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Abstract
An acoustic plasmon is predicted to occur, in addition to the conventional two-
dimensional (2D) plasmon, as the collective motion of a system of two types of
electronic carriers coexisting in the same 2D band of extrinsic (doped or gated)
graphene. The origin of this novel mode stems from the anisotropy present in the
graphene band structure near the Dirac points K and K′. This anisotropy allows
for the coexistence of carriers moving with two distinct Fermi velocities along
the ΓK and Γ ′K directions, which leads to two modes of collective oscillation:
one mode in which the two types of carriers oscillate in phase with one another
(this is the conventional 2D graphene plasmon, which at long wavelengths
( →q 0) has the same dispersion, q1/2, as the conventional 2D plasmon of a 2D
free electron gas), and the other mode found here corresponds to a low-fre-
quency acoustic oscillation (whose energy exhibits at long-wavelengths a linear
dependence on the 2D wavenumber q) in which the two types of carriers
oscillate out of phase. This prediction represents a realization of acoustic
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plasmons originated in the collective motion of a system of two types of carriers
coexisting within the same band.

Keywords: graphene, plasmons, time dependent DFT, linear response theory

In recent years, interest in graphene [1] has grown impressively for both fundamental research
and technological applications [2–4]. This is due to the fact that graphene exhibits a number of
interesting properties, related mainly to its novel electronic structure near the Fermi level,
represented by the so-called Dirac cone. A major issue is represented in this case by the
variation of the charge carrier density, which is caused by several conditions, including, for
example, the shape and defects of graphene flakes, charge transfer processes with the
supporting material [5], chemical doping [6, 7], and the application of gating potentials [1]. The
appearance of a two-dimensional (2D) sheet plasmon in graphene adsorbed on a variety of
supporting materials has been observed in several experiments [8–13], where monolayer
graphene happens to be doped by charge transfer to or from the substrate. On the theoretical
side, a number of calculations have have been able to reproduce a 2D sheet plasmon [14–24] in
extrinsic (doped or gated) free-standing graphene.

In this paper, we present an ab initio description of the energy-loss spectrum of both
intrinsic (undoped and ungated) and extrinsic free-standing monolayer graphene. Starting with
pristine (intrinsic) graphene, we include the effect of electron injection by simply upshifting the
Fermi level from the Dirac point, that is by working under the assumption that the graphene
band structure is unaffected by doping. We find that the anisotropy that is present in the
graphene band structure near the Dirac points K and K′ allows for the coexistence of a majority
of carriers moving with two different velocities along the ΓK and Γ ′K directions, thus leading
to a remarkable realization of the old idea [25] that low-energy acoustic plasmons (whose
energy exhibits a linear dependence on the wavenumber) should exist in the collective motion
of a system of two types of electronic carriers. Our energy-loss calculations, which we carry out
in the random-phase approximation (RPA), show the existence of a low-frequency acoustic
oscillation (in which the two types of carriers oscillate out of phase), in addition to the
conventional 2D graphene collective mode described in [14, 15] (in which the two types of
carriers oscillate in phase with one another).

We start with the following expression for the in-plane RPA complex dielectric matrix of a
many-electron system consisting of periodically repeated (and well separated) graphene 2D
sheets (atomic units are used throughout, unless stated otherwise):
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represents the 3D Fourier transform of the density response function of non-interacting
electrons confined to a normalization volume Ω and occupying the band states | 〉vk , | ′ + 〉v k q ,
with energies εvk, ε ′ +v k q, and occupation factors f

vk
, ′ +f

v k q
, k being an in-plane 2D wavevector in

the first BZ. These states and energies are the eigenvectors and eigenvalues of a single-particle
Hamiltonian, which we take to be the Kohn–Sham (KS) Hamiltonian of density functional
theory (DFT).

The inelastic scattering cross section corresponding to a process in which (after the
scattering of external electrons or electromagnetic waves) an electronic excitation of wavevector

+q g and energy ω created at the graphene 2D sheet is proportional to the energy-loss function
ϵ ω− − qIm [ ( , )]g g,

1 . Collective excitations (plasmons) are dictated by the zeros in the real part of

the macroscopic dielectric function

ϵ ω
ϵ ω

+ = −q g
q

( , )
1

( , )
(3)M

g g,
1

in an energy region where the imaginary part is small.
Our ab initio scheme begins with the KS eigenvalues and eigenvectors, which we calculate

in the local-density approximation (LDA) by using the Perdew–Zunger parametrization [26] of
the uniform-gas correlation energy. We use a plane-wave basis set (with a cut-off energy of 25
Hartrees) and a norm-conserving pseudopotential of the Troullier–Martins type [27]. Our
system is made using periodically repeated 2D graphene sheets separated by a distance of ∼40
a.u. The BZ integration is carried out using an unshifted × ×60 60 1 Monkhorst–Pack grid
[28], which results in a 3600 k-point sampling of the BZ. From the converged electron density,
we calculate the KS single-particle energies and orbitals on a denser k-point mesh
( × ×720 720 1) including up to 60 bands. These KS energies and orbitals are plugged into
equation (2), which we use to obtain the χ0 matrix with up to ∼ G500 -vectors. The in-plane
RPA complex dielectric matrix is then computed from equation (1). For the wavevectors and
energies of interest here (below the π plasmon at ∼5 eV), stable results were obtained by
including in equation (2) 51 reciprocal-lattice vectors of the form = gG {0, }

z
.

In the case of intrinsic graphene, the calculated energy-loss function presents three well-
known distinct features. First of all, there is a broad peak-like structure starting at low values of
q and ω (see figure 1), which originates at interband π π→ * single-particle (SP) excitations
[14, 15] and was erroneously interpreted as a cone plasmon in [22]. Second, there is the π
plasmon (πP) starting at ∼5 eV (see figure 1) (also present in graphite [29]), which in the case of
monolayer graphene is red-shifted and exhibits a linear dispersion [30, 31] distinct from the
parabolic dispersion in graphite. Third, there is the broad high-energy graphene σ π− plasmon
peak starting at ∼15 eV (not visible in figure 1), which corresponds to the graphite σ π−
plasmon at ∼27 eV [32].

For extrinsic graphene, we adjust the occupation factors of equation (2) to account for
positive Fermi-energy shifts Δ =E 0.5 eVF and Δ =E 1.0 eVF relative to the Dirac point,
corresponding to charge-carrier densities of ×2.36 1013 cm-2 and ×1.15 1014 cm-2,
respectively7. Figure 2 exhibits a comparison of the RPA energy-loss function that we have

7 Charge-carrier densities achievable with gating potentials are typically of the order of 1012–1013 cm-2 [1]. Higher
doping levels can be achieved through chemical doping; indeed, a displacement of the Fermi level as high as
∼2 eV, with respect to the Dirac point, has been achieved after the intercalation of alkali metals on supported
graphene [7].

3
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obtained along the ΓK and ΓM directions. This doping affects neither the π nor the σ-π
plasmon. Important differences are visible, however, at low q and ω, where we can identify the
opening of a gap in the SP excitation spectrum of extrinsic graphene. More importantly, two
collective modes (plasmons) are clearly visible in the case of extrinsic graphene (which are
absent in intrinsic graphene): (i) the conventional graphene 2D plasmon (2DP) [14, 15], which
within the gap (of the SP excitation spectrum) has no damping (and exhibits the same
dispersion, q1/2, as the conventional plasmon of a 2D electron gas [33]) and outside the gap has
a finite linewidth, and (ii) a well-defined low-frequency mode (the new acoustic plasmon, AP),
whose energy exhibits at long wavelengths ( →q 0) a linear dependence on q. Figure 2 shows
that while the 2DP mode is present along both directions ΓK and ΓM, the AP mode is present
only along ΓK; this figure also shows that the energy dispersion of the acoustic plasmon
strongly depends on the doping level.

In order to demonstrate that the energy-loss peaks that are visible in figure 2 correspond to
collective excitations, we have plotted in figure 3 the energy-loss function (red dotted line) for a
given value of q (q = 0.09 a.u.) and Δ =E 1.0 eV, together with the real (black solid line) and
the imaginary (green dashed line) parts of the macroscopic dielectric function ϵM of equation (3).
This figure shows that Re ϵ[ ]M exhibits two distinct zeros (marked by the open circles I and II) in
energy regions where ϵIm M is small and the energy-loss function is, therefore, large. These two
zeros (each of them being associated to the two maxima B1 and B2 in Im ϵ[ ]M ) represent a
signature of well-defined collective excitations: (i) the higher-energy plasmon (the conventional
graphene 2D plasmon, 2DP) occurs at an energy (just above the upper edge v qF of the
intraband SP excitation spectrum, vF being the graphene Fermi velocity) where only interband
SP excitations are possible. (ii) The low-energy plasmon (the new acoustic plasmon, AP) occurs
at an energy that stays below ω = v qF , so it is damped through intraband SP excitations;
nonetheless, Im ϵ[ ]M is still considerably small at this energy, which confirms that this low-
energy mode represents a well-defined collective excitation as well.

The existence of the low-energy acoustic plasmon could not possibly have been
anticipated in the framework of the so-called ‘Dirac-cone approximation’ [14, 15], simply
because an oversimplified isotropic graphene band structure was considered in the vicinity of

Figure 1. 2D plot of the energy-loss function of intrinsic graphene vs the magnitude of
the in-plane wavevector q along the ΓK direction (horizontal axis) and the energy ω
(vertical axis).
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the K-point. A signature of such a mode has been detected recently [22–24]; but it was
erroneously interpreted in [22] as a nonlinear mode along the nonlinear branch of the cone
structure, and it was not discussed in [23, 24].

With the aim of revealing the origin of the low-energy acoustic plasmon (the new
plasmon), we show in figure 4: (i) the dispersion of the graphene π and π* bands along various
high-symmetry paths originating at the K point (figure 4(a)) and (ii) the density-of-states
distribution in these bands (figures 4(b), (c)). The graphene π and π* energy dispersions are
plotted in figure 4(a) along the K Γ and KM branches in the ΓK direction, and along the KK
branch in the ΓM direction, together with the isotropic energy dispersion that is obtained in the
Dirac-cone approximation.

Figure 2. 2D plot of the energy-loss function of extrinsic graphene vs the magnitude of
the in-plane wavevector q (along the (a, c) ΓK and (b, d) ΓM directions) (horizontal
axis) and the energy ω (vertical axis). The Fermi level has been shifted (a, b) 0.5 eV and
(c, d) 1.0 eV above the Dirac point. The dotted lines represent the energy dispersion of
the conventional 2D plasmon (2DP), as obtained from the zeros of the real part of the
macroscopic dielectric function ϵ[ ]M . The dashed lines simply highlight the energy
dispersion of the acoustic plasmon (AP).

5

New J. Phys. 16 (2014) 083003 M Pisarra et al



The band-structure anisotropy that is visible in figure 4(a) implies the unique behavior of
the density of states shown in figures 4(b) and (c) as a function of the single-particle energy E
and the group velocity (see footnote 8). Along the ΓM direction (figure 4 (c)) the density of
states is peaked (at the energies of interest, i.e., below ∼1.5 eV) around one single Fermi
velocity ∼ ×v 1 10F

6 ms−1 (peak B1 above the Dirac point and peak ′B1 below), as occurs in a
free-electron gas. On the other hand, the density of states along the ΓK direction (figure 4 (b)) is
peaked at two distinct velocities (peaks B1 and B2 above the Dirac point, and ′B1 and ′B2
below) within the very same band. Since for a low wavevector along a given direction the
number of allowed intraband transitions—dictated by Im ϵ[ ]M —is known to be proportional to
the density of states with group velocity along that direction [35], we conclude that intraband
transitions along the ΓK direction happen to be determined by the coexistence of carriers
moving with two distinct Fermi velocities, yielding the maxima B1 and B2 in figure 3. This
leads to two modes of collective oscillation: (i) one mode (the conventional 2D plasmon, 2DP)
in which the two types of carriers oscillate in phase with one another with an energy that is
along ΓK slightly larger than along ΓM (where only one type of carriers participate and the
2DP dispersion—outside the gap—simply follows the upper intraband edge vFq [14, 15]), and
(ii) another mode (the new acoustic plasmon, AP) which corresponds to an acoustic oscillation
of lower frequency in which the two types of carriers residing in branches B1 ( ′B1 ) and B2
( ′B2 ) oscillate out of phase.

Hence, hereby we shed light on the observed deviation (along the ΓK direction) of the
2DP dispersion curve towards energies that are (outside the gap) above the upper intraband
edge vFq [9]. And hereby we predict the existence (along the ΓK direction) of a remarkable
acoustic plasmon as the collective motion of a system of two types of electronic carriers
coexisting in the very same 2D band of extrinsic graphene.

The complete anisotropic dispersion of both plasmons (2DP and AP) is shown in figures 5
and 6, respectively, where the plasmon energy is plotted vs the in-plane 2D wavevector q.
Figure 5 clearly shows that the conventional 2D plasmon dispersion is (i) isotropic at
wavevectors below ∼0.05 a.u., where neither intraband nor interband transitions are available

Figure 3. The energy-loss function Im ϵ ω− − q[ ( , )]0 0,
1 (red dotted line), Re ϵ ωq[ ( , )]M

(black solid line), and Im ϵ ωq[ ( , )]M (green dashed line) of extrinsic
graphene (Δ =E 1.0F eV) vs the energy ω for a fixed value of the magnitude of q
(q = 0.09 a.u.) along the ΓK direction.
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and there is no damping, and (ii) anisotropic at larger wavevectors (reflecting the 6-fold
symmetry of the graphene BZ) with the plasmon energy being along the ΓK direction larger
than along the ΓM direction (as discussed above).

Figure 6 shows that the new acoustic plasmon exhibits a remarkable anisotropy. At small
wavevectors, the energy of the AP increases linearly with the magnitude of the wavevector,
with a slope that is minimum along the ΓK direction and increases as one moves away from
that direction until the AP completely disappears at wavevectors q along the ΓM direction (grey

Figure 4. (a) The graphene DFT band structure in the vicinity of the K point, as
obtained along three high-symmetry paths: the ΓK and KM branches (red and blue
lines, respectively) in the ΓK direction, and the KK branch (green line) in the ΓM
direction; the Dirac-cone approximation is represented by a black dashed line. Partial
density of states along (b) ΓK and (c) ΓM vs the single-particle energy E and the group
velocity8. The solid and dashed vertical lines represent the Fermi level of intrinsic
graphene and extrinsic graphene (with Δ =E 1 eVF ), respectively.

8 We define the group velocity for each band n as  ε=v k( )n nk [34], where ε k( )n represents the energy dispersion
of the nth band. The partial density of states is then readily calculated by ‘counting’ the number of states with a
given energy E and velocity ı̂v in the ı̂-direction. By integrating over ı̂v , the conventional density of state is
obtained as a function of E.
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areas). Since, as seen in figure 4(b), the Fermi velocity in branches B2 and ′B2 strongly depends
on the position of the Fermi level, the initial slope of the AP dispersion (determined by the
corresponding Fermi velocity [36]) significantly changes upon variation of the doping, as one
can appreciate from comparison of figures 2 (a) and (c). We also note that, since the density-of-

Figure 5. Energy (in eV) of the conventional 2D plasmon (2DP) of extrinsic graphene
vs the in-plane 2D wavevector q. The Fermi level has been shifted (a) 0.5 eV and (b)
1.0 eV above the Dirac point.

Figure 6. Energy (in eV) of the acoustic plasmon (AP) of extrinsic graphene vs the in-
plane 2D wavevector q. The Fermi level has been shifted (a) 0.5 eV and (b) 1.0 eV
above the Dirac point. The grey color shows regions where the AP is not found to exist.
For the k mesh and numerical broadening used in our calculations, we have been able to
trace the existence of the graphene AP down to ω ≈ 0.2 eV and ω ≈ 0.1 eV for
Δ =E 0.5 eVF and Δ =E 1.0 eVF , respectively.
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states double-peak structure is present also below the Dirac point, the AP plasmon should occur
for p-doping as well. Indeed, we have found that the AP is also present for negative ΔEF. In
figure 7 we show the AP energy dispersion along the ΓK direction for various values of the
doping, both p-doping (Δ <E 0F ) and n-doping (Δ >E 0F ). We clearly see that, notwithstanding
the different doping values, the AP mode shows a linear dispersion in the →q 0 limit.

In summary, we have demonstrated that as a consequence of the fact that two types of carriers
in extrinsic graphene (moving with two distinct Fermi velocities) coexist within the very same 2D
band, (i) the conventional 2D plasmon (corresponding to the two types of carriers oscillating in
phase with one another) disperses along the ΓK direction with an energy that is higher than along
the ΓM direction, and (ii) there is an additional acoustic plasmon (corresponding to the two types
of electrons oscillating out of phase). Low-energy acoustic plasmons are known to exist [36–45] at
metal surfaces where a two-component scenario (one component consisting of a quasi 2D surface-
state band and the other component being the underlying bulk 3D continuum [36]) is realized. In
graphene a two-component scenario is realized as well, but within the very same 2D energy band.
Our calculations indicate that, notwithstanding the damping, the graphene acoustic plasmon
exhibits a spectral weight that is comparable to the spectral weight of the conventional 2D
plasmon. As a consequence, the graphene acoustic plasmon discussed here should be accessible by
high-resolution angle-resolved energy-loss (HREELS) experiments on extrinsic (doped) graphene.
Our analysis suggests that such an acoustic plasmon might exist in other materials as well, as long
as an anisotropic band is present near the Fermi level.
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