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1 T2: the detection time15

In the main manuscript, we have conveniently split the search time into the16

approaching time, T1 and the detection time, T2. The change from one to the17

other occurs at a distance from the target xa ≈ O(vτ) where v is the velocity18
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and τ the correlation length, or in other words, a distance on the order of19

the characteristic flight time (Figure 1). Due to the diffusive nature of the20

searcher’s movement, the approaching time depends explicitly on the coefficient21

D. However, the detection time is a function of L, v and p(v) (i.e. T2 =22

f(L, v, p(v))). For the particular case of CRWs we have T2 = L/vp(v), the time23

to cover the domain size L ballistically (see Eq. 2 in the main text).24

Since the searcher’s motion during T2 is still essentially diffusive, it may25

be puzzling why T2 does not depend explicitly on D. To understand why this26

happens, note the seacher’s movement may contain many back-and-forth move-27

ments away and towards the target, and that directional persistence plays an28

ambivalent role. It both reduces the turning rate on arrival, and hence the29

probability for the searcher to wander around the target, but at the same time30

increases the characteristic distance of departure (i.e. xa, Figure 1) from the31

target, which is vτ (or should be proportional to it).32

At short-scales, the movement of the searcher towards the target can also be33

interpreted as an approaching time but averaged over positions > xa. Expressed34

in mathematical form, this is35

〈T2〉 =

∫ L

0

ρ(xa)
xa(L− xa)

2D
dL (1)

where ρ(xa) represents the probability distribution of the distance xa. Now,36

since we are assuming that the domain size is much larger than the typical flight37

distance, L� xa we can simplify the integral to obtain38

〈T2〉 =

∫ L

0

ρ(xa)
xaL

2D
dL =

L

2D
〈xa〉 ∼ L/v (2)

where in the last identity we have used that the average value of xa is pro-39

portional to vτ , as stated above, and the definition of the diffusion coefficient40

is D ≡ v2τ . Hence, we observe that the result T2 ∼ L/v is because the dis-41

tance of departure xa, at which the detection phase starts, depends explicitly42

on the motion parameters v and τ . Whenever the searcher moves towards the43
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target, persistence (which can be attained by increasing either v or τ) facilitates44

the encounter with the target by decreasing the time spent wandering around45

it. On the other hand, if the searcher mistakenly moves away from the target46

persistence increases the characteristic distance of departure xa. Our calcula-47

tions show that, if L � xa, these two effects compensate for each other in the48

sense that the resulting time T2 becomes independent of the diffusion constant49

D, governed by the characteristic flight time τ . If xa is small, the departure50

distances are small but the turning rates upon arrivals become too large. If xa51

is large, the departure distances are large but arrivals are less meandrous. The52

idea that when detection is plausible (T2 regime) persistence plays opposite roles53

is valid for any random search process. However, the exact cancellation of such54

effects only occurs for random walks where the flight time distribution shows55

a clear-cut scale that is much smaller than the search domain L (e.g. CRWs).56

The introduction of multiple flight times (or persistence) scales can help solve57

this conundrum and introduces the possibility of further optimization (Campos58

et al., 2015).59

2 Generalized diffusion coefficient in 2D60

In the main manuscript, we provide a general expression for the diffusion coef-61

ficient of random walkers62

D(v, α, ϕ(t)) =
v2
〈
t2
〉 [

1 +
(

2〈t〉2
〈t2〉 − 1

)
α
]

2d 〈t〉 (1− α)
(3)

which can be found in various references (e.g. Lovely & Dahlquist, 1975;63

Dusenbery, 2009). This expression is valid for any distribution of flight times64

and turn angles, provided they have finite first and second order moments.65

However, it still has some limitations, as it assumes that (i) the speed of the66

walkers is fixed, and (ii) turns are instantaneous (so pauses between consecutive67

flights are not considered).68

It is possible to generalize this expression by relaxing these two assumptions.69
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Figure 1: Depiction of the key temporal and spatial scales involved in the com-
putation of the mean-first passage times. Grey filled circles represent targets
and the smaller brown, filled circle represents the searcher. rt and rs are the size
and the perceptual scale of the target and the searcher respectively. L represents
the average distance between targets. We depict one single realization of the
whole ensemble of search trajectories, divided into two relevant temporal scales
T1 and T2. T1 is the mean time necessary to leave an empty area and approach
a target. T1 is a function of the spatial scale x0, which delimits the distance
(grey dashed-circle area in two dimensions) that the searchers need to cross to
reach the closest target, in other words, the minimal distance required to leave
an empty area. T2 is the mean time needed to detect a target once the searcher
trajectories are arbitrarily close to any target such that an average detection
is possible. T2 is a function of the spatial scale xa, the characteristic distance
of departure/arrival from/to a target (black dashed-circle in two dimensions),
which is proportional to the characteristic flight time (or persistence) vτ , where
v is the velocity and τ is the correlation length. When detection is plausible
(i.e. T2) persistence plays opposite roles. If xa is large, the departure distances
are large but arrivals are less meandrous. The opposite is true for small xas.
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The derivation, which is built on the foundations of d-dimensional Continuous-70

Time Random Walks is is lengthy, and will not be included here but will be71

published in a more technical article. However, we provide here the general72

result because it is needed to complete the discussion in Section 3.73

The diffusion coefficient, in the more general case, is74

D(v, α, ϕ(t)) =

〈
t2
〉 [〈

v2
〉

+
(

2〈t〉2〈v〉2
〈t2〉 −

〈
v2
〉)
α
]

2d (〈t〉+ 〈tp〉) (1− α)
(4)

where 〈tp〉 is the mean time of the pause distribution (the mean time the75

walker waits between the end of one flight and the beginning of the next one)76

and 〈v〉,
〈
v2
〉

are the first and second order moments of the speed distribution,77

as we now consider that flight speeds are random and follow a given probability78

distribution.79

From the expression (4) in addition to computing the diffusion coefficient80

of the enhanced or the composite case discussed in the main text, but one81

can also consider much more general trajectories for which speeds, pause times,82

flight time, and turn angles are characterized by their corresponding probability83

distributions.84

3 Enhanced and composite diffusion85

In this Section, we provide the details for the derivation of the diffusion coeffi-86

cient in the enhanced and the composite cases discussed in the main text.87

3.1 Enhanced diffusion88

One way to generate multi-scale search patterns is through episodes of long-89

lasting directional persistence, the so-called relocations. At a statistical level,90

relocations facilitate the emergence of heavy-tailed distributions of flight times91

and/or flight distances, which in turn, yields enhanced diffusion, and determine92

the scaling MSD ≈ tγ for the mean square displacement (MSD) over a range93
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of scales (Raposo et al., 2011; Bartumeus et al., 2014).94

Truncated Lévy flights, which are governed by power-law (heavy-tailed)95

flight distributions with an upper and a lower cutoff (representing intrinsic bi-96

ological limitations) have become a paradigm in search theory, borrowed from97

statistical mechanics, to explore these ideas. Since truncated power-law distri-98

butions have finite moments, a diffusion coefficient can also be formally defined99

for truncated Lévy flights.100

While the ubiquity of Lévy patterns in animal movement has been largely101

questioned, in particular, regarding the statistical procedures used to fit power-102

laws (Edwards et al., 2007; Edwards, 2011; Petrovskii et al., 2011; Jansen et al.,103

2012; Reynolds, 2012), it is evident that (i) long relocations commonly arise in104

animal trajectories, often leading to slower-than-exponential decays in flights105

distributions, and (ii) the landscape features and external cues are not enough106

to explain these patterns, since they can be also observed under homogeneous107

or otherwise simple environments (Bazazi et al., 2012; Campos et al., 2014;108

Salvador et al., 2014). In addition, recent works (Bartumeus et al., 2014) have109

shown that heavy-tailed distributions of directional change different than Lévy110

can generate similar statistical signatures, achieving similar search efficiency as111

Lévy flight models.112

For a truncated Lévy flight characterised by a flight time distribution113

ϕenh(t) =
µ

t−µmmin − t
−µ
max

t−1−µ,

with µ positive, the computation of the diffusion coefficient (according to Eq. 3114

in the main text) requires the determination of the first and second moments of115

this distribution. By definition these are116

〈t〉 =

∫ tmax

tmin

ϕenh(t)dt =


µ
µ−1

t1−µmin−t
1−µ
max

t−µmin−t
−µ
max

µ 6= 1

µ

t−µmin−t
−µ
max

log tmax
tmin

µ = 1
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〈t2〉 =

∫ tmax

tmin

ϕenh(t)dt =


µ
µ−2

t2−µmin−t
2−µ
max

t−µmin−t
−µ
max

µ 6= 2

µ

t−µmin−t
−µ
max

log tmax
tmin

µ = 2.

Then, if we replace these expressions into the general form of the diffusion117

coefficient (Equation 4 from the main text)118

D(v, α, ϕ(t)) =
v2
〈
t2
〉 [

1 +
(

2〈t〉2
〈t2〉 − 1

)
α
]

2d 〈t〉 (1− α)
, (5)

one obtains the enhanced diffusion coefficient (including all possible values119

of µ)120

Denh =


v2

2d

(
1−µ
2−µ

t2−µmax−t
2−µ
min

t1−µmax−t1−µmin

+ 2α
1−α

−µ
1−µ

t1−µmax−t
1−µ
min

t−µmax−t−µmin

)
µ 6= 1, µ 6= 2

v2

2d

(
1−µ
2−µ

t2−µmax−t
2−µ
min

t1−µmax−t1−µmin

+ 2αµ
1−α log tmax

tmin

)
µ = 1

v2

2d

[
(1− µ) log tmax

tmin
+ 2α

1−α
−µ
1−µ

t1−µmax−t
1−µ
min

t−µmax−t−µmin

]
µ = 2.

(6)

3.2 Composite diffusion121

Another way to generate a multi-scale search pattern is by utilizing different122

characteristic scales. Given these scales, diffusion coefficients can be computed123

from composite Brownian motion random walks.124

Composite Brownian motion is often interpreted as the result of the be-125

havioural reactions to landscape features and cues (Schick et al., 2008; Fronhofer126

et al., 2013; Benhamou, 2014). Hence, the pattern emerges from the interac-127

tion with the landscape (which already display multi-scale properties), and is128

not necessarily generated intrinsically by the organism (Petrovskii et al., 2011;129

Benhamou, 2014). Recent empirical evidence, however, suggests that such com-130

posite motion may not be completely coupled to landscape features but rather it131

may be internally generated (de Jager et al., 2011; Jansen et al., 2012; de Jager132

et al., 2012, 2014). Importantly, if the composite diffusion is generated by a133

specific set of characteristic scales, it would resemble a Lévy walk (Reynolds,134

2014). Current empirical research (de Jager et al., 2011; Jansen et al., 2012;135
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de Jager et al., 2014) suggests that this could be the case.136

Diffusion coefficients can also be computed for composite Brownian motion137

random walks. The derivation of the diffusion coefficient follows similar argu-138

ments to those for the enhanced case. In particular, we implement the idea of a139

multi-scale motion pattern by introducing a hyper-exponential flight time dis-140

tribution ϕcomp(t); while this is not the only way to address composite random141

walks, it is certainly the most natural one. For the simplest case with only two142

scales 〈t1〉 and 〈t2〉 whose corresponding weights are w and 1−w one has then143

ϕcomp(t) = w
〈t1〉e

−t/〈t1〉+ (1−w)
〈t2〉 e

−t/〈t2〉. The diffusion coefficient computed from144

Eq. 3 has the form145

Dcomp = D(v, 0, ϕcomp(t)) =
v2
(
w〈t1〉2 + (1− w)〈t2〉2

)
d (w〈t1〉+ (1− w)〈t2〉)

. (7)

More generally, for N different movement scales 〈t1〉, . . . , 〈tN 〉 with weights146

w1, w2, . . . , wN one has ϕcomp(t) =
∑N
i=1

wi
〈ti〉e

−t/〈ti〉, which gives147

Dcomp =
v2
∑N
i=1 wi〈ti〉2

d
∑N
i=1 wi〈ti〉

. (8)

4 The speed-perception tradeoff in 1D148

The speed-perception tradeoff depends on how the ability to detect nearby tar-149

gets varies with speed (Figure 2). The impact of the speed on search efficiency,150

mediated by the speed-perception tradeoff, can be more clearly shown by Monte151

Carlo simulations of random searchers with different flight time distributions,152

moving in one-dimension, under two limiting search regimes (symmetric and153

asymmetric).154

The detection ability is taken into account by assuming that every flight that155

passes within a distance R to the target location has a detection probability of156

p(v) = e−γv, where γ > 0 represents a detection parameter, and R is the effec-157

tive detection distance or the target size. This detection mechanism penalizes158

passages over the target at high speeds, which will have a reduced detection159
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rate. Note that the choice for p(v) does not necessarily correspond to a par-160

ticular type of perceptual response (e.g. visual) for any particular organism or161

situation, but it is simply used here as a general function to cover all possible162

levels of detection ability from γ = 0 (perfect detection upon encounter) to γ163

large (poor detection even at relatively low speeds).164

The speed-perception tradeoff requires finding an optimal cruising speed,165

that is, the maximum speed possible, accounting for energetic considerations (Pyke,166

1981), with a minimum of perception loss (O’Brien et al., 1990; Campos et al.,167

2012), or else an optimal combination of fast and slow search modes (Bénichou168

et al., 2011). Figure 2 shows the MFDT as we increase speed, for different169

speed-perception values (different values of the parameter γ). Regardless of170

the distribution of flight times ϕ(t) (exponential or Lévy) and the search regime171

(asymmetric or symmetric), if detection is perfect (MFDT equivalent to MFPT),172

the MFDT decreased with increasing speed. However, since speed interferes173

with perception, an optimal speed minimizing the MFDT emerges.174

5 Caenorhabditis elegans trajectory analysis175

We placed one-by-one 39 individuals (well-fed on a bacteria lawn for several176

days) onto a bare agar plate of 24.5×24.5 cm at a homogeneous temperature of177

21◦C. In the bare arena, we tracked the worms at 32 Hz, for about 90 minutes.178

We reconstructed the worm trajectories based on the coordinates of the centroid179

of mass. All worms were cultivated under the same temperature conditions as180

the assay. Individuals were rinsed of E.coli by transferring them from OP50 food181

plates into M9 buffer (same inorganic ion concentration as M9 assay plates) and182

letting them swim for 1 min. Individual worms were transferred from the M9183

buffer to the centre of the assay plate. The first 3 minutes the behaviour of the184

animal was affected by manipulation (gentle translocation from one agar plate185

to the other) and acclimatization to a new environment. We began the data186

analysis after the worms had 5 minutes to fully recover to basal behaviour.187
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Figure 2: Mean First-Detection Time (MFDT) as a function of movement speed
and for different values of the detection parameter γ. The larger the γ the more
difficult it is for the searcher to detect the target. Correlated random walk
(CRW): (a) asymmetric, (b) symmetric search conditions; Enhanced diffusion
(Denh, truncated Lévy): (c) asymmetric, (d) symmetric search conditions. If
detection is almost perfect (small values of γ), the larger the speed the smaller
the MFDT. However, as detection probability decreases (large γ values) the
speed increases the MFDT and an intermediate speed emerges as optimal. This
is true for both models (exponential and truncated Lévy) and search initial
conditions (asymmetric and symmetric).
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5.1 Movement variables used as input features188

Ni is the neighbourhood of any location i in the trajectory, given as a subset of189

successive locations centred on i. l, r is the leftmost and rightmost locations in190

any neighbourhood set, and dij is the Euclidean distance between any two loca-191

tions i, j. We defined three spatial measures averaged over 5 minute windows:192

Straightness/Sinuosity Index, the Net Displacement, and the Mean Velocity.193

• Straightness Index194

Si =
1

|Ni|
∑
j∈Ni

dij . (9)

This is an inverse measure of the spatial aggregation of neighbouring lo-195

cations, and characterizes the intensity of the local search.196

• Net displacement197

Di = d
(i)
l,r . (10)

This is the mean net displacement over all locations in the neighbourhood198

of i, where d
(j)
l,r is the net displacement for each location j ∈ Ni including i199

itself. This measures the tendency of the individual to move to a different200

location. Dividing this by the time span of our observation window (300201

seconds), gives an effective velocity.202

Vi =
d
(i)
l,r

300
. (11)

• Mean travel/speed203

Ti =
1

|Ni|
∑
j∈Ni

dj,j+1. (12)

This is the mean displacement or travelled distance, where N is the number204

of neighbouring locations within the observation window, and scales the205
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measure to an order of magnitude that is similar to the other measures206

defined. This measures the individuals average speed. Dividing this by207

the average time span between neighbouring locations (≈ 3 seconds), gives208

the mean velocity within the observation window.209

Figure 3: Depiction of the computation of the movement variables used in the
behavioural mode analysis of C.elegans trajectories.

5.2 Behavioural modes classification210

Using these three variables as input features (Figure 3), we constructed a be-211

havioural landscape and partitioned it following the procedure described in Berman212

et al. (2014), which involves the use of a t-Stochastic Neighbouring Embed-213

ding algorithm (van der Maaten & Hinton, 2008; Berman et al., 2014) along214

with some post processing.215

The t-Stochastic Neighbouring Embedding (t-SNE) is a dimensionality re-216

duction (embedding) algorithm to visualize potential clustering structures ex-217

isting in the data sets. The principle of embedding is to preserve the similarities218

between data points. Similarities do not necessarily need to be expressed as219

Euclidean distances but usually are related. In other words, data points with220

high similarities in the high-dimensional space are mapped closely in the low-221

dimensional space while data points with low similarities are mapped separately.222

The t-SNE is computationally expensive but can be implemented in a simpli-223

fied form (Barnes-Hut approximations van der Maaten & Hinton (2008)) of the224

order N log N suitable for large, real-world, high-dimensional data sets.225

The output of the t-SNE algorithm depends on a basic parameter called226

perplexity P (comparable with the number of nearest neighbours that is em-227
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ployed in many manifold learners) that needs to be explored, and also on a stop228

criteria of a maximum number of iterations or a minimum step-improvement.229

Furthermore, it is advisable to perform some pre-processing of the input data230

(i.e. feature selection, filtering, PCA, standardisation).231

To obtain a final unsupervised set of behavioural modes, the t-SNE output232

needs some post-processing (Figure 4). First we need to compute a kernel233

density estimation (KDE) upon the embedded space to generate a contin-234

uous behavioural landscape whose ruggedness/smoothness is modulated by a235

parameter H. In this way, one can detect areas with high concentration of data236

points (peaks) at different scales. Second, we compute a watershed transfor-237

mation (WSHD) using a specified connectivity CONN to split the behavioural238

landscape into discrete clusters or polygons. This post-processing adds two new239

parameters to the whole analysis (H and CONN ).240

This procedure allows one to describe movement behavioural states in a prin-241

cipled way and as a hierarchical set of modules (Berman et al., 2014). Based242

on the input features described (Figure 3), we observed three behavioural clus-243

ters related to exploitation, exploration, and relocation behaviours. Figure 5244

in the MS and Figure 4 show the closest behavioural landscape to the average245

behavioural landscape obtained after exploring the parameter space over Hs and246

Ps, and running hundreds of seeds over a subset of these values. Further me-247

thodical research is needed to better systematize t-SNE behavioural analyses.248

Overall, we find this unsupervised procedure to be a good way to assess the249

presence of movement behavioural modes with as few assumptions as possible.250

However, this does not mean that the methodology is completely independent of251

the parameterization but the robustness of the results can be explored across pa-252

rameters. The actual behavioural landscape and its partition is also dependent253

on the input features. Hence, radically changing the behavioural descriptors254

may change the number and type of behavioural modes found.255

We also explored behavioural segmentation by means of Hidden Markov256

Models (HMM). In this case, we pre-assumed the presence of three states,257
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Figure 4: Quantitative analysis of the worm Caenorhabditis elegans long-term
(90 minutes) search movement in a bare arena. Analysis performed over a
total of 69,035 data points. (a) Stochastic Neighbouring Embedding (t-SNE,
P=1020), (b) Kernel Density Estimation (KDE, H =19), and (c) Watershed
(WSHD, CONN=8) algorithm outputs. Based on three trajectory variables (i.e.
Straightness Index, Net Displacement, and Mean Velocity) averaged over 5 min
windows we obtained a behavioural landscape partition in three large modules
representing: exploitation, exploration, and relocation movement behaviour.

and based on the model fit we obtained qualitatively similar results (note that258

states’ prevalences and mean square displacement scaling exponents slightly259

differ between the t-SNE and the HMM approach). The results in Figure 5260

suggest some degree of statistical coherence and robustness in our behavioural261

analysis.262

5.3 Significance and robustness of the 3-state case263

Any characterization of a trajectory into behavioural modes needs specific input264

features (variables) and parameterization, therefore, there is always some degree265

of subjectivity. In addition, here we are trying to infer behaviour from the266

animal’s trajectory and it is unclear how movement variables are coupled to267

the intrinsic (i.e. hidden) behavioural states we are searching for. Most likely,268

the movement-related modes do not represent true behavioural states and so the269

most we can do is characterize them statistically and hope that their signficance270

and robustness represent something close to an instrinsic behavioural state of271

the animal.272

In this section, we assess the significance and robustness of the three move-273
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Figure 5: Behavioural segmentation based on a 3-state Hidden Markov Model.
(a) HMM states’ prevalences (probability of being in a given state) through time.
(b) Transition probabilities among states of the fitted model (E=exploitation,
e=exploration, and R=relocation). (c) Logartihmic binning plot of the mean
square displacement (MSD) with time. The three modes identified show distinct
long-term diffusive properties, ranging from subdiffusion to superdiffusion.

ment modes observed by performing a broader analysis using both the Stochastic274

Neighbouring Embedding (t-SNE) and the Hidden Markov Modelling (HMM)275

approach. Both methods can show a different number of behavioural states276

depending on the parameterization. In the t-SNE-KDE-WSHD procedure, the277

effect of the Kernel Density Estimation (KDE) parameter (H) is similar to278

imposing a number of states when using HMMs. The difference is that the279

number of states emerge when coarse-graining the behavioural landscape gen-280

erated from the t-SNE space (i.e. the smaller the H parameter the larger the281

number of states). Therefore, pooling the whole data set, and by fixing the282

rest of the parameters, we explored a wide range of values of H (from coarse283

to high-resolution landscapes), and obtained a different series of states’ labels284

corresponding to partitions into a different number of states. In particular,285

we covered the following values of H = {22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12},286

leading to the following number of states S = {2, 3, 3, 3, 3, 5, 5, 7, 7, 8, 8}, respec-287

tively. In addition, we ran HMMs and obtained the states’ labels under the288

assumption of different underlying number of states (from 2 to 9).289

For the case of the HMMs, we were able to estimate the log-likelihood,290

the Akaike Information Criteria (AIC) and the Bayesian Information Criteria291

(BIC) of the models, applied to the full dataset (Burnham & Anderson, 2002).292
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All of them showed a monotonic behaviour (log-likelihood increasing, and AIC293

and BIC decreasing) with a very slight saturation effect as the number of states294

increased. This type of profiling is a common effect when assuming Markov chain295

conditions upon a dataset that does not truly fulfill the Markov assumptions,296

and cannot be taken as a clear indication to choose any particular model, unless297

a strong saturation or threshold-like effect is observed (see for example Dean298

et al. (2013)).299

Linear discriminant and leave-one-out strategy300

As the t-SNE is a computational procedure without an underlying behavioural301

model, classic model selection based on information criteria (AIC, BIC) does302

not apply. Because of this we used a different approach based on linear discrim-303

inant analysis (LDA). LDA is a method that searches for a linear discriminant304

(LD: a linear combination of the input features) that separates the classes by305

maximizing the ratio of the intra-cluster variance with respect to the total vari-306

ance. As LDA is a supervised method, for each individual we can use the state’s307

labels given by the t-SNE method with different H’s or the ones given by the308

HMMs as the training set for the LDA. We considered the following hypothesis:309

the best the partition deduced by the t-SNE-KDE(H)-WSHD method should310

produce the best performance of the LDA in classifying the data points.311

We used a leave-one-out strategy, that is, for each number of states (H value312

or HMM) and for each targeted individual we set up a training and a validation313

dataset. The training dataset is defined as the whole population of individual314

trajectories except the trajectory from the targeted individual. The validation315

dataset is thus formed by one single trajectory, the trajectory from the targeted316

individual.317

For the case of the t-SNE analysis we did the following:318

1. Fit a LD to the training set, using the state’s labels of the same training319

set;320

2. Predict the state’s labels for the validation set (the hold out individual)321
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using the LD obtained in 1;322

3. Compare (confusion matrix) the state’s labels obtained for the hold out323

data (targeted individual) with the two approaches: the t-SNE+KDE(H)+WSHD324

procedure and the LDA prediction.325

The comparisons between the results of the t-SNE-KDE(H)-WSHD proce-326

dure and the LDA prediction, per each individual and number of states (H327

value), were summarized with the F-measure statistic of the confusion matrix.328

For each H (or number of states) we plotted the individual F-measure values329

and added an average line (Figure 6, left). First of all, note that as we change330

the parameter H (from 22 to 12), the number of states ranges from 2 to 8, with331

the 3-state case the most stable/robust across H’s (note that in this case the332

number of states emerge from the topology of the behavioural landscape itself at333

different smoothness levels). In addition, the capacity of the LDA to discrimi-334

nate among the behavioural states identified peaks at the 3-state cases and then335

decreases (Figure 6, left). The LD fit is only slightly worse for the 2-state case336

compared to the 3-state case, but the 2-state case is quite unstable and rapidly337

transition to the 3-state case as we move along H (Figure 6, left). Overall, the338

3-state case looks like a better compromise between the statistical significance,339

measured here as the discrimination capacity of the LD, and the robustness,340

measured here as the number of times the t-SNE space shows 3 clusters as we341

move from smooth to rugged landscapes.342

For the HMM analysis we did the same exercise as with the t-SNE procedure343

but with HMMs diverging in a number of states (from 2 to 9). We proceeded344

with the leave-one-out strategy as the one used for the t-SNE procedure but345

with some differences. In this case, for each targeted trajectory and number of346

states (2 to 9) we performed the following steps:347

1. We learned a HMM using the training set and we decoded the sequence348

of states (the Viterbi algorithm sequence) of this training set.349
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Figure 6: Linear discriminant and leave-one-out analysis. F-measure curves
comparing the classification capacity of a linear discriminant (LD) over the
predictions on single trajectory states’ labels generated by the t-SNE procedure
(left panel) and the HMM approach (right panel). For each given number of
states (H values in the case of the t-SNE approach) we show both individual
(dashed grey lines) and average (black solid line) results. The larger the F-
measure the better match between the LD prediction and the t-SNE or HMM
predictions, therefore the more likely the separation into different modes (e.g.
the 3-state case). For the HMM approach (right panel), we also show the 1-
BIC curve (values scaled normalized from 0 to 1) showing that the larger the
number of states one pre-assumes the larger the likelihood of the HMMs but
with decreasing increments. In other words, as we keep on adding states the
increase in likelihood is smaller.
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2. We used the HMM obtained in step 1 to predict the sequence of states of350

the validation set (the hold out individual).351

3. We used the state’s labels (the sequence of states obtained in step 1) to352

fit a LD to the same training data.353

4. We used the LD obtained in 3 to predict the state’s labels for the validation354

set (the hold out individual).355

5. We compare the state’s labels obtained for the hold out data with the two356

approaches: the HMM (step 2) and the LDA (step 4).357

Again, by means of confusion matrices we compared the predictions on the358

states’ labels done by the HMMs and the LDAs for a given number of states359

and for each individual trajectory. As for the t-SNE analysis, we summarized360

all the information with the F-measure statistic and, for each number of states,361

we plotted the individual F-measure values and added an average line (Figure 6,362

right).363

Finally, for the case of the HMMs, we were also able to estimate the log-364

likelihood, the AIC and the BIC of the models predictions for each individual365

trajectory. Similarly to what we observed with the full dataset analysis, the366

individual models obtained from the leave-one-out strategy showed monotonic367

behaviour (log-likelihood increasing, and AIC and BIC decreasing) with a slight368

saturation effect as the number of states increased. So again, the log-likelihood369

values and relatives (AIC, BIC) cannot be used to discriminate between models.370
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