
PHYSICAL REVIEW B 90, 125153 (2014)

How disorder affects the Berry-phase anomalous Hall conductivity: A reciprocal-space analysis
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The anomalous Hall conductivity of “dirty” ferromagnetic metals is dominated by a Berry-phase contribution
which is usually interpreted as an intrinsic property of the Bloch electrons in the pristine crystal. In this work we
evaluate the geometric Hall current directly from the electronic ground state with disorder and then recast it as
an integral over the crystalline Brillouin zone. The integrand is an effective k-space Berry curvature, obtained by
unfolding the Berry curvature from the small Brillouin zone of a large supercell. Therein, disorder yields a net
extrinsic Hall contribution, which we argue is related to the elusive side-jump effect. As an example, we unfold
the first-principles Berry curvature of an ordered Fe3Co alloy from the original fcc-lattice Brillouin zone onto a
bcc-lattice zone with four times the volume. Comparison with the virtual-crystal Berry curvature clearly reveals
the symmetry-breaking effects of the substitutional Co atoms.
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I. INTRODUCTION

The anomalous Hall effect (AHE) in ferromagnetic metals
includes a band-structure contribution given by the k-space
Berry curvature of the occupied Bloch states [1,2]. Somewhat
counterintuitively, this intrinsic contribution only becomes
dominant in moderately resistive (“dirty”) samples, for which
crystal momentum is not a good quantum number and the
Berry curvature strictly speaking is ill defined. In highly
conducting pristine samples with sharply defined energy bands
and Berry curvature, the AHE is instead dominated by an
extrinsic contribution unrelated to the Berry curvature: skew
scattering from dilute impurities [1].

Motivated by these considerations, we introduce an ef-
fective k-space Berry curvature which remains well defined
in the presence of certain types of disorder, namely, those
types which are describable by reference to an underlying
ordered lattice. Examples of such “cellular disorder” include
chemical disorder, substitutional or interstitial impurities,
vacancies, and thermal disorder of the atomic positions and
spin orientations [3].

The effective Berry curvature is defined in the Brillouin
zone (BZ) of the reference lattice in such a way that its
BZ integral gives the anomalous Hall conductivity (AHC)
as a property of the disordered electronic ground state. We
call this the geometric AHC contribution: It combines the
nominally intrinsic contribution with certain disorder effects
of a similar nature. With this definition we depart from
the standard terminology, where the terms “intrinsic” and
“geometric” (or “Berry-phase”) are used interchangeably
when referring to AHC contributions [1,2]. The proposed
definition should be particularly useful for studying the
AHC of magnetic alloys with well-characterized chemical
disorder.

We begin by noting that in supercell (SC) calculations a
disordered system is treated as a “crystal” with the artificial SC
periodicity. Its eigenstates are formally Bloch states, labeled
by a wave vector in the SC BZ. Hence, the AHC can be cast
in the same geometric form as the intrinsic AHC of an actual

crystal: a Berry curvature summed over the occupied states
and integrated over the (folded) BZ. Specializing to cellular
disorder, we then use “BZ unfolding” techniques [4–7] to map
the SC Berry curvature onto the BZ of the reference lattice.
This procedure gives the effective k-space Berry curvature,
henceforth denoted unfolded Berry curvature.

We emphasize that the total geometric AHC is not affected
by the unfolding procedure [Eqs. (4) and (5) below]; what
the unfolded Berry curvature provides is the detailed k-space
distribution of the AHC, including disorder contributions. This
is particularly valuable, given that the (genuinely) intrinsic
AHC is strongly influenced by sharp features in the Berry
curvature of the pristine crystal [8–10].

We demonstrate our approach by analyzing the effect of
the impurities on a very crude model of a disordered magnetic
alloy: a regular Fe3Co crystal. By means of the unfolded
curvature, we visualize the effects of scattering (in our case by
Co) as due to reciprocal-space couplings. Scattering effects are
instead completely washed out within a standard virtual-crystal
approximation (VCA), which can be regarded as the “clean
limit” of a fictitious crystal. While the present implementation
is first principles, our calculations are intended to be illustrative
only and do not aim to provide accurate results for the AHC
of real Fe-Co alloys [11]; more realistic calculations would
require larger SCs, lattice-constant optimization, and disorder
averaging.

The paper is organized as follows. In Sec. II we outline the
well-established theory of the intrinsic AHC, as well as our
approach to extend it in order to to include, on the same footing,
some effects of disorder. In Sec. III we motivate our approach
starting from the Berry curvature defined in the folded BZ of a
disordered SC. In Sec. IV we introduce a general BZ unfolding
formalism, which we then apply to the Berry curvature; the
details of the implementation in a Wannier-function basis are
also given. In Sec. VI we compute from first principles the
unfolded curvature of our model Fe-Co alloy and compare it
with the Berry curvatures of pure bcc Fe and of the alloy in
the VCA. We conclude in Sec. VII with a discussion and an
outlook.
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II. INTRINSIC VS EXTRINSIC

Our generalized Berry-curvature definition in the presence
of disorder is based on the notion of BZ unfolding, which
has been used extensively in recent years in the context of
band-structure calculations with periodic SCs [4–7]. Similar
unfolding techniques were introduced long ago to describe the
phonon spectra of disordered alloys [12].

Unfolding band structures of SC calculations is a particu-
larly informative way of visualizing the influence of cellular
disorder on the electronic states. For weak to moderate
disorder the unfolded bands resemble those of the pristine
(or virtual) crystal, with the deviations in both the dispersion
and the spectral weight reflecting the effect of the disorder
potential [4]. The recent development of efficient ab initio-
based SC methodologies [13] opens up new possibilities for
applying unfolding techniques to large SCs with realistic
descriptions of disorder [14,15].

So far, BZ unfolding has been used mainly to extract
approximate energy dispersions for disordered systems. While
the energy bands εki are the most basic quantity in the theory
of solids, it is now understood that the k-space Berry curvature
�i(k) = ∇k × Ai(k) is an additional fundamental ingredient
determining the dynamics of electrons in crystals [2]. [Here
Ai(k) is the Berry connection, to be defined shortly.] Using
Stokes’ theorem, the Berry curvature can be viewed as the
geometric phase ϕi = ∮

Ai(k) · dl per unit area picked up by a
Bloch electron in band i as it is transported adiabatically along
a small loop in k space. The Berry curvature is generically
nonzero in the BZ of crystals with broken inversion or time-
reversal symmetry. It modifies the motion of electron wave
packets driven by an electric field E by adding a transverse
“anomalous velocity” term (e/�)�i(k) × E to the usual band
velocity (1/�)∇kεkj .

The intrinsic AHC is a direct consequence of the anomalous
velocity. It is given by [1,2]

σ int
ab = −e2

�

∫
NBZ

d3k

(2π )3
�occ

ab (k), (1)

�occ
ab (k) =

∑
i

fki�i,ab(k), (2)

�i,ab(k) = εabc�i,c(k) = ∇ka
Ai,b(k) − ∇kb

Ai,a(k), (3)

where fki is the occupation of the Bloch eigenstate |ki〉 =
eik·x̂|uki〉 and Ai(k) = i〈uki |∇kuki〉 is the Berry connection of
the ith band. The integral in Eq. (1) is over the BZ of the pristine
crystal, which we call the normal Brillouin zone (NBZ).

The definition of the intrinsic AHC as a Berry curvature
in k space relies on perfect translational order. This is at odds
with the above-mentioned fact that the intrinsic contribution
tends to dominate in dirty samples, where translational order is
significantly disrupted. The conventional formulation becomes
even more problematic for intrinsically disordered systems
such as random alloys, for which there is no experimentally
accessible clean limit. Yet, it is still useful to reason in terms
of “intrinsic” contributions to the AHE in such materials [16].

In view of these difficulties, how should the intrinsic AHC
be defined and calculated in the presence of disorder? The stan-
dard procedure is to define it in terms of the Berry curvature of

an ordered reference system—the pristine crystal in the case of
doped samples [8,17] or a virtual-crystal effective Hamiltonian
in the case of alloys [18,19]—calculated using the band filling
appropriate to the doping level or alloying concentration. In the
case of alloys, disorder effects are sometimes included via a
diagonal self-energy term η2 in the sum-over-states expression
for the (virtual-crystal) Berry curvature [see Eq. (6) below] to
account for the finite lifetime of the Bloch eigenstates [17].
A related strategy, which has been implemented within the
coherent-potential approximation, is to compute the intrinsic
AHC of the alloy starting from the Kubo-Strda equation, by
combining all terms not connected to vertex corrections [16].
While physically motivated, these remain somewhat ad hoc
and model-dependent prescriptions, which can only be justi-
fied for sufficiently dilute or concentrated alloys.

We propose a different approach, where we do not insist
on defining precisely the intrinsic AHC contribution in a
disordered system and focus instead on the geometric AHC.
In the SC approach it is computed by inserting into Eq. (1) the
electronic states of the SC system,

σ
geom
ab = −e2

�

∫
SBZ

d3K

(2π )3
�occ

ab (K), (4)

and averaging over several realizations of disorder. Here
�occ

ab (K) is the Berry curvature of the occupied SC eigenstates
|KJ 〉 and the integral is over the SC Brillouin zone (SBZ). No
phenomenological lifetime broadening parameter needs to be
included in the Berry curvature because spectral broadening
by disorder is already built in, as revealed by the configuration-
averaged unfolded bands [13–15].

Equation (4) correctly gives a quantized value for the AHC
of two-dimensional disordered Chern insulators when the
Fermi level lies in the mobility gap [20,21], and we propose
to use it to unambiguously identify a dominant contribution to
the AHC of metallic disordered systems. [Contrary to the case
of Chern insulators, Eq. (4) may not capture the full AHC of
disordered metals in SC calculations; we return to this point
in Sec. VII.]

Realistic descriptions of disorder require reasonably large
SCs. The integration volume in Eq. (4) then becomes very
small, and all k-space information is lost. In order to restore a
k-space description reminiscent of Eq. (1), we recast Eq. (4)
as the NBZ integral of the unfolded Berry curvature �unf(k),
to be defined precisely in Sec. IV:

σ
geom
ab = −e2

�

∫
NBZ

d3k

(2π )3
�unf

ab (k). (5)

Although with disorder present the unfolded curvature is no
longer geometric in the NBZ (the interpretation as a Berry
phase per unit area is lost), it remains gauge invariant.

III. BERRY CURVATURE IN THE FOLDED
BRILLOUIN ZONE

Starting from the Kubo-Greenwood formula for the AHC,
one finds for the quantity �occ

ab (k) in Eq. (1)

�occ
ab (k) = Im

∑
i,j

(fkj − fki)
〈ki|�v̂a|kj 〉〈kj |�v̂b|ki〉

(εkj − εki)2 + η2
. (6)
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In the limit of η → 0+ this expression can be recast in the
geometric form of Eq. (2) [1].

Equation (6) is written in terms of the Bloch eigenstates and
energy eigenvalues of a pristine crystal. If we place the crystal
in a periodic SC and introduce some disorder, the disorder
potential mixes states with different NBZ momenta k and k′
whenever k′ − k equals a SC reciprocal vector G, forcing the
new eigenstates to be labeled by a common wave vector K in
the SBZ. The Berry curvature can still be defined in the SBZ
from Eq. (6), now written in terms of the SC eigenstates |KJ 〉,
energy eigenvalues εKJ , and occupations fKJ . Upon setting
η = 0 this leads to Eq. (4) for the geometric AHC.

Because of those extra couplings from disorder, it is not
obvious how to map (unfold) the Berry curvature from the
SBZ onto the NBZ of the original crystal. Clearly, �occ(K)
is not simply equal to the virtual-crystal Berry curvature
summed over the points {ks} which fold onto K: �occ(K) �=∑

s �occ
VCA(ks). Nevertheless, it will be possible, for cellular

disorder, to arrive at a unique definition for the unfolded Berry
curvature with all the desired properties, namely: (i) it reduces
to the ordinary Berry curvature �occ(k) in the disorder-free
limit; (ii) it remains sharply defined (gauge invariant) in the
presence of disorder; and (iii) it constitutes a proper mapping
from the SBZ to the NBZ in the sense that

�occ(K) =
∑

s

�unf(ks), (7)

which provides the link between Eqs. (4) and (5).
The difference between the unfolded SC curvature and the

Berry curvature of the virtual crystal with averaged disorder
reflects the disorder-mediated couplings between the folded
bands, made possible by the relaxed crystal-momentum selec-
tion rule inside the SC. Such “pseudodirect” transitions [6]
modify the interband coherence effects described by Eq. (6),
giving additional contributions to the anomalous velocity and
AHC which are absorbed into the definition of �unf(k).

A striking feature of the Berry curvature in crystalline
ferromagnets is the occurrence of sharp peaks when two
energy bands lying on either side of the Fermi level become
quasidegenerate [8–10]. This can be understood in terms of
Eq. (6) as a resonant enhancement behavior, and we see that
the same intuitive picture holds for the unfolded quantities:
Strong peaks in �unf(k) can be traced back to pairs of unfolded
bands separated by small (pseudo)direct gaps across εF .

IV. BRILLOUIN-ZONE UNFOLDING

A. Basic definitions

Given a set of primitive translations {ai} of the normal
crystal cell (NC), the SC primitive translations can be written
as

∑
j Mij aj , with M an integer matrix. Each point K in the

SBZ unfolds onto |M| distinct points ks = K + Gs in the NBZ,
where the Gs are SC reciprocal lattice vectors [6].

Following Refs. [4,5] we introduce a Bloch basis in the
NBZ, and another in the SBZ. The basis states |kn〉 and |KN〉
are normalized over the NC and the SC, respectively, and
we define 〈· · · 〉 as an integral over the SC volume, so that
〈kn|k′m〉 = |M|δn,mδk,k′ .

We also define the projection operator

T̂ (k) = 1

|M|
∑

n

|kn〉〈kn|, (8)

such that ∑
s

T̂ (ks)|KN〉 = |KN〉. (9)

Thus, any SC Bloch state |KN〉 has unfolded Bloch
character distributed among the points {ks}, with weights
〈KN |T̂ (ks)|KN〉 which add up to 1 [7].

B. Unfolding a generic k-space quantity

Consider a property of the SC system which can be
calculated by taking the trace of a Hermitian matrix,

ONM (K) = 〈KN |Ô|KM〉, (10)

followed by an integration over the SBZ. Our goal is to recast
that property as an integral over the NBZ, by mapping TrO(K)
onto the NBZ. This can be achieved using Eq. (9) together with
the completeness relation for the SC Bloch basis:

TrO(K) =
∑
N

〈KN |Ô|KN〉

= 1

|M|2
∑
s,n

t,m

〈ksn|Ô|ktm〉〈ktm|

×
[∑

N

|KN〉〈KN |
]

|ksn〉

= 1

|M|2
∑
s,n

t,m

〈ksn|Ô|ktm〉〈ktm|ksn〉

=
∑
s,n

1

|M| 〈ksn|Ô|ksn〉. (11)

Note that off-diagonal terms with t �= s do not contribute.
Defining the unfolded quantity Ounf(ks) as the trace of

Onm(ks) = 1

|M| 〈ksn|Ô|ksm〉, (12)

Eq. (11) becomes

TrO(K) =
∑

s

trO(ks) =
∑

s

Ounf(ks), (13)

where the symbols “Tr” and “tr” denote traces over the SC and
NC orbital indices N and n, respectively.

In practice, Ounf(ks) is evaluated by inserting the complete-
ness relation in Eq. (12), leading to

Ounf(ks) = trO(ks) = Tr [T (ks ,K)O(K)], (14)

where

TMN (ks ,K) = 〈KM|T̂ (ks)|KN〉
= 1

|M| [S†(ks ,K)S(ks ,K)]MN (15)

and SnN (ks ,K) = 〈ksn|KN〉.
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Equation (14) is our generic BZ unfolding prescription.
In Appendix A we verify that, when applied to the spectral
operator, it gives the correct expression for the unfolded energy
bands. Before considering the Berry curvature, let us discuss
two properties satisfied by the unfolding procedure.

1. Unfolding sum rule

Summing Eq. (13) over a uniform grid in the SBZ and
replacing

∑SBZ
K

∑
s with

∑NBZ
k we find∫

SBZ
d3K TrO(K) =

∫
NBZ

d3k trO(k). (16)

This relation allows us to express the AHC in terms of the
unfolded Berry curvature in the NBZ.

2. Gauge invariance

Under a unitary mixing of the SC basis states,

|KN〉 →
∑
M

|KM〉UMN (K), (17)

the matrix T (ks ,K) changes in a gauge-covariant manner,

T (ks ,K) → U †(K)T (ks ,K)U (K). (18)

Provided that O(K) is also gauge-covariant, Eq. (14) remains
unchanged under the transformation by invariance of the
trace. This gauge-invariance requirement will dictate which
definition of a “Berry-curvature matrix” to use for unfolding
purposes. (While the matrix representation (10) of most
physical quantities is unique and trivially gauge-covariant, the
Berry curvature is more subtle as it involves k-space derivatives
of the state vectors.)

We note that Eq. (13) can also be obtained by evaluating
the right-hand side of Eq. (14) in a basis that diagonal-
izes either T (ks ,K) or O(K) and then using the sum rule∑

s TNN (ks ,K) = 1 for the unfolding weights:∑
s

Ounf(ks) =
∑
s,N

TNN (ks ,K)ONN (K) = TrO(K). (19)

C. Unfolded Berry curvature

Since the BZ unfolding procedure is based on matrix objects,
we begin by defining a Hermitian Berry-curvature matrix
�ab,NM (K) = �∗

ab,MN (K) satisfying two essential require-
ments: (i) It should be gauge covariant in the sense of Eq. (18)
and (ii) its trace should give the quantity to be unfolded:
Tr �ab(K) = �occ

ab (K).
Those requirements are fulfilled by the non-Abelian Berry

curvature matrix [2,22]. For an insulator it reads

�ab,NM = ∂aAb,NM − ∂bAa,NM − i[Aa,Ab]NM, (20)

where K has been dropped everywhere for brevity. Here ∂a =
∂/∂Ka

, Aa,NM = i〈uN |∂auM〉 is the Berry connection matrix,
and the indices N,M run over the occupied states. Except for
the commutator, Eq. (20) is the obvious matrix generalization
of Eq. (3). The extra term does not affect the trace, but is
needed to ensure gauge covariance.

For our purposes it will be convenient to recast Eq. (20) in
terms of projection operators [22],

�ab,NM = iFab,NM − iFba,NM, (21)

where

Fab,NM = 〈uN |(∂aP̂ )Q̂(∂bP̂ )|uM〉 = F ∗
ba,MN (22)

and P̂ , Q̂ = 1̂ − P̂ span the occupied and unoccupied spaces,
respectively. Metals can be handled by writing

P̂ =
∑
N,M

|uN 〉fNM〈uM |, (23)

where fNM is the occupation matrix [23]. For insulators P̂ =∑occ
N |uN 〉〈uN |, and a few lines of algebra show that Eq. (21)

correctly reduces to Eq. (20).
With these definitions, the Berry curvatures in the original

SBZ and unfolded onto the NBZ via Eq. (14) read

�occ
ab (K) = −2Im Tr Fab(K), (24)

�unf
ab (ks) = −2Im Tr [T (ks ,K)Fab(K)]. (25)

Equation (24) was given in Ref. [22], while Eq. (25) is a
primary result of the present work.

Applying the unfolding sum rule (19) to the Berry curvature
gives Eq. (7). The geometric AHC of the SC system can
therefore be recast as an integral over the NBZ [Eq. (5)], in
accordance with the sum rule of Eq. (16).

D. Implementation in a Wannier basis

In this section we describe the implementation of Eq. (25)
using Wannier interpolation, which is carried out as a post-
processing step following a first-principles SC calculation.
Essentially, we combine two Wannier-based methodologies:
that of Refs. [10] and [23] for computing the Berry curvature
and that of Ref. [4] for BZ unfolding.

In the formalism of Ref. [4] the Bloch basis orbitals are
chosen as |KN〉 = ∑

R eiK·R|RN〉, where |RN〉 is a Wannier
function and R a SC lattice vector. The Wannier functions are
then mapped onto the NC according to |RN〉 ↔ |rn〉 = |R +
[r],n〉, with a choice of |M| NC lattice vectors [r] such that no
two [r]’s differ by an R. Once a map has been chosen, any NC
lattice vector r can be uniquely decomposed as r = R + [r].
Setting |kn〉 = ∑

r eik·r|rn〉 then gives [4,5]

SnN (ks ,K) = 〈ksn|KN〉 = e−iks ·[r](N)δn,n′(N), (26)

which goes into the unfolding equations (15) and (14).
The expression for the unfolded Berry curvature involves

several other matrix objects, which we now define borrowing
the notation from Ref. [23]. The two basic objects are (omitting
orbital indices)

H(K) =
∑

R

eiK·R〈0|Ĥ |R〉, (27)

Aa(K) =
∑

R

eiK·R〈0|x̂a|R〉. (28)

Diagonalization of H(K) gives the energy eigenvalues,

H(H)
JJ ′ (K) = [U †(K)H(K)U (K)]JJ ′ = εKJ δJ,J ′ , (29)
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where the superscript (H) stands for “Hamiltonian gauge.”
Next we define

J
(H)
a,JJ ′ (K) =

{
i{U †(K)[∂aH(K)]U (K)}JJ ′

εKJ ′−εKJ
if J ′ �= J,

0 if J ′ = J,
(30)

and Ja = UJ (H)
a U †. This matrix will only appear in the

combinations J−
a = f Jag and J+

a = gJaf , where f is the
occupation matrix introduced in Eq. (23), and g = 1 − f . With
these definitions, the unfolded curvature in the Wannier basis
becomes (see derivation in Appendix B)

�unf
ab (ks) = Re Tr [Tf (∂aAb − ∂bAa)f ]

+ 2Im Tr [TfAafAbf ]

− 2Im Tr [T (fAaJ
+
b + J−

a Abf + J−
a J+

b )].

(31)

Equation (31) is our second important result. It expresses
the unfolded Berry curvature at a point ks in the NBZ in
terms of the matrix T (ks ,K) given by Eqs. (15) and (26),
and additional matrices defined at the folded point K in the
SBZ. Those other matrices can be computed from a knowledge
of the Hamiltonian and position-operator matrix elements in
the Wannier basis, which are then Fourier transformed into
H(K) and Aa(K) via Eqs. (27) and (28). Diagonalization of
H(K) [Eq. (29)] provides the energy eigenvalues and rotation
matrices used to compute f (K) and J±

a (K) [23]. Note that the
needed derivatives ∂aH(K) and ∂bAa(K) are easily obtained
by differentiating Eqs. (27) and (28).

It is instructive to consider the trivial unfolding scenario
where the NC and the SC are the same. Then T becomes
the identity matrix, the second term in Eq. (31) vanishes
since Im Tr [AafAbf ] = 0, and �unf(k) correctly reduces to
Eq. (51) of Ref. [23] for �occ(k).

V. COMPUTATIONAL DETAILS

Plane-wave pseudopotential calculations were carried out
for bcc Fe, bcc Co, and an Fe-Co ordered alloy with the Fe3Al
structure [24]. The experimental lattice constant a = 5.42 bohr
of bcc Fe was used in all cases to facilitate comparisons, and
the magnetization was set along the [001] direction.

The calculations were performed with the PWSCF code from
the QUANTUM-ESPRESSO package [25], in a noncollinear spin
framework with fully relativistic norm-conserving pseudopo-
tentials generated from parameters similar to those in Ref. [10].
An energy cutoff of 120 Ry was used for the plane-wave
expansion of the wave functions, and exchange and correlation
effects were treated within the PBE generalized-gradient
approximation [26].

In the case of bcc Fe and bcc Co, the self-consistent
total energy calculations were done with a 16 × 16 × 16
Monkhorst-Pack mesh for the BZ integration, while for
the non-self-consistent calculation a 10 × 10 × 10 mesh was
used, and the 28 lowest bands were calculated. In the case
of Fe3Co the BZ integration meshes were 12 × 12 × 12
and 10 × 10 × 10 for the self-consistent and band-structure
calculations, respectively, and the 112 lowest bands were
calculated. A Fermi smearing of 0.02 Ry was used in all
self-consistent calculations.

For each material, 18 spinor Wannier functions per atom
were then constructed using WANNIER90 [27]. Atom-center s-,
p-, and d-like trial orbitals were used for the initial projection
step, followed by an iterative procedure to select an optimal
“disentangled” subspace [28], using the same inner and outer
energy windows as in Ref. [10]. At variance with that work,
no minimization of the spread functional was done to further
improve the localization properties of the “projected” Wannier
functions [29]. This was done to keep the Wannier functions
of Fe3Co as similar as possible to those of bcc Fe, as required
by the Wannier-based unfolding scheme [4].

In the next section we show results for the energy bands and
Berry curvature of the ordered Fe3Co alloy unfolded onto the
NBZ of bcc Fe. For comparison purposes, we also show the
energy bands and Berry curvatures of pure Fe and of the VCA
alloy computed directly in the NBZ. Following Ref. [15], we
have implemented the VCA in the basis of projected Wannier
functions, by linearly mixing the Hamiltonian matrix elements
of bcc Fe and bcc Co. Since the Wannier interpolation of
the Berry curvature also requires the position-operator matrix
elements [10], we modified them accordingly.

In all cases, with and without unfolding, we plot the Bloch
spectral function instead of the energy bands. To generate the
plots we use the method of Ref. [13], adapted to display the
spin polarization 〈Sz〉 as a color code. A similar procedure is
used to plot the intersections of the (unfolded) Fermi surface
with a plane in the NBZ. For simplicity, we continue to use the
expressions “energy bands” and “Fermi surface intersections”
(or “Fermi lines”) when referring to the figures.

VI. RESULTS

We have selected Fe-Co, a substitutional alloy based on the
bcc structure, as a test case for the Berry-curvature unfolding
procedure. We focus on a composition of 25% Co, using the
Fe3Al ordered structure as a representative configuration [24].
This structure is of the Heusler X2YZ type, with X = Y = Fe
and Z = Co (pure bcc Fe corresponds to X = Y = Z = Fe).
The Bravais lattice is fcc with a four-atom basis, so that the
energy bands live in a folded BZ which is four times smaller
than the NBZ of bcc Fe. This makes a direct comparison with
the band structure of bcc Fe rather difficult, and typically only
the densities of states are compared [24].

Information about the k-space distribution of the electron
states in the alloy can be recovered by plotting the energy
bands unfolded onto the NBZ [Eq. (A3)]. The result, shown
in the bottom panel of Fig. 1, strongly resembles the bands
of bcc Fe in the top panel. The influence of the Co atoms is
clearly visible in certain regions of the (k,E) plane, in the form
of “broken bands” and “ghost bands.” Overall, the effects of
alloying are most pronounced for the narrow d bands crossing
the Fermi level.

We now turn to the k-space Berry curvature, Eqs. (2)
and (6), and begin by recalling its salient features in crystalline
metallic ferromagnets [8–10]. In this class of materials the
Berry curvature is induced by the combined effect of exchange
splitting and spin-orbit coupling, which together break time-
reversal symmetry in the orbital wave functions. �occ(k) is
characterized by strong, sharp features which are concentrated
around the Fermi surface in regions where occupied and empty
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FIG. 1. (Color online) (Top) Energy bands of bcc Fe. (Bottom)
Energy bands of the fcc Fe3Co alloy unfolded onto the BZ of bcc
Fe. Colors indicate the spin polarization 〈Sz〉 of the states. The points
labeled P all have coordinates ( 1

2 , 1
2 , 1

2 ). The bands of the bcc 〈Fe3Co〉
virtual crystal (not shown) are almost indistinguishable from those of
bcc Fe, except for a shift in the Fermi level.

bands come in close contact and become strongly coupled by
spin orbit. This is illustrated for bcc Fe in Fig. 2 (top), which
displays the energy bands near the Fermi level and the Berry
curvature, along the 
-H-P path. The spiky features rise above
a smooth, low-intensity background which is visible in the
heat-map plot of the Berry curvature over the ky = 0 plane
[Fig. 3 (top)].

In order to understand how alloying with Co disturbs the
Berry curvature, we first consider the effects in the VCA,
that is, for a bcc crystal composed of “averaged” 〈Fe3Co〉
atoms. Since k remains a good quantum number in the NBZ,
the energy bands and Berry curvature can be obtained in the
usual manner (without unfolding), and are shown in Fig. 2
(middle). The bands are quite similar to those of bcc Fe, and
the main effect of alloying is an upward shift of the Fermi level.
This leads to significant changes in the Berry curvature: For
example, the strong peak along H-P is completely suppressed,
since the two majority bands involved are now both occupied.
Only some very low-intensity features remain along 
-H (note
the difference in the Berry curvature scales between the panels
in Fig. 2).

Comparing the heatmaps in Figs. 3 (top) and 3 (middle)
we again see significant differences in the Berry-curvature
distribution due to the shift in the Fermi level across the narrow
d bands. In both cases the Berry curvature is concentrated in
regions where there are weak avoided crossings between two
Fermi lines, which can be of opposite-spin character or of
like-spin character.
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FIG. 2. (Color online) Energy bands color coded by the spin po-
larization 〈Sz〉 and Berry curvature summed over the occupied states,
plotted along the path 
-H-P. (Top) bcc Fe. (Middle) bcc 〈Fe3Co〉
virtual crystal. (Bottom) fcc Fe3Co alloy, using BZ unfolding.

Missing from the VCA description of the alloy are the
effects brought about by the reduced translational order, which
are the main focus of this work. Their influence on the band
structure was revealed by plotting the unfolded bands of fcc
Fe3Co in Fig. 1. In order to see how the Berry curvature is
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FIG. 3. (Color online) Heat map of the Berry curvature in the
plane ky = 0, in atomic units (note the log scale). The lines of
intersection between the Fermi surface and the plane are also shown.
The top and middle panels show −�occ

z for bcc Fe and bcc 〈Fe3Co〉
respectively, and the bottom panel shows −�unf

z for fcc F3Co.

affected, we plot together in Fig. 2 (bottom) the two unfolded
quantities, energy bands and Berry curvature.

Compared to the VCA results in Fig. 2 (middle) the Fermi
level has not moved appreciably, and the bigger changes are
in the bands themselves, especially in the minority states
near the Fermi level. The Berry curvature displays two
contiguous strong peaks along 
-H. They are associated
with spectral features which have been greatly modified with
respect to the VCA calculation, namely, a pair of minority
bands with a weak avoided crossing just below the Fermi
level. As the upper band rises above εF on either side of
the crossing, a Berry-curvature peak suddenly develops and
then quickly drops as the separation between the two bands
increases. Plots along other high-symmetry lines show similar
features. We conclude that the intuitive interband-coupling
interpretation of the Berry curvature based on Eq. (6) carries
over to the unfolded curvature, now in terms of the unfolded
bands. Further confirmation of this comes from inspecting the
unfolded Fermi lines and Berry curvature across the ky = 0
plane in Fig. 3 (bottom). Overall, they resemble those of the
VCA crystal, but with some distortions. As before, the Berry
curvature is concentrated in regions where two Fermi lines
approach one another.

We conclude by evaluating the AHC of the three systems
from Eqs. (1) and (4). The results were carefully converged
with respect to k-point sampling [9,10], using dense uniform
meshes which were adaptively refined around points where the
Berry curvature exceeded a threshold magnitude of 27.98 Å2.
Uniform (adaptive) meshes of up to 350 × 350 × 350 (13 ×
13 × 13) in the NBZ were used for Fe and 〈Fe3Co〉. For
Fe3Co the densest uniform (adaptive) mesh in the SBZ was
250 × 250 × 250 (11 × 11 × 11). The converged AHC values
are 758 S/cm for bcc Fe, 452 S/cm for bcc 〈Fe3Co〉, and
473 S/cm for fcc Fe3Co. We comment on these numbers
shortly.

VII. DISCUSSION AND OUTLOOK

As illustrated by our calculations, impurities modify the
interband couplings responsible for the intrinsic AHC in
perfectly ordered crystals. In the context of SC calculations it
is very natural to combine the putative intrinsic contribution of
Eq. (1) with those disorder corrections into a single geometric
contribution, Eq. (4), which is a gauge-invariant property of
the disordered electronic ground state. In Chern insulators,
where the AHE is quantized for topological reasons (QAHE),
the disorder corrections cancel out upon taking the integral in
Eq. (4) [2]. In metals the AHE is not quantized, and disorder
gives a net geometric contribution on top of the intrinsic one.

In the same way that the intrinsic AHC can be viewed as the
dc limit of the interband conductivity of the pristine crystal [1],
the geometric AHC corresponds to the dc limit of the interband
conductivity of a SC with disorder, whose “bands” are defined
in the folded BZ. For disorder of the cellular type, the familiar
representation in terms of a Berry curvature in the normal
BZ can be restored by means of the unfolded Berry curvature
�unf(k) of Eq. (25), leading to Eq. (5), which has the same
form as Eq. (1).
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In pristine crystals the geometric AHC reduces to the
intrinsic contribution. It therefore retains the essential features
of the intrinsic theory of the AHE, while at the same time
addressing the main criticism that it originally faced, namely,
“the complete absence of scattering from disorder in the
derived Hall response contribution” [1].

First-principles calculations based on Eq. (1) have been
carried out for a number of ferromagnetic metals and alloys,
often finding reasonably good agreement with experiment:
Examples include SrRuO3 [8], bcc Fe [9,10], hcp Co [30,31],
and CuCr2Se4−xBrx [17]. A large discrepancy between ab
initio theory and experiment in the case of fcc Ni [30]
was eventually resolved by carrying out more sophisticated
GGA + U calculations [32].

Given the success of the intrinsic theory, one should be
cautious about introducing modifications. The calculations
presented in this work are reassuring in that regard: Most
of the large change in the calculated AHC between pure bcc
Fe and the Fe-Co alloy is recovered at the VCA “intrinsic”
level from the band-filling effect, while “scattering” effects
from the reduced translational order in the fcc cell give some
corrections, without dramatically changing the result. The
same conclusion can be drawn from comparing the panels
in Fig. 3.

The system we have studied is, of course, a very crude
model for a real disordered alloy. Calculations using larger
SCs with more realistic descriptions of disorder will be needed
to make detailed comparisons between the (unfolded) Berry
curvature and AHC of a disordered crystal or alloy and those of
the pristine reference crystal. For example, it seems plausible
that disorder-induced contributions will be smoothened out
compared to the sharp features seen in Figs. 2 (bottom) and 3
(bottom). The Wannier-based SC methodology of Ref. [13]
seems particularly well suited for such studies.

It would be desirable to clarify which scattering contribu-
tions are included in the geometric AHC. We give a discussion
based on the Kubo-Greenwood conductivity formula [33,34],
written here for ω = 0,

σab = i�e2

NV

∑
KJJ ′

fJ ′ − fJ

εJ ′ − εJ

〈J |v̂a|J ′〉〈J ′|v̂b|J 〉
εJ ′ − εJ − iη

, (32)

where V is the SC volume and the SBZ is sampled over
N points K. The full AHC, the sum of intrinsic, skew-
scattering, and side-jump contributions, can be calculated as
the antisymmetric part of Eq. (32). Let us recall the role played
by the parameter η in SC calculations. For a finite volume V the
energy levels at fixed K are discrete, and absorption becomes
impossible at frequencies smaller than the level spacing. It is
for this reason that when calculating the residual resistivity
ρxx 
 1/σxx one must use a level broadening η(V ) greater
than the mean level spacing at εF [35]. Similar considerations
may be relevant for σxy , particularly when trying to recover
the skew-scattering contribution, which scales as σxx and has
a similar physical origin [1].

This analysis suggests that σ
geom
xy , which is obtained from

Eq. (32) by taking the η → 0+ limit at finite V , may not include
skew scattering. We also note that since the longitudinal
conductivity σxx vanishes in that limit, σ

geom
xy corresponds to

the dissipationless part of σxy , and this is precisely how the

sum of the intrinsic and side-jump contributions is defined [1]
and measured at low temperatures [36].

Leaving aside matters of definition and interpretation, our
gauge-invariant procedure for unfolding the Berry curvature
from SC calculations seems useful in its own right as an
analysis tool complementary to the unfolding of energy bands.
The k-space Berry curvature induced by interband coherence
effects has emerged as a powerful paradigm to describe the
AHE [1,2], and the methods developed in this work seamlessly
incorporate scattering from disorder into the picture.

In closing, we mention that the BZ unfolding procedure can
be readily applied to other k-space quantities which take the
form of traces over gauge-covariant matrices. Examples in-
clude the occupation numbers n(K) = Tr f (K), the integrand
of the k-space orbital magnetization formula [22,23], and the
quantum metric [29].
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APPENDIX A: UNFOLDED ENERGY BANDS

The spectral operator (E + iη − Ĥ )−1 projected onto the
Bloch space at K reads, in the SC eigenstate basis,

ĜK(E + iη) =
∑

J

|KJ 〉〈KJ |
E + iη − εKJ

. (A1)

The K-resolved density of states (Bloch spectral function)
consists of sharp peaks in the SBZ, corresponding to the
“folded” energy bands:

DK(E) = − 1

π
lim

η→0+
Im Tr GK(E + iη)

=
∑

J

δ(E − εKJ ). (A2)

Applying the unfolding prescription of Eq. (14) to the
operator Ô = (−1/π )ĜK(E + iη) we find

Dunf
ks

(E) = lim
η→0+

Im trO(ki)

=
∑

J

TJJ (ks ,K)δ(E − εKJ ). (A3)

This is the known expression for the unfolded Bloch spectral
function [4], where

TJJ (ks ,K) = 1

|M|
∑

n

|〈ksn|KJ 〉|2 (A4)

is the spectral weight of |KJ 〉 at ks . (The factor of 1/|M| on
the right-hand side is absent when adopting the normalization
convention of Ref. [4].)

APPENDIX B: DERIVATION OF Eq. (31)

In this Appendix we derive Eq. (31) for �unf
ab (ks) starting

from Eq. (25). Following Ref. [23], we adopt a notation
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where matrix objects written with a double staff, such as
ANM (K) = i〈uKN |∂auKM〉 in Eq. (28), are defined over the
space spanned by the Wannier functions, which for metals
typically contains some low-lying empty states in addition to
all the occupied states [28]. Instead, objects with a single
staff such as ANM (K) in Eq. (20) are defined over the
occupied subspace. So, for example, we define (dropping K
everywhere) P̂ = ∑

N |uN 〉〈uN |, Q̂ = 1̂ − P̂, and Fab,NM =
i〈∂auN |Q̂|∂buM〉 as counterparts to P̂ , Q̂, and Fab,NM in
Eqs. (22) and (23).

We further condense our notation by dropping indices
N and M , e.g., P = |u〉〈u| and P̂ = |u〉f 〈u|. We use the

relations [23]

(∂aP̂ )Q̂ = |u〉f 〈∂au|Q̂ + i|u〉f (Aa + Ja)g〈u| (B1)

and [compare with Eqs. (20) and (21)]

iFab − iFba = ∂aAb − ∂bAa − i[Aa,Ab]. (B2)

Expanding Eq. (22) with the help of Eq. (B1), we find

Fab = fFabf + fAagAbf + J−
a Abf + fAaJ

+
b + J−

a J+
b .

(B3)

Writing Eq. (25) as �unf
ab = iTr {T [Fab − Fba]}, inserting

Eq. (B3) and then using Eq. (B2), we arrive at Eq. (31).
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