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ABSTRACT  

The magnetic properties of low dimensional materials of several iron oxyhydroxyde phases, such 

as akaganéite (β-FeOOH) or lepidocrocite (γ-FeO(OH)), remain poorly explored; probably due 

to their specific preparation as single crystalline phase requires special conditions owing to their 

structural instability. In the present work, ultra-fine akaganéite nanoparticles were prepared by 

the hydrolysis of FeCl3 solutions at room temperature induced by the presence of NaOH. The 

resulting product was characterized by several analytical techniques. Structural investigations 

using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and 

selected area electron diffraction (SAED) revealed that the sample was mainly constituted by 

rather-equiaxial akaganéite nanocrystals with mean diameter of 3.3 ± 0.5 nm. In addition, a small 

amount of rod-like akaganéite particles with 23 ± 5 nm in length and 5 ± 1 nm in width was also 

detected. The study of the respective dependences of the dc magnetization and the ac 

susceptibility on temperature and exciting magnetic field revealed complex magnetic relaxation 

processes, high coercivity values at low temperature and exchange bias effect. These results have 

been tentatively explained considering size distribution effects and the presence of 

superparamagnetic and spin glass-like contributions arising from the frustration of the 

antiferromagnetic order owing to surface effects and an insufficient filling of the akaganéite 

channels with Cl- anions. 

KEYWORDS: Akaganéite, Nanomaterials, Antiferromagnetic Nanoparticles, Frustrated 

Antiferromagnetic Coupling 
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1. INTRODUCTION 

 

The materials that constitute the iron oxide family (which, according to the tradition, includes 

iron hydroxides and iron oxyhydroxides1) are of key importance due to their extensive presence 

in nature and their functional properties.1 Particularly, the wide variety of their magnetic 

responses, including ferrimagnetic, antiferromagnetic, weak ferromagnetic, superparamagnetic 

or speromagnetic behaviours,1 which are closely correlated with the size, morphology and 

crystallo-chemical features of these materials, has attracted enormous attention for several 

decades. Moreover, some of the iron oxides exhibit interesting first-order magnetic phase 

transitions, such as the Morin transition found in hematite2,3 and the Verwey transition 

discovered in magnetite.4-6 However, it is remarkable that the research in iron oxides still 

remains subject of intense study and controversy, and the interpretation of some experimental 

results demand better refinements. In fact, the crystallographic properties and magnetic 

behaviors of some iron oxyhydroxides are subject of debate. One clear example of this is 

represented by the structural and magnetic properties of akaganéite (β-FeOOH), which is an iron 

oxide phase found in chloride rich environments. This iron oxyhydroxide displays a hollandite-

like structure with edge- and corner-shared Fe(O,OH)6 octahedra forming one-dimensional 

square hollows or channels that provide it interesting electrochemical and catalytic properties for 

a variety of practical applications.7-9 Materials with this tunnel crystalline structure have been 

described with tetragonal or monoclinic unit cells (a schematic representation of akaganéite 

structure is showed in the inset of Figure 1). In pioneer studies of the β-FeOOH structure using 

X-ray diffraction and infrared spectroscopy, the tetragonal I4/m symmetry (a=10.48 Å, c= 3.023 

Å) was assumed to describe the akaganéite crystallographic properties.10-12 However, further 
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analysis with the Rietveld method of powder X-ray diffraction measurements, showed that the 

monoclinic I2/m symmetry describes better the akaganétite crystalline structure (a = 10.600(2) 

Å, b = 3.0339(5) Å, c = 10.513(2) Å, β = 90.24(2)º).13 These results were subsequently 

corroborated by synchrotron X-ray measurements14 and neutron diffraction experiments.15 

 

Other open questions about the akaganéite structure are related to the role that plays the 

presence of chloride anions into the akaganéite crystalline lattice and its magnetic behavior. 

Results from several works have indicated that the occupancy of these ions into the channels is 

crucial for the formation of akaganéite.10-15 However, there is not yet a well-established 

consensus about how is the occupancy distribution of these ions into the channel sites, which is 

crucial to the charge balancing of the structure. Several works have suggested that the Cl- ions 

are periodically located with a sequence of two consecutive channels filled and a third site 

vacant, being the reported X-ray diffraction, Mössbauer and synchrotron data in agreement with 

2/3 Cl populated sites.13,14,16 Note that assuming that Cl ions are placed in (0,0,0), the Cl-Cl 

distance should be equal to the b lattice parameter (around 3 Å), which is shorter than the Cl 

ionic radius (3.6 Å).14 However, some studies have pointed out that a more realistic description 

should consider shifts in the y-coordinate of the Cl sites and few additional vacancies randomly 

distributed.14 These differences in the description of the crystallo-chemical properties of 

akaganéite have provoked controversy in the interpretation of the Mösbauer spectra (summarized 

in the introduction of ref. 16), because some of them considered the tetragonal unit cell in their 

interpretations12,17 while others the monoclinic cell.14,16 In addition, different locations of the 

chloride ions have been considered.  

 



 5

Generally, it has been assumed that bulk akaganéite behaves like an antiferromagnet,1 where 

two spin sublattices are antiferromagnetically coupled parallel to the one-dimensional channels 

(along the b direction of the monoclinic I2/m representation). However, akaganéite exhibits some 

features that would become it an unconventional antiferromagnet. For instance, in the thermal 

dependence of the akaganéite susceptibility it was not observed the typical well-defined 

maximum near the Néel temperature, TN.18,19 Moreover, it has been found that the determination 

of this temperature strongly depends on the used methodology and the characteristics of the 

analyzed specimens. For example, based on the observation of an doublet or a sextet in the 

Mössbauer spectra, several works have determined that TN of the bulk akaganéite is around 295 

K,12,20 while other works reported lower values based on magnetic susceptibility measurements19 

(for example, TN ∼ 260 K), in which the determination of TN is based on the occurrence of a 

weak peak18 or deviations from the Curie-Weiss law19 in the thermal dependence of the magnetic 

susceptibility. Notice that in these experimental methodologies used to determine the Néel 

temperature, the magnetic disorder-order transition could be partially concealed by weak 

ferromagnetic-like contributions and/or confused with magnetic blocking or 

spin glass freezing processes. Therefore, the experimental observations could suggest that bulk 

akaganéite does not exhibit a pure antiferromagnetic behavior. In this matter, the occurrence of 

several magnetic contributions has been proposed in the explanation of akaganéite Mössbauer 

spectra invoking four un-equivalent iron sites into the akaganéite crystal lattice: the monoclinic 

structure involves two un-equivalent iron sites, which lead to four un-equivalent Fe locations if it 

is considered the occupancy (or vacancy) of chloride ions close to these sites, where the 

octahedra closest to chlorine ions are more distorted.16 Consequently, the Cl- occupancy should 

display an important influence on the exchange coupling between the spin sublattices and the 
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resulting magnetic behavior,16,21 however it is not well-established what is the role of the 

chlorine ions. In this respect, Chambere and Grave found that the Néel temperature decreases as 

the increment of the crystal water content increases,22 which implies a reduction of Cl- content,21 

and Millan et al.21 proposed that a faulty of Cl- site occupancy yield to alterations in the 

antiferromagnetically spin alignment resulting a small net magnetic moment. Therefore, a Cl- ion 

vacant distribution should introduce spin disorder and variations from site to site of the easy 

magnetization direction. In agreement with this hypothesis, Coey23 proposed a speromagnetic 

model in all iron oxyhydroxydes instead antiferromagnetism, and more recently, Barrero et al.16 

have suggested that the akaganéite magnetic structure consists of two asperimagnetic-like 

structures antiferromagnetically coupled. 

 

It is noticeable that the chloride content and other microstructural features of akaganéite 

samples could be strongly dependent on the route in which they were obtained and purified, and 

their size and shape if they are constituted by small particles. In this regard, it is important to 

emphasize that the specimens used in the reported micro-structural and magnetic studies of 

akaganéite, have been obtained by very different methods. In this way, in some of these 

contributions, the investigated samples were extracted from meteorites,11,13 whereas other works 

used samples biosynthesized by bacteria24 or prepared by thermal hydrolysis of FeCl3 solutions 

aged at temperatures between 70 and 100°C during several hours.1,8-10,12,16,21 In the two later 

cases, the samples usually are formed by nanosized particles with a flattened rod-like shape. 

Therefore, the effects of the lattice symmetry breaking and broken bonds at the crystal surface, 

which represent another source of disorder and frustration of antiferromagnetic 

interactions,21,24,25 could be not negligible due to the high surface/volume ratio of nanoparticles. 
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To the best of our knowledge, there are few reports in the literature focused on the study of 

surface and finite-size effects on the magnetic properties of nanosized akaganéite particles [for 

example, references 19, 21]. In the present contribution, we report on the magnetic properties of 

ultrafine akaganéite nanoparticles prepared by hydrolysis of Fe (III) solutions at room 

temperature. Most of the particles obtained through this synthesis method were nearly spherical 

in shape, which is a morphology rarely observed in nanoscale akaganéite. In the interpretation of 

the results, the possible contribution of particle size distribution, interparticle interactions, 

magnetization quantum tunneling and frustration of spin interactions were evaluated.  

 

2. EXPERIMENTAL SECTION 

 

i) Chemicals 

Anhydrous iron (III) chloride (FeCl3, 97 %, Sigma-Aldrich), sodium hydroxide (NaOH, 98%, J. 

T. Baker) and absolute ethanol (Sigma-Aldrich) were used with the as received purity. The water 

added in all experiments was doubly distilled. 

 

ii) Preparation of akaganéite nanoparticles  

Nanosized akaganéite particles were prepared by the hydrolysis of aqueous iron (III) chloride 

solution at room temperature. This one-step preparation of an akaganéite colloid consisted in the 

simple following procedure based on the results of previous works.26 Briefly, 25 ml of 2 M 

aqueous solution of FeCl3 were rapidly added to 30 ml of 5 M aqueous sodium hydroxide 

solution under vigorous and continuous stirring using a stirring plate at room temperature. 
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Immediately, the solution changed its color and it acquired a yellowish brown, suggesting the 

formation of an iron oxyhydroxide colloidal suspension. After ten minutes, the resulting 

suspension was diluted with absolute ethanol and centrifuged. The supernatant solution was 

removed and the precipitated powder was washed several times with doubly distilled water, 

absolute ethanol and centrifugation. Finally, the so-prepared powders were dried at 50°C during 

5 hours. The obtained particles were not subjected to posterior aging process at temperatures 

close to 100ºC as in previous works.26 

 

iii) Characterization Techniques 

The crystalline phase of the sample was identified by powder X-ray diffraction (XRD), using a 

Panalytical Empyrean diffractometer. This difractometer is equipped with a graphite 

monochromator on the diffraction bean and a X´Celerator linear detector. The difractometer was 

calibrated with a silicon standard sample. Cu Kα1 X-ray radiation (λ =1.5405980 Å) was 

generated from a Cu anode and was set up on 45 kV and 40 mA. Data were collected at room 

temperature in the 2θ range between 19.996 and 90.000°, with a scan step size of 0.017°. The 

mean coherence lengths (MCL) perpendicular to some crystallographic planes of the sample 

were calculated from the full width at half maximum of the corresponding XRD peak using the 

Scherrer equation:27 

 

   MCL =  �.� 	

 ��
 ��

                            (1)                                       

 

where λ is the X-ray wavelength, β is the broadening of the diffraction peak (after subtracting the 

instrumental broadening) and θB is the diffraction angle associated to each peak. 
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The particle size and morphology of the sample were examined by Transmission Electron 

Microscopy (TEM) using a FEI-TITAN 80-300 kV microscope operated at 300 kV. The average 

size and size distribution of the particles were determined by statistical analysis of the 

dimensions observed in the TEM micrographs of more than 100 particles. In addition, High 

Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction 

(SAED) studies were carried out in order to gain further information about the nanoparticle 

microstructure. HRTEM images were analyzed by fast Fourier transform (FFT). For the TEM 

analysis, the synthesized powder was dispersed in ethanol by ultrasonification and a drop of the 

resulting suspension was deposited onto a lacey carbon TEM grid of copper. 

 

A commercial vibrating sample magnetometer (Quantum Design) was used to investigate the 

magnetic behavior of the samples by applying dc magnetic fields (with a maximum applied field 

of 70 kOe). The thermal dependencies of the zero-field cooled (ZFC) and field-cooled (FC) 

magnetizations were measured in the range of 1.8-300 K under variable external magnetic fields 

(from 100 Oe up to 70 kOe). These measurements were performed according to the following 

procedure. Firstly, the sample was cooled from room temperature (RT) down to 1.8 K in zero 

applied field. Then, in order to obtain the ZFC curve, an external field was applied and the 

variation of the magnetization was recorded with temperature increasing from 1.8 K up to RT. 

Afterwards, to obtain the FC curve, the magnetization was reordered as a function of temperature 

by cooling the sample down to 1.8 K keeping the same applied field. The cusp temperatures of 

the ZFC curves obtained with different applied field were determined by using the first 

derivative test (dM/dT vs T). The thermoremanent (TRM) curve was measured as follows. 

Firstly, the sample was cooled from RT down to 1.8 K in a field of 100 Oe. At the lowest 
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temperature value the field was removed and then, the remnant magnetization was measured as a 

function of temperature for increasing temperatures in zero field. The isothermal magnetization 

versus magnetic field curves where measured at different temperatures in the range of 1.8-300 K 

by sweeping the applied field from 70 to -70 kOe and back to 70 kOe. In these measurements, 

the sample was cooled from 300 K down to the measurement temperature in absence of magnetic 

fields (ZFC condition), or in presence of 70 kOe (FC condition). In the case of the ZFC 

hysteresis loop obtained at 1.8 K, the first magnetization curve was also recorded. 

 

The coercive field, HC, and the exchange bias field, HEB, were estimated from hysteresis loops 

using the following expressions: 

 

                                        (2) 

 

where HC
- and HC

+ represent the fields at which the magnetization becomes zero in the loop´s 

branches ascribed to the negative and positive field sweeping, respectively. To determine the 

magnetic viscosity, S, the sample was previously saturated by applying a positive field (2T). 

Then, the magnetic field was abruptly removed and the magnetization was measured as a 

function of the time. This measurement was repeated at different temperatures (from 3 to 15 K) 

and the S values were obtained by fitting the experimental M vs time curves to the following 

equation: 

 

M(t) = M(0) − S ln(t)                                          (3) 
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The in phase component (i.e. the real part, χ′) and the out of phase component (i.e. the imaginary 

part, χ′′) of the ac susceptibility were both simultaneously measured at 21 different frequencies, 

ν, in the range of 100-10,000 Hz and at the temperature range of 5-100 K in absence of dc fields 

using a PPMS (Physical Property Measurement System), model 6000 (Quantum Design). The 

data were recorded following the next procedure. Firstly, the sample was cooled from room 

temperature to 5 K in the absence of exciting magnetic fields. Then a probing ac magnetic field 

of amplitude 2 Oe was applied with frequencies varied from 10 up to 10,000 Hz. Afterwards, the 

same measurements were carried out at higher temperatures up to 101 K in steps of 2K. The cusp 

temperatures of the χ′ vs T and χ′′ vs T curves were accurately determined as the temperature at 

which the corresponding first derivative curve changes of sign. 

 

3. RESULTS AND DISCUSSIONS 

 

i) Microstructural and morphological studies 

 

Figure 1 shows the X-ray diffraction (XRD) pattern of the sample. It consists on rather broad 

peaks that can be resolved and ascribed to a pure akaganéite phase (JCPDS card No. 42-1315). 

The peak broadness evidences the ultra-fine crystal size of the sample, and the peak positions 

indicate that the sample exhibits lattice parameters close to the bulk ones: a = 10.492(9) Å and c 

= 3.066(6) Å, for the tetragonal cell description, and a =10.60(4) Å, b = 3.04(1) Å, c = 10.47(4) 

Å and β = 89.4(6)°, for the monoclinic unit cell description. The crystallite size determined from 

the MCL of the diffraction peak more intense was 3.0(2) nm. It is remarkable, that the relative 

diffraction peak intensities in the XRD pattern of the sample are not the same than those of the 
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reference pattern, probably due to the atypical equiaxial morphology of the ultrafine particles 

studied herein. Also, the akaganéite structure was confirmed by SAED analysis. Inset of Fig. 2a 

shows a typical pattern of several nanoparticles that are constituted by slightly diffused 

diffraction rings consistent with the akaganéite structure and the extremely reduced crystal size 

of the sample. 

 

TEM studies revealed that the sample is constituted by nanoparticles nearly spherical in shape 

with an average diameter of 3.3 ± 0.5 nm, whose difference with the estimated average crystal 

size is within experimental error. In addition, a minor presence of very small rod-like particles 

with 23.4 ± 5.1 nm in length and 4.9 ± 1.4 nm in width was clearly detected (see Fig. 2a). Fig. 2b 

depicts a typical HRTEM micrograph, where lattice fringes ascribed to the monoclinic 

akaganéite structure are observed (see the insets of the Fig. 2b), whereas lattice fringes of 

additional phases were not found confirming that the akaganéite phase is the only single 

crystalline phase present in the sample. 

 

 Figures 2c and d show the histograms of the effective particle diameter of both particle 

families. In the case of the second family, the effective diameter of each studied nanorod was 

determined with the half sum of its length and width. It is well known that the akaganéite 

nanoparticles tend to exhibit somatoidal, rod-like or even tubular morphologies,1,16,19,21,24 whose 

formation mechanism could consist on the precipitation of primary equiaxial nanoparticles with 

sizes around 3–4 nm, followed by their rapid growth in the direction of c-axis, and a secondary 

nucleation occurring at sites on the edges.26 Therefore the particles studied herein (that were not 

subjected to aging effects at temperatures close to the boiling point of water) are in the first stage 
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of the growth of the elongated particles. An interesting point to note is that after storing the 

sample in powder form at room temperature during one year, the specimen was not experienced 

significant changes in the particle morphology and/or its crystallinity (Fig.1 shows the DRX 

pattern of the aged sample in comparison with the fresh sample one). 

 

ii) Magnetic studies 

 

The thermal dependence of the inverse of the dc magnetic susceptibility, 1/χ, measured in a 

constant magnetic field of 100 Oe is showed in Fig. 3. The complex behavior of this curve 

suggests that the sample experiences changes in their magnetic behavior with the variation of the 

temperature. In fact, three different regimes, associated to the temperature intervals: a) 1.8-40 K, 

b) 40-260 K and c) 260-320 K, can be distinguished.  

 

At temperatures above the Néel temperature, the magnetic susceptibility of a bulk 

antiferromagnetic material should follow the Curie-Weiss law28 

                                                            (4) 

where T is the temperature and θ and C are the Weiss and Curie constants, respectively. In the 

case of the nanosized akaganéite studied herein, we observe that the best fit curve of the 

experimental data to equation (4) in the temperature range from the maximum reported Néel 

temperature for bulk akaganéite (295 K) up to 320 K, deviates from the experimental values at 

temperatures below 260 K (Fig. 3). It suggests that the average Néel temperature ascribed to the 

particles is around 260 K, which is the same value reported by Urtizberea et al. for bulk 

akaganéite and very fine akaganéite nanorods.19   

C

T θχ −=−1
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Astonishingly, the best fit of the data to equation (4) in the temperature range of 295-320 K 

implies a positive Weiss constant (see Fig. 3), as it is expected for ferromagnetic materials and 

not for pure antiferromagnetic systems. It indicates that in the sample coexist several magnetic 

phases. In fact, the non-observance of a maximum near TN in the thermal dependence of the 

susceptibility in Fig. 3 suggests the occurrence of additional weak ferromagnetic-like or 

superparamagnetic contributions, which should arise from non-compensated spins, and which 

partially conceals the rapid change of the magnetization at temperatures close to TN. 

 

Two possible different sources of antiferromagnetic coupling frustration can be present in 

small akaganéite particles.21 One of them would be related to the imperfect antiparallel alignment 

of spins given by a deficient occupancy of chloride ions into the akaganéite channels,21 as above 

mentioned. The other one is ascribed to surface effects. In ultrafine particles, most of the atoms 

lie at particle surface, where the coordination number displays a distribution with values more 

reduced than in volume, and the antiferromagnetic alignment becomes geometrically frustrated. 

Both kinds of sources of uncompensated spins and magnetic disorder should yield to relaxation 

phenomena at low temperatures, whose contributions should be strongly dependent on the 

particle size and shape. The resulting disordered magnetic structure of each particle should 

originate multiple degrees of freedom leading to a configuration of several equivalent 

fundamental states, which give rise to spin glass-like behaviors. We assume that the effects of 

the phenomenon named thermoinduced magnetic moment, proposed by Mørup and Frandsen for 

antiferromagnetic materials29 and very recently studied in akaganéite nanorods,19 are negligible 

in our particle system due to its large fraction of uncompensated spins. 
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According to these considerations, in the temperature range from 260 K up to 320 K, the 

antiferromagnetic spins would exhibit a paramagnetic behavior, whereas the uncompensated 

spins would be in a superparamagnetic-like regime. At temperatures in the range 40-260 K, the 

values of 1/χ monotonically decrease as temperature decreases with a lower ratio than that at 

higher temperatures. It suggests that in this low temperature range, the spins 

antiferromagnetically coupled experienced a paramagnetic-antiferromagnetic transition, whereas 

the uncompensated spins remain into a superparamagnetic regime. Finally, at temperatures 

between 1.8-40 K, 1/χ exhibits a maximum at ~ 21 K (see the inset of Fig. 3), suggesting that the 

uncompensated spins experience a blocking (or a magnetic freezing) process when the 

temperature decreases. 

 

The plots of M vs H/T (Fig. 4) at fixed temperatures confirmed the existence of several 

magnetic regimes: at temperatures above 100 K, these curves are roughly coincident in fair 

agreement with a paramagnetic (or superparamagnetic) behavior.30 However, deviations from 

this coincidence were observed in the temperature range between 20 and 100 K, being more 

relevant as temperature decreases below 50 K, signaling the start of a magnetic blocking or 

freezing process, and/or an increase in the importance of interparticle interaction effects at low 

temperature that yields to deviations from a pure superparamagnetic behavior.31At temperatures 

below 20 K, the sample presented magnetic hysteresis indicating that a large fraction of the spins 

are blocked (or frozen).  

 

The experimental M vs H curve measured at 300 K was fitted to the Langevin function, 

corresponding to the paramagnetic regime: 
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                                        (5) 

with a=µH/kBT, where kB is the Boltzmann constant, MS the saturation magnetization in emu/g 

and µ is the net magnetic moment per particle.  The best fitting parameters were MS = 15.1 ± 0.1 

emu/g and µ = 143 ± 2 µB. Since each Fe3+ ion has a magnetic moment of 5 µB,32 we can expect 

an average uncompensated spin number per particle nunc ≈ 29. The number of uncompensated 

spins distributed on the particle surface can be estimated from the total number of spins per 

particle (n), nunc,surface≈ n1/3.19 For akaganéite, there are 2.5 x 1022 Fe3+ ions per cm3 therefore, for 

a spherical particle with a diameter of 3.3 nm, n ≈ 3,763 and nunc,surface≈ 16, which is around the 

half value of nunc. The difference between the estimated values of nunc and nunc,surface is in 

agreement with the occurrence of uncompensated spins in the particle volume, however it is 

important to remark that in these simple estimations we have not considered crucial factors such 

as size distributions and deviations from the spherical morphology.  

 

Figure 5 shows the zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves for 

different applied magnetic fields. These curves present several typical features associated to 

small single-domain nanostructures33,34 and very small antiferromagnetic nanoparticles.35,36 

Specifically, it is observed that the ZFC and FC curves measured at high values of the applied 

magnetic fields (H ≥ 30 kOe) are roughly coincident in the entire studied temperature range (1.8-

300 K). However, these curves split below certain temperature for H < 30 kOe, called 

irreversibility temperature (Tirr); whereas the FC magnetization increases as temperature 

decreases, the ZFC magnetization decreases reaching a peak at a temperature Tp (see Fig. 5). 

These behaviors indicate that a magnetic blocking30,34 (or a magnetic freezing33,35,36) process 

( ) ( )[ ]aaCothMaM S
1−=
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occurs in the system when the temperature decreases from RT down to low temperatures, which 

is associated to the uncompensated spins arisen from the frustration of the antiferromagnetic 

coupling. According with these considerations, the peak temperature (Tp) at which the maximum 

of the ZFC curve occurs for a low value of the applied magnetic field, Tp(H=100 Oe) = 34.5 ± 

0.1 K, could be related with the average blocking temperature, Tb (or spin-glass freezing 

temperature, Tf) of the uncompensated spins. On the other hand, the Tirr could be ascribed to the 

blocking temperature (or spin-glass freezing temperature) of spins with highest energy barrier.33  

 

The field dependences of Tp and Tirr are reported in Figure 6. For uniaxial single-domain 

nanoparticles, the blocking temperature is30 

 

Tb = U / [kB ln(tm/τ0)]                                     (6) 

 

where U is the anisotropy energy, kB is the Boltzman constant, tm is the measuring time of the 

employed characterization technique and τ0 is the attempt time. On the other hand, the energy 

barrier U can be modified by the applied magnetic field, H, as follows: 

 

 U = KAV(1-H/HK)2                              (7) 

 

where KA is the anisotropy constant, V the particle volume and HK = 2KA/MS is the anisotropy 

field (MS is the saturation magnetization). Therefore, Tb should decrease monotonously as H 

increases.37 Interestingly, the curve Tp vs H in Fig. 6a does not follow a (1-H/HK)2 law, and the 

change rate is considerably lower at magnetic fields H < 1 kOe than that at higher fields. 
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Moreover, the Tp vs H curve only follows the so-called Almeida-Thouless (A-T) line for fields H 

> 5 kOe (Fig. 6a). The A-T line is usually observed for spin glasses and nanoparticles with spin-

glass-like behaviors,38-40 and is given by: 

 

H ∝ (1-Tp/ Tg)
3/2                                 (8) 

 

where Tg is the spin glass transition temperature. On the other hand, Tirr values present a non-

monotonic dependence showing a maximum at H = 0.50 kOe. 

 

In some nanoscale magnetic materials, it has been found that TP (and/or Tirr) firstly increases 

with increasing field until it reaches a maximum, and then it decreases.41,42 Usually, this behavior 

has been related to the resonant magnetization tunneling effect.41,42 However, computational 

simulation results have showed that the TP vs H curve of uniaxial magnetic nanoparticle 

assemblies could adopt a bell-like shape when their energy barriers are log-normal 

distributed37,43 due to log-normal distributions of the particle size43 and/or the existence of weak 

interparticle magnetostatic interactions.33,44 Under these circumstances, the average blocking (or 

freezing) temperature could be rather different than the maximum observed in the ZFC curve 

obtained in presence of lower magnetic fields.43 In agreement with this, we observe that 

Tp(H=100 Oe) ≈ 34.5 K is considerably larger than the minimum temperature (~20 K) above 

which no magnetic hysteresis was found. Therefore, both dependences of Tp and Tirr could be 

explained assuming that the blocking (freezing) temperature distribution displays several 

contributions with different field-dependencies that yield to a distribution of energy barriers with 

a field-dependent width. In our nanoparticles, the blocking (or freezing) temperatures should 
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display a wide distribution owing to the presence of two particle populations with different 

shapes (a predominant population of rather-spherical nanocrystals together a minority quantity of 

nanorods), in which several relaxation mechanisms ascribed to two different sources of 

antiferromagnetic exchange coupling frustration (one ascribed to surface effects and other one 

associated to the Cl- ion vacancy effects) take place.  

 

In order to check this conjecture, the thermoremanent magnetization (TRM) was measured 

with a magnetic field of 100 Oe as a function of temperature (see the inset of Fig. 7a). The 

corresponding derivative vs temperature has been associated to the energy barrier distribution for 

non-interacting45 and interacting magnetic nanoparticles33, and also for antiferromagnetic small 

particles.46 This curve for ultrafine akaganéite nanoparticles (Fig.7a) confirms the coexistence of 

several energy barrier contributions with the presence of a shoulder before reaching its maximum 

value, and it was satisfactorily described (R2 = 0.9989) as the sum of two log-normal 

distributions with central values 8.1(4) and 14.37(9) K and standard deviations of 0.73(2) and 

0.37(1), respectively. Note that, the height of this curve decreases down to the 34% of the 

maximum height at around 20 K (i.e. the maximum temperature at which the sample present 

magnetic hysteresis).  

 

On the other hand, the thermal dependence of the derivative of the difference between FC and 

ZFC magnetization with respect to temperature, – d(MFC - MZFC) / dT, also represents the 

anisotropy energy barrier distribution of the system,33,40 offering the possibility to study its 

dependence on the magnetic field. Fig. 7b-f depict these curves obtained at different applied 

magnetic fields, and are compared with the derivative of the TRM curve vs temperature. The 
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former curve is very similar to the – d(MFC - MZFC) / dT vs T one obtained at H = 100 Oe, 

confirming the direct relation between both curves. The – d(MFC - MZFC) / dT vs T curves were 

also fitted to the sum of two log-normal distributions (named 1 and 2 in Fig. 7b-f) whose fit 

parameters are represented as a function of H in Fig. 8a-c. The temperatures at which the 

maxima occur for both distributions (TC1 and TC2, respectively) tend to decrease when H 

increases (Fig. 8a). The distribution 1 tends to vanish at H > 5 kOe, suggesting that the average 

anisotropy field associated to this energy barrier distribution is around 5 kOe. At H > 5 kOe, the 

total energy barrier distribution becomes considerably narrower and a small increase of the ZFC 

magnetization is observed as temperature decreases in the lowest temperature range (see Fig. 5). 

On the other hand, the ZFC-FC curves are roughly coincident at H = 30 kOe, indicating that the 

average anisotropy field associated to the distribution 2 is close to 30 kOe (approximately twice 

the value for bulk β-FeOOH recently estimated by Urtizberea et al.19).  Noteworthy, the standard 

deviations (σ1 and σ2, Fig. 8b) and the amplitude (A1 and A2, Fig. 8c) of both log-normal 

distributions are field-dependent. 

 

In order to estimate the importance of the magnetostatic interparticle interactions on the 

magnetic behavior of the system, the mean dipole-dipole interaction energy between two 

neighboring spherical particles was roughly estimated using the following equation:39,47 

 

                                                (9)  

 

where MS is the saturation magnetization of the particles, dm is the median particle diameter and 

ε is the particle concentration by volume. Assuming MS = 50 kA/m, dm = 3.3 nm (the mean size 

εµ 320

24 mSdd dME =−
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of the equiaxial nanoparticles) and ε = 63.4 % (the maximum density for a random packing), we 

obtain Ed-d / kB ≈ 0.24 K, (i.e., around two order of magnitude lower than TP at H=0.1 kOe). The 

size of nanorods is considerably larger than 3.3 nm, however their concentration by volume is 

substantially lower than the equiaxial particles. In this manner, estimations using equation (9), 

and assuming  dm ≈ 16 nm and ε < 20 % gives Ed-d / kB  values largely lower than TP at H = 0.1 

kOe. Hence, this crude approximation indicates that the interparticle interaction effects have not 

an important contribution on the blocking/freezing processes. 

 

 For nanoparticles of antiferromagnetic materials it has been observed that the temperature of 

the peak in ZFC magnetization measurements decreases with increasing the particle size,35,48 

which is the contrary tendency observed in nanoparticles of ferromagnetic (or ferrimagnetic) 

materials.33 Hence, assuming that interparticle intaractions have not a relevant contribution, we 

attributed the log-normal distribution 1 to the barrier energy distribution of the akaganéite 

nanorods and the distribution 2 to the barrier energy distribution of equiaxial ultrafine particles. 

 

In order to analyze the possible contribution of the quantum tunneling of magnetization to the 

magnetic relaxation of the sample, additional studies were carried out. In this respect, it is 

important to have in mind that antiferromagnetic nanosized systems with a small magnetic 

moment originated by the non-compensation of collinear spin sublattices are considered as more 

suitable experimental models than ferromagnetic nanoparticles to study this quantum 

phenomenon.42 The temperature of the crossover from thermal to quantum regime can be 

estimated through the following expression:42 
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                                                 (10) 

where g  is the landé factor, µB is the Bohr magneton, kB the Boltzmann constant and HA and HE 

are the anisotropy and exchange fields, respectively. Assuming the values of HA and HE of bulk 

akaganéite recently reported by Urtizberea et al.,19 the estimated value is TCr~ 5K, which is of the 

same order (or even larger) than the TC value obtained for ferritin. 

 

Figure 9 shows the thermal dependency of the magnetic viscosity. In this curve, the S values 

increase as temperature decreases in the whole explored temperature range. Therefore, the 

temperatures at which the viscosity is not temperature-dependent due to the occurrence of 

quantum relaxation phenomena49 is significantly lower than the temperatures at which 

measurements were carried out. Consequently, the experimental value of TCr is significantly 

lower than the estimated value, probably due to the wide distributions of HA and HE of our 

akaganéite nanoparticles, being  the mean value of HE drastically smaller than that of the 

corresponding one for the bulk β-FeOOH owing to their ultrafine size and surface effects. 

 

Figures 10a and b show the temperature dependence of in-phase, χ′, and out-of-phase, χ′′, ac 

susceptibility components measured at selected frequencies. In all these curves, a well-defined 

frequency-dependent peak is clearly observed confirming the occurrence of a magnetic blocking 

or freezing process. Interestingly, the frequency dependence on the temperature of the peak is 

rather different than the usually found in non-interacting superparamagnetic particles,39 spin 

glasses,50 surface spin glasses35 and super spin glasses,39,47 where the temperature of the peak 

increases as the frequency is increased. In fact, the both cusp temperatures of χ′ and χ′′ of the 

analyzed akaganéite nanoparticles, which were named as Tmax1 and Tmax2 respectively, present a 
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non-monotonous dependence with the ac field frequency (see Fig. 11a-b). This behavior is in 

agreement with the occurrence of several magnetic relaxation mechanisms with different thermal 

dependences (see the discussion above about Tp and Tirr). Figures 12a and b presents the Cole-

Cole plot of χ′′ vs χ′ at different temperatures. The asymmetric shape of these curves 

corroborates the coexistence of several relaxation time distributions. 

 

Figures 13a and b show the dependence of the isothermal magnetization on the magnetic field 

measured at different temperatures. All these curves display a linear behavior at high values of 

the applied field, ascribed to the presence of spins with antiferromagnetic ordering and 

paramagnetic-like contributions. The magnetization values found at high magnetic fields were 

considerably larger than those reported in the literature for akaganéite nanoparticles and bulk 

akaganéite,19, 21 indicating an unusual enhanced fraction of uncompensated spins in agreement 

with the extremely reduced dimensions of our nanoparticles. At temperatures above 20 K no 

magnetic hysteresis was found. However, hysteresis loops with rapidly increasing coercive fields 

as temperature decreases were observed at temperatures below 20 K.  The found thermal 

dependence of the coercive field at low temperatures was not satisfactorily described by models 

taking into account non-interacting identical single domain particles with uniaxial anisotropy 

(see Fig 14), where it is expected the following relation: 

                                           (11) 

being HC (0) the coercive field at T= 0 K, TB the blocking temperature of the system, and k is 0.5 

when the magnetic anisotropy axes of the particles are aligned or 0.77 when the particles are 

randomly oriented.51 The parameters of the best fit (R2 = 0.99763) of the experimental data to 

equation (11) with k as a free fit parameter, were HC (0) = 7.5(2) kOe, TB = 13.9(5) K and k = 
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0.181(6). On the other hand, the hysteresis loops presented typical characteristics observed in the 

hysteresis loops of very small antiferromagnetic nanoparticles: they are not fully saturated and 

display large coercivity and irreversibility at high fields (around 20 kOe).35,36,46 Additionally, 

these hysteresis loops appear shifted along the magnetic field axis when they are measured after 

field cooling, suggesting the exchange coupling between the uncompensated spins together with 

the compensated ones.36,46 However, the found values of the exchange bias field (for example, 

HEB≈ 354 Oe measured at 1.8 K after cooling the sample under a magnetic field of 7 T) are quite 

low in comparison with the reported ones for several antiferromagnetic nanoparticle systems, 

which are typically of the order of few or even tens of kOe.36,46 On the other hand, the coercive 

fields of the FC hysteresis loops were roughly the same as those obtained in ZFC hysteresis 

loops, therefore, the other typical manifestation of the exchange anisotropy consisting on the 

broadening of the magnetic hysteresis loops measured under FC conditions52 was very modest. 

This moderate character of the exchange bias effect is consistent with a very limited presence of 

antiferromagnetically compensated spins in each particle owing to the ultrafine size of the 

nanoparticles studied herein. 

 

Another interesting feature of the hysteresis loops of akaganéite nanoparticles was the 

occurrence of small “jumps” of the magnetization at low fields in both branches (see Fig. 13b 

and the sharp peak of the dM/dH vs H curve at H=0 in the inset of Fig. 13a). Similar noticeable 

magnetization jumps at low fields have been reported in several experimental studies of different 

nanoparticle systems, and they have been associated to different phenomena. For instance, 

Friedman et al.,41 reported on magnetic hysteresis loops at low temperatures in ferritin exhibiting 

an anomalous “pinched” shape at near zero field. These authors attributed this effect to quantum 
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tunneling of magnetization that implies that the magnetic relaxation should be faster in zero field 

than at low applied field values.41 Ong et al.53 found noticeable magnetization jumps in both 

branches of the hysteresis loops in Fe/Fe3O4 core-shell and Fe3O4 hollow-shell nanoparticles, and 

these authors attributed them to a sudden switching of shell magnetic moments. Ammar et al.54 

observed similar jumps in the hysteresis loops of cobalt ferrite nanoparticles when they are not 

enough dispersed in a matrix, and these authors attributed such jumps as a consequence of the 

interparticle interactions, however the mechanism in which it should occurs was not explained. 

The same phenomenon was observed by Caldero-DdelC et al. in similar samples, and they 

suggested that magnetization jumps could occur due to rigid body rotation of the particles when 

the applied field direction is switched during measurement.55 In the case of our akaganéite 

nanoparticles, the low field demagnetizations at 1.8 K normalized with respect to the 

magnetization measured at 70 kOe, ∆M/M7K, were 2.15 and 2.20 % for the branches ascribed to 

the negative and positive field sweep, respectively, measured in ZFC conditions. These jumps 

were less marked as the temperature was increased (for example, 1.67 and 1.56% at 5 K, and 

1.11 and 1.11 % at 10 K) until becoming negligible. Interestingly, these demagnetization jumps 

were higher when the hysteresis loops were performed in FC conditions (for instance, 3.50 % at 

1.8 K for both field sweep) and this effect was not observed in the first magnetization curves of 

the ZFC hysteresis loops. These discoveries suggest that a small population of uncompensated 

spins reverses before the whole. The demagnetization jumps are more marked in FC hysteresis 

loops probably due to the distribution of the spin tilting angle with respect to the direction of the 

exciting field should be narrower when the uncompensated spins are frozen in presence of a 

magnetic field. The existence of populations of spins with different switching fields is consistent 

with the wide distributions of the exchange and anisotropy fields (mentioned above) owing to the 
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particle size and shape distributions, and the distributions of the coordination number at the 

particle surface and of Cl- occupancy in both particle populations (rather spherical ultrafine 

particles and nanorods). On the other hand, the occurrence of these jumps should be vanished for 

nanoparticle systems with strong magnetic interactions, confirming that there is not an important 

effect of interparticle interactions in our system. In this matter, simulations of fine magnetic 

particles have predicted jumps in the magnetization originated by the influence of the surface 

anisotropy, where each jump is related to a particular set of spins reversing, and their observation 

is strongly depend on the ratio of the intensity of the interparticle interaction and the strength of 

the surface anisotropy.56  

 

CONCLUSSIONS 

 

The hydrolysis of FeCl3 solutions at room temperature induced by the presence of NaOH, and 

without further thermal treatments, yields to the formation of ultrafine akaganéite particles. Such 

nanoscale system is mainly constituted by rather-equiaxial β-FeOOH nanocrystals with 

diameters around 3.3 nm and by a small fraction of rod-like particles with 23 ± 5 nm in length 

and 5 ± 1 nm in width. These particles exhibit an interesting magnetic phenomenology that 

includes superparamagnetic-like behaviors, anomalous field dependences of Tp and Tirr, 

magnetic hysteresis at low temperatures with small “jumps” of the magnetization at low field 

values and exchange bias. This complex phenomenology has been explained considering the 

presence of two particle populations (rather equiaxial and rod-like particles) and the coexistence 

of antiferromagnetically coupled spins and uncompensated spins in a freezing magnetic state at 

low temperatures. The partial breakdown of the antiferromagnetic order is produced by two 
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sources of frustration of antiferromagnetic interactions and magnetic disorder: i) the geometrical 

frustration of the antiferromagnetic coupling produced by the reduced coordination number and 

structural disorder at the particle surface, where the breaking of the crystal lattice symmetry 

occurs, and ii) a deficient occupancy of chloride ions into the akaganéite structure channels that 

yields to an imperfect antiparallel alignment of spins (frustration by spin canting) resulting in a 

net magnetic moment. The effects of interparticle interactions and quantum relaxation 

phenomena apparently have not a notorious contribution in the observed magnetic behaviors. 
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FIGURES 

 

 

Figure 1 XRD pattern of ultra-fine akaganéite nanoparticles (before and after the aging process 

at room temperature during one year). The inset shows a schematic ball-and-stick representation 

of the akaganéite unit cell (monoclinic I2/m representation). This arrangement displays square 

channels that are occupied by chloride ions that stabilize the structure. 
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Figure 2 a) TEM micrograph of the akaganéite nanoparticles at low magnification. The inset 

shows the SAED pattern of the large-area showed in panel a) of the Figure. The presence of rod-

like shape nanoparticles is highlighted by arrows. b) HRTEM image. Above inset is a 

magnification of the image. Below inset is the FFT pattern of the area highlighted by square. c) 

and d) Histograms of the effective particle diameter of the equiaxial particles and nanorods 

observed in the TEM micrographs. 
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Figure 3 Thermal dependence of the inverse of the dc magnetic susceptibility of the sample 

measured in a constant magnetic field of 100 Oe. The dot line represents the best fit curve to 

equation (4) in the temperature range from 295 to 320 K. The fitting parameters are C=0.024(2) 

emu K Oe-1 g-1 and θ = 133(1) K. The inset represents the 1/χ vs T curve at low temperatures. 

 

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

0 10 20 30 40 50
600

650

700

750

T (K)

χχ χχ-1
 (g

O
e/

em
u)

21 K

χχ χχ-1
 (

g
O

e/
em

u
)

T (K)

H = 100 Oe

T
N
 = 260 K



 37

 

 

Figure 4 Experimental magnetization versus H/T curves obtained at different temperatures. The 

best fit curve to equation (5) is represented by black solid line.   
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Figure 5 Zero-field cooled and field cooled magnetization curves obtained at different applied 

fields.  
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Figure 6 Dependence of (a) the temperature at which the ZFC magnetization curve reach a peak 

and (b) the irreversibility temperature of the ZFC-FC curves on the exciting dc magnetic field. 

The solid blue curve is the best fit curve to equation (6) assuming equation (7). The dashed black 

curve corresponds to the best fit to equation (8). Red dotted curves are just guides to the eye. 
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Figure 7 a) Thermoremanent magnetization (MTRM) curve measured at 100 Oe (inset) and its 

temperature derivative, -dMTRM/dT. b)-f) Thermal dependence of the derivative of the difference 

MFC - MZFC with respect to temperature obtained at different magnetic fields. The green curve is 

the best curve fit to the sum of two log-normal distributions (curves in blue and red, named 1 and 

2 respectively). 
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Figure 8 Field dependences of the parameters obtained with the fits presented in Figure 7: a) 

central values, b) standard deviations and c) amplitude values of the log-normal distributions 1 

and 2. 
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Figure 9 Thermal dependence of the magnetic viscosity.  
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Figure 10 Thermal dependence of the (a) real and (b) imaginary parts of the AC susceptibility of 

the akaganéite nanoparticles obtained at different frequencies of the exciting magnetic field.  
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Figure 11 Frequency dependence of the cusp temperatures of a) χ′ and b) χ′′. 
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Figure 12- a) Cole-Cole plots obtained at temperatures from 5 up to 39 K. b) Cole-Cole plots 

obtained at selected temperatures (19, 21, 23 K). 
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Figure 13 a) Field-dependence of the magnetization obtained at different temperatures. The inset 

shows the field dependence of the field derivative of one of the branch of the hysteresis loops 

measured at 1.8 K. b) Low field region of the hysteresis loops measured at 1.8, 5, 10 and 20 K. 
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Figure 14 Temperature dependence of the coercive field. The green curve corresponds to the fit 

of the experimental data to equation (11) with k as a free fit parameter.  Inset shows the 

experimental data (black points) and the best fit curves for T1/2 (dashed line) and T0.77 

(continuous line) models, respectively. The parameters obtained from these fits were HC (0) = 

2,962(395) Oe, TB = 17(2) K for the T1/2 model and HC (0) = 2,255(370) Oe, TB = 17(3) K for the 

T0.77 model. The coefficients of determination R2 were 0.90592 and 0.83918, respectively. 

 

 

 

 


