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Abstract. Quantum stochastic methods based on eUective wave functions form a

framework for investigating the generally non-Markovian dynamics of a quantum-

mechanical system coupled to a bath. They promise to be computationally superior to

the master-equation approach, which is numerically expensive for large dimensions of

the Hilbert space. Here, we numerically investigate the suitability of a known stochastic

Schrödinger equation that is local in time for the description of thermal relaxation and

energy transport. This stochastic Schrödinger equation can be solved with a moderate

numerical cost, indeed comparable to that of a Markovian system, but reproduces the

dynamics of a system evolving according to a general non-Markovian master equation. After

verifying that it describes thermal relaxation correctly, we apply it for the Vrst time to the

energy transport in a spin chain. We also discuss a portable algorithm for the generation of

the coloured noise associated with the numerical solution of the non-Markovian dynamics.
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1. Introduction

Stochastic methods applied to the investigation of the dynamics of physical systems coupled

to external baths have a long history dating back to Einstein [1] and Langevin [2]. The

idea behind these approaches is that the many degrees of freedom of the bath induce

random motion in the system [3–8]. Classically, this stochastic motion is due to collisions

between the particles of the system and of the bath and can be described by a Langevin

equation for certain system variables. Quantummechanically, the randomness is introduced

by transitions between diUerent states of the system induced by the bath and can be

described by a stochastic Schrödinger equation (SSE) [7,9–13]. Alternatively, one can derive

statistical descriptions averaging over many realisations of the stochastic process, leading

to the Fokker-Planck equation for the distribution function of a classical system and the

master equation for the reduced density operator of a quantum system [3–8], respectively.

Assuming the equivalence between the master equation for the density matrix ρ̂(t) and

the SSE [7, 12], which might not always hold [14], the latter has sometimes been seen as a

“quick and dirty” way to obtain the solution of the former. Indeed, the numerical solution

of the master equation scales poorly with the number of states kept in the calculation since

it is an equation of motion for a matrix in state space, whereas a Schrödinger equation is

an equation for a vector. This strongly limits the applicability of the master equation to

complex systems. In particular, if the quantum system consists of interacting particles, in

which case the state space is the Fock space, the scaling of the density matrix restricts the

range of system that could be tackled with numerical calculations and approximate methods

are needed [15]. Alternatively, one can establish a time-dependent density functional

theory [16] of open quantum systems [14, 17, 18].

In general, the dynamics of an open system is non-Markovian, i.e., the change of the

state of the system at a certain time does not only depend on its present state but also

on its state at all previous times. Understandably, the solution of a non-Markovian master

equation [19, 20] is diXcult because it involves the evaluation of a convolution integral

which depends on the history of the system. Therefore, one often employs a Markov

approximation, which replaces the dynamical memory kernel in this convolution integral

by a δ-function in time. In doing so, however, one looses the connection with the exact

dynamics and the ability to reproduce the correct steady state, unless one is capable of

constructing eUective bath-system operators that recover the exact behaviour [21]. It should

be noted that an exact time-convolutionless master equation can be derived [5, 22–24].

However, this does not usually reduce the numerical complexity since one needs to evaluate

the generator of the time-convolutionless master equation describing the history of the

system at each time step of the numerical integration.

In order to study the non-Markovian dynamics it would be advantageous to have a

SSE that is local in time but is nevertheless able to reproduce the dynamics induced by a

non-Markovian master equation (NMME). Such an equation has been proposed by Strunz

and coworkers: Vrst mentioned as a byproduct in [25], it has been applied to the spin-

boson model and compared to non-linear SSEs in [26] and also to a more realistic two-level
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model immersed in a photonic band-gap material in [27]. Here, we arrive at the same time-

convolutionless SSE (TCLSSE) of Strunz and coworkers starting from a non-Markovian SSE

obtained by Gaspard and Nagaoka [11]. We show how the dynamics induced by the TCLSSE

and the NMME coincide up to third order in the coupling parameter between the system

and the bath.

A promising application of the formalism is the investigation of the bath-induced

energy transport in the system. For this the system is coupled locally at its ends to two baths

kept at diUerent temperatures. The temperature gradient induces a thermal force leading to

energy transport in the system. Before investigating this non-equilibrium situation within

the TCLSSE approach, we will Vrst test whether the TCLSSE is able to reproduce relaxation

dynamics correctly: In contact with a single bath at a constant temperature, the system

should approach an equilibrium state with that temperature. It can be shown that in the

non-Markovian case there exists an exact condition that the memory kernel must satisfy

for the system to reach thermal equilibrium, i.e., ρ̂(t → ∞) ∝ exp(−βĤ) [5, 28]. ‡
This condition is known as detailed balance since it relates the absorption and emission

probabilities. The detailed-balance condition is usually no longer satisVed if the Markov

approximation is made [5, 28]. Hence, the history dependence of the equation of motion is

an essential ingredient for thermal relaxation. This begs the question of whether a TCLSSE

is also able to correctly describe thermal relaxation dynamics. To answer this question, we

study the relaxation of a simple three-level system employing the TCLSSE and compare

its dynamics to the one obtained from the NMME. This rather pedagogical study veriVes

the applicability of the TCLSSE to thermal transport, where we study for the Vrst time the

non-Markovian time evolution of the energy current induced by a thermal gradient.

The numerical solution of the TCLSSE requires the generation of complex coloured

noise to mimic the correlation functions of the non-Markovian baths [29]. Here we

introduce a portable and fast algorithm to generate any coloured noise whose power

spectrum is a positive function. The algorithm relies on the ability of performing a fast

Fourier transform and is therefore easily optimised. Other algorithms have been presented

in the past to generate real coloured noise [30–32]. In section 2.2, we compare our algorithm

to some of them and show that it performs better than these routines while having a broader

range of applicability.

‡ It is well known that the Hamiltonian Ĥ appearing here might be diUerent from the one describing the

system dynamics, due for example to the Stark and Lamb shifts. For simplicity, we here assume that these

eUects can be neglected, since they are normally proportional to λ4, where λ is the coupling parameter

between the system and the bath.
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2. Method

2.1. A time-convolutionless stochastic Schrödinger equation

Our starting point is a standard second-order NMME [4, 5, 8, 19, 20]. The coupling between

the system and the bath is taken to be bilinear,

Ĥint = λ
∑

a

Ŝa ⊗ B̂a, (1)

in the operators Ŝa and B̂a from the system and the bath, respectively. If any operator of the

system commutes or anticommutes with any operator of the bath, one can always expand

any coupling operator in this form.

In the following we assume that the bath and the system do not exchange fermions,

i.e., Ŝa and B̂a commute with each other. We further restrict ourselves to the case that Ŝa

and B̂a are Hermitian operators; the extension to the more general case where only Ĥint

is Hermitian is straightforward. Under the assumptions of weak system-bath interaction,

factorisation of the full density operator at the initial time t = 0 and vanishing averages of

bath operators to Vrst order, the equation of motion for the reduced density operator ρ̂ of

the system is given by [4, 5, 7, 8]

dρ̂(t)

dt
= −i

[

Ĥ, ρ̂(t)
]

+ λ2
∑

a

[Ŝa, M̂
†
a(t)− M̂a(t)], (2)

up to second order in the coupling parameter λ. We have set ~ = 1 and deVned

M̂a(t) ≡
∑

b

∫ t

0

dτ cab(t, τ) e
−iĤ(t−τ) Ŝb ρ̂(τ) e

iĤ(t−τ). (3)

In this NMME, Ĥ is the Hamiltonian of the system and the correlation kernel is given by

cab(t, τ) ≡ TrB[ρ̂
eq
B B̂a(t) B̂b(τ)], (4)

where the trace is over the bath degrees of freedom, B̂a(t) ≡ eiĤBtB̂ae
−iĤBt and ĤB is the

Hamiltonian of the bath. Here, ρ̂eqB is the statistical operator of the bath. If ρ̂eqB describes a

single bath in thermal equilibrium, ρ̂eqB ∝ exp(−βĤB), where β is the inverse temperature,

the system should relax towards thermal equilibrium, ρ̂(t → ∞) ∝ exp(−βĤ), with the

same temperature as the bath. The property that if a steady state exists, it coincides with the

state of thermal equilibrium must be encoded in the correlation kernel cab(t, τ). Indeed, one

can show that the system relaxes towards thermal equilibrium if cab(t, τ) = cab(t − τ) and

the power spectrum Cab(ω) ≡
∫ +∞

−∞
dt cab(t) e

−iωt satisVes the detailed-balance condition

[5, 28]

Cab(−ω) = eβω Cba(ω). (5)

Gaspard and Nagaoka [11] have shown that the dynamics introduced by the NMME

can be obtained not only by a numerical integration of (2) but also by the solution of a SSE
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for a state |Ψ(t)〉,

i
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉+ λ

∑

a

γa(t) Ŝa|Ψ(t)〉

− i λ2
∑

a,b

Ŝa

∫ t

0

dt′ cab(t
′) e−iĤt′Ŝb|Ψ(t− t′)〉. (6)

In this non-Markovian SSE (NMSSE), the complex noises γa(t) have the properties

γa(t) = 0, γa(t)γb(t′) = 0, γ∗a(t)γb(t
′) = cab(t− t′) (7)

and one can obtain the dynamics of the open quantum system by taking the average over

realisations of the stochastic process, indicated by the overline. In particular, the reduced

density operator is obtained as ρ̂(t) = |Ψ(t)〉〈Ψ(t)|. However, any attempt to solve the

NMSSE (6) requires a large numerical eUort due to the time integral, which needs to be

evaluated at every time step and for every realization. This begs the question of whether

there exists a simpler SSE that reproduces on average the dynamics induced by the NMME.

This is the case, as Strunz and Yu have shown [25].

Indeed, the TCLSSE

i
d

dt
|Ψ(t)〉 =

(

Ĥ + λ
∑

a

γa(t) Ŝa − i λ2 T̂ (t)

)

|Ψ(t)〉 (8)

with

T̂ (t) ≡
∑

a,b

Ŝa

∫ t

0

dt′ cab(t
′) e−iĤt′Ŝb e

iĤt′ (9)

reproduces on average the dynamics induced by the NMME (2) up to third order in λ

[25]. To prove this, we write (8) in the interaction picture, |ΨI(t)〉 = eiĤt |Ψ(t)〉 and

Ŝa(t) = eiĤtŜa e
−iĤt and expand the time-evolution operator up to second order in λ,

|ΨI(t)〉 ∼=
[

1l− iλ
∑

a

∫ t

0

dt1 γa(t1) Ŝa(t1)

− λ2
∑

a,b

∫ t

0

dt1

∫ t1

0

dt2 cab(t2) Ŝa(t1) Ŝb(t1 − t2)

−λ2
∑

a,b

∫ t

0

dt1

∫ t1

0

dt2 γa(t1) Ŝa(t1) γb(t2) Ŝb(t2)

]

|ΨI(0)〉

+O(λ3). (10)

This expansion is inserted into the expression for the reduced density operator ρ̂I(t) =

|ΨI(t)〉〈ΨI(t)|. By performing the average, using the properties given in (7) and the identity
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cab(τ, t) = c∗ba(t, τ), and diUerentiating with respect to t, we arrive at

d

dt
ρ̂I(t) = λ2

∑

a,b

∫ t

0

dτ
[

cab(t, τ) Ŝb(τ) ρ̂I(0) Ŝa(t)

− cab(t, τ) Ŝa(t) Ŝb(τ) ρ̂I(0)

+ c∗ab(t, τ) Ŝa(t) ρ̂I(0) Ŝb(τ)

− c∗ab(t, τ) ρ̂I(0) Ŝb(τ) Ŝa(t)
]

+O(λ4). (11)

Note that the averages of the terms in λ3 vanish. Furthermore, replacing ρI(0) by

ρI(τ) + O(λ2) does not change the equation up to terms of order λ3. Finally, by returning

to the Schrödinger picture we arrive at the NMME (2) up to terms of order λ3, i.e., higher

than the order up to which these equations are valid anyway. Indeed, the NMME and the

SSE are usually derived as a second-order expansion in the coupling parameter λ. This

is remarkable since one might expect a more complex time-non-local SSE to be required

for reproducing the dynamics of the NMME (2). Still, the TCLSSE is local in time, i.e., the

operator T̂ (t) does not depend on the state of the system at previous times and can thus

be calculated once before the numerical integration and be used for each realisation of the

stochastic process. Hence, the numerical cost of solving each realisation of the TCLSSE is

comparable to that of a Markovian SSE [7, 11].

We note that at the same level of approximation, λ3, we can derive a time-

convolutionless master equation instead of the non-local equation (2). Indeed, in (11) we

could replace ρI(0) by ρI(t) +O(λ2), arriving at

d

dt
ρ̂I(t) = λ2

∑

a,b

∫ t

0

dτ
[

cab(t, τ) Ŝb(τ) ρ̂I(t) Ŝa(t)

− cab(t, τ) Ŝa(t) Ŝb(τ) ρ̂I(t)

+ c∗ab(t, τ) Ŝa(t) ρ̂I(t) Ŝb(τ)

− c∗ab(t, τ) ρ̂I(t) Ŝb(τ) Ŝa(t)
]

+O(λ4). (12)

However, since in general we expect the density matrix and the operators Ŝa not to

commute, the integral over τ still contains the density matrix in a complicated manner.

From a numerical point of view, the solution of this equation is therefore not simpler than

that of (2). The equivalence of (2) and (12) is a generalization of the result that a time-

convolutionless Pauli master equation, i.e., a master equation for the diagonal components

of the density matrix only, can be proven to be equivalent to a Nakajima-Zwanzig-Markov

Pauli master equation to second order in λ [24, 33].

2.2. Generation of coloured noise

The TCLSSE requires the generation of coloured noise and thus the method will only be

practicable if an eXcient algorithm for the generation of this noise is available. Such an

algorithm indeed exists, as we show below, where we extend an algorithm presented by

Rice [30, 31] to the complex noise required here. We consider only a single bath operator;

the generalisation to several bath operators is straightforward.
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Some of the existing algorithms for the generation of coloured noise rely on the

numerical solution of a stochastic diUerential equation that has to produce noise with the

given target correlation function c(t) [29, 34]. However, such an equation is a piece of

information that is rarely available, since even the analytic expression for c(t) may not be

known. Except for a few simple models, it is more common to have access to the power

spectrum C(ω) =
∫ +∞

−∞
dt c(t) e−iωt. Indeed, C(ω) is connected to the quantum transitions

in the bath.

On the other hand, the algorithm presented in [32] does not require the knowledge of a

stochastic diUerential equation. However, besides the power spectrum C(ω) is does require

the inverse Fourier transform of its square root. This quantity is then convoluted with

a white noise to generate the target real coloured noise. We will introduce an algorithm

that directly uses
√

C(ω) as input, thereby reducing the numerical cost compared to the

algorithm of [32] and that generates a complex coloured noise with the properties given in

(7). Indeed, one can easily prove that the noise γ(t) can be generated by

γ(t) =

∫ +∞

−∞

dω√
2π

√

C(ω) x(ω) eiωt, (13)

where x(ω) is a white-noise process in the frequency domain satisfying

x(ω) = 0, x(ω)x(ω′) = 0, x∗(ω)x(ω′) = δ(ω − ω′). (14)

By substituting (13) into γ∗(t)γ(t′) and using (14), we immediately arrive at the third relation

of (7). The other relations are proven in a similar way. From a numerical point of view,

the generation of this coloured noise requires the calculation of the Fourier transform in

(13). We discretize the frequency domain with the uniform step ∆ω, and generate x(ω)

by using two independent gaussian random noises with zero mean and unitary variance,

N(0, 1), therefore x(ω) = (N(0, 1) + iN(0, 1))/
√
2∆ω. A similar algorithm restricted to

real coloured noise has been proposed in the past [30, 31].

In order to compare our algorithm with the two from [32] and [30,31], we choose a test

function for which we know c(t) and C(ω) analytically, namely c(t) = (2πσ2)−1/4e−t2/2σ2

and C(ω) = (2πσ2)1/4 e−ω2σ2/2. We Vx σ = 1 as our unit of time and choose the interval

t ∈ [−25, 25] for the numerical Fourier transform. To quantify the agreement between the

target c(t) and the noise generated by the three algorithms, we use the statistical variance

δc =
∫ +∞

−∞
dt |c(t) − γ(0)γ∗(t)|2/

∫ +∞

−∞
dt |c(t)|2. In principle, these algorithms produce

an exact representation of the target correlation function. Discrepancies arise from the

Vnite mesh on which the Fourier transform is evaluated, the Vnite number of independent

realisations of the noise that we generate and the limitations of the white noise generation.

In Vgure 1, we report the variance δc as a function of the number of independent

realisations of the noise. We see that the algorithm (13) performs better for a large number

of runs (at least 2× 105), while being close to the other two for a small number of runs. The

algorithm proposed in [32] suUers from the need of performing a double Fourier transform,

although for a large number of runs its performance improves consistently. On the other

hand, we can consider the total computation time to generate a given number of realisations.
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Figure 1. Statistical variance δc versus the number of independent realisations of the

coloured noise, calculated using a 16384 point mesh in time and frequency. The red (dashed)

line represents the optimised version of the algorithm presented in [32], the green (dotted)

line the algorithm proposed by Rice [30, 31] and the black (solid) line the results obtained

from (13).

Taking the time needed by algorithm (13) as a reference, the algorithm of [30, 31] is about

7% slower and the algorithm of [32] is about 50% slower. However, we stress that the main

advantage of the algorithm (13) does not lie in the moderate numerical improvement but in

the simpliVcation it brings about by only requiring the power spectrum as input.

For illustration, we show in Vgure 2 a single realisation of the noise (13) with 16834

mesh points. Notice that due to the use of the fast Fourier transform, the noise is periodic

over the simulation time.

Figure 2. The real (black, continuous line) and imaginary (orange, dotted line) parts of

a single realisation of the coloured noise, (13), for a mesh in time of 16384 points. The

function γ(t) appears smooth as a function of time due to the fact that time enters in γ(t)

via the oscillating term in the right hand side of (13). Similar behaviours are obtained with

the other two algorithms.
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2.3. Thermal relaxation of a three-level system

Here, we test whether the TCLSSE is capable to describe thermal relaxation dynamics

correctly when connected to a single bath. This will then allow us to study energy transport

within the TCLSSE approach in section 3.

We consider the coupling of an electronic system to the electromagnetic Veld in a

three-dimensional cavity. In the dipole approximation, one can derive from Vrst principles

the power spectrum for this system (we set the speed of light to unity),

Ccav(ω) =
|ω|3
πǫ0

[

nB(β|ω|) + θ(−ω)
]

for |ω| < ωc, (15)

where nB(βω) ≡ 1/(eβω − 1) is the Bose-Einstein distribution function, θ(ω) is the

Heaviside step function and ωc is a cutoU frequency determined by the dimensions of the

system. This cutoU is necessitated by the assumption made in the dipole approximation

that the electromagnetic Veld is uniform in the region of space occupied by the system. The

derivation of this power spectrum can be found in the appendix. For |ω| > ωc, the power

spectrum is set to vanish. Note that increasing ωc does not change the relaxation dynamics

as long as ωc is larger than the energy diUerences in the system and hence does not exclude

any transitions. One can show that the detailed-balance condition (5) is satisVed by this

power spectrum. Since for this model system the correlation function c(t) is not given in

analytical form, we will use (13) to generate the noise.

In order to quantify the agreement between the noise generated by (13) and the power

spectrum (15), we have performed a Fourier transform of the time-domain signal and

compared it to our target. Figure 3 shows that the agreement is excellent.

Figure 3. Comparison between the target, (15), (solid lines) and the Fourier transform of the

correlation function obtained from (13) by averaging over 90 000 realisations of the noise

(dashed lines).

For the electronic system we consider a three-site spinless tight-binding chain

described by the Hamiltonian

Ĥ = −T
(

ĉ†1ĉ2 + ĉ†2ĉ1 + ĉ†2ĉ3 + ĉ†3ĉ2
)

, (16)
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where the operator ĉ†i creates an electron at site i, and assume a single electron to be present.

This system is coupled to the electromagnetic Veld inside the cavity by the operator

Ŝ = −q
∑

i,j

~u · 〈Wi|~r|Wj〉 ĉ†i ĉj , (17)

where q is the charge of the electron and |Wi〉 is the single-particle state localized at site i.

For simplicity, we assume that each relevant mode of the cavity has the same polarization

direction ~u, parallel to the tight-binding chain. Note that the form of this operator should be

immaterial for the establishment of thermal equilibrium, which is only determined by the

power spectrum. Indeed, we can check whether the detailed-balance condition is necessary

for the system to reach thermal equilibrium. To that end, we use the operator in (17) within

a Markov approximation for the correlation function, c(t) ∝ δ(t). We have found that a

steady state is approached that does not correspond to thermal equilibrium [28].

Figure 4. Dynamics of the occupation probabilities p1, p2, p3 of the eigenstates of the

Hamiltonian (16) in the one-electron sector calculated from the evolution of the TCLSSE

(dashed lines) and the NMME (solid lines) with the power spectrum given by (15). The

eigenstates are labeled such that the eigenenergies satisfy ǫ1 ≤ ǫ2 ≤ ǫ3. The red dots

represent the thermal-equilibrium probabilities calculated from (18). The time t is measured

in terms of the inverse of the energy constant T .

In Vgure 4 we show the occupation probabilities of the three eigenstates of the

Hamiltonian in the one-electron sector as a function of time calculated using the TCLSSE

(dashed lines) and the NMME (solid lines), respectively. For the TCLSSE, the results have

been obtained by averaging over 90 000 independent realisations of the noise. We have

used the parameters β = 1, ωc = 1, T = 1, ǫ0 = 1 and λ = 0.1 and we have

employed the Euler algorithm [35, 36] with time step ∆t = 0.005 to numerically solve the

equations. As the establishment of thermal equilibrium is independent of the choice of the

initial state, we have chosen an arbitrary pure state, |Ψ(0)〉 = 0.94 |1〉 + 0.2 |2〉 + 0.28 |3〉,
where |i〉 represents the i-th eigenstate of the Hamiltonian, where the eigenenergies satisfy

ǫ1 ≤ ǫ2 ≤ ǫ3.

The dynamics induced by the NMME and the TCLSSE are in good agreement: The

small discrepancies in the numerical solutions are due to the Vnite number of realisations
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we have used; the solution of the TCLSSE still contains some noise, as expected. For long

times, both formalisms converge to the thermal-equilibrium probabilities

pi =
e−βǫi

e−βǫ1 + e−βǫ2 + e−βǫ3
. (18)

If we were only interested in the long-time limit, we could have averaged over all times after

some equilibration time tmin to obtain better statistics, using the ergodic theorem to replace

the average over many realisations by an average over time of a single realisation.

3. Application to energy transport

To show that the TCLSSE can be used to investigate energy transport in open quantum

systems, we consider a spin chain in contact with two baths at diUerent temperatures. The

baths are locally connected to the terminal spins of the chain [21, 37]. Energy is transferred

between the high-temperature bath, via the spin chain, to the low-temperature bath. Here

we assume the baths to be represented by an ensemble of harmonic oscillators with a

continuous spectrum. In the long-time regime, we expect the appearance of a steady state

of constant energy Wow.

The total Hamiltonian of a spin-1/2 chain coupled to two baths L and R reads

ĤT = ĤS +
∑

i=L,R

(

Ĥ
(i)
B + Ĥ

(i)
SB

)

, (19)

where the system Hamiltonian is given by

ĤS =
Ω

2

n
∑

µ=1

σ(µ)
z + Γ

n−1
∑

µ=1

~σ(µ) · ~σ(µ+1), (20)

with ~σ = (σx, σy, σz) and the index µ indicating the spin site. The Pauli matrices are given

by

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

. (21)

Hence, the spin operators for the n-site chain are

1 2 µ n

σ
(µ)
j = 1l ⊗ 1l ⊗ · · ·⊗ σj ⊗ · · ·⊗ 1l.

(22)

In (20), Ω is the energy associated with a uniform magnetic Veld aligned along the z

direction and Γ is the spin-spin Heisenberg interaction.

The baths are coupled to the spins at the ends of the chain,

Ĥ
(i)
SB = λ Ŝ(i) ⊗ B̂(i) = λ σ(i)

x ⊗ B̂(i), (23)

where σ
(i=L)
x = σ

(1)
x , σ

(i=R)
x = σ

(n)
x , and λ is the coupling strength.
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In line with (3), we need to assign the correlation function cab(τ). Here we use a bath

correlation function describing the electromagnetic Veld of a one-dimensional cavity [5],

c(i)(τ) =
π

2ǫ0

∫ ωc

0

dω ω

[

cos(ωτ) coth

(

β(i)ω

2

)

− i sin(ωτ)

]

, (24)

where β(i) is the inverse temperature of bath i = L,R. Accordingly, one can calculate the

power spectrum of this bath correlation function as

C(i)(ω) =
π2|ω|
ǫ0

[

nB(β
(i)|ω|) + θ(−ω)

]

for |ω| < ωc. (25)

This is the one-dimensional analogue of (15). One can immediately prove that this

correlation function does fulVl the detailed-balance relation and therefore we expect the

system to be driven towards thermal equilibrium if the temperatures of the two baths are

the same.

To investigate the energy transport, we identify the energy current according to a

continuity equation for the local energy. We deVne a local Hamiltonian according to

ĥ(µ) =
Ω

2
σ(µ)
z +

Γ

2

(

~σ(µ) · ~σ(µ+1) + ~σ(µ−1) · ~σ(µ)
)

(26)

if µ is diUerent from n and 1.

We also deVne

ĥ(1) =
Ω

2
σ(1)
z +

Γ

2
~σ(1) · ~σ(2) (27)

and

ĥ(n) =
Ω

2
σ(n)
z +

Γ

2
~σ(n−1) · ~σ(n) (28)

so that ĤS =
∑

µ ĥ
(µ). The time evolution of this local Hamiltonian is given by

− dĥ(µ)

dt
= −i [ĤS, ĥ

(µ)] = ĵ(µ),(µ+1) − ĵ(µ−1),(µ), (29)

where energy-current operators have been deVned as

ĵ(µ),(µ+1) =
i

4

[

Ω (σ(µ)
z − σ(µ+1)

z ), Γ~σ(µ) · ~σ(µ+1)
]

. (30)

Equation (29) has the form of a continuity equation for the energy at site µ and is valid for

sites inside the spin chains that are not coupled to a bath.

In Vgure 5 we report the energy current Wowing from the second to the third spin

of a three-site spin chain. In the equal-temperature case (βL = βR = 5, green solid and

grey dashed lines in Vgure 5), a steady state is reached for long times that coincides with the

thermal equilibrium and hence no current is Wowing through the system. On the other hand,

for the case of unequal temperatures (βL = 2 and βR = 5), the steady state shows a non-

zero energy current from the warmer to the colder bath, as expected (black solid and red

dot-dashed lines in Vgure 5). For the TCLSSE we have averaged over 100 000 independent

realisations of the noise and for both calculations we have used the parameter values Ω = 1,
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Figure 5. Dynamics of the energy current of a three-site spin chain coupled locally to two

baths for the cases of equal and unequal temperatures, calculated with the NMME (solid

lines) and the TCLSSE (dashed and dot-dashed lines). The agreement between the two sets

of lines is excellent, in particular at short times. The time t is measured in terms of the

inverse of the energy constant Ω.

Γ = 0.01, λ = 0.1, ǫ0 = 1 and ωc = 6. Both for the equal-temperature case and for the case

with a thermal gradient, we have chosen an initial state populated with the probabilities

determined by the equilibrium distribution at the lower temperature. It can been seen that

the TCLSSE produces the same dynamics of the energy current as obtained from the NMME

in the equilibrium and non-equilibrium regime and hence can be seen as a reliable tool to

simulate energy transport with moderate numerical cost.

4. Conclusions

In conclusion, we have numerically investigated a time-local (time-convolutionless) version

of a non-Markovian stochastic Schrödinger equation, which correctly describes the approach

to thermal equilibrium and energy transport as obtained from the general master equation

(2). We report two case studies, which show that the TCLSSE is a viable alternative

for obtaining the exact dynamics of a non-Markovian open quantum system. Moreover,

contrary to other approximations, e.g., the Born-Markov approximation to the RedVeld

equation [5], this stochastic equation reproduces the full dynamics of the non-Markovian

master equation, and therefore could be used to investigate the transient dynamics and the

approach to equilibrium. The TCLSSE can be integrated with moderate numerical cost,

comparable to that of a Markovian system. It also shows more advantageous scaling with

the number of states compared to the master equation, which is particularly useful for

large systems. We have also introduced an eXcient and portable numerical algorithm for

the generation of the coloured complex noise necessary to solve the time-convolutionless

stochastic Schrödinger equation. Our numerical algorithm is moderately faster than other

available algorithms and requires only the power spectrum, C(ω), of the bath-correlation

function as input.
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Appendix A. Derivation of the bath correlation function

In this section, we give a derivation of the bath correlation function for the coupling of the

electromagnetic Veld in a three-dimensional cavity of volume V to an electronic system. In

the dipole approximation, the interaction Hamiltonian is

Ĥint = −q
∑

i

~̂ri ⊗ ~̂E(t), (A.1)

where q is the charge of an electron and ~̂E is the electric Veld inside the cavity. The

wavelength of the electromagnetic Veld is assumed to be large compared to the system

size, hence ~̂E is considered to be uniform in space. For simplicity, we suppose that each

mode of the cavity has the same polarization direction, ~u. Thus the second-quantized form

of this interaction term is [38]

Ĥint = −q
∑

l,p

~u · 〈ψl|~̂r|ψp〉ǫ̂†l ǫ̂p ⊗
∑

k

ipk
(

b̂ke
−iωkt − b̂†ke

iωkt
)

= Ŝ ⊗ B̂, (A.2)

where ǫ†l creates an electron in the system in the state |ψl〉. These states form an

orthonormal basis of the system Hamiltonian. The k-th Veld mode inside the cavity with

frequency ωk is created by b̂†k and we deVne pk =
√

ωk/(2V ǫ0), where ǫ0 is the dielectric

constant. We note, by comparing (A.2) and (1), that the coupling is already written in the

required bilinear form. From (A.2) we can immediately read oU the form of the operators

Ŝ and B̂. After having assigned these coupling operators, one can calculate the bath

correlation function

c(t, τ) = TrB[ρ̂
eq
B B̂(t) B̂(τ)]

= −TrB

[

ρ̂eqB
∑

k,j

pkpj
(

b̂ke
−iωkt − b̂†ke

iωkt
)(

b̂je
−iωjτ − b̂†je

iωjτ
)

]

. (A.3)
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Evaluating the trace in the bosonic many-particle basis of the bath and replacing the sum

over the bath modes ωk by an integral over frequency yields

c(t, τ) =
1

2ǫ0π2

∫ ωc

0

dω ω3

{

[

nB(βω) + 1
]

e−iω(t−τ) + nB(βω) e
iω(t−τ)

}

, (A.4)

where we have inserted the density of states in the cavity, ω2/π2. We have introduced

a cutoU frequency ωc to be consistent with the dipole approximation, which restricts the

wavelengths of the bath modes to be larger than the system size. In addition, we note that

the integral cannot be evaluated analytically, whereas the power spectrum of this function,

(15), is analytically known.
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