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Abstract 

The critical exponent ν for randomly branched polymers with dimensionality d equal 

to three, is known exactly as 1/2. Here, we invoke an already available string theory model 

to predict the remaining static critical exponents. Utilizing results of Hsu et al., (Comput. 

Phys. Commun. 169 (2005) 114), results are added for d = 8. Experiment plus simulation 

would now be important to confirm, or if necessary to refine, the proposed values. 
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Scaling properties of macromolecular objects have motivated a large body of research 

over past decades. In the original approach by Flory, the size of a linear polymer chain in 

good solvent (swollen chain) was estimated by adding an excluded volume term to the 

entropic contribution of the free energy of a Gaussian chain [1]. In this approach, the size 

of the swollen chain depends on the polymerization degree N as R ~Nν, with ν!=!3/5. In the 

case of a θ-solvent or a polymer melt, excluded volume interactions are screened [1], 

large-scale Gaussian statistics are recovered, and the scaling exponent becomes ν! =!1/2. 

Beyond these well-known relations, increasingly complex macromolecular topologies may 

result in non-trivial scaling behaviour, as in the case of e.g., dendrimers [2] or ring 

polymers forming crumpled globules in the melt state [3]. 

In a recent study, Zhang and March [4] pointed out the potential for treating critical 

exponents of the pioneering work of Iqbal, Liu and Mezei [5] (ILM below). These authors 

used gravity/conformal field theory duality (or AdS/CFT as often written) to model 

critical exponents by means of a parameter νILM. (see eqs. (1) to (4) below). In [4] it was 

demonstrated that νILM could depend on both universality class n and dimensionality d. 

Below, in the discussion of randomly branched polymers and lattice animals, these belong 

to the same universality class, so that only d is varied. At this point it is worth mentioning 

that other families of (non-randomly) branched polymers may belong to other universality 

classes (e.g., the class of percolation in the case of the branched polymer growth model 

[6]). 

 In connection with the topic of scaling behaviour of macromolecular objects, and 

following the work in [4], the writers have only now become aware of the continuing 
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interest in the area of branched polymers. Randomly branched polymers in good solvent 

can be represented as lattice animals [7,8,9]. In particular, the exponent ν is known exactly 

in such assemblies; for dimensionality d = 3 namely ν!= 1/2 (see e.g., seminal work by 

Parisi and Sourlas [9]). This is unique knowledge for a critical exponent in three 

dimensions from first principles theory.  

Below, therefore, we set out to predict the remaining five static critical exponents for 

randomly branched polymers by using the above exact value ν!= 1/2 in conjunction with 

the ILM model, which is characterized by a single parameter denoted below by νILM. Then 

it was demonstrated in [4] that ν is given in terms of the dimensionality d and νILM as 

ILMν
ν
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1

=                             (1) 

For randomly branched polymers, we set d = 3 and ν!= 1/2 in eqn (1) to find the model 

parameter νILM as 1/3. 

We now invoke immediately the results of ILM [5] that [see also eqns (1)-(3) in [4]]: 
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It must be noted that these scaling relations are appropriate below the lower critical 

dimension, which is exactly 8 for lattice animals. At the critical dimension there are 
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logarithmic corrections, and this is also true for self-avoiding random-walks with 

attractive interactions at their θ-point, where the critical dimension is 3. [8,9].  

 Using the value νILM = 1/3 already obtained above, insertion in eqns (2)-(4) gives the 

predictions for α, β and δ recorded in Table 1 below. For the known relation between γ/ν 

and η, namely [see e.g., [7]] 

γ/ν=(2-η) ,                            (5) 

we invoke γ/ν!= 2 from Table 1 to find η!= 0, which we have also entered there. The final 

static exponent δ is obtained from the relation, which goes back at least to Hubbard and 

Schofield [10] (see also [4]): 
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By putting η!= 0 from Table 1, plus dimensionality d = 3, we find δ = 5, which is again 

recorded in Table 1. The same δ, of course, follows also from eq. (4) when νILM = 1/3 is 

inserted. 

In summary, the main results of this present article are contained in Tables 1 and 2. 

The values of α, β, γ, δ and η recorded in Table 1 are based on the exactly known value ν!= 

1/2 for d = 3, plus the ILM string theory model with the parameter νILM = 1/3 obtained 

above. In Table 2 we then show the values of νILM, α, β, γ, δ, also for d = 3 and 8. These 

are obtained, through eqs. (1-4), by using the exact values of the critical exponent ν for 

these dimensionalities (see Hsu et al., Table 1 in Ref. [8]). As to future directions, 

simulation on any of the other five exponents predicted here would, of course, be 

important in either confirming, or otherwise refining, the results proposed in this article. 
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Table 1 Proposed critical exponents for randomly branched polymers, with d = 3, obtained 

by combining the known exact value ν!= 1/2 with the ILM model, with parameter derived 

here: namely νILM= 1/3. 

α β γ δ η ν 

1/2 1/4 1 5 0 1/2 

Footnote to Table. Note that α+2β+γ=2, which is Rushbrooke’s relation.  

 

 

Table 2 String theory parameter νILM , obtained by using results of Hsu et al. (from Table I 

in Ref. [8]). The corresponding exponents α, β, δ are included. 

 

Dimensionality d 3 8 

Critical exponent ν, (Hsu et al. [7]) 1/2 1/4 

String theory parameter νILM in eq. (1) 1/3 1/4 

α from eq. (2) 1/2 0 

β from eq. (3) 1/4 1/2 

δ from eq. (4) 5 3 

 Footnote to Table. Note that, from Parisi and Sourlas [9], the exponent θ discussed by 

Hsu et al. [8] is related to ν by θ = (d-2)ν +1. For d = 8, θ = 6ν +1 = 5/2. 

 


