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A theory of image-potential states is presented for the general case where these surface electronic
states are resonant with a bulk continuum. The theory extends the multiple scattering approach of
Echenique and Pendry into the strong coupling regime while retaining independence from specific
forms of surface and bulk potentials. The theory predicts the existence of a well-resolved series of
resonances for arbitrary coupling strengths. Surprisingly, distinct image-potential resonances are
thus expected to exist on almost any metal surface, even in the limiting case of jellium.
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1. Introduction

At surfaces and interfaces of metals, atomic, molecular
or other discrete electronic levels couple to a continuum
of states in the volume. The accurate physical description
of this coupling is central to understanding a wide variety
of basic processes in catalysis, nanoscience or molecular
electronics. Here, we consider one of the most simple, yet
fundamental model systems of this kind, image-potential
states, resonant with a structureless continuum.

Experimental and theoretical studies of the ultrafast
dynamics of electrons in image-potential states have
vastly improved our understanding of electronic excita-
tion and decay processes at surfaces of metals [1]. Elec-
trons excited to these states experience the Coulombic
image force perpendicular to the metal surface. For crys-
tallographic faces which exhibit a gap of the projected
bulk bands in the vicinity of the vacuum energy, this
gives rise to a Rydberg series of states, characterized
by hydrogen-like wavefunctions in the vacuum and ex-
ponentially decaying Bloch waves in the bulk [2, 3]. The
conceptual simplicity of these electronic states and their
well-defined properties have not only allowed to identify
and quantify the important factors that govern their de-
cay [4, 5]. In fact, they have attained the role of a kind of
drosophila of electron dynamics. As such, they serve as a
benchmark system for the development of new ultrafast
experimental techniques and as a reference for investiga-
tions of more complex electron transfer processes [6–15].

Recently, several experiments showed the existence of
a well-defined series of similar states in the absence of a
projected band gap [14, 16, 17]. Such image-potential res-
onances are depopulated mainly by elastic electron trans-
fer into the bulk whereas the classical image-potential
states can only decay inelastically. Since resonant elas-
tic channels are expected to dominate electron transfer
processes at interfaces in most applications, model stud-
ies of the decay of image-potential resonances are most
interesting. These perspectives are, however, seriously
hampered by the lack of a rigorous theoretical description
which goes beyond appropriately tuned model potentials
[18, 19]. The multiple scattering theory of Echenique and

Pendry [2] to free-electron-like metals as well as density
functional theory at the level of the GW approximation
predict just one broad resonance [20, 21]. These results,
which had been well accepted for many years, are now
contradicted by recent experiments for Al(100) [16].

In this paper, we extend the theory of Ref. [2] in order
to allow all scattering channels to interfere. It will be
shown that such interference effects decisively change the
solution in the regime of strong coupling leading to the
full resolubility of the Rydberg series beyond the n = 1
state.

2. Theoretical Model

We follow ideas first introduced by Feshbach for prob-
lems in nuclear physics [22] and apply an open quantum
system formalism. In this approach one considers the
following non-hermitian effective Hamiltonian

Heff = H0 − iV V †. (1)

H0 describes the unperturbed states. In practice, it is
a N × N matrix with diagonal elements En and all off-
diagonal elements equal to zero (no configuration inter-
action). V is a K×N matrix that describes the coupling
to K continuum channels. The eigenvalues λ of Heff are
complex, with Eres = Re(λ) denoting the maxima of the
density of states and Γres = −2Im(λ) their widths.

This type of open quantum system formalism has suc-
cessfully been used to solve problems in various fields of
physics [23, 24]. Gauyacq and co-workers have applied
it to interpret results they obtained for the interaction
of two atomic helium levels as a function of the distance
from an aluminum surface [25] and, more recently, to ex-
plain the long excited-state lifetime of a metallic double
chain adsorbed on Cu(111) [26].

Before we apply the formalisms to the series of image-
potential resonances, it is instructive to simply consider
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two levels coupled to one continuum channel,

Heff =

 −E0

2
+
E0

2

− iα( 1
√
f√

f f

)
. (2)

Without loss of generality the two levels are assumed to
have energies ∓E0/2, the lower one with stronger cou-
pling and the upper one with a coupling that is smaller
by a factor of f . The parameter α is a measure of the
overall coupling strength of both levels to the continuum.

One notices that the coupling matrix iV V † in Heff (2)
does not only contain the diagonal elements iα and iαf
describing a decay. It also contains the off-diagonal cou-
pling terms iα

√
f . As shown explicitly in the Appendix,

the resulting interference is mediated by the continuum.
In the coupled system, not only the two levels are affected
by the continuum. Similarly, the initially structureless
continuum is disturbed upon interaction with the two
levels and this disturbance, in turn, acts back on the res-
onances. Although Heff does not describe the continuum
itself, it includes this interference effect in leading order.

The complex eigenvalues of (2) are

λ1,2 = ∓1

2

√
E2

0 − α2(1+f)2 + i2αE0(1−f)−iα1+f

2
. (3)

The dependence of this solution on the value of the
coupling parameters α and f is illustrated in Fig. 1.
One recognizes that the two resonances attract each
other with increasing coupling strengths α. Whereas
the width of the lower, more strongly coupled resonance
Γ1 increases monotonously with α, the width Γ2 of the
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FIG. 1. Energy positions Ei = Re(λi) and half widths
Γi/2 = −Im(λi) of the two-level system (2, 3) as function
of the total coupling strength α(1+f) for E0 = 1 and f =
1
4
, 1
2
, 3
4
, 1. The dashed line denotes Γtot/2 = α(1+f). In the

special case f = 1 both resonances are centered at E = 0 for
α(1+f) ≥ 1.

more weakly coupled upper resonance attains a maxi-
mum width around α(1 + f) = 1. For this coupling, the
combined half width of both resonances Γtot/2 = α(1+f)
equals the initial level spacing E0. In the limit of large
coupling, the lower resonance attains the total width
α(1 + f) whereas the other one becomes infinitely sharp
(see appendix). This narrowing is known as resonance
trapping [23].

The construction of the effective Hamiltonian (1) for
the series of image-potential resonances requires the en-
ergy levels of the decoupled series and the coupling
strengths to the metallic continuum. These values are
obtained from the multiple scattering theory [2]. Within
this approach a surface state is viewed as a wave trapped
between the bulk crystal and the surface barrier, simi-
lar to the modes of a Fabry-Pérot interferometer. The
repeated scattering at the crystal boundary and the sur-
face barrier results in an amplitude

1

1− rBrC exp i(φB + φC)
(4)

where φB and φC denote the phase changes between in-
cident and reflected waves at the surface barrier and
at the crystal, respectively. rB and rC are the corre-
sponding reflectivities. In the usual image-state problem
rB = rC = 1 and the condition for bound states is

φB + φC = 2πn, n = 0, 1, 2, . . . (5)

In the case of resonances, the loss of flux due to elastic
electron transfer to bulk states results in rC < 1. This
can be accounted for in terms of a complex phase φC =
φ

′

C + iφ
′′

C with an imaginary component φ
′′

C = − ln rC [2].
Since this scattering model does not take a possible

perturbation of the continuum by the resonances into
account, a direct evaluation of eq. (4) will not yield the
proper energies and widths of the resonances when rC is
small, i.e. in the case of strong coupling. In the weak cou-
pling limit (rC → 1), however, it can safely be employed
to determine energies and relative coupling strengths, the
only input needed to construct Heff . In linear approxi-
mation, the condition (5) is fulfilled for

Γ

2

∂

∂E
(φB + φ

′

C) = φ
′′

C (6)

with Γ/2 being the energy dependent decay rate of the
amplitude (4).

For the energy dependence of the phase change φB at
the image potential we use the WKB approximation [27],

φB ' [(−8E)−1/2−1]π. Above the band gap φ
′

C = π (see
below), and we obtain a Rydberg series of resonances

E0
n = − 1

32n2
, n = 1, 2, . . . (7)

with a decay rate or full width at half maximum given
by

Γ0
n =
− ln rC(E0

n)

2π

1

8n3
, n = 1, 2, . . . (8)
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FIG. 2. Half widths and decay times of the first five reso-
nances as function of coupling strength and reflectivity. Ar-
rows indicate coupling strengths where maximum widths are
reached.

In the case of a simple metal it is sufficient to restrict
oneself to one continuum (K = 1) like in the above ex-
ample of the two-level system. Since Eq. (8) must corre-
spond to the solution of (1) in the limit of small coupling,
the matrix elements Vn are determined by the condition
|Vn|2 = Γ0

n/2.
In addition to a n3-dependence, the Γ0

n depend weakly
on the quantum number n via the energy dependence
of the reflectivity rC . In order to facilitate a general
discussion, we will neglect this weak dependence in the
following. This approximation allows us to introduce the
dimensionless parameter

α =
1

π
(− ln rC) (9)

as a measure of the overall resonant coupling strength of
the whole series and we obtain

|Vn|2 =
Γ0
n

2
=

α

32n3
. (10)

Please note that in terms of the numerical matrix di-
agonalization necessary to find the complex eigenvalues
of eq. (1), the approximation of a constant rC , has no
advantage and can easily be dropped in calculations for
specific materials. However, it will become apparent be-
low that for the most interesting cases of strong coupling
the energy dependence of rC is indeed negligible over the
limited range of energies E0

n.
The resulting energies and widths of the first five res-

onances are plotted in Figs. 2 and 3 as function of the
coupling parameter α. Specific numerical values of inter-
est are collected in Table I. In the limiting case rC → 1
or α→ 0 the eigenvalues of (1) evidently give exactly the
resonance spectrum (7) and (8). As expected from the
above analysis of the two-level system, dramatic changes
occur as soon as Γ0

n/2+Γ0
n+1/2 ' Γ0

n = α/16n3 starts to
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FIG. 3. (a) False color contour plot of resonance spec-
tra n = 1, .., 5 as function of coupling strength/reflectivity.
For better visibility the Lorentzians of the individual reso-
nances are superimposed with equal amplitudes (not areas);
the dashed line indicates the maximum of n = 1 resonance.
(b) Resonance spectra n = 2, .., 5 on an expanded scale; the
transition between red and blue colors occurs approximately
at half the maximum amplitude.

approach the level spacing ∆0
n = E0

n+1 − E0
n ' 1/16n3,

i.e. when α approaches unity [28].
In the regime of small coupling (α . 0.2) all resonances

develop uniformly and simply broaden linearly as a func-
tion of α (Fig. 3). With increasing coupling the behavior
of the n = 1 resonance and the other resonances become
qualitatively different. Whereas the width of n = 1 in-
creases monotonically and spreads over the whole spec-
trum for α & 0.5, all other resonances reach a maximum

TABLE I. Limiting values of energies E0
n, E∞

n ≡ En(α→∞),
maximum widths Γmax

n , minimum lifetimes τmin
n and corre-

sponding coupling parameter α(Γmax
n ) for the first five reso-

nances.

E0
n (eV) E∞

n (eV) Γmax
n (eV) τmin

n (fs) α(Γmax
n )

n=1 -0.8504 -0.7363 - - -
n=2 -0.2126 -0.2967 0.09545 6.90 0.6795
n=3 -0.0945 -0.1221 0.01920 34.28 0.5076
n=4 -0.0531 -0.0593 0.00662 99.43 0.4329
n=5 -0.0340 -0.0368 0.00295 223.10 0.3871
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width Γmax
n and get narrower again for further increas-

ing α. The higher the quantum number n, the sooner
Γmax
n is reached (Fig. 2). The positions of the resonances

also change as a function of coupling strength until they
reach a limiting value E∞n for large α. As illustrated
by Fig. 3, the first resonance and the series of all other
resonances effectively attract each other with increasing
coupling. This attraction is larger, the lower the quan-
tum number n. As a result, the resonances n = 2, 3, . . .
spread as a function of α. For the maximum coupling
strength α = 2 plotted in Fig. 3, the energies En have
reached their limiting values already within 2% whereas
the deviation from the uncoupled situation is more than
30% for n = 2.

Most importantly, if one compares the widths and the
energy separation of the resonances n = 2, 3, . . . (Fig. 3),
they are found to be well separated throughout the range
of coupling strengths α = 0→∞. Even around α = 0.5
where they reach their maximum widths Γmax

n , the com-
bined half-width of neighboring resonances stays well be-
low their energy difference. This means - with the notable
exception of the first resonance - that the integrity of the
Rydberg series is not destroyed by strong coupling to a
continuum. In contrast, stronger coupling even leads to
a sharper spectrum of the higher resonances as compared
to intermediate coupling.

This, at first glance, surprising result is understood
in a straightforward manner by considering the effective
Hamiltonian (1) in the limit α→∞. In that case the ma-
trix V V † determines the behavior of the system and one
expects to obtain K states that take almost the whole
coupling and N − K states that are almost decoupled.
For our case of one continuum (K=1), the most strongly
coupled resonance (n=1) becomes the fast (open) chan-
nel with Γ1/2 ∼ −Im{Tr(Heff)} whereas n = 2, 3, . . .
become long lived (trapped) states. A reorganization of
the system due to interference of the different decay chan-
nel takes place already for intermediate values of α. As a
consequence, the resonance spectrum never gets totally
smeared out as one might intuitively expect.

In terms of the basic physical processes, the trapping
is nothing else than a back feeding of intensity from the
distorted continuum into the more weakly coupled states.
This is easily recognized in the example of the two level
system discussed in the appendix. If the system in state
|a〉 is coupled to the continuum at t = 0, the amplitude
a(t) will start to decay. At the same time, the amplitude
b(t), which was initially equal to zero, will start to in-
crease in reaction to the distortion of the continuum (eq.
A1). Since the amplitude b(t) has the opposite phase as
a(t), the coupling of state |b〉 to the continuum will in
turn accelerate the decay of state |a〉.

3. Results of Ag(111), Al(100) and Al(111)

In our description, the only material-dependent pa-
rameter is the reflectivity rC of a free electron wave at

the surface. For surfaces of simple metals, like Ag(100),
Al(100) and Al(111), it can simply be obtained from the
two-band model of the bulk electronic structure [29]. For
a distance a of lattice planes along the surface normal
and an sp-gap at the Γ̄-point of 2Vg, the potential of the
two-band model is

V (z) = −V0 + Vge
igz + Vge

−igz (11)

with g = 2π/a, and V0 chosen such that the vacuum level
is at zero energy. We restrict ourselves to a situation
where the image-potential states are resonant with the
upper band

E(k) = −V0 +
(g

2

)2
+ k2 +

√
V 2
g + g2k2 (12)

The wave functions that solve the Schrödinger equation
are Bloch waves in the crystal (z < 0) and plane waves
in the vacuum (z > 0)

ΨC = αei(
g
2−k)z + βe−i(

g
2 +k)z, z ≤ 0 (13a)

Ψvac = Aeiqz +Be−iqz, z ≥ 0 (13b)

with wave vectors

k =

√
E + V0 +

(g
2

)2 −√(E + V0)g2 + V 2
g

q =
√
E + V0.

The reflectivity rC is the ratio A/B of the in and out-
going plane wave Ψvac in the vacuum, obtained from
matching conditions at the interface (Ψ

′

C/ΨC|z=0 =

Ψ
′

vac/Ψvac|z=0) [30]:

rC =
A

B
=
Vg(q − k + g

2 ) + V ′(q − k − g
2 )

Vg(q + k − g
2 ) + V ′(q + k + g

2 )
(15)

with

V ′ = Vg
β

α
= gk +

√
V 2
g + g2k2.

Parameters used to describe the three surfaces
Ag(111), Al(100), and Al(111) and the resulting reflec-
tivities rC and coupling parameters α = −π−1 ln rC for
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FIG. 4. Energy dependence of the reflectivity rC for Al(111),
Al(100), and Ag(111) as calculated from the two-band model.
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decaying gap state [17].

E = Evac ≡ 0 are collected in Table II. Explicit values of
the calculated resonance energies and lifetimes are given
in Table III. rC is equal to one at the edge of the upper
band (k = 0) and decreases monotonously as the energy
increases. This decrease is more rapid, the smaller the
value of Vg (Fig. 4).

Experimental data for the series of image-potential res-
onances are available for Ag(111) [17] and Al(100) [16].
Fig. 5 shows that the present theory is able to describe
the measured lifetimes within a factor of two. Appar-
ently, the two-band model predicts somewhat too small
values of rC . In the case of Ag(111), this results in
shorter lifetimes than the experimental ones. In the case
of Al(100), on the contrary, too small values of rC overes-
timate the lifetimes of the high-n states that are already
effectively trapped.

For Ag(111) n = 1 is still a gap state, rC is 50% near
the vacuum energy. The corresponding coupling param-
eter is α = 0.22. Trapping will thus be effective only for
resonances with higher quantum numbers. For Al(100)
the reflectivity is only 5% and the coupling parameter
is α = 0.92. The theory predicts a very broad first
resonance and widths of the high-n resonances that are
substantially reduced as compared to the model of in-
dependent decay (Fig. 2). The quantitative comparison

TABLE II. Reflectivities at the Vacuum Energy rC(E= 0) and
coupling strengths α for Ag(111), Al(100) and Al(111); pa-
rameters have been derived from the values given in Ref. [31]
(band gap: Egap = 2Vg, upper band edge: Eup = E(k = 0)).

Surface a (Å) Vg (eV) V0 (eV) Eup (eV) rC α

Ag(111) 4.085/
√

3 2.150 9.3619 -0.4527 0.51 0.22

Al(100) 4.049/
√

2 0.840 10.9723 -5.5450 0.054 0.92

Al(111) 4.049/
√

3 0.125 15.6485 -8.6425 0.0059 1.63

with the experimental data of Refs. [17] and [16] shows
good quantitative agreement for both surfaces, particu-
larly if one considers that we neglect other decay chan-
nels and make use of the most simple estimate for rC .
Al(111) is a surface very close to the idealized jellium
model with a very low electron reflectivity (rC = 0.6%).
With a resulting coupling parameter α = 1.63 the present
theory predicts high-n resonances that are sharper and
more long-lived than those of Al(100) and even those of
Ag(111). Electrons in these resonances are effectively
trapped (Fig. 2).

It must be pointed out that the result for Al(111)
stands in marked contradiction with some of the es-
tablished knowledge from the literature. Previous ex-
perimental and theoretical work agree on the pres-
ence of just one structureless feature near the vacuum
level for Al(111) arising from image-potential resonances
[20, 21, 32–35]. However, the experimental resolution of
Refs. [32–34] was less than 200 meV and not sufficient
to resolve high-n resonances. A reinvestigation of well-
defined Al(111) with improved experimental possibilities
would therefore be highly desirable. The Al(111) surface

TABLE III. Energies En and decay times τn of the first seven
image-potential resonances of Ag(111), Al(100) and Al(111).

Ag(111) Al(100) Al(111)
En (eV) τn (fs) En (eV) τn (fs) En (eV) τn (fs)

n=1 - - -0.767 0.4 -0.745 0.2
n=2 -0.211 16.2 -0.270 7.3 -0.288 10.8
n=3 -0.095 49.6 -0.109 41.6 -0.111 65.9
n=4 -0.054 116.2 -0.058 130.7 -0.059 221.4
n=5 -0.034 229.2 -0.037 307.3 -0.037 502.9
n=6 -0.024 402.6 -0.025 608.6 -0.025 1003.6
n=7 -0.018 651.0 -0.018 1075.2 -0.018 1782.9
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would also provide interesting opportunities to decouple
the resonances by adlayers. The present theory clearly
predicts that moderate decoupling should lead to shorter
lifetimes of the high-n resonances, and not to longer ones
as for image-potential states at gaps [36].

5. Conclusions

In conclusion, we have shown that electrons in energet-
ically adjacent states, strongly coupled to a continuum at
a metal interface, do not delocalize independently from
each other. Interference effects can lead to extremely
long lifetimes of some states while others experience an
accelerated decay. Criterium for strong coupling is a sig-
nificant overlap of the broadened levels, not the absolute
coupling strength. One expects it to be fulfilled in a va-
riety of situations in nanoscience, catalysis or molecular
electronics, e.g. when small clusters or organic molecules
with many close lying levels interact with a substrate.
As for the Rydberg series of image-potential resonances,
our theory strengthens the prediction of Echenique and
Pendry [2], who stated that the whole series of states
would be observable whenever the first two ones are sep-
arated. With the notable exception of the first resonance,
a series of clearly separated resonances should exist for
all coupling strengths, i.e. on any well-defined metal sur-
face.
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Appendix A: Effective Hamiltonian of the
Two-Level System

In the literature, the effective Hamilton operator Heff

for the general case of n levels interacting with several
continua is usually obtained by means of the Feshbach
projection operator formalism [22, 24, 37]. Much of the
essential physics, however, is already revealed by consid-
ering two levels coupled to one structureless continuum
[38]. In the following we give a simple derivation of Heff

for the two-level system (2) and evaluate its properties.
In this way, we hope to make the approach more easily
accessible to the general surface science reader.

The Hamilton operator of two electronic states |a〉 and
|b〉 with energies Ea and Eb coupled to a continuum by
an interaction V is

H = H0 + V = Ea|a〉〈a|+ Eb|b〉〈b|+
∑
µ

ωµ|µ〉〈µ|+ V.

We consider here only an interaction between the states
|a〉 and |b〉 and the continuum states |µ〉

〈a|V |µ〉 = Va, 〈b|V |µ〉 = Vb.

This interaction is assumed to be energy independent; all
other matrix elements 〈|V |〉 vanish. The time dependence
of the wave function of the full system

|Ψ(t)〉 = a(t)|a〉+ b(t)|b〉+
∑
µ

ĉµ(t)e−iωµt|µ〉

is determined by the Schrödinger equationH|Ψ〉 = i∂t|Ψ〉
which reads in matrix form

i∂t


a
b

ĉ1e
−iω1t

...
ĉNe

−iωN t

 =


Ea Va · · · Va

Eb Vb · · · Vb
Va Vb ω1

...
...

. . .

Va Vb ωN




a
b

ĉ1e
−iω1t

...
ĉNe

−iωN t


or as a set of coupled differential equations

i∂ta(t) = Eaa(t) + Va
∑
µ

ĉµ(t)e−iωµt (A1a)

i∂tb(t) = Ebb(t) + Vb
∑
µ

ĉµ(t)e−iωµt (A1b)

i∂t
[
ĉµ(t)e−iωµt

]
= Vaa(t) + Vbb(t) + ωµĉµ(t)e−iωµt.

(A1c)

We are only interested in the time dependence of the
states |a〉 and |b〉 due to their interaction with the contin-
uum, not in the evolution of the continuum states them-
selves. We thus eliminate ĉµ from (A1a) and (A1b) by
integrating (A1c) and obtain

ĉµ(t) = −i
∫
dt′[Vaa(t′) + Vbb(t

′)]eiωµt
′
.

We further assume the continuum states |µ〉 to be equally
spaced and to extend from −∞ to +∞. Then the sums
that appear in (A1a) and (A1b) simply become∑
µ

ĉµ(t)e−iωµt =

∫
dω ĉ(ω, t)e−iωt

= −i
∫
dω

∫
dt′[Vaa(t′) + Vbb(t

′)]eiω(t′−t)

= −i2π[Vaa(t) + Vbb(t)]

and we arrive at two coupled differential equations for
the amplitudes a(t) and b(t)

i∂t

(
a(t)

b(t)

)
=

(
Ea − i2πV 2

a −i2πVaVb
−i2πVaVb Eb − i2πV 2

b

)(
a(t)

b(t)

)
.

(A2)
We identify the matrix in (A2) with the effective Hamil-
tonian for the two-level system (2) with Ea,b = ∓E0/2,
2πV 2

a = α, and 2πV 2
b = αf .
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One recognizes that the coupling to the continuum
not only introduces a finite width of the levels, given
by 2πV 2

a = α and 2πV 2
b = αf . In addition the two lev-

els appear to interact with one another as described by
the imaginary off-diagonal terms i2πVaVb = iα

√
f . The

derivation clearly reveals that this interaction is not a
direct one, but one mediated by the continuum. The
interaction with the levels |a〉 and |b〉 disturbs the con-
tinuum states |µ〉. This time-dependent disturbance in
turn acts back on |a〉 and |b〉. This interaction becomes
stronger with a stronger coupling to the continuum, and
it is directly linked to the level widths. The derivation
also shows that the effective Hamiltonian (2) will be a
good approximation for the full Hamiltonian as far as
the levels are concerned, when the continuum is struc-
tureless and extends well beyond the energy spread of
the broadened levels. This requirement is fulfilled in the
case of the image-potential resonances considered in this
work.

The effective Hamiltonian (2) of the two-level system
with energies ∓E0/2, overall coupling parameter α and
relative coupling strength f (0 < f ≤ 1) has two complex
eigenvalues

λ1,2 = ∓1

2

√
E2

0 − α2(1+f)2 + i2αE0(1−f)− iα1+f

2
.

(3, repeated)

The resulting resonance energies and widths can be
written in the form

E1,2 = Reλ1,2 = ∓1

2
ρ cos

ϕ

2
(A3a)

Γ1,2 = −2 Imλ1,2 = α(1 + f)± ρ sin
ϕ

2
(A3b)

with ρ = ρ(E0, f, α) and ϕ = ϕ(E0, f, α). Obviously the
total energy of the coupled system Etot = E1 + E2 = 0
does not change with the coupling parameter α while the
total decay rate simply grows linearly with α

Γtot = Γ1 + Γ2 = 2α(1 + f). (A4)

With increasing values of α, the energy separation of the
two levels ∆ = E2 − E1 decreases. If one expands the
solution into powers of α, one finds that the attraction is
initially quadratic in α

∆(α→ 0) = E0 +
f

E0
α2 − . . .

and reaches a limiting value that depends on the relative

coupling strength f

∆(α→∞) = E0
1− f
1 + f

+O(
1

α2
).

For the degenerate case f = 1 the attraction is strictly
quadratic until the two levels coincide for 2α ≥ 1. While
the system remains completely symmetrical in terms of
the energies of the two resonances, the initial asymmetry
of the half widths is seen to increase as a function of α.

Γ1

2
(α→ 0) = α+

α3

E2
0

f(1− f) + . . .

Γ2

2
(α→ 0) = fα− α3

E2
0

f(1− f) + . . .

The width Γ1 of the more strongly coupled resonance
increases monotonously. The width Γ2, however, reaches
a maximum value Γ2,max and goes to zero in the limit of
infinite coupling.

Γ1

2
(α→∞) = (1 + f)α− E2

0

α

f

(1 + f)3
+ . . .

Γ2

2
(α→∞) =

E2
0

α

f

(1 + f)3
+ . . .

The maximum of Γ2 is reached approximately when the
real part of the argument under the square root in eq. (3)
becomes zero. This is the case for

α0
max =

E0

1 + f
(A5)

i.e. for a value where the total decay rate Γtot/2 =
α0

max(1 + f) is equal to the initial level spacing E0. For
this coupling strength we have

∆(α0
max) = E0

√
1− f
1 + f

(A6a)

Γ2(α0
max) = E0 −∆(α0

max) (A6b)

These results concerning the maximum of Γ2 are exact
for f = 1. In this degenerate case, the widths of both
levels increase strictly linear with α as long as 2α ≤ 1.
For 2α > 1, when their energies coincide, one of them
increases faster, while the other one decreases and ap-
proaches zero (see also Fig. 1 in the main text). For a
ratio f < 1 eq. (A5) slightly overestimates the coupling
parameter α for which the maximum of Γ2 is reached.
The error, however, is less than 12% and less than 4% in
expression (A6b) which slightly underestimates Γ2,max.
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[6] U. Höfer, I. L. Shumay, C. Reuß, U. Thomann, W. Wal-
lauer and T. Fauster, Science 277 (1997) 1480.

[7] N. H. Ge, C. M. Wong, R. L. Lingle, J. D. McNeill, K. J.
Gaffney and C. B. Harris, Science 279 (1998) 202.

[8] A. D. Miller, I. Bezel, K. J. Gaffney, S. Garrett-Roe, S. H.
Liu, P. Szymanski and C. B. Harris, Science 297 (2002)
1163.

[9] K. Boger, M. Weinelt and T. Fauster, Phys. Rev. Lett.
92 (2004) 126803.
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