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Abstract. We consider the topologically nontrivial phase states and the corresponding
topological defects in the SU(3) d-dimensional quantum chromodynamics (QCD). The
homotopy groups for topological classes of such defects are calculated explicitly. We have
shown that the three nontrivial groups are π3SU(3) = Z, π5SU(3) = Z, and π6SU(3) = Z6 if
3 ≤ d ≤ 6. The latter result means that we are dealing exactly with six topologically different
phase states. The topological invariants for d=3,5,6 are described in detail.

Introduction. - Topological invariants of field configurations are the fundamental objects
in the quantum field theory and condensed matter physics, which classify topological defects
and possible phase states [1, 2]. The well-known examples of topological field distributions are
vortices, hedgehogs, and instantons. They are a direct consequence of the nontrivial homotopy
groups πnSn = Z for the spheres Sn with n = 1, 2, π3SU(2) = Z, for the spatial dimensions
d = 1, 2, 3, respectively. Here, Z is a group of integers. Recent progress in the theory of
topologically ordered phase states [3, 4] is associated with the classification of the systems, in
which the D-dimensional surface SD surrounds a defect in d-dimensional topological insulators
or superconductors [5, 6, 7, 8] and D ̸= d. In this case, the first nontrivial example π3S2 = Z is
the well-known Hopf mapping of the three-dimensional sphere S3 into the two-dimensional one
S2. The corresponding topological invariant Q is called the helicity in magnetohydrodynamics
or the Abelian Chern-Simons action in the (2 + 1)-dimensional topological field theory. The
integer Q means the knotting degree of the field distributions and determines, in particular,
the lower bound [9, 10] of the energy of the two-component Ginzburg-Landau model expressed
[11] in the form of the Skyrme-Faddeev-Niemi model [12, 13]. In this O(3) σ-model, the U(1)
two-form dA = n[dn ∧ dn] is parametrized the Hopf invariant Q = 1

16π2

∫
S3 A ∧ dA ∈ Z by the

unit 3d vector n which maps the base space S3 into S2. The target sphere S2 of the map is
topologically equivalent to the coset SU(2)/U(1) ∼= S2. The n-field is also a relevant on-shell
variable [15, 14, 16, 18] in the infrared limit of the SU(2) QCD.

In this paper, we use the SU(3) group instead of the SU(2) one. The change in the value of
the rank is due to several reasons. Primarily, to the three colors of the QCD. From the point
of view of the knot theory, this choice is also due to an attempt to extend the low-dimensional
topology of the standard knot theory to higher dimensions of the SU(3) QCD target space
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d 0 1 2 3 4 5 6 7 8 9 10
πdF2 0 0 Z× Z Z 0 Z Z6 0 Z12 Z3 Z30

Table 1. A list of the homotopy groups πdF2 for dimensions d ≤ 10.

d 0 1 2 3 4 5 6 7
πdCP 2 0 0 Z 0 0 Z Z2 Z2

Table 2. A list of the homotopy groups πdCP 2 for dimensions d ≤ 7.

[17]. One approach to this problem is to use many-valued functionals [20] in accordance with
the conjecture given in Ref. [21]. Another elegant method is based on the results obtained in
Ref. [22]. However, it is more expedient to describe the target spaces of the SU(3) QCD as a
generalization of the SU(2) target sphere S2.

Flag space. - To generalize the SU(2) group target space to the SU(3) one, we consider
the coset SU(3)/(U(1) × U(1)) = F2 that is now the flag space F2 [23, 24]. The remained
freedom of the maps is the dimension of the base space having a nontrivial homotopy group.
For simplicity, we restrict our consideration to the spheres Sn as the base spaces. Therefore, we
focus on such n of the homotopy groups πnF2, which yields nontrivial results. For comparison,
in addition to the maximal torus U(1)2 of SU(3) that results in the general orbit F2 [25], we
calculate the homotopy groups of the degenerate orbit CP 2, which are equivalent to the coset
space SU(3)/U(2) = SU(3)/ (SU(2)× U(1)) = CP 2.

It should be noted that we are restricted to the framework of the homotopy group approach.
Therefore, we would like to determine the constraints on the type of the possible topological
phase states and topological defects only. We will describe the geometry of the flag space F2

and topological features in the last two sections. The results of our calculations are presented
in two tables.

It is seen in Table I that the nontrivial homotopy groups for d ≤ 6 are π2F2, π3F2, π5F2, and
π6F2.

(i) It is known [24] that nontriviality of π2F2 = Z × Z accounts for the presence of two
different monopoles in the theory (cf. π2CP 2 = Z in Table II which means that we deal with
a monopole of one type). The second homotopy group is nontrivial due to the fact that the
simply connected flag space F2 is a compact symplectic manifold.

(ii) The integers in the RHS of π3F2 = Z have the meaning of SU(3) instanton topological
charges because π3F2 = π3SU(3) = π3SU(2).

(iii) The integers in the RHS of π5F2 = Z describe some textures and the corresponding
phases. The nature of these textures is difficult to guess now.

(iv) The most interesting answer π6F2 = Z6 means that there are only six phase states with
the labels {0, 1, . . . 5}. They are usually ordered as three quark doublets. We can topologically
distinct the quark states because of the gauge invariant coupling of the fermions to the gauge
potential. This takes place on the scales where we can consider the six-dimensional base space
as the sphere S6. Note that some additional parameters of the (3 + 1)d gauge theory can add
dimensions in order to have finally 6 dimensions of the base space [31]. We encounter these
phenomena in some topologically ordered phases of condensed matter [4]. In our case, the
best natural choice for the interpretation of the base space S6 corresponds to the standard six-
dimensional space-momentum phase space. We are free also to interpret the six-dimensional
compact space S6 as a complement to the (3 + 1)-dimensional space-time, but the previous
suggestion is much better.

Gauge fields on the flag space. - Let us describe the flag space F2 in detail to explain in
particular at the end, why we addressed to homotopy theory approach. It is a compact Kähler
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manifold which is a homogeneous nonsymmetric space of dimension dimF2 = 6. Since the
flag manifold F2 is the Kähler one, it possesses the complex local coordinates wα, α = 1, 2, 3,
the Hermitian Riemanian metric, ds2 = gαβ̄dw

αdw̄β, and the closed two-form (field strength)

ΩK = igαβ̄dw
α ∧ dw̄β , i.e., dΩK = 0. Here, d = ∂+ ∂̄ = dwα

∂
∂wα

+ dw̄β
∂

∂w̄β
denotes the exterior

derivative, while the operators ∂ and ∂̄ are called the Dolbeault operators.
According to the Poincaré lemma, any closed form ΩK is locally exact, i.e., ΩK = dω, where

ω is the gauge potential. The condition dΩK = 0 is equivalent to gαβ̄ = ∂
∂wα

∂
∂w̄βK, where

K = K(w, w̄) is the Kähler potential:

K(w, w̄) = ln[(∆1(w, w̄))
m(∆2(w, w̄))

n] , (1)

∆1(w, w̄) = 1 + |w1|2 + |w2|2 , (2)

∆2(w, w̄) = 1 + |w3|2 + |w2 − w1w3|2 . (3)

By means of three complex variables wα, the flag space F2 is realized as a set of triangular
matrices of the form  1 w1 w2

0 1 w3

0 0 1

t

∈ F2 = SU(3)/U(1)2 . (4)

The Kähler one-form and the two-form are ω = i
2(∂ − ∂̄)K,ΩK = i∂∂̄K. The explicit forms

of the gauge potential ω and the field strength ΩK are given by

ω = im
w1dw̄1 + w2dw̄2

∆1(w, w̄)
+ in

w3dw̄3

∆2(w, w̄)

+in
w2 − w1w3)(dw̄2 − w̄1dw̄3 − w̄3dw̄1

∆2(w, w̄)
, (5)

ΩK = dω = im(∆1)
−2[(1 + |w1|2)dw2 ∧ dw̄2

−w̄2w1dw2 ∧ dw̄1

−w2w̄1dw1 ∧ dw̄2 + (1 + |w2|2)dw1 ∧ dw̄1]

+in(∆2)
−2[∆1dw3 ∧ dw̄3

−(w1 + w̄3w2)dw3 ∧ (dw̄2 − w̄3dw̄1)

−(w̄1 + w3w̄2)(dw2 − w3dw1) ∧ dw̄3

+(1 + |w3|2)(dw2 − w3dw1)

(dw̄2 − w̄3dw̄1)] . (6)

Calculation of the Poincaré polynomial PF2(t) =
6∑

i=0
bit

i of F2 (see [26, 27]) with the Betti

numbers bi yields PF2(t) = 1 + 2t2 + 2t4 + t6, i.e., b0 = b6 = 1, b2 = b4 = 2. We see that the
cohomology class is not zero because all even Betti numbers are nonzero.

The Kähler potential for CP 2 is given by

K(w, w̄) = ln[(∆1)
m], (7)
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which is obtained as a special case of F2 by specifying the coordinate w3 = 0 and the parameter
n = 0 in Eq. (1). Hence, we have

ω = im
w1dw̄1 + w2dw̄2

∆1(w, w̄)
(8)

up to the total derivative and

ΩK = dω = im(∆1)
−2[(1 + |w1|2)dw2 ∧ dw̄2

−w̄2w1dw2 ∧ dw̄1

−w2w̄1dw1 ∧ dw̄2

+(1 + |w2|2)dw1 ∧ dw̄1]. (9)

This should be compared to the case F1 = CP 1, where

ews+ =

(
1 w
0 1

)
∈ F1 = CP 1 = SU(2)/U(1) ∼= S2 (10)

and s+ =

(
0 1
0 0

)
. Here, the complex variable w is the CP 1 variable written as w = eiϕ cot θ

2

in terms of the polar coordinates of the unit vector n in S2. The results for SU(2) are well-known:
K(w, w̄) = m ln[(1 + |w|2)], ω = im wdw̄

1+|w|2 , and ΩK = igww̄dw ∧ dw̄ = im dw∧dw̄
(1+|w|2)2 .

It is seen from these equations that the degenerate orbit CP 2 is the four-dimensional feature
inside the six-dimensional flag space F2. Therefore, two-form (6) is closed, but not globally exact.
One can say that ΩK is an element of the second cohomology group of F2. This means that
we cannot define the gauge connection ω everywhere in F2, because the one-form ω is not well
defined on the manifold. This is the reason why it is difficult to directly determine the Hopf-like
topological invariants in the F2 case.

Topological invariants . - Let us proceed with the analysis of topological invariants by
calculating the homotopy groups of SU(3). The flag space F2 = SU(3)/U(1)2 is the base
space of the U(1)2-fiber bundle SU(3) → F2. We have the following exact sequences:

0 → πd
(
U(1)2

)
→ πdSU(3)

∼=→ πdF2

→ πd
(
U(1)2

)
→ 0, for d ≥ 3 , (11)

0 → π2SU(3) → π2F2 → π1
(
U(1)2

)
→ π1SU(3) → π1F2 → 0 , (12)

where π1
(
U(1)2

)
= Z× Z and π1SU(3) = π2SU(3) = 0. Thus, we have π0F2 = π1F2 = 0,

π2F2 = Z× Z,
πdF2 = πdSU(3), for d ≥ 3 .

(13)

We summarized the results in Table I. It presents the nontrivial homotopy groups of F2, which
are in accord with previous studies [28] (see also Ref. [29]). For completeness and comparison,
we also have shown a list of the homotopy groups πdCP 2 for d ≤ 7 in Table II.
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Table I is proved by the results of Ref. [30] and references therein. In particular, Ref. [30]
presents two theorems that account for the 5th and 6th homotopy groups of SU(3). Theorem 1:
π2n−1U(N) = Z for N ≥ n and Theorem 2: π2nU(n) = Zn! for n ≥ 2. We will study now the
3rd, 5th, and 6th homotopy groups in more detail.

1. The 3rd homotopy group of SU(3). The exact sequence of the fibration
SU(3) → SU(3)/SU(2) ∼= S5 is

πd+1S5 → πdSU(2)
i∗→ πdSU(3) → πdS5 . (14)

Let d = 3 and, since π4S5 = π3S5 = 0, let the inclusion i: SU(2) ↪→ SU(3) induce an

isomorphism i∗: π3SU(2)
∼=→ π3SU(3). A generator for π3SU(2) is given by

g2(r) = r01+ irjσj , (15)

for r = (r0, r1, r2, r3) and |r| = 1 ,

(16)

where 1 is the identity matrix and σj are the Pauli matrices. Thus, the generator for π3SU(3)
is

g3(r) =

 1 0 0
0 r0 + ir3 ir1 + r2

0 ir1 − r2 r0 − ir3

 . (17)

Given any continuous function g: S3 → SU(3), the topological invariant, i.e., the winding
degree [g] ∈ π3SU(3) = Z, is determined by the integral formula

[g] =
1

24π2

∫
S3
Tr

[
(gdg†)3

]
=

1

24π2

∫
S3
d3xεµνλ Tr(g†∂νgg

†∂µgg
†∂λg) . (18)

2. The 5th homotopy group of SU(3). Using exact sequence (14), we have

π5SU(2) → π5SU(3) → π5S5

→ π4SU(2) → π4SU(3) . (19)

It is known that π5SU(2) = π5S3 = Z2 and π5SU(3) = Z (from theorem 1), and thus the first

arrow must be the zero map (Z2
0→ Z). We also know that π4SU(3) = 0, as the homotopy group

π4SU(N) = 0 stabilizes after N ≥ 3. Finally, we need π4SU(2) = π4S3 = Z2. We now have

0 → π5SU(3)
×2→ π5S5 → Z2 → 0 . (20)

This means that given g: π5S5 → SU(3),

g(r) =

 | | |
u1(r) u2(r) u3(r)

| | |

 , for r ∈ S5, (21)
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the vector u1: S5 → S5 has an even winding degree, namely, the winding degree [u1] =
2× winding degree[g].

The exact sequence for the fibration SU(N + 1) → SU(N + 1)/SU(N) = S2N+1 shows that
π5SU(N) = Z stabilizes after N ≥ 3. Thus, the winding degree of g can be also deduced by the
usual formula

[g] =
1

480π3i

∫
S5

Tr
[
(gdg†)5

]
. (22)

A particular generator of π5SU(3) can be found in Ref. [30].
3. The 6th homotopy group of SU(3). Exact sequence (14) yields

π7S5 → π6SU(2) → π6SU(3)

0→ π6S5
∼=→ π5SU(2) , (23)

where π7S5 = Z2 and π6SU(2) = Z12. It turns out that π6SU(3) = Z3! = Z6. A generator for
π6SU(3) can be found in [30] in page 6.

Conclusion. - In conclusion, we focus on the nontrivial homotopy groups for d ≤ 6 π2F2,
π3F2, π5F2, and π6F2 considered so far for the spheres S2 as the base space. The generalization
S2 → Tn, where Tn is the n-dimensional torus, is an interesting and more complicated extension
even in the SU(2) case. The result of calculations [32] of the mapping class groups in the last
case with T 3 = S1 × S1 × S1 leads to the linear superposition of the topological invariants
beginning from the first Chern class to the Hopf invariant (see also [12]). Similar behavior also
takes place in the case of T 3 = S2 × S1. The classification problems of the mappings Tn → F2

are still totally open.
Up to now, we did not pay any attention to the relation between the existence of strong

interaction in the system and homotopy group results. It is well known in the condensed matter
community that nontrivial answers Z2 or Z for the topological invariant of non-interacting
systems change drastically in particular to Z8 in the case of the interacting system [33].
Considering from this point of view the result π6(F2) = Z6, one can say that we deal here
with the significant interaction as it takes place in our QCD system.

Thorough understanding of the role of the flag space F2 in the SU(3) gauge theory is related
to the search for an analog of the Hopf number, i.e., the linking number of pullbacks on a space
M of two arbitrary ”points” on a target space N of the map M → N. Such an analog can have
the form of pre-images of the target points in the codimension two [22]. This could take place
if M = S3 and N is the 2d complement of CP 2 with respect to the whole space F2. This is an
open question, which is difficult to answer without knowing the details of the map. We leave
the problem of describing the details of this map for future work.
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