the different cache sizes
and abilities for vector processing of the processors of Curie (X7560-Nehalem) and
Ganbo (E5645-Westmere).

In order to compare more clearly the results obtained with different computers,
Figure 6.4 shows the execution times of a concrete solver (PFFT) for the case of Le =
15.8 Å (4,019,679 mesh points) in Genius (Blue Gene/P architecture), Curie (x86-64)
and Ganbo (x86-64). Execution times are higher in the Blue Gene/P computer when
the number of processes is relatively small, but it allows an efficient use of a high
number of processes before saturation. The processors of the Blue Gene/P machine
are slower than those of Curie and Ganbo, but communication infrastructures are
more effective. This leads us to conclude that the execution time of the Poisson
solver parallel code depends not only on the individual processor performance, but
also on interprocessor communication network of the parallel computer, specially
when using a high number of processors.

Our tests have shown that the implementations of the novel Poisson solvers,
PFFT and libFMM, do offer good scalability and accuracy, and could be used effi-
ciently when hundreds or thousands of parallel processes are needed for the analysis
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Figure 6.5: Speed-up of the PFFT Poisson solver in a Blue Gene/P computer for different
system sizes (given by Le, semi-legth of the parallelepiped edge). Largest systems satu-
rate with more processes than the smallers ones. A) linear speed-up is shown up to 256
processes, independently of the simulated system. B) saturation point is higher when the
simulated system is larger.

of representative systems. libISF should be the chosen solver when low-medium
numbers of processes are used, and PFFT should be chosen instead for high num-
bers of processes (the concrete number of processes that makes PFFT more com-
petitive depends on the system size). Figure 6.5 shows the speed-ups obtained using
PFFT for the different system sizes in a BlueGene/P supercomputer. Almost linear
performances can be observed until saturation for all solvers. Before saturation,
the obtained efficiency factors are always above 50%. As expected, large systems,
which have higher computation needs, can make better use of a high number of
processes. Tests run in Ganbo and Curie machines show similar trends (although
with efficiency problems of PFFT for some values of MPI processes).

6.2.3 Weak-scaling

Apart from the execution time of a concrete parallel run, a very useful quantity
to measure in order to estimate its performance is the weak-scaling. In order to
maintain the same number of mesh points per processor in all cases, we executed
different system sizes and, for these tests, adapted them to Le equal to 7.8 Å (493,039
mesh points), 10.0 Å (1,030,301 points), 15.8 Å (4,019,679 points), 20.0 Å (8,120,601
points), 25.0 Å (15,813,251 points) and 31.6 Å (31,855,013 points, only in Ganbo)
for the Poisson solver on Blue Gene/P and Ganbo. We did parallel runs using 4,
8, 32, 64 and 128 MPI processes (also 216 and 256 processes in Ganbo). So, the
number of mesh points processed in each parallel MPI process is roughly 125,000
for all the cases. Figure 6.6 shows the obtained results, with data taken from the
profiling output. In it, the normalised weak-scaling for p processes is measured as the
quotient: [time to calculate the Hartree potential of a system of about 125,000×P
points using p processors] divided by [time to calculate the Hartree potential of a
system of 493,039 points with 4 processors].
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Figure 6.6: Normalised weak-scaling (i.e. execution time for the calculation of the Hartree
potential in a system of about 125,000×p points using p processors divided by the execu-
tion time for a system of 493,039 points with 4 processors) of the Poisson solvers in Blue
Gene/P (A) and Ganbo (x86-64) (B). Each MPI process has roughly 125,000 points and se-
lected system sizes are given by Le equal to 7.8 Å (493,039 mesh points), 10.0 Å (1,030,301
points), 15.8 Å (4,019,679 points), 20.0 Å (8,120,601 points), 25.0 Å (15,813,251 points)
and 31.6 Å (31,855,013 points, only in Ganbo) and a spacing of 0.2 Å.

The weak-scaling factor of the Conjugate Gradients and Multigrid solvers shows
an important increase with the number of processes, and this can be used to predict
that parallel execution will saturate at a moderate number of processes (as observed
in Figure 6.2). In contrast, libFMM shows the best results in the analysed range:
weak-scaling increases very moderately, so we can conclude that communication
times are acceptable and that the solver will offer good speed-up results when using
thousands of processes. PFFT also gives very good results in the Blue Gene/P
system; they are similar to those of libFMM, so similar conclusions can be stated.
Nonetheless, the results obtained in Ganbo up to 256 processes seem to indicate a
trend to increase, which implies that communications will play a more important
role if a high number of processes is to be used. Similar behaviour is shown with
the libISF solver, but with a sharper increase with large number of processes. Thus,
Figure 6.6 highlights the efficiency of the communication network and protocols of
the parallel computer: the weak-scaling factor is markedly better and bounded in
Blue Gene/P, a system with a very high performance communication network. From
these tests, we can conclude that the communication needs of the Poisson solvers fit
better in the network of a Blue Gene/P machine than in that of a machine with x86-
64 processors and Infiniband network (e.g. Ganbo). This stresses the importance of
efficient communication architectures when dealing with the calculation of pairwise
potentials.
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6.2.4 Non-cubic boxes

A final test was done using a non-cubic box: the Poisson solver timings of a par-
allelepiped mesh of size 15.8 Å × 15.8 Å × 32.0 Å (solid lines in Figure 6.7) were
compared with those of a cubic mesh with Le = 20.0 Å (dashed lines in Figure
6.7). Both meshes had a spacing of 0.2 Å and the number of mesh points were as
similar as possible (8,115,201 and 8,120,601 mesh points). As it can be viewed in
Figure 6.7, the execution times of the libISF solver are quite similar for both meshes.
The Conjugate Gradients and Multigrid solvers show only small differences between
both cases, although the execution times are slightly lower in the non-cubic mesh.
Conversely, libFMM times are around 50% higher in the non-cubic mesh. Above all,
the PFFT solver shows the biggest penalty here, with execution times being 75%
higher in the non-cubic mesh. The reason behind this is that, for finite systems, the
FFT method that we use requires the use of an enlarged mesh of cubic shape (see
Chapter 3, Section 3.5.1). The penalty should disappear when solving the Poisson
equation for periodic systems, as the enlargement of the mesh is not required in
those cases. This penalty is expected to make the crossover between libISF and
PFFT to occur at higher values of the number of cores for systems contained in
non-cubic meshes3 (if compared with cubig mesh with the same number of points).
For a given number of mesh points N = N1×N2×N3 (assuming N1 ≥ N2, N3), the
bigger N1 in comparison with N2, N3, the bigger the expected number of cores for
the crossover.
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Figure 6.7: Execution times for the Hartree potential calculation as a function of the solver
for a mesh of size 15.8 Å × 15.8 Å × 32.0 Å (solid line) and for a mesh of size 20.0 Å
× 20.0 Å × 20.0 Å (dashed line), in Ganbo (x86-64) with a unique OpenMP thread per
MPI process. Spacing equal 0.2 Å; both meshes contain approximately the same number
of points.

For very time-consuming simulations, some tests should be performed in order
to choose the optimal Poisson solver. In addition, for every given simulation code,

3Please note that despite the fact that meshes for DFT and TDDFT calculations are usually
irregular, both libISF and PFFT require the application of discrete Fourier transforms, and there-
fore a cubic mesh containing the original mesh is used for the calculation of the Hartree potential
when using libISF or PFFT.
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it would be advisable to implement one subroutine which automatically chooses the
solver which is expected to be optimal for the tackled problem.

6.2.5 Execution complexity

We have also analysed the execution complexity by measuring the execution time
on Blue Gene/P as a function of the volume of the system for PFFT and FMM
in three cases: 16, 32 and 64 parallel processes. The mesh points ratio among the
smallest (Le = 7.0 Å) and the largest (Le = 25.8 Å) studied systems is about 49.
Our results agree with the O(N) theoretical complexity of the FMM method and
the O(N logN) theoretical complexity of the PFFT method (see Figure 6.8). Note
that computation time is appreciably higher when using the FMM solver due to its
higher prefactor (i.e. the quantity that multiplies N or N logN in the expression of
the numerical complexity). The quotient between prefactors is machine dependent;
its value is about 5.5 for Ganbo, about 9 for Curie and about 12 for Blue Gene/P.
One may think that for very big values of N at a constant number of processes p,
the growth of the term logN would eventually make FMM faster than PFFT. This
is strictly true, but the extremely huge N of this eventual crossover precludes it in
practice.
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Figure 6.8: Computational complexities of the PFFT (left) and FMM (right) Poisson
solver in the Blue Gene/P supercomputer for a given system. PFFT’s fits O(N logN),
while FMM’s its O(N). PFFT: fit(16) = 5.6041 ·10−8 + 0.1182, fit(32) = 2.9407 ·10−8 +
0.1149, and fit(64) = 1.6656 · 10−8 + 0.0228. FMM: fit(16) = 4.8760 · 10−6 + 0.27730,
fit(32) = 2.4991 · 10−6 + 0.26903, and fit(64) = 1.2960 · 10−6 + 0.28681

6.2.6 Multithreading

Multithreading tests with OpenMP were also done in order to gauge the maxi-
mum performance for all processor cores. The libFMM, Conjugate Gradients and
Multigrid solvers do not reduce the execution times when increasing the number
of OpenMP threads, while the PFFT and libISF solvers do. Runs using a unique
MPI process with many different number of OpenMP threads were done for all
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the analysed solvers. The tests summarised in Figure 6.9 correspond to runs of
the cubic system of edge Le = 15.8 Å and spacing 0.2 Å, in a unique node of the
Ganbo (x86-64). One can see no improvement for Multigrid and FMM solvers using
OpenMP, while for the Conjugate Gradients a very slight improvement appears with
2 OpenMP threads. In contrast, ISF and PFFT are faster whilst more threads are
used. We can say that both show a very similar trend, although the increase of the
performance of the ISF library is slightly higher than that of PFFT.
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Figure 6.9: Execution time and speed-up for the calculation of the Hartree potential created
for a Gaussian charge distribution represented in a cubic mesh of edge Le = 15.8 Å and
spacing 0.2 Å in a x86-64 architecture (Ganbo computer), with one MPI process and from
1 to 12 OpenMP threads.

Figure 6.10 shows the execution times in Ganbo (x86-64) for the system of
Le = 15.8 Å and spacing 0.2 Å as a function of the number of cores and the number
of OpenMP threads for the libISF (A) and the PFFT (B) solvers. For each number
of cores, we have measured the execution times varying the number of OpenMP
threads per MPI process (maintaining always the number of parallel tasks equal
to the total number of cores). For the case of the PFFT solver, the best results
are always obtained when all the available cores are used for MPI processes (with-
out OpenMP threads). Conversely, for the libISF solver the combination between
OpenMP and MPI should be chosen with more care; for a low number of cores (less
than the number of mesh planes), it seems to be better to use a MPI process per core
(with very small differences compared with other combinations). Instead, if a higher
number of cores is available, then OpenMP threads must be used to overcome the
performance limits imposed by the number of mesh planes, so keeping the number
of MPI process below the number of planes. In any case, the maximum number of
OpenMP threads that can be used is limited by the actual machine, in this case
between 4 (Blue Gene/P machines) and 32 (Curie x86-64).
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Figure 6.10: Execution times for the system of Le = 15.8 Å (4,019,679 mesh points)
corresponding to the A) libISF solver and to the B) PFFT solver, using from 8 to 1024
cores, and varying the number of OpenMP threads from 1 to 8, in Curie (x86-64). The
product of [number of MPI processes] × [number of OpenMP threads] is always equal to
the number of used cores. The same trend is also shown in the Ganbo (x86-64) machine.

6.3 Conclusions
In this chapter about Poisson solvers we analysed the relative performance of sev-
eral implementations of celebrated methods (Fast Fourier Transforms, Interpolating
Scaling Function, Fast Multipole Method, Conjugate Gradients and Multigrid) for
the calculation of the classical Hartree potential created by charge distributions
represented in real-space. The fundamentals of these methods where previously pre-
sented in Chapter 3 (Section 3.5), and, in the first part of this chapter (Section 6.1),
their corresponding parallel implementations. In the second part, we summarise
the computational aspects of the tests we carried out to measure the implemen-
tations’ relative performances. These tests were run on four supercomputers, two
Blue Gene/P (Jugene and Genius) and two x86-64 (Curie and Ganbo). In our tests,
we focused on measuring accuracies, execution times, speed-ups, and weak-scaling
parameters. Test runs involved up to 4,096 parallel processes, and solved system
sizes from about 350,000 mesh points to about 32,000,000 mesh points.

Our results show that the PFFT solver is the most efficient option for a high
number of cores, so PFFT should be the default option to calculate the Hartree
potential when using a number of cores which is beyond a given (problem depen-
dent) threshold. For lower number of cores, the libISF solver should be preferred.
We traced back this different behaviour to the parallelisation strategy of the FFT
used in both cases. Indeed, the two-dimensional data decomposition of PFFT goes
beyond the one-dimensional data decomposition used in the libISF package. One
can point that, for the sake of enhanced efficiency of the Poisson solver, the future
implementation of an ISF method which makes use of the PFFT library would be
of great interest. The specific number of cores which make PFFT faster than ISF
depends on the given problem: the mesh shape, the number of mesh points, and
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also the computing facility. In addition, it will also depend on the MPI/OpenMP
balance chosen for the ISF solver. For a given number of mesh points, the bigger
the deviation of the mesh shape from a cube, the bigger the number of cores for the
ISF-PFFT efficiency crossover.

In some special cases, the charges might not lie in equispaced points (e.g. when
curvilinear coordinates are used), and so the PFFT and libISF methods cannot be
used, as they require the calculation of FFTs. In these cases, the FMM should be
chosen instead, since it works, it is linearly-scaling and it is accurate regardless of the
charge density’s spatial location. The libFMM solver also shows good performance
and scaling, yet its accuracy is lower and its execution times are less competitive
than those of the PFFT and libISF solvers on the analysed machines. In contrast to
libISF, libFMM scales almost linearly up to high values of the number of processes,
but since its numerical complexity has a larger prefactor, it would only be com-
petitive with libISF when the number of parallel processes increases significantly.
The performance of the Conjugate Gradients solver has a trend similar to that of
libFMM, as does the Multigrid solver for low values of the number of processes.
Weak-scaling tests show that communication costs are the smallest for the libFMM
solver, while they are acceptable for all the others.

ISF and FFT methods are more accurate than FMM, CG, and MG methods.
Hence, they should be chosen if accurate calculations of electrostatics are required.
However, according to our tests, the accuracy of all the analysed methods is ex-
pected to be appropriate for Density Functional Theory and Time-Dependent Den-
sity Functional Theory calculations (where the calculation of the Hartree potential
is an essential step) because these have other sources of error that will typically have
a much stronger impact (see Section 6.2.1). Nevertheless, neither the Multigrid nor
the Conjugate Gradients methods can reach acceptable accuracy if the data set is
not represented on a compact (spherical or parallelepiped) mesh.
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In this chapter we will present recent memory improvements in the Octopus
code and we will show its extreme performance. Altough the results to be presented
are limited to Octopus, lessons learned in this work can be readily applied to any
other real-space mesh based code.
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Previously in this work, Octopus was prepared to run with relatively small
atomic systems (hundreds of atoms at most), in machines with hundreds of processor
cores. In the aim to reach bigger systems with thousands of atoms, it is necessary
to use also thousands of processors, and this is the scenario where new problems
appear. It is to be stressed that our data transfer improvements correspond to the
calculation of the Hartree potential, which is customarily calculated using real-space
meshes also for codes using basis sets.

This chapter is structured as follows. In Section 7.1, we explain the strategies
we followed to increase the efficiency and optimise the memory management. Some
measurements on the current performance of the code are presented in Section 7.2.
Finally, in Section 7.3 we outline the main conclusions of this part.

7.1 Improvements in the memory usage
Octopus has been used successfully during the last years to analyse complex nanos-
tructures, but it had some limitations when a high number of processes must be used
to simulate systems with thousand of atoms. Most of the limitations are related to
the memory requirements, which is a limited resource in any computer. So, we have
analysed how Octopus uses the computer memory, to optimise its usage.

7.1.1 Mesh partitioning

The largest data-structures, namely the functions represented on the mesh, have
to be distributed between the available computer nodes. An important issue in
this domain parallelisation is selecting which points of the mesh are assigned to
each processor. This task, known as mesh partitioning, is not trivial for meshes of
adaptive shape. Not only the number of points must be balanced between processors
but also the number of points in the boundary regions must be minimised. This
issue is crucial, because communication costs are directly related to the number
of boundary points. An example of a mesh partitioning is previously shown in
Figure 4.2 (page 46, each colour represents a domain). Octopus relies on external
libraries for this task: Metis [170] and ParMetis [20]. These libraries implement
several algorithms and the quality of the partition will depend on the selected one.

Serial partitioning

Previous to this work, Metis was the default library in Octopus to partition the
mesh. It is a serial library, so the process that calls it does need all the mesh data,
which have to be gathered from all the processes. Moreover, to reduce commu-
nication needs, all the processes called the library and, consequently, all of them
needed to store the whole data-structure. This is a valid approach if small-medium
size meshes are used, but it is unfeasible with million of mesh points, because the
amount of memory per process is limited.

Parallel partitioning

With the aim of avoiding the mentioned memory problems with the mesh parti-
tioning, we have adapted Octopus to use a new a highly parallel library called
ParMetis. ParMetis is a parallel library implemented in MPI and built on top of the
Metis library (version 5.1). As Metis, this library makes partitions of graphs, so a
transformation of the Octopus mesh structure into a graph is required previously.
We use a graph data-structure to store the neighbour information of all points.
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Figure 7.1: A simplified example of the Octopus mesh partition. The initial (non-
optimised) division schedules chunks of 2 × 8 points (division i is assigned to process
i). Afterwards, each process uses ParMetis locally to create the actual domain partitions
(4x4 points), aiming to minimise the boundary points.

Therefore, each mesh point is represented by a vertex in the graph, and neighbours
points are connected through an edge. The information about the neighbours of
a point is necessary e.g. to calculate the discretised Laplacian operator, which is
done using a stencil (a given function of the values of a function in a given point
and in its neighbours). ParMetis works in parallel and, so, all data-structure are
distributed. Each process works with a contiguous chunk of the graph, with local
matrices of vertexes and edges, and all the processes know how the graph is initially
distributed.

In order to use the new library, we have developed a new distributed version of the
mesh partitioning for Octopus. At the beginning, each process obtains an arbitrary
(not optimised) portion of the mesh (called “division”), whose size is roughly N/p
(being N the number of mesh points and p the number of MPI processes involved
in the partitioning). Then, using this initial division, each process calls ParMetis to
obtain the actual domain partition of the graph. Finally, local results are informed
to the corresponding processes (the real owners of the mesh points).

So, the final domain partition of the mesh is saved in a distributed way. Conse-
quently, when a process works with a neighbour point that does not belong to its
partition, it must identify the owner of the point. This information can be obtained
from the initial owner of the points, that processed it using ParMetis.

Figure 7.1 shows an example of this procedure. Let us assume that we are
working with the blue mesh point with the circle inside, point [3,4], belonging to
domain 2 (process 2) and labelled as working point. Using a stencil of length 2, it
wants to obtain the two neighbours on the right (points [4,4] and [5,4]). According
to the initial division of the mesh, it knows that process 1 (division 1) calculated
the final owner of those points. So, it will ask process 1 for this information (both
points are assigned to process 3) before doing the actual communication.

This new distribution strategy, based in ParMetis, allows us to use only local
data to do the final partition/decomposition, reducing greatly the use of memory in
each process.
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7.1.2 Data transfers between different partition types

In the context of scientific simulation it is common to use external libraries to do
standard operations in an highly optimised way. These libraries could use different
data distributions. One example of this situation are the different mesh partitions
used in Octopus and in its Poisson solvers [19] (the Interpolating Scaling Function
(ISF) [14] and the Parallel Fast Fourier Transforms (PFFT) [15] libraries).

Both Poisson solvers are based on FFT methods, where the spatial functions
are represented in a cubic mesh. The ISF library splits the mesh into domains
which are parallel plane-like parallelepipeds (Figure 7.2C), while PFFT makes a
two-dimensional split of the mesh into column-like domains (Figure 7.2B). However,
Octopus divides the mesh in a three-dimensional manner into more compact do-
mains (Figure 7.2A). Therefore, the data that a process deals with in the Octopus
main program are not the same as the PFFT and ISF libraries use inside, and hence
a data transfer is necessary, independently of the shape of the mesh.

Z
ax

is

X axis

Y
ax

is

A) Octopus mesh B) PFFT mesh C) ISF mesh

Figure 7.2: Simplified domain decomposition of the simulation mesh. Each little cube
represents a mesh point (83 points in total) and each colour represents a partition (8
domains). A) Octopus mesh with a 3D domain decomposition; B) PFFT mesh with a
2D decomposition; C) ISF mesh with a 1D decomposition.

The simple way to carry this data transfer out is to gather all the data (density
ρ or potential v) in all the processes before distributing them accordingly to the
new mesh partition. In fact, this was the option used in the previous version of
Octopus. This solution works if the number of processes is not very high, but
efficiency decays when the number of processes increases, because of the global MPI
communication. Therefore, a new data transfer strategy had to be implemented to
be used in massively parallel machines.

We have overcome this problem in a highly efficient way. At the initialisation
stage a mapping between the Octopus mesh partition and the FFT mesh partition
is established and saved. This mapping is used when running the actual solver to
efficiently communicate only the strictly necessary data between processes. Each of
the different domain decompositions (for instance, Octopus and FFT partitions)
is represented by a MPI group/communicator, that might differ in the number of
processes (Octopus might use processes for different parallelisation levels), but
includes all the mesh points. At a given time, data points have to be sent from
one group to the other. Unfortunately, MPI does not allow to send information
between different groups unless they are disjoint, which is not, by definition, the
current case. This means that communication will have to be done inside one of the
groups. This is not a problem, because we can determine the rank of the receiver
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processes through the MPI COMM WORLD global communicator. Therefore, all the
data transfers between processes can be done in a unique MPI Alltoallv function.
It is important to note that, using this improvement, each process only transfers each
point once. Therefore, the total amount of information that must be sent between
all the processes is equal to the number of points in the mesh, and it is independent
of the number of processes. The data transfer process has been encapsulated in
an specific Fortran module in Octopus,1 achieving almost perfectly linear parallel
scaling.

7.1.3 Linear Combination of Atomic Orbitals

One of the first steps in the calculation of the Ground State for a given system is the
construction of an initial guess for the wavefunction and to build the Hamiltonian
matrix previous to the Self Consistent Field (SCF) iterations. This process has been
implemented in the Octopus code by performing a Linear Combination of Atomic
Orbitals (LCAO) obtained from the pseudopotentials. It was proved that this stage
had not been efficiently implemented.

We did an optimisation of the LCAO implementation to reduce memory cost
and execution time. A memory allocation problem has also been observed during
the initialisation, previous to the GS SCF cycle. Mathematically, LCAO consists in
a diagonalisation of a matrix of size N ×N (N is equal to the number of orbitals of
the atomic system). This is a small matrix for a small system, but with a quadratic
scalability. Therefore, it becomes a huge matrix for systems with many states.

The memory allocation obstacle, in a first step, has been overcome using an alter-
native serial implementation, which reduced the memory requirements to a unique
process. Besides, the alternative implementation has decreased the execution time
of the LCAO step. Later on, the memory problem can be definitely overcome using
the parallel alternative implementation of LCAO, which uses ScaLAPACK external
library, instead of the serial LAPACK library. With this parallel library, large ma-
trices are distributed among all the MPI processes. As it has been demonstrated
through the benchmark tests presented in reference [171], developments in the LCAO
allows to run bigger simulations and, therefore, more interesting systems.

7.1.4 Other improvements

Apart from the memory optimisations explained above, the older version of the
code used three matrices of size p× p, as temporary arrays, being p the number of
running processes. Those matrices are small with few processes, but they become
problematic when we need to use a high number of processes, for intance > 2048.
Assuming 8 byte integers, with 2048 processes the size of each matrix is of 32 MiB,
yet not very large, but with 8192 processes the size increases to 0.5 GiB, and with
64K processors the size is already prohibitive (32 GiB) for current machines. After
implementing a new logic, we got rid of them, because they were only used in the
initialisation process.

Other inefficiencies related to initialisation processes (serial evaluation of the
local and boundary points, for example) also had impact in the execution time

1See the source code of our implementation in the file
src/grid/mesh cube parallel map.F90 at public Subversion repository: http://www.tddft.
org/svn/octopus and the documentation in the wiki: http://www.tddft.org/programs/octopus).

http://www.tddft.org/svn/octopus
http://www.tddft.org/svn/octopus
http://www.tddft.org/programs/octopus
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when simulating big systems, and have been removed.

7.2 Results
Together with the optimisation of the data flow, the goal of this Section was to
address the huge memory requirements of Octopus when running in a large HPC
environment. The changes made in the code allow us to run it in a much more
efficient manner, opening the door for the simulation of the interaction of light
with big biomolecules. In this Section we will first present the improvements in the
memory usage, and next will proceed to demonstrate the extreme scalability of the
code in its current form. No scalability tests for older versions of the code will be
shown, as they were not able to handle the largest systems discussed below.

Tests have been done for different chunks of the Light Harvesting Complex II
molecule, of 180, 650, 1365 and 2676 atoms (Figure 1.2, page 7). Those systems
have from 452,878 mesh points and 250 electronic states to 4,106,680 points and
3,656 states.

Tests were run using three different computers: a Blue Gene/P, a Blue Gene/Q
and the 12 cores island of the Ganbo cluster (x86-64), explained in detail in Chapter 2
(Section 2.2.3). We want to remark that the amount of memory per processor core
is relatively low today, and it is not increasing significantly. For instance, in the
computers that we have used, the quantity of memory per core goes from 0.5 GiB
in the BG/P to 4 GiB in Ganbo, when all available the cores are used to calculate.

7.2.1 Memory measurement

Octopus provides a tool to measure the memory usage and the timing of the most
important functions, presented in Chapter 4 (Section 4.6). A deep profiling of the
memory usage has been done mainly using this internal profiler and validated with
Valgrind’s Massif tool. For example, when running the system of 180 atoms in 32
MPI processes, Massif estimates memory usage up to 96 MiB, whereas Octopus
estimates 88.5 MiB. This difference is owing to the fact that Octopus does not
take into account the memory of linked libraries such as MPI, ISF, BLAS, etc.
Despite this small difference, we have used the internal profiler because its execution
overhead is much lower than that of Massif tool.

Figure 7.3 shows the memory usage per process of the system of 180 atoms, before
and after the optimisations we have done. Memory usage per process is decreasing
as more processes are used, but unfortunately the oldest version (4.0) of Octopus
tends to increase the use of memory after a relatively small number of processes
(256) and, so, makes impossible the use of thousands of processes. On the contrary,
the last version has eliminated this increasing tendency. In fact, the memory need
has been decreased by a factor of four in the studied range, with a clear tendency
to be more efficient when using more processes. To realise the importance of this
restriction it has to be considered that the amount of memory per CPU core hardly
goes beyond 4 GiB.

7.2.2 Data transfer time measurement

The new implementation of the mesh data transfer between different partitions (ex-
plained in Section 7.1.2) shows really good performance as can be observed in Figure
7.4. The time spent transferring data is really low, compared with the execution
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Figure 7.3: Ground State maximum memory usage (from Octopus profiler) per MPI
process for the system of 180 atoms.
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Figure 7.4: Time for the new parallel communication pattern ( Communication v1), com-
pared with the old serial communication ( Communication v2), for a system of 4,019,679
mesh points in the Blue Gene/P machine. While the old version does not scale and be-
comes a bottleneck, the improvement of the new approach is huge and it has a much better
scalability. Total execution time of the Poisson solver is the sum of the Execution and
Comm. times.

time of the library (PFFT in this case). It is shown a particular case of a cubic
mesh of edge 31.6 and spacing of 0.2, which makes a total amount of 4,019,679 mesh
points and needs 3253 = 34, 328, 125 cube points for the PFFT. The data transfer
accounts from 0.5% to 55% of the total Poisson execution time.

Input/output optimisations

Input/output operations play an important role twice during Octopus runs, and
it is necessary to minimise the time involved in these operations, essentially because
CPU cores remain idle in the meanwhile, and, thus, they can heavily increase the
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total execution time. On the one hand, we need to read and write restart data. As
the time slice assigned to an specific run in a HPC centre is limited (and shorter than
the real needs), executions must be often stopped and resumed, and a huge amount
of data must be saved and reloaded each time. And, on the other hand, calculated
density and other observables are usually saved each iteration; in particular, we
have to output density data every iteration, in order to be able to plot and analyse
execution data.

Although writing restart data to the local scratch drive should be much faster
than writing to the global file system (either NFS, Lustre or GPFS), local discs can
not be used for those purposes, because surely different processors will be assigned
to the application (in fact, some machines do not allow using local discs, to avoid
RAM-HD data traffic and latency, or directly, they do not have any hard drive).

Thus, to minimise core hours consumption due to I/O operations, we have de-
veloped a new strategy to write restart files more efficiently when only domain
parallelisation is available (i.e., in a GS run). In the previous version, data were
collected (gather) in a process and then written from this process to the file system.
As a first option, we tried to use MPI I/O functions to allow all processes to access
the same file, but results shown no improvements. So we have change the write
strategy; now, all the processes in the domain write down to different files. First,
a gather of different data to each process is done, and then, all together write the
files (a file per process). The performance improvement can be seen, for example,
in Hydra: with the previous strategy we needed 1 h 26 min 45 s to write the restart
data for the simplified trimer2, whereas the improved writing only takes 7 min 35 s.
Time is reduced by more than an order of magnitude, and we obtain a bandwidth
of 2.15 GB/s, compared with the previous one of only 0.19 GB/s.

Besides, we only write data in a binary format, and we have developed an external
tool to process offline these binary files, to obtain data in different formats; for
instance, to visualise them.

7.2.3 Execution times

Improvements made in the Octopus code allowed us to simulate bigger systems
than ever. Next paragraphs show the results obtained with both executions modes
of Octopus: Ground State and Time-Dependent.

Ground State

Figure 7.5 shows the execution time of the Ground State calculation of systems of
180, 441 and 650 atoms in Blue Gene/P and Ganbo.

The trend for all the atomic systems and for both machines is equivalent, being
Ganbo 3 times faster. The scalability is more than acceptable; for instance, the 180
atoms system scales well up to 256 processes, while with the 650 atoms system the
scalability is almost perfect until 256 processes, showing improvements up to 2048
MPI processes.

Time-Dependent

The execution times and relative speed-ups of the Time-Dependent simulations in
the BG/Q machine are show in Figure 7.6, with systems of 180, 650, 1365 and 2676

215,644,983 mesh points, 8400 states, 120 MB per restart file and a total of 980 GB
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Figure 7.6: 180, 650, 1365 and 2676 atoms system running in the Blue Gene/Q up to
65,536 MPI processes (1 MPI process per core).

atoms. Runs are made using one MPI process per core, thus 16 processes per node.
Extremely good scalability is shown for the smallest system, that, because of the
reduction of the memory needs, can be now run in only 4 MPI processes, and it is
still efficient with 8K processes. For the system of 650 atoms, there is no sign of
saturation up to 16K processes. The system of 1365 atoms is highly parallel up to
32K processors and we have been able to run it in 64K processors, improving by far
previous results, for example those presented in Chapter 5 (Section 5.3.2). Finally,
almost perfect scalability has been reached with the system of 2676 atoms up to
16K processors (we were limited to the tests shown here, because we had a limited
CPU quota for our project), which was not possible to run it before in Chapter 5.

Scaling tests also were done in the BG/P machine, showing a very similar be-
haviour. In this case, runs were made using one MPI process per node and four
OpenMP threads (one per node core). Specially remarkable is the performance we
have obtained with the 650 atoms system in this machine, which does not saturate
until the maximum available CPU cores (128K). Deserves to mention as well the
system of 180 atoms, which is really efficient from 4 up to 64K MPI processes. The
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new efficient memory usage allowed us to run in this machine a bigger system of
5879 atoms in 32K processors.

7.3 Conclusions
Octopus is a scientific software package based on TDDFT theory, which is being
used successfully by dozens of research groups around the world. To date, it was
mostly used to analyse medium-sized complex nanostructures. Modifications were
necessary to enable the code to work with bigger systems (thousands of atoms and
beyond).

In this chapter we have analysed and solved some of the limitations that Octo-
pus had in this new scenario, mainly the amount of memory and the transfers of the
main data-structure in some phases of the computation. Both problems have been
solved in a very efficient manner. On the one hand, we have used ParMetis to do the
partitioning of the mesh using only local data, avoiding the use of the whole data
mesh in each process and, consequently, reducing greatly memory needs. On the
other, we have optimised data transfer between processors when different domain
decompositions must be used. Additionally, problems found at the initialisation
with the LCAO technique had been overcome, using less memory and parallelising
it. Finally, a new strategy for the input/output has been implemented, which is now
much faster.

The benefits of these improvements are significant. Octopus uses now a much
more limited amount of memory per processor, and it is ready to simulate larger sys-
tems. Indeed, we have shown excellent scalability up to 64k and 128k cores, almost
independent of the system size (number of atoms) beyond a given size. Although we
have shown the executions of different chunks of the Light Harvesting Complex II,
the real aim is to be able to run the entire Light Harvesting Complex II with more
than 17,000 atoms. The recent improvements make possible to obtain scientifically
relevant results for these large systems at a reasonable time.
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After solving the computational problems in the previous chapters, we will show
a real use case in the present one. Following, we will see actual TDDFT simulations
of the Light Harvesting Complex II (LHC–II) molecule (with its physical analysis).
The final aim of this chapter (and future works too) is to have a better understand-
ing of the photosynthesis process. By the way, we show the efficiency of such big
simulations.
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LHC–II has for decades been the focus of experimental research aimed at un-
derstanding the biological aspects of what is truly the power-house of life on Earth
and arguably one of the most important proteinaceous structures in Nature. More
recently, the extremely high light–capturing quantum efficiency of LHC–II has at-
tracted a great deal of interest from a completely different group of scientists, namely
those working toward developing solar energy capture devices.

LHC–II is a trimeric protein assembly with three–fold symmetry (Figure 8.1).
Each monomer unit contains, complexed within the protein framework, 14 chloro-
phyll (Chl) molecules (both type a and b) that are the key functional units for light–
harvesting [31, 172]. Additionally, each monomer contains four secondary carotenoid
chromophores (lutein (×2), neoxanthin and violoxanthin) that play important roles
in photoprotection under conditions of overly strong illumination [173, 174, 175].
In all, LHC–II contains approximately 17,000 atoms, 7,000 of which belong to the
chromophores. Usually bound within cell membranes in vivo, LHC–II possesses a
robust structure and maintains structural integrity during purification and crystalli-
sation meaning that the detailed structure is accurately known and also that it has
become possible to perform experimental studies of isolated LHC–II [176, 177, 178].

Stroma (out of cell)

Lumen (inside cell)

Figure 8.1: LHC–II trimer, showing locations of protein, carotenoid and Chl molecules
(Chl a in blue and Chl b in green) of one monomeric unit. For a better visualisation,
hydrogen atoms, Chl phytyl chains and primary structure of the protein are not shown.

Models based on excitonic coupling between the chlorophyll units and/or mod-
ulation of the chromophores’ energy levels by the protein environment have been
invoked in an attempt to explain the high efficiency of this process [179, 180, 181].
Whereas in bacterial light harvesting antennae the former, excitonic, mechanism ap-
pears to be dominant, there is evidence pointing towards a more micro–environment
driven mechanism being most important in plant LHC–II [36, 177, 178]. Although
a balance between both effects will contribute to the functioning of LHC–II, it is
extremely difficult to experimentally discern the relative importance of the two.

8.1 Preparation of LHC–II geometry
The initial geometry of LHC–II was extracted from the crystal structure of the
spinach major Light Harvesting Complex II (PDB accession code 1RWT) [182] ob-
tained from the Protein Data Bank and optimised using the PM7 semi-empirical



8.2. Preparation of input parameters 95

electronic structure method with the program MOPAC [183, 184]. Several lipid
molecules originating in the experimental crystallisation mixture that remained in
the crystal structure, β-nonylglucoside and digalactosyl diacyl glycerol, were re-
moved as these were not part of the biological unit. Furthermore, these were ex-
pected to have little or no impact on the excited state electron dynamics of the
LHC–II chromophores.

Hydrogens were added using the UCSF Chimera molecular modelling package
[185]. At this stage it was necessary to select the protonation state of acidic residues
located at the stromal and lumenal membrane interfaces of LHC–II. It was decided
to protonate all acidic side chains at these interfaces since it was considered that
in the cellular environment the charges associated with these side chains would be
effectively shielded by counter-ions in solution or by association with other charged
bio-molecular species. Since accurate modelling of this shielding was beyond the
scope of the present study, the simplified approach of capping these side chains
with protons was considered most likely to provide a reasonable model of the charge
environment in these regions of the LHC–II structure. The initial structure prepared
in this way possessed a net charge of +30. The total number of atoms in this
structure was 17,280.

Following the initial placement of the hydrogens on the LHC–II structure it
was necessary to refine their positions and, since there was a strong possibility that
protonation states could have been misassigned, it was decided to use a method that
would permit the migration of protons away from unfavourable sites or towards more
favourable ones. This requirement means that approaches that used classical force
fields, and therefore had fixed bonding connectivities, could not be employed. A
solution to this problem lies in quantum mechanical electronic structure methods,
where no bonds are enforced and atomic nuclei are free to move in the potential
created by the electronic structure of the system being studied.

Due to the size of the LHC–II system, the only feasible choice in this case was
to use a semi-empirical electronic structure method. The recently developed PM7
Hamiltonian, as implemented in the MOPAC semi-empirical electronic structure
package, was selected, as this has been shown to reproduce very well molecular
geometries calculated with high level quantum chemical methods, and also provides
a good model of weaker interactions such as hydrogen-bonding and dispersion forces
[183]. After several rounds of optimisation, followed by checking for and dealing
with protons that had migrated from their original sites, an overall charge neutral
LHC–II structure was obtained. This final structure contained 17,250 atoms.

8.2 Preparation of input parameters

8.2.1 Testing convergence of calculation parameters

All calculations relating to the absorption spectrum of the LHC–II complex were per-
formed with the real-space/real-time code Octopus. The PBE exchange-correlation
functional was used in all calculations [186, 187]. Convergence of the Ground State
energy and the resultant absorption spectra with respect to integration mesh spac-
ing and the radius of atom-centred integration spheres was tested in the ranges 0.18
Å to 0.22 Å (mesh spacing) and 4 Å to 8 Å (sphere radius). Chlorophyll a602 was
removed from the optimised LHC–II structure and used for these tests. Testing the
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6 Å
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Figure 8.2: Plots 8.2a and 8.2b show the total (red) and Fermi (green) energy differences
taking as a reference the energetically most stable Ground State solution for each case.
The resulting spectra computed using the different parameters are shown in plots 8.2c and
8.2d

mesh spacing, the sphere radius was held fixed at 4 Å. Similarly, testing the sphere
radius, the mesh spacing was held fixed at 0.20 Å.

Time-propagation of the Ground State charge densities obtained with these pa-
rameter combinations was performed with an initial perturbation of 0.05 eV and
time-step of 0.003 ~/eV (∼0.002 fs). The propagation was carried out for a total
of 10,000 iterations and the resulting time-dependent dipole polarisabilities were
Fourier transformed in order to obtain absorption spectra. The results of these tests
are shown in Figure 8.2.

Analysis of the effect of varying the spacing parameter indicated that, although
convergence is not reached at spacing 0.20 Å for the Ground State calculation, the
absorption spectrum obtained appears to be converged at this value (Figure 8.2a).
On the other hand, the radius parameter seems to be converged at 4 Å since the
energy difference between 4 and 5 Å is smaller than 0.025 eV (Figure 8.2b). The
spectra obtained for all values of the radius parameter are essentially identical and
showed only a small dependence on the spacing parameter within the range tested
(Figures 8.2c and 8.2d).
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Eigensolver Avg. iteration time (s) Number of iterations
RMMDIIS 1407.1 121

Lanczos 5850.1 33
CG new 36968.3 25

Table 8.1: Eigensolver tests done in Ganbo with a spacing of 0.5 Å for the complete
monomer. RMMDIIS is the only feasible solver, if we want to have a converged GS in a
bounded time.

8.2.2 Special case: Complete monomer

Special tuning of the input parameters was needed for the complete monomer be-
cause the previously calculated ones, whilst optimal for the smaller systems studied,
proved impossible to converge when applied to the problem of calculating the Ground
State density of the complete monomer system. Such a big system was never at-
tempted to run with a DFT code to our knowledge and it has many states close
each other (essentially degenerate), greatly complicating its convergence.

Different eigensolvers were examined: Conjugate Gradients [188], Preconditioned
Lanczos scheme [189] and Residual Minimization Scheme, Direct Inversion in the
Iterative Subspace (RMMDIIS) [125]. Those solvers were not only used indepen-
dently, but also combining them. Unfortunately, Conjugate Gradients method has
a low performance in terms of execution time and makes it usage prohibitive. In
average, it is more than 25 times slower than the RMMDIIS solver. Thus, we tried
to reduce the eigensolver iterations to only 5 (from the default of 25), aiming to
reduce the fluctuations. No advance in the relative density is shown during the SCF
iterations. Similar problem appears with the Lanczos eigensolver. Changing the
number of eigensolver iterations to 5, 25, 50 and 100 does not change this situa-
tion. Eingesolver tests are done in 128 cores (16 cores island) in the cluster Ganbo
(Chapter 2, Section 2.2.3), using a spacing of 0.5 Å (to be able to fit memory) and
100 extra states. The execution times are summarised in Table 8.1, showing that
the only affordable execution times are obtained using RMMDIIS solver; Lanczos
and CG new solvers are too slow (specially the last one).

A range of extra states was analysed for RMMDIIS, from 0 to 1270. For this
solver the theory says that around 10-20% of extra states are needed to correctly
converge. However, our tests have shown that the usage of 100 extra states (which is
the 1.28%) is the best option with this particular huge system. Smearing quantities
were modified in order to improve the convergence. The tried values were 0.2, 0.1
and 0.01.

Two mixing strategies were used: linear and Broyden [190, 191]. This mixing
density oscillates from 5% to 15% (percentage of the new density). Using a low
amount of the current iteration density and bigger amount of the previous iteration
density, allows to reduce the fluctuations. Besides mixing density, mixing poten-
tial also was tried. At the end, none of the alternatives worked for the complete
monomer, and, we could not converge it.
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8.3 Results
The electronic structure of the Chl antenna molecules of LHC–II is well under-
stood as are the nature of the excitations involved in photo–absorption by Chl in
the relevant regions of the solar spectrum. Due to obvious difficulties in apply-
ing these methods to systems of this size, many of these studies have focused on
the individual chromophores in isolation, with some simple model of the complex
micro–environment, or by a small explicit portion of the complex.

Here, we wish to report a first–principles study of the electronic absorption
spectrum of the full LHC–II Chl chromophore network in which all atoms were
treated at the same theoretical level using TDDFT. All TDDFT calculations used
the PBE Exchange-Correlation functional [187, 186] and were performed with the
real-space TDDFT codeOctopus.

8.3.1 Isolated chromophores

In order to initially establish the linear optical response characteristics for com-
parison with the LHC–II-bound chromophores the absorption spectra of each was
calculated in isolation to remove all influence from the protein surroundings. The
geometries used were those obtained from the PM7 optimisation of the entire LHC–
II system, thus the chromophores were in their relaxed protein-bound conformations
so that any difference in their response would be purely due to the lack of microen-
vironment. Within the protein complex we can distinguish two general groups of
chromophores, as show in Figure 8.3: 14 chlorophyll molecules (8 chlorophyll a and
6 chlorophyll b), and 4 carotenoid molecules (2 lutein, 1 xanthophyll and 1 neoxan-
thin).

Figure 8.3: Structure of the chromophores present in the LHC–II complex. The phytyl
chain of the chlorophyll molecules has been omitted to aid visualisation of the central
macrocycle. The terminal rings of the carotenoid molecules are de-emphasised using wire
representation in order that the conjugated π-system be more easily visualised. Carotenoid
backbone bond length alternation (BLA) is shown. Oxygen atoms are coloured in red,
nitrogen atoms in blue and hydrogen atoms in white. Remaining atoms are carbon atoms.
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Initial calculations focused on the spectra of the isolated Chl chromophores (Fig-
ure A.1 of Appendix A) with the geometries obtained from the structure optimisa-
tion of the full complex (Figure A.2 of Appendix A). The peaks corresponding to
the Q– and Soret–bands were calculated to occur between 1.9–2.0 eV and 2.5–2.8
eV, respectively (Figure 8.4). The experimental Q-band energy obtained from the
LHC–II spectrum is 1.86 eV, whilst the Soret–band contains two peaks at 2.62 and
2.85 eV (assigned to Chl b and a, respectively) [22]. Recent in vacuo experimental
studies of the Chl absorption spectra put the lowest energy excitation (Q–band) at
1.93 eV (Chl a) and 1.98 eV (Chl b), whilst the Soret–band was found to have its
maximum at 3.06 eV (Chl a) and 3.00 eV (Chl b) [192, 193]. Good performance of
the TD-PBE method for the Q–band excitation and slightly worse performance for
the Soret–band might reasonably be expected since the former is a predominantly
single electron excitation, which is well described by TDDFT, whilst the latter is
known to possess significant multiple–electron character that is not properly de-
scribed in the TDDFT framework [194]. However, tests of the current methodology
with the optimised geometries that were used in the analysis of the experimental in
vacuo absorption spectra [192, 193] indicate that the real-space TD-PBE approach
in fact performs very well when compared with the experimental Q– and Soret–band
maxima (see Figure A.4 of Appendix A).
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Figure 8.4: Distribution of peak energies in Chl TDDFT spectra. Q–band occur between
1.9-2.0 eV and the Soret–band between 2.5-2.9 eV. The numbering from PDB file 1RWT.
Solid lines correspond to calculations on isolated chlorophylls and dashed lines to spectra
of the individual chlorophyll within the LHC–II monomer chlorophyll network. Vertical
lines indicate the position of the maxima of the Q– (1.86 eV) and Soret–band (2.62 and
2.85 eV) found experimentally [22].

In addition, we calculated the absorption spectra of the carotenoid molecules
in isolation after extraction from the optimised LHC–II structure. Although the
applicability of TDDFT methods to the calculation of the excited states of polyene
molecules such as the carotenoids is known to be problematic [194], the agreement
between computed and experimental results are surprisingly good (see Figure A.2
of Appendix A). This can most likely be attributed to the nature of the geometry
optimisation which incorporated the effects of the LHC–II complex environment
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[195]. However, due to the lack of the polyene chain motions in the simulations,
whilst the energy of the peak maximum was well reproduced the peaks themselves
were overly intense and interfered with the interpretation of the chlorophyll network
spectrum.

8.3.2 Effect of protein environment on chlorophyll spectra

A test evaluation of the effect of the protein environment on the spectrum of chloro-
phyll was performed for Chl 608b (numbering from PDB file 1RWT). This Chl
from the stromal–side of LHC–II was selected because of its more complete protein
surroundings as compared with other Chl which overlapped significantly with neigh-
bouring chromophores (Figure 8.5). The plots in Figure 8.6 compare the calculated
spectra with an experimental LHC–II absorption spectrum [22] and show that the
overall effect of the protein environment is a red–shifting of the Chl spectrum with
the low energy Q–band being shifted by -0.1 eV but the Soret–band undergoing a
larger shift of -0.3 eV. The red–shift of 0.1 eV for the low energy excitation is the
same as that seen in the experimental in vacuo spectra of both the a and b forms
of Chl [192]. A second effect observed was that the ratio of peak intensities Q:Soret
(1:10 in vacuo) also changed on inclusion of the protein environment to 1:2, the
same as seen for the experimental spectrum in Figure 8.6. The appearance of the
small peak at ∼1.65 eV is most likely due to transfer of oscillator strength from the
red–shifted Soret–band peaks. Similar promotion of dark states was also observed
in the local dipole analysis of the individual Chls (see Figure A.2).

Figure 8.5: Model system used in evaluation of effect of protein environment on chlorophyll
absorption spectrum. Chlorophyll 608 b carbons shown in grey, amino acid side chain
carbons in brown. Except for water molecules, all hydrogen atoms are omitted to aid
visualisation. This Chl was selected because of its more complete protein surroundings
as compared with other Chl which overlapped significantly with neighboring chromophores
(Figure A.8 of Appendix A).

8.3.3 Simplified monomer, dimer and trimer

Based on the data obtained from the Chl 608b/protein study it was decided to
remove the majority of the protein from the optimised monomer structure, not
only to reduce the dimension of the electronic structure calculation but also to
facilitate convergence of the Ground State DFT calculation, which had been found
to be problematic when the full environment was included. Amino acid side chains
directly complexed to Chl Mg2+ ions and charged species lying close to the chlorin
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Figure 8.6: Influence of protein environment on the spectrum of Chl 608 b. Vertical lines
indicate the experimental position of the Q–band (1.86 eV) and Chl b component of the
Soret–band (2.62 eV) [22].

ring were included since these were expected to play a major role in modulating the
details of the monomer spectrum (Figure A.1 of Appendix A). Carotenoid molecules
were also removed from the chromophore network because they had been found to
produce an anomalously large peak close to the Q–band of chlorophyll molecules
as mentioned above. The degree to which inclusion of the carotenoid molecules
alters the absorption spectrum of the chromophore network can be seen in Figure
A.5. The simplified system contained 2025 atoms (corresponding to 5200 electronic
states) per monomer and the resulting calculations were found to converge rapidly.

The spectrum of the LHC–II monomer, dimer and trimer chlorophyll networks
are shown in Figure 8.7 and compared with that obtained from experiment. The ex-
perimental absorption spectrum (filled grey curve) displays the Q– and Soret–band
features corresponding to the Chl excitations at approximately 1.85 and 2.6/2.8
eV for the b/a type, respectively [22]. The spectra obtained from our real-time
TDDFT calculations show good agreement with experiment. Very little deviation
was observed for the Q–band, while the Soret–band was found to display a slightly
larger deviation of ∼ 0.35 eV. The monomer and dimer spectra are in excellent
agreement in terms of absorption energies, with the intensity of the dimer spectrum
being approximately doubled (although scaled by 0.5 in Figure 8.7 for ease of com-
parison with the monomer spectrum). From this, and a localised charge-density
analysis (Figures A.6 and A.7 of Appendix A), it can be seen that the contribution
of each monomer to the total spectrum is essentially independent and only minor
inter-monomer perturbations exist.

8.3.4 Contribution of each chlorophyll

In order to study the contribution of the constituent Chl chromophores, the ab-
sorption spectrum for each were computed in situ by selecting the corresponding
charge density for each one based on a Bader charge–topological analysis (Figure
A.7) and studying its time-dependent induced dipole moment obtained from the
TDDFT charge density propagation. Analysed in this way, these spectra differ from
the separate Chl spectra in Figure A.2 due to the fact that they include the electro-
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Figure 8.7: LHC–II monomer (red), dimer (blue) and trimer (green) TDDFT spectrum.
The absorption intensity of the dimer has been scaled by half and the trimer by one third to
aid in comparison of the spectra. The filled gray curve is the experimental absorption spec-
trum of LHC–II [22]. Here the lower absolute accuracy of TDDFT for the predominantly
multi-electron Soret–band excitation energies can be seen.

static influence of the relaxed DFT charge density of the remainder of the system,
thus providing an accurate representation of the absorption spectrum of a given
chromophore within the LHC–II minus the shift due to the protein environment
which, as discussed above, is essentially constant.

Figure 8.4 shows the variation in the location of the peaks for each individual
chlorophyll molecule within the chromophore network. In general, a red–shift of
the individual spectra is seen as a result of the electrostatic interactions with the
other chromophores. The influence of the chromophore network on the individual
chlorophylls appears to be in agreement with what was found previously for the
protein environment effect i.e. that an electrostatic interaction is sufficient to explain
the observed spectral shifts. The largest observed effect was a strong red–shift (∼
0.2 eV) on the Soret–band of the Chl b molecules chlorophylls in the lumenal side of
the LHC–II complex. Contrary to the non-specific electrostatic red–shift, this larger
alteration in absorption energy can be attributed to an electronic interaction due
to the a close overlap between 605b, 606b and 607b. This is highlighted in Figure
A.8 which shows schematically the spatial distribution of the chlorophyll molecules
within a monomer.

Figure 8.8 shows the contributions of the Q– and Soret– band of the different
chlorophylls obtained from the local Bader analysis of the total monomer charge
density. This approach facilitates the separation of the chromophore contributions
to the photo-absorption profile of the LHC–II system. These data indicate that the
LHC–II Q–band can be attributed in most part to Chl a. Furthermore, in agreement
with the data obtained from the local dipole analysis, this suggests that the small
Q–band shoulder observed experimentally is due to differences in absorption energy
between lumenal and stromal chromophores. Given that energy transfer pathways
are determined in this system by exciton frequencies, our results suggest that the
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most probable energy transfer after an excitation in the Q–band region will take
place following an energy descent path from lumen to stroma, in agreement with
data obtained using femtosecond transient absorption spectroscopy [196].

Two key observations were made possible regarding the Soret–band in the present
work. Our simulations indicate that the Chl a molecules located on the lumenal
side are subject to a blue–shift relative to the Chl a on the stromal side of LHC–
II, leading to a broadening of the Soret–band of the LHC–II complex. This effect
enables LHC–II to absorb light across a broader range of frequencies in the solar
spectrum. In addition, our calculations confirm that the peak at approximately 2.3
eV (2.6 eV experimentally) is due to the Chl b molecules. As a result of our local
dipole analysis it was found that lumenal chlorophylls (605b–606b–607b) produce a
broadening of the Soret–band to the red. These results, which display a significant
difference in Soret–band energy in the chlorophylls in different locations within the
complex, suggest a route for the LHC–II system to absorb blue light on the stromal
side and then transfer the excitation energy down the energy gradient to the center
of the complex where 607b is located.

The spectral alterations outlined above are most pronounced for a small subset
of the chromophores studied; the majority of the chlorophyll molecules’ absorption
spectra do not undergo large alterations when the influence of the chromophore net-
work is taken into account (Figure A.2). This suggests that the overall electronic
structure of the chlorophyll molecules is not altered significantly when the entire net-
work is included, and the observed slight red–shift can be attributed to a Coulombic
effect. This suggests that most of the Exciton Energy Transfer (EET) mechanism
can be well described by the electric dipole moment coupling scheme proposed by
T. Förster [197]. However, due to the specific relative orientation of lumenal Chl
b molecules, a strong red–shift and change of the shape of the Soret–band are ob-
served, which suggest that non-electrostatic effects are relevant and Förster’s theory
will not be adequate to study the EET mechanism close to center of the LHC–II
trimer.
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stromal side (left) and lumenal side (right) of the membrane. Chl a are in red and chl
b in green, the gray line shows the calculated monomer spectrum. Individual chlorophyll
contributions are summed to give the curves shown here.
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8.4 Conclusions
In summary, the absorption spectrum of the full chlorophyll network of the major
light harvesting complex, LHC–II, has been simulated using first–principles elec-
tronic structure methodology. We note that this is probably the largest system
treated by PM7 and TDDFT up to date. We have demonstrated that the electro-
static and non-electrostatic effect of the environment as well as specific chlorophyll-
chlorophyll interactions are essential for theoretical investigations of systems of this
type and that these effects combine to produce significant modulation of the LHC–II
absorption spectrum. Local analysis of the contribution of each chlorophyll has been
introduced and shown to be a powerful tool for use in studying possible interaction
mechanisms between chromophores.

This work confirms that after light absorption in the Q–band region of the LHC–
II spectrum the most probable excitation energy propagation will take place from
lumen to stroma (Figures 8.8 and 8.9). In addition, the most significant/strongest
optical absorption is to be expected in the Soret–band region and can be attributed
to the chlorophylls situated in the stromal side of the thylakoid membrane. This
suggests that light energy of around 2.5 eV absorbed in the stromal half of LHC–II
should be transferred to the low–energy lumenal centre of the trimer complex formed
by the grouping of Chl b molecules. On–going studies using real-time propagation
TDDFT on the chlorophyll network will quantify the potential coupling between
chromophores and distinguish its different components in order to understand the
EET of the LHC–II.
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Figure 8.9: Contribution on the absorption spectra of chlorophyll networks (solid line)
from stromal (green shade) and lumenal (blue shade) half-sides of LHC–II. This represen-
tation evidences that the chlorophylls located on the stroma have higher probablity of light
absortion than the chlorophylls located on the lumenal part. Orange shade are obtained
as a superposition of all chlorophylls contribution, and confirms the validity of the model
used to select the Bader volumes.
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9.1 Main conclusions
Computer simulation is one of the most powerful techniques scientists use to un-
derstand all kind of physical phenomena. Supercomputer facilities offer today the
possibility of using hundred of thousands of computing cores to accelerate the exe-
cution of those simulations, giving us the opportunity to investigate the behaviour
of very complex systems. For instance, HPC enables the simulation of atomic and
molecular systems according to the fundamental equations of quantum mechanics.
In particular, this thesis is concerned with the use of massively parallel computers
to study the light harvesting complexes in green plants and, so, the first steps of the
photosynthesis.

The study is centred on a concrete scientific software package, Octopus, al-
though the obtained results are not limited to this application. Octopus is mostly
developed for Density Functional Theory (DFT) and Time-Dependent Density Func-
tional Theory (TDDFT) calculations, and it is used to study by first principles the
properties of the excited states of large biological molecules and complex nanostruc-
tures.

Partnership for Advanced Computing in Europe (PRACE) has offered us the
possibility of using the fastest supercomputers in Europe: Jugene and Juqueen
(JSC, Germany), Curie (CEA, France), Fermi (Cineca, Italy) and MareNostrum II
and III (BSC, Spain). Also, we have used Genius and Hydra (RZG, Germany).
Other clusters have been used for software development and tests.

Obtaining a linear speed-up from these systems is far from obvious, and great
efforts must be devoted to understand the nature of the scientific code, the parallel
executions, the need of data communication among lot of processes, the efficient use
of an always limited amount of memory per core, etc. This thesis has dealt with all
those items, with a clear objective in mind: the opportunity of using thousands of
processors to simulate real size molecular systems, with the aim of understanding
their physical behaviour.

At the starting of the project, the code was available to run in parallel, yet
it was hardly tested; i.e. the actual high performance was unknown. Although
they were promising, tests up to only hundreds of processes were done. Hence, a
more extensive study was prepared. In this first study, Ground State and Time-
Dependent calculations modes were tested, and runs up to 8,192 processors were
performed in Jugene, MareNostrum II, Vargas and Ganbo machines. In the TD
tests the scalability was high until 2-4K processes, but with more processes the
efficiency was poor (less than 40%). Different parallelisation strategies were tried
and, in general, a bottleneck was found in the Poisson solver. That solver accounted
for a little percentage of the total execution time when using few processes, but,
for instance, with 8K processes it took the half of the iteration execution time. So,
after this first bunch of tests, we concluded that there was a several performance
limitation because of a non optimal Poisson solver implementation.

Consequently, an extensive research of the Poisson solvers alternatives has been
done. We have analysed the relative performance of several implementations of cel-
ebrated methods for solving the Poisson equation: Parallel Fast Fourier Transforms,
Interpolating Scaling Function, Fast Multipole Method, Conjugate Gradients and
Multigrid. Namely, with Interpolating Scaling Function and Parallel Fast Fourier
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Transforms Poisson solvers the code runs efficiently up to thousands of processes.
Tests were run on four supercomputers, two Blue Gene/P (Jugene and Genius) and
two x86-64 (Curie and Ganbo), and we have measured accuracies, execution times,
speed-ups, and weak-scaling parameters. Test runs involved up to 4,096 parallel pro-
cesses, and solved system sizes from about 350,000 mesh points to about 32,000,000
mesh points. Our results show that the PFFT solver is the most efficient option
for a high number of cores. Nevertheless, for lower number of cores, the ISF solver
should be preferred.

Not only is an improved Poisson solver required for the efficient use of a high
number of processes. Additional modifications for Octopus have been necessary
to enable the code to work with bigger systems (thousands of atoms and beyond).
Thus, we have analysed and solved some of the limitations that Octopus had in
this new scenario, mainly the amount of memory per core and the transfers of the
main data-structure in some phases of the computation. Both problems have been
solved in a very efficient manner. On the one hand, we have used ParMetis to do the
partitioning of the mesh using only local data, avoiding the use of the whole data
mesh in each process and, consequently, reducing greatly memory needs. On the
other, we have optimised data transfer between processors when different domain
decompositions must be used.

The benefits of these improvements are significant. Octopus uses now a much
more limited amount of memory per processor, and it is ready to simulate larger
systems. Indeed, we have shown excellent scalability up to 64k and 128k cores,
almost independent of the system size. With this new version of Octopus, including
all the improvements, we have been able to do a TDDFT simulation of the LHC–
II complex. Specifically, the absorption spectrum of the full trimeric chlorophyll
network (as well as of the smaller chunks of the LHC–II) has been simulated using
first-principles electronic structure methodology, The full system has 8400 atomic
states and needs 15,644,983 domain points to be simulated, totalling 1.8 TB for the
restart.

We have demonstrated that the electrostatic and non-electrostatic effect of the
environment as well as specific chlorophyll-chlorophyll interactions are essential for
theoretical investigations of systems of this type, and that these effects combine to
produce significant modulation of the LHC–II absorption spectrum. Local analysis
of the contribution of each chlorophyll has been introduced and shows to be a power-
ful tool for use in studying possible interaction mechanisms between chromophores.

It is really amazing to see how, from a first principles calculation (only having
the molecule geometry and the implementation of the quantum theories), we can
obtain results which agree with the experiments. Thus, we can say that the main
objectives of this doctoral thesis have been achieved: to be able to efficiently run a
complex TDDFT simulation in a very large number or processors, and, therefore,
to be able to study large molecular systems using HPC facilities.

During the development of this PhD thesis I have participated in several HPC
projects. As a consequence of the collaborative work I have done with the Octopus
development team, I have acquired a deep experience and understanding of the
functioning of a HPC environment, both from the user point of view and also as an
administrator of a local cluster. Software development includes the use of parallel
MPI libraries and scripting, profilers, Fortran and so on.
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9.2 Future works
First principle TDDFT code opens a new world of opportunities to simulate prob-
lems that were not possible before. TDDFT simulations are now open to new size
of problems, and interesting phenomena can be simulated. Even if we have demon-
strated that it is possible to run the complete monomer of LHC–II complex, we have
not been able to converge to the Ground State. Thus, this is a work that must be
done in a near future.

Regarding to the Poisson solvers, there is still room for the improvements. The
ideal solver for our case will be a future implementation of an ISF method which
makes use of the PFFT library, instead of the internal FFT library. Indeed, the
two-dimensional data decomposition of PFFT goes beyond the one-dimensional data
decomposition used in the ISF package. Therefore, the scalability will be improved.

Apart from a higher number of processing cores, the huge performance of new
supercomputers is based also on the use of accelerators, mainly vector coprocessors
(Intel PHI) and GPUs. In fact, Octopus offers already the possibility to compile
for OpenCL. So, it should be analysed how to use these possibilities to reach better
speed-ups.

9.3 Publications and Courses
The output of this thesis can be summarised in 3 peer-reviewed papers, 1 more
submitted, 1 peer-reviewed congress article, another congress, a book, 3 posters and
several assistance to workshops (some with oral presentations). A complete list is
following:

Peer-reviewed papers

• Insights into the modulation of light absorption by chlorophyll in
green plants
J. Jornet-Somoza, J. Alberdi-Rodriguez, B.F. Milne, X. Andrade, M.A.L. Mar-
ques, F. Nogueira, M.J.T. Oliveira, and A. Rubio
Physical Chemistry Chemical Physics submitted

• Real-space grids and the Octopus code as tools for the development
of new simulation approaches for electronic systems
X. Andrade, D. Strubbe, U. Giovannini, A.H. Larsen, M.J.T. Oliveira, J.
Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. Verstraete, L.
Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M.A.L. Marques and A.
Rubio
Physical Chemistry Chemical Physics February 2015.

• A survey of the parallel performance and accuracy of Poisson solvers
for the electronic structure calculations
P. Garćıa-Risueño, J. Alberdi-Rodriguez, M.J.T. Oliveira, X. Andrade, M.
Pippig, J. Muguerza, A. Arruabarrena, A. Rubio
Journal of Computational Chemistry Volume 35, Issue 6, pages 427-444 5
March 2014.
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• Time-dependent density-functional theory in massively parallel com-
puter architectures: the Octopus project
X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.T. Oliveira, F. Nogueira,
A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik, A.
Rubio, M.A.L. Marques
Journal of Physics: Condensed Matter Vol. 24 Issue 23 May 2012.

Peer-reviewed conference paper

• Recent Memory and Performance Improvements in Octopus Code
J. Alberdi-Rodriguez, M.J.T. Oliveira, P. Garćıa-Risueño, F. Nogueira, J.
Muguerza, A. Arruabarrena, A. Rubio
International Conference in Computational Science and Its Applications –
ICCSA 2014 Lecture Notes in Computer Science Volume 8582, 2014, pages
607-622 2 July 2014.

Other publications

• Memory Optimization for the Octopus Scientific Code
J. Alberdi-Rodriguez, A Rubio, M.J.T. Oliveira, A. Charalampidou, D. Folias
PRACE white paper 21 January 2015

• Examination of chlorophyll-chlorophyll excitation energy transfer
based on local induced dipoles analysis
J. Jornet-Somoza, J. Alberdi-Rodriguez, F. Noguiera, A. Rubio
50th Symposium on Theoretical Chemistry September 2014

• High-performance electronic structure calculations: optimization of
the evaluation of the Hartree potential
P. Garćıa-Risueño, J. Alberdi-Rodriguez, M.J.T. Oliveira, X. Andrade, M.
Pippig, J. Muguerza, A. Arruabarrena, A. Rubio
White nights of material science: From physics and chemistry to data analysis,
and back 16-20 June 2014

• Analysis of performance and scaling of the scientific code Octopus
J. Alberdi-Rodriguez
LAP Lambert Academic Publishing, ISBN: 978-3-8484-1835-0, March 2012.

• A survey of the performance of classical potential solvers for charge
distributions
J. Alberdi-Rodriguez, P. Garćıa-Risueño
Fast Methods for Long-Range Interactions in Complex Systems workshop Septem-
ber 2011.

• Improving Octopus towards a new generation of HPC systems
X. Andrade, J. Alberdi-Rodriguez.
Jülich Blue Gene/P extreme scaling workshop 2010 April 2011.

• Octopus: a versatile tool for realtime TDDFT simulation of thou-
sands of atoms
X. Andrade, J. Alberdi-Rodriguez
Psi-k 2010 conference 2010.
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This is a list of presentations.

• Optimization of new algorithms in Octopus for methods to calculate
the photosynthesis
J. Alberdi-Rodriguez
7th RES Users’ Conference BSC (Barcelona Supercomputing Center). Barce-
lona 13/09/2013.

• Presentación de proyecto con acceso a PRACE: Artificial photosyn-
thesis
J. Alberdi-Rodriguez, X. Andrade, M.A.L. Marques, F. Nogueira, A. Castro
A. Rubio
Supercomputación Cient́ıfica en Euskadi. BSC (Barcelona Supercomputing
Center). Donostia 08/03/2013.

• First principles modeling with Octopus: massive parallelization to-
wards petaflop computing and more
A. Castro, J. Alberdi-Rodriguez, A. Rubio
RES Scientific Seminar of Parallel Simulations in the Network. Zaragoza
30/11/2010.

• Profiling and Optimizing
J. Alberdi-Rodriguez, X. Andrade
Basic techniques and tools for development and maintenance of atomic-scale
software CECAM (Centre Européen de Calcul Atomique et Moléculaire). Zaragoza
21-25/06/2010.

This is a list of courses that I attended.

• Introduction to SuperMUC – the new Petaflop Supercomputer at
LRZ
Munich, Leibniz-Rechenzentrum - der Bayerischen Akademie der Wissenschaften
08-11/07/2013.

• European-U. S. Summer School on HPC Challenges in Computa-
tional Sciences
Dublin, PRACE - XSEDE 24-28/06/2012.

• Programming and Tuning Massively Parallel Systems
Barcelona, Barcelona Supercomputing Center 18-22/07/2011.

• PRACE Training Week
Barcelona, Barcelona Supercomputing Center 06-09/09/2010.

• Time-Dependent Density-Functional Theory: Prospects and Appli-
cations
Benasque, Centro de ciencias Benasque Pedro Pascual 02-10/01/2010.

• BSC — PRACE code porting and optimization workshop
Barcelona, Barcelona Supercomputing Center 21-23/10/2009.
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• CUDA for scientific computing
Espoo (Finland), CSC — IT Center for Science Ltd 10-11/09/2009.

• Numerical schemes for disperse equations
Derio, BCAM — Basque Center for Applied Mathematics 08-12/02/2010.

This is a list of meetings that I attended.

• Octopus meeting
Jena, The Martin Luther University of Halle-Wittenberg 26-30/01/2015.

• Octopus meeting
Lyon, Université Lyon 22-23/10/2012.

• LibPSP coding party
Coimbra, University of Coimbra 29/08/2011-02/09/2011.

This is a list of collaboration that I had.

• Coimbra, Universidade de Coimbra

• Berlin, Humboldt-Universität zu Berlin
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[89] Garćıa-Risueño, P.; Echenique, P. J. of Phys. A: Math. and Theor., 2012, 45, 065204. 37

[90] Hestenes, M. R.; Stiefel, E. J. of research of the national bureau of standards, 1952, 49, 409.
37, 66

[91] Fernández-Serra, M. V.; Artacho, E.; Soler, J. M. Phys. Rev. B, 2003, 67, 100101. 38

[92] Wesseling, P. An introduction to multigrid methods. John Wiley & Sons, 1992. 38

[93] Zhang, J. J. Comp. Phys., 1998, 149, 449. 38

[94] Briggs, W. L. A multigrid tutorial. Wiley, New York, 1987. 38

[95] Brandt, A. Math. Comput, 1977, 31, 333. 38



Bibliography 117

[96] Trottenberg, U.; Oosterlee, C.; Schüller, A. Multigrid. Academic Press, 2001. 38, 40, 67

[97] Rostgaard, C.; Jacobsen, K. W.; Thygesen, K. S. Phys. Rev. B, 2010, 81, 085103. 38

[98] Briggs, E. L.; Sullivan, D. J.; Bernholc, J. Phys. Rev. B, 1996, 54, 14362. 38

[99] Beck, T. T. Rev. Mod. Phys., 2000, 72, 1041. 38

[100] Torsti, T.; Heiskanen, M.; Puska, M. J.; Nieminen, R. M. Int. J. Quant. Chem., 2003, 91(2),
171. 38

[101] Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Phys. Rev. B, 2005, 71, 035109. 38

[102] Shapira, Y. Matrix-Based Multigrid: Theory and Applications. Numerical Methods and
Algorithms. Kluwer Academic Publishers, 2003. 38

[103] Mandel, J.; McCormick, S. J. Comput. Phys., 1989, 80(2), 442. 38

[104] Munshi, A., Ed. The OpenCL Specification. Khronos group, Philadelphia, 2009. 42

[105] Bertsch, G. F.; Iwata, J.-I.; Rubio, A.; Yabana, K. Phys. Rev. B, 2000, 62(12), 7998. 44

[106] Yabana, K.; Bertsch, G. F. Phys. Rev. B, 1996, 54(7), 4484. 44

[107] Castro, A.; Marques, M. A. L.; Alonso, J. A.; Rubio, A. Journal of Computational and
Theoretical Nanoscience, 2004, 1(3), 231. 44

[108] Castro, A.; Marques, M. A. L.; Alonso, J. A.; Bertsch, G. F.; Rubio, A. Eur. Phys. J. D,
2004, 28, 211. 44

[109] Takimoto, Y.; Vila, F. D.; Rehr, J. J. J. Chem. Phys., 2007, 127(15), 154114. 44

[110] Yabana, K.; Bertsch, G. F. Phys. Rev. A, 1999, 60, 1271. 44

[111] Varsano, D.; Espinosa Leal, L. A.; Andrade, X.; Marques, M. A. L.; di Felice, R.; Rubio, A.
Phys. Chem. Chem. Phys., 2009, 11, 4481. 44

[112] Marques, M. A. L.; Castro, A.; Malloci, G.; Mulas, G.; Botti, S. J. Chem. Phys., 2007,
127(1), 014107. 44

[113] Aggarwal, R.; Farrar, L.; Saikin, S.; Andrade, X.; Aspuru-Guzik, A.; Polla, D. Solid State
Commun., 2012, 152(3), 204 . 44

[114] Castro, A.; Marques, M. A. L.; Rubio, A. J. Chem. Phys., 2004, 121, 3425. 44

[115] Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-structure Theory. John Wiley &
Sons Inc, 2012. 44

[116] Becke, A. D. J. Chem. Phys., 1993, 98(2), 1372. 44
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Appendix A

LHC appendix

Figure A.1: Spacial geometry of each of the 14 molecules that form the chlorophyll network
of the one monomer of the LHC–II. Each chlorophyll presents a different conformation
due to its specific axial coordination residue. As mentioned in the main text, the all atoms
structure of the LHC–II ( 17000 atoms) has been optimized using the PM7 semi-empirical
Hamiltonian implemented in the Mopac semi-empirical electronic structure package. These
individual structures have been used to compute the absorption spectra of each isolated
chlorophyll.
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Figure A.2: Calculated absorption spectra for isolated LHC–II chromophores, from up to
low chlorophyll a and chlorophyll b. Spectra obtained for the isolated chlorophylls (solid
lines) are compared with that obtained from local dipole analysis (dotted lines). Vertical
dashed lines indicate positions of experimental absorption energies. Direct observation on
the simulated spectra shows a strong effect on the electronic transition of the chlorophyl b
due to the environment effect while a small oscillator strenght transfer effect is observed
for cholorphylls a
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Figure A.3: Comparison between experimental [198] (up) and simulated (down) absorption
spectra of the 3 types of carotenoids molecules: lutein (LUT), violoxanthin (XAT) and
neoxanthin (NEX). A surprisingly good agreement between experimental and simulated
(approx. ∆ = 0.5 eV) is attributed to the non-planar conformation of the polyene chains
due to the structure optimization on the LHC–II complex.
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Figure A.4: Gas phase experiment compared with our TDDFT calculation.
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Figure A.5: Study of the effect of the inclusion of carotenoid molecules to the simulated
absorption spectrum. The observed strong band around 2.1 eV on the spectrum of the chro-
mophore network (upper red line) is assigned to the carotenoids effect by direct comparison
with the spectra obtained for the chlorophyll network (blue line). The spectra decomposi-
tion for the carotenoids contributions confirm that the maxima absorption peaks do not
strongly interact with the chlorophyll bands. Grey shade shows the experimental spectrum
of the LHC–II [22].
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Figure A.6: Absorption spectra decomposition of the chlorophylls network of the LHC–II
dimer on its former monomers: chain B (red shade) and F (green shade) according to the
PDB file 1RWT nomenclature. The total absorption spectra for the chlorophyll network of
the dimer is also represented (solid black line). The small difference on the shape of the
Soret–band is due to the small structural differences between monomers, since no symmetry
has been applied during the structural optimization.
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Figure A.7: Chlorophyll network of the LHC–II monomer (chain B) used on this work.
The systems consists in 14 chlorophyll molecules for a total of 2025 atoms. Hydrogen
atoms are not shown for a better visualization. Bader volumes for each chlorophyll are
represented as mesh. The local absorption decomposition has been performed over these
targeted densities
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Figure A.8: Relative distribution of the different chlorophyll molecules of the stroma (up)
and lumen (half-side). Mg–Mg distances between chlorophyll molecules are represented
as a reference of the proximity between neighbor molecules. Chlorophyll molecules are
displayed only as chlorin rings to improve clarity. Chlorophyll a are represented in blue
and chlorophyll b in green.



Appendix B

HPC projects

B.I PRACE (Partnership for Advanced Comput-

ing in Europe) calls
• Project 2013081486

MareNostrum III at BSC
From 1 of September of 2013 to 31 of August of 2014
PRACE Tier-0: 21,500,000 core-hours
“LHC-ABS - The optical absorption spectra of a real Light Harvesting Com-
plex from first-principles: the spinach case”

• Project 2013081562
FERMI at CINECA (Blue Gene/Q)
From 1 of September of 2013 to 31 of August of 2014
PRACE Tier-0: 20,000,000 core-hours
“LAIT - Light-harvesting in the time domain”

• Project 2010PA1404
Juqueen (Blue Gene/Q)
From 1 of May to 31 of July of 2013
Type C (support from one PRACE expert)
“Optimization of the code Octopus”

• Project 2010PA0660
Curie Fat Nodes
From 1 of January to 31 of March of 2012
Type A (code scalability testing): 50,000 core-hours
“Scalability of methods to calculate the electrostatic potentials created by
charge distributions”

• Project 2010PA0763
Jugene at the beginning, Juqueen (BG/Q) then
From 25 of April to 30 of November 2012
Type B (code development and optimization): 250,000 core-hours
“Optimization of new algorithms in Octopus for methods to calculate the
electrostatic potentials created by charge distributions”
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• Project 2010PA0415
Jugene (Blue Gene/P)
From 2 of May to 31 of October 2011
Type C (support from one PRACE expert): 250,000 core-hours
“New algorithms in Octopus for the Pflops computing”

B.II RES (Red Española de Supercomputación)

calls
• QCM-2015-1-0016

LaPalma (PowerPC PPC970MP)
From 1 of March to 30 of June 2015
700,00 core-hours
“First principle simulations of gas storage on nano-structured materials”

• QCM-2014-2-0036
MareNostrum III
From 1of July to 31 of October 2014
84,000 core-hours
“Improving the Performance of the IO and Density Fragment procedures on
OCTOPUS code”

• QCM-2014-1-0041
Magerit
From 1 of March to 30 of June 2014
100,000 core-hours
“New local multipole implementation and visualization for Octopus code”

• FI-2013-3-0021
Magerit
From 1 of November 2013 to 30 of June 2014
100,000 core-hours
“Implementation of new exchange correlation functionals and molecular dy-
namics calculations in Octopus”

• FI-2013-1-0010
MareNostrum III and Magerit
From 1 of March to 30 of June 2013
160,0000 core-hours (500,000 used)
“Octopus GS and TD scaling testing in new architectures”



Appendix C

Executions

C.I Execution times
During the initial stage of the project, we had done lots of tests to measure different
parameters. Those tests involved huge execution times. Also, we have found some
problems that increased significantly the required total amount of computing hours.
As the supercomputers are limited infrastructures, every user has a limited quota
of usage, determined by the project that he or she has supplied. At the beginning,
we were using a test account in Jugene supercomputer, and next table summarises
the core hours we had used:

GS test Real GS TD test
No. of atoms No. exec. Hours Core hour No. exec. Time Hours No. exec. Hours Core hour

180 13 0.87 1,122.42 1 0.15 38.47 26 2.53 24,768.82
441 10 1.52 1,831.08 - - - - - -
650 6 1.87 2,753.24 - - - - - -

1365 2 2.79 8,696.60 11 19.84 376,177.78 17 10.21 54,914.84
2676 - - - 2 11.43 374,538.24 - - -
5879 - - - 9 11.71 563,163.59 - - -

Sum 31 7.03 14,403.34 23 43.13 1,313,918.08 43 12.74 79,683.66

Total sum 1,408,005.08 core hours

Table C.1: Summary of the execution times (GS tests, real GS calculations attempts, and
TD tests) in Jugene.

In the Table C.1 we can see that almost all the time has been spent trying to
obtain the real GS (executions until the converged ground state of the simulated
system). We needed to tune some input parameters, and this required a considerable
amount of computational time; finally, we could converge the system of 1365 atoms.
But, unfortunately, we could not manage to run simulations of bigger systems, so
we could not carry out the corresponding TD tests. In fact, to obtain the ground
state solution currently we need to allocate more data than what can fit in the
nodes memory, so all the executions for big systems broke. Several efforts have been
done to overcome this problem by adjusting the input parameters and optimising
memory usage in the code, that implied using large quantities of time for tests, but
the problem is still not completely solved.

In total, we have used more than 1,408,000 core hours, or, what is the same, we
have used the whole machine for almost 5 hours, or we have used one processor (4
cores) for 40 years.
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C.II Number of executions
A great amount of experiment have been carried-out, as we had got many different
variables to prove: we used three machines (Jugene, MareNostrum II and Ganbo),
six atomic system sizes (180, 441, 650, 1365, 2676 and 5879) and three different
calculation modes (GS tests, real GS and TD tests). We have also two parallelisation
levels (domain and states) that have to be tuned properly, in addition to other
physical input variables. So, at the end, this creates large number of possibilities
that we had to try. The next Figure C.1 is an example of some of executions of
each type. In Figure can be seen the order of execution times depending on the
number of nodes and the atomic system size. Have to be taken in account that each
of shown test has to be done more than once.
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MPI processes

Jugene 180
Jugene 441
Jugene 650
Jugene 1365
MareNostrum II 180
MareNostrum II 441
MareNostrum II 650
Ganbo 180

Figure C.1: Test GS overall execution time. Four systems are shown (180, 441, 650 and
1365 atoms) and three machines (Jugene, MareNostrum II and Ganbo).



Appendix D

Supporting info of Poisson solvers

In this appendix we include some information to complement our work of Chapter 6.
First, we provide some statements on the communication patterns of PFFT [15], ISF
[14], and FMM [81] used by our implementations in Section D.I. Afterwards, we give
more details on the tests we have done (Section D.II). We also compare the time
of the multipolar expansion correction of the Multigrid and Conjugate Gradients
methods with the corresponding total execution time in Section D.III. Finally, in
Section D.IV, we discuss the correction term we devised to adapt the FMM method
(originally devised to deal with point charges) to charge distributions.

D.I Communication patterns
During the Poisson solver Octopus migh need to use an external library. On those
external codes (for example ISF [14] and PFFT [15]) the data distribution migh
differ from that on Octopus. Fast Fourier Transforms require parallelepipedic
meshes, but this is not necessarily the case of Octopus. In these cases, the original
adaptive mesh has to be converted to a parallelepiped mesh by filling the new points
with zeroes. At the initialization stage a mapping between the Octopus mesh
decomposition and the FFT mesh decomposition is established and saved. This
mapping is used when running the actual solver to efficiently communicate only the
strictly necessary mesh data between processes, achieving almost perfectly linear
parallel scaling.

The PFFT library requires two communication steps in addition to the box
transformation. Required communication needs are two MPI Alltoall calls for
every calculated FFT. In total, six MPI Alltoall calls are needed in every Pois-
son solver. However, ISF library is more efficient in this sence and it only needs
two MPI Alltoall to calculate the entire Poisson solver; so, in total only four
MPI Alltoall are needed.

Regarding to the FMM library, three MPI global communication functions have
to be executed: MPI Allgather, MPI Allreduce and MPI Alltoall. Addi-
tionally, synchronisation between different FMM levels has to be done using MPI Barrier
[199].

D.II Tuning the system parameters
In this Section we give additional information on several input parameters that we
used in our tests of the Poisson solvers, so that they can be reproduced. These
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parameters are the spatial form of the mesh in whose points the Hartree potential
was calculated (BoxShape), the accuracy tolerance of the energy calculated with
FMM (DeltaEFMM), the number of stages in the mesh hierarchy of the Multigrid
solver (MultigridLevels) and the order of the multipole expansion of the charges
whose potential is analytically calculated when using the Multigrid or the Conjugate
Gradients solvers (PoissonSolverMaxMultipole).

Octopus is able to handle different mesh shapes, like spherical, parallelepiped
or adaptive shapes. Apart from the mesh shape and size, the mesh is defined by
its spacing parameter, i.e., the distance between consecutive mesh points. The
adaptive mesh shape option in Octopus produces fair results with FMM. Serial
FFT, PFFT, and ISF (which uses FFT) solvers create a parallelepiped mesh —
which contains the original adaptive one— to calculate the Hartree potential. If
Multigrid or Conjugate Gradients are used with a adaptive mesh, it is frequent to
find a serious loss of accuracy, because adaptive boxes are usually irregular, and
the multipole expansion (whose terms are based on spherical harmonics, which are
rather smooth) cannot adapt well to arbitrary charge values in irregular meshes.
These effects of box shape made us choose cubic meshes for our tests. In any case,
one should take into account that if non-parallelepiped meshes are used, then the
solvers based on reciprocal space (serial FFT, PFFT and ISF) spend additional time
dealing with the additional points with null density, while FMM does not have this
problem. Examples of this can be viewed in Table D.1, where it can be observed
that the execution time is essentially the same regardless of the box shape for PFFT,
while spherical and adaptive box shapes are much more efficient than parallelepiped
shape for FMM (with a ratio of about 1.67).

Spherical meshes are still valid for Multigrid and Conjugate Gradients methods.
We have compared the relative accuracy of cubic and spherical meshes for FMM,
Multigrid, and CG methods containing the same number of points. When FMM is
used, both errors decrease while the mesh size is increased, being relatively equal
for both representations, until an accuracy plateau is reached for big meshes. The
same behaviour is shown for the Multigrid solver and by the CG solver up to a given
volume for a given system.

PFFT FMM
R||Le(Å) Adaptive Sphere Parallel. Adaptive Sphere Parallel.

15.8 1.001 1.032 1.030 3.371 3.5413 5.945
22.0 2.535 2.664 2.667 10.500 10.447 16.922
25.8 4.321 4.265 4.393 16.321 16.212 27.861
31.6 8.239 8.034 8.271 27.821 28.707 48.206

Table D.1: Comparison of total times (s) required for the calculation of the Hartree po-
tential as a function of the box shape and radius (R) or semi-edge length (Le) for PFFT
and FMM solvers.

Apart from their shape (whose effects are commented above) and their size
(whose effects are commented in Chapter 6), the meshes are determined by the
spacing between points. In Sections 6.2.1 and 6.2.2 we showed the accuracy and
the execution time of the Poisson solvers as a function of the size (semi-edge) of
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Figure D.1: A) Comparison of Ξv varying the spacing from 0.1 Å to 0.8 Å, of the system
of Le = 15.8 Å. B) Same for ΞE error. C) Comparison of time varying the spacing in the
same range in Ganbo (x86-64). The times are given by running in 8 cores with 8 MPI
processes.
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cubic boxes, all using a spacing of 0.2 Å. This value was chosen because it is close
to the values of the spacing typically used in the simulations of physical systems
(where, unfortunately, the analytical calculation of the Hartree potential is not pos-
sible). The choice of other values of the spacing does not have a strong impact on
the results of our tests, as can be viewed in Figure D.1. These tests used the same
Gaussian charge distribution that was defined in the Section 6.2.1, with a cubic box
of semi-edge Le = 15.8 Å and variable spacing. The error ΞE as a function of the
spacing (see Figure D.1A and Figure D.1B) is almost invariant within a wide radius
around the used value of 0.2. The total number of mesh points increases with the
cube of spacing−1, and so does (essentially, regardless communication issues) the
increasing of the computing time (see Figure D.1C). Too big values for the spacing
lead to too coarse density samplings, and therefore to wrong Hartree potentials.

The implementations of Multigrid and Conjugate Gradients solvers we used in
our tests are based on a multipole expansion. Each value of the input charge density
represented on a mesh (ρijk) is expressed with an analytical term via this multipole
expansion, plus a numerical term. The Hartree potential created by the analytic part
is calculated analytically, while the Hartree potential created by the numerical term
is calculated numerically with either Multigrid or Conjugate Gradients method. So,
since the use of the analytic term makes the numerical term smaller, numerical errors
are expected to be reduced. Therefore, the smaller the difference between the charge
density and its multipole expansion, the smaller the potential numerically calculated,
and the higher the accuracy of the total Hartree potential calculation. An order for
the multipole expansion (the input parameter PoissonSolverMaxMultipole,
PSMM) must be chosen. It is to be stressed that arbitrarily higher values of PSMM
do not lead to more accurate results; rather, there exists a PSMM that minimises
the error for each problem. We ran some tests to obtain this optimal value. In
them, we calculated the Ground State of a 180 atom chlorophyll system varying the
value of PSMM. Table D.2 shows the obtained results; for PSMM= 8, 9, and 10,
the accumulation of errors was big enough for calculations not to converge (because
beyond a given order, the spherical harmonics are too steep to describe the ρ, which is
rather smooth). From the data of Table D.2, we chose PSMM= 7 for our simulations
(with PSMM= 7 the HOMO-LUMO gap is equivalent to the reference value given
by ISF, and the Hartree energy is the closest one).

Hartree energy (eV) HOMO-LUMO gap
PSMM ISF CG Multigrid ISF CG Multigrid

4 240821.47 240813.51 240813.41 1.4489 1.2179 1.2178
6 240821.47 240813.93 240813.95 1.4489 1.4340 1.4353
7 240821.47 240815.01 240814.69 1.4489 1.4520 1.4506

Table D.2: Ground State values of the Hartree energy and the HOMO-LUMO gap as a
function of the PSMM (input parameter of Multigrid and Conjugate Gradients solvers).
Reference values are given by the ISF solver.

The implementation we used for FMM [81] allows one to tune the relative error
of the calculations. Its expression is the quotient (Eref − En)/En, i.e. the variable
DeltaEFMM, where En is the Hartree energy calculated with the FMM method and
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Eref is an estimation of what its actual value is. We chose for our calculations a
relative error of 10−4. Note that this error corresponds only to the pairwise term
of the Hartree potential, before the correction for charge distribution is applied (see
Section 3.5.3 and D.IV).

D.III Correction time of MG and CG

As explained at the Chapter 6 (Section 3.5.4), the Multigrid and Conjugate Gra-
dients solvers use a multipolar expansion for the charge, such that the potential
created by this expansion can be analytically calculated, while the potential cre-
ated by the remaining charge, i.e. original charge minus multipolar expansion, is
calculated with either Multigrid or Conjugate Gradients. This analytical calcula-
tion requires similar times for both solvers. It requires between 0.2% and 8% of the
Conjugate Gradients total execution time, and between 1.7% and 3.2% in the case
of Multigrid for the standard tests performed. Therefore, in essence, it does not
add a significant extra time. As an example, a system of Le = 15.8 and spacing of
0.2 Å (4,019,679 mesh points) in Ganbo is shown in Table D.3. Very similar trend
is shown in other system sizes and machines.

Multigrid t(s) CG corrected t(s)
MPI proc. Solver Correction Percentage Solver Correction Percentage

1 89.02 7.16 8.04% 223.36 7.13 3.19%
2 57.46 3.53 6.14% 122.87 3.58 2.91%
4 29.61 1.87 6.32% 67.72 1.91 2.82%
8 15.60 1.00 6.41% 35.05 1.04 2.96%

16 8.62 0.53 6.20% 20.23 0.53 2.62%
32 4.57 0.28 6.16% 10.87 0.28 2.59%
64 2.84 0.14 4.92% 5.72 0.20 3.42%

128 2.18 0.07 3.17% 4.33 0.08 1.75%
256 5.19 0.08 1.49% 3.46 0.06 1.73%
512 10.04 0.02 0.23% 1.00 0.02 2.33%

Table D.3: Correction time (s) compared with the total solver time of Multigrid and Con-
jugate Gradients solvers in for a system of Le = 15.8 Å (4,019,679 mesh points) in Ganbo
machine from 1 to 512 MPI processes.

D.IV Correction terms for FMM

D.IV.1 General remarks

The Fast Multipole Method (FMM)[77, 78, 80, 79, 81] was devised to efficiently
calculate pairwise potentials created by pointlike charges, like pairwise Coulomb
potential. In the literature it is possible to find some modifications of the traditional
FMM which deal with charges that are modelled as Gaussian functions [85]. Such
modifications of FMM can be used into LCAO codes as Gaussian [200] or FHI-Aims.
However, they are not useful when the charge distribution is represented through
a set of discrete charge density values. The Fast Multipole Method presented in
[16, 81] belongs to the family of FMM methods which calculate the electrostatic
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potential created by a set of pointlike charges. This method is very accurate and
efficient, but it needs some modifications to work in programs like Octopus [3, 4],
where the 3D mesh points actually represent charge densities. As stated in the
Chapter 3 (Section 3.5), the electronic density is a R3 → R field, where values of
the R3 set correspond to an equispaced mesh (see Figure D.2C) ). The variable ρj,k,l
is the charge density at the portion of volume (cell) centred in the point (j, k, l).
Each cell is limited by the planes bisecting the lines that join two consecutive mesh
points, and its volume is Ω = h3, being h the spacing between consecutive mesh
points. The density ρj,k,l is always negative and it is expected to vary slowly among
nearby points.

C)

point P
h/2

charges are equispaced

A)

B)
P

P Error in the integral for V

P neighbours

P semi-neighbours

Figure D.2: Scheme of how the inclusion of semi-neighbours of point P (pink points) helps
to improve the accuracy of the integration to calculate the Hartree potential. A) Scheme
of the function whose integration will be approximated by a summation (surface under the
green line), without considering semi-neighbours. B) id., considering semi-neighbours of
point P; The error made by the approximation is proportional to the yellow surface in A)
and B). C) 2D scheme of the mesh: green points are mesh points, while pink points are
semi-neighbours of P.

The term vSI in equation (3.28) can be calculated analytically as follows assuming
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that the cell is a sphere of volume Ω:

vSI(~r0) =

∫
Ω

d~r
ρ(~r)

|~r − ~r0|
= ρ(~r0)

∫
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1
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0
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dθ
r2sen(θ)

r

= ρ(~r0)2πh2

(
3

4π

)2/3

, (D.1)

where we have used the approximation of constant charge density within the cell.
One may expect this approximate way to proceed to be less accurate than the
numerical integration of 1/r in a cubic cell (what is also efficient, since the integration
through an arbitrary size cube is proportional to the integral through a cube of unit
volume). However, it happens the converse: the difference between both methods
is small (about 1% of difference between integrals) but, due to error cancellations,
the analytical method is slightly more accurate when calculating potentials.

The term vcorr.
j,k,l in (3.28) is included to calculate more accurately the potential

created by the charge in cells nearby to (j, k, l). To devise a expression for it, we
consider that the charge distribution is similar to sets of Gaussians centred in the
atoms of the system. For Gaussian distributions, the greatest concavity near the
centre of the Gaussian makes the influence of neighbouring points to be major for
the potential. As we can see in the scheme of Figure D.2 A)-B), considering semi-
neighbours of point P (in ~r0 := (j, k, l)), i.e., points whose distance to P is not h,
but h/2, the integral of equation 16 of the paper can be calculated in a much more
accurate way.

D.IV.2 Method 1: 6-neighbours correction

We build a corrective term by calculating the charge in the 6 semi-neighbours of every
point of the mesh ~r0 (see Figure D.3 for a intuitive scheme). The total correction
term is the potential created by the semi-neighbours (vcorr.+) minus the potential
created by the charge lying in the volume of the semi-neighbour cells that was
already counted in vFMM or in vSI (vcorr.−):

vcorr.(~r0) = vcorr.+(~r0)− vcorr.−(~r0) . (D.2)

In order to calculate vcorr.+, we use the formula por the 3rd degree interpolation
polynomial:
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So, the semi-neighbours of ~r0 = (x0, y0, z0) are
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We consider all this six charges to be homogeneously distributed in cells whose
volume is Ω/8. The distance between the centre of these small cells and the centre
of the cell whose v we are calculating (i.e., the cell centred in ~r0) is h/2. So the first
part of vcorr.(~r0) is

vcorr.+(~r0) =
(
ρ(x0 − h/2, y0, z0) + ρ(x0 + h/2, y0, z0) + . . .+

+ ρ(x0, y0, z0 + h/2)
)(Ω

8

)(
1

h/2

)
. (D.5)

Since we have created these new 6 cells, we must subtract the potential created by
their corresponding volume from that created by the cells whose volume is partly
occupied by these new cells. This potential is:

vcorr.−(~r0) =
(
ρ(x0 − h, y0, z0) + ρ(x0 + h, y0, z0) + ρ(x0, y0 − h, z0) + ρ(x0, y0 + h, z0)

+ ρ(x0, y0, z0 − h) + ρ(x0, y0, z0 + h)
)( Ω

16

)(
1

h

)
+ α vSI(~r0) . (D.6)

The aim of the term α vSI (i.e., the variable AlphaFMM in Octopus) is to
compensate the errors arising from the assumption that the charge is concentrated
at the centre of the cells and reduced cells. The value of α is tuned to minimise the
errors in the potentials.
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A)

B)

Original box: all cell’s size is h2 (2D)

New: Semi-neighbours cell sizes are h2/4

Side cells sizes are 7/8h2

Central cell size is h2/2

(all in 2D)

Figure D.3: 2D example of the position of cells containing semi neighbours. Assume the
centre of the plots is ~r0, the point where we want to calculate the correcting term for the
potential. The volume of semi-neighbour cells is h2/4 in 2D, and Ω/8 in 3D. One half
of the semi-neighbour cell occupies the volume of a neighbour cell (the cell whose centre
is h away from ~r0). The other half of the semi-neighbour cell occupies the space of the
~r0-centred cell itself.

It is worth to re-express as follows the correction terms of eqs. (D.2), (D.5) and
(D.6) avoiding to call to every variable more than once for the sake of getting higher
computational efficiency:

vSI(~r0) + vcorr.(~r0) = h2
[

ρ(x0, y0, z0)
(
27/32 + (1− α)2π(3/4π)2/3

)
(D.7)

+(1/16)
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−(1/4)
(
ρ(x0 − 2h, y0, z0) + ρ(x0 + 2h, y0, z0) + ρ(x0, y0 − 2h, z0)

+ρ(x0, y0 + 2h, z0) + ρ(x0, y0, z0 − 2h) + ρ(x0, y0, z0 + 2h)
))]

.

We ran tests using the error formula E :=
√∑

i(v
Exact(~ri)− vFMM(~ri))2, with

the index i running for all points of the system. The inclusion of the correcting term
introduced in this Section typically reduced E in a factor about 50.

D.IV.3 Method 2: 124-neighbours correction

This method is similar to the one explained in the previous Section, but with two
differences

• It uses 3D interpolation polynomials, instead of 1D polynomials. Then, it
considers 53 − 1 = 124 neighbours in a cube of edge 5h centred in ~r0 to
calculate the corrective term for V (~r0)

• The interpolation polynomials representing ρ(x, y, z) are numerically inte-
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grated (after their division by r). This is, we calculate

vcorr.+(~r0) =

∫
125Ω

d~r
ρ(~r)

|~r − ~r0|
'
∫

125Ω

d~r
Pol(~r)

|~r − ~r0|
. (D.8)

The integration is to be performed between -5/2h and 5/2h for x, y and z. The
interpolation polynomial (with 125 support points) Pol(~r) is

Pol(~r) =
5∑
i=1

5∑
j=1

5∑
k=1

ρ(x0 + (i− 3)h, y0 + (j − 3)h, z0 + (k − 3)h)αi(x)αj(y)αk(z) ,

(D.9)
being

α1(ξ) :=
ξ4

24
− ξ3

12
− ξ2

24
+

ξ

12
, (D.10a)

α2(ξ) := −ξ
4

6
+
ξ3

6
+

2ξ2

3
− 2ξ

3
, (D.10b)

α3(ξ) :=
ξ4

4
− 5ξ2

4
+ 1 , (D.10c)

α4(ξ) := −ξ
4

6
− ξ3

6
+

2ξ2

3
+

2ξ

3
, (D.10d)

α5(ξ) :=
ξ4

24
+
ξ3

12
− ξ2

24
− ξ

12
. (D.10e)

The quotient of the polynomials αi(x)αj(y)αk(z) divided by |~r − ~r0| can be
numerically integrated through the cubic cell of edge 5h and centred in x0. Such
integrals can indeed be tabulated, because equation ((D.8)) implies vcorr.+(~r0) =
vcorr.+(~r0)|h=1 · h2. Terms of αi(x)αj(y)αk(z)/|~r− ~r0| are often odd functions whose
integral is null. The non-zero integrals taking part in ((D.1)) (with h = 1) can be
easily calculated numerically.

Therefore

vcorr.+(~r0) =
5∑
i=1

5∑
j=1

5∑
k=1

ρ(x0 + (i− 3)h, y0 + (j − 3)h, z0 + (k − 3)h) ·∫
125Ω

d~r
αi(x)αj(y)αk(z)

|~r − ~r0|

=
5∑
i=1

5∑
j=1

5∑
k=1

ρ(x0 + (i− 3)h, y0 + (j − 3)h, z0 + (k − 3)h) ·

5∑
l=1

5∑
m=1

5∑
n=1

αi,lαj,mαk,n

∫
125Ω

d~r
xl−1ym−1zn−1

|~r − ~r0|

=
5∑
i=1

5∑
j=1

5∑
k=1

ρ(x0 + (i− 3)h, y0 + (j − 3)h, z0 + (k − 3)h) ·

5∑
l=1

5∑
m=1

5∑
n=1

αi,lαj,mαk,nβ(l − 1,m− 1, n− 1)h2 , (D.11)
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where αi,l is the coefficient of ξl−1 if αi(ξ) and

β(l,m, n) :=

∫ 1/2

−1/2

dx

∫ 1/2

−1/2

dy

∫ 1/2

−1/2

dz
xlymzn√
x2 + y2 + z2

. (D.12)

In this case, vcorr.− is equal to all the contributions to V (~r0) due to charges whose
position (x, y, z) satisfies

|x− x0| <= 2h; |y − y0| <= 2h; |z − z0| <= 2h , (D.13)

including self-interaction integral.
This way to calculate vcorr.+ is not inefficient, because only 27 integrals are not

null, and both α and β are known. In order to calculate vcorr.+(~r0) we need 125
products and additions, what is essentially the same number of operations which is
required in order to calculate the potential created in ~r0 by the neighbouring points
(whose calculation can be removed and then saved). Nevertheless, results using this
correction method were worse than that obtained using the first method, so only
that one was implemented into the standard version of Octopus.
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