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Introduction Introduction 

 Our Universe is approximately homogeneous and isotropic: 
Background with perturbations. 

 Need of gauge invariant descriptions (Bardeen, Mukhanov-Sasaki).

 Canonical formulation with constraints (Langlois, Pinto-Nieto).

 Quantum  treatment including the background (Halliwell-Hawking, 
Shirai-Wada).

 Recently studied in Loop Quantum Cosmology.



We consider a FLRW universe with compact flat topology.

We include a scalar field subject to a potential (e.g. a mass term).

For simplicity, we analyze only SCALAR pertubations. 

Classical systemClassical system



We expand the inhomogeneities in a (real) Fourier basis 

We take                 The eigenvalue of the  Laplacian is 

Zero modes are treated exactly (at linear perturbative order) in the expansions.

Q n⃗ ,+=√2cos (n⃗⋅⃗θ) , Q n⃗ ,−=√2sin (n⃗⋅⃗θ)

n1≥0 .

Classical system: ModesClassical system: Modes

−ωn
2=−n⃗⋅⃗n .

e±i n⃗⋅θ⃗=
(Q n⃗ ,+±iQ n⃗ ,− )

√2
.

(n⃗∈ℤ3):



Scalar perturbations: metric and field. 

 Truncating at quadratic perturbative order in the action:

hij=σ
2e2α [ 0hij+2∑ {an⃗ ,± (t )Q n⃗ ,±

0hij+bn⃗ ,± (t )( 3ωn2 (Q n⃗ ;± ), ij+Q n⃗ ,±
0hij)}] ,

N=σ [N 0(t )+e
3α∑ g n⃗ ,± (t )Q n⃗ ,± ] , N i=σ

2e2α∑
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ωn
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σ(2π)3 /2
[φ(t )+∑ f n⃗ ,± (t)Q n⃗ ,± ]. σ

2
=
G

6π2
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Classical system: InhomogeneitiesClassical system: Inhomogeneities

H=N 0 [H 0+∑ H 2
n⃗ ,± ]+∑ g n⃗ ,± H 1

n⃗ ,±
+∑ k n⃗ ,± H̃ ↑1

n⃗ ,± .



Scalar constraint: 

Linear perturbative constraints:

H 1
n⃗ ,±
=−παπa n⃗ ,±+πφπ f n⃗ ,±+(πα

2
−3πφ

2
+3e3αH 0)a n⃗ ,±−
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n⃗ ,±
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1
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Classical system: InhomogeneitiesClassical system: Inhomogeneities
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+πα
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Gauge invariant perturbations Gauge invariant perturbations 

 Consider the sector of zero modes as describing a fixed background.

 Look for a transformation of the perturbations  --canonical only with 
respect to their symplectic structure-- adapted to gauge invariance:

a) Find new variables that abelianize the perturbative constraints.

b) Include the gauge-invariant Mukhanov-Sasaki variable.

c) Complete the transformation with suitable momenta.
 

H̆ 1
n⃗ ,±
=H 1

n⃗ ,±
−3e3αH 0a n⃗ ,± .

v n⃗ ,±=e
α [ f n⃗ ,±+

πφ
πα
(a n⃗ ,±+bn⃗ ,± )] .



Gauge invariant perturbations Gauge invariant perturbations 

 Mukhanov-Sasaki momentum (removing ambiguities):

     

 The Mukhanov-Sasaki momentum is independent of 

 The perturbative Hamiltonian constraint is independent of 
 The perturbative momentum constraint depends through      

 It is straightforward to complete the transformation:

 

(πa n⃗ ,± ,πb n⃗ ,±).

πb n⃗ ,± .
πa n⃗ ,±−πbn⃗ ,± .

C̃ ↑ 1
n⃗ ,±=3bn⃗ ,± , C̆1

n⃗ ,±=−
1
πα
(a n⃗ ,±+b n⃗ ,±).

π̄v n⃗ ,±= e
−α [π f n⃗ ,±+ 1πφ (e6α m̃2φ f n⃗ ,±+3πφ2 bn⃗ ,± )]

−e−2α( 1πφ e6α m̃2φ+πα+3 πφ
2

πα )v n⃗ ,± .



Gauge invariant perturbations Gauge invariant perturbations 

 The redefinition of the perturbative Hamiltonian constraint amounts to 
a redefinition of the lapse at our order of truncation in the action:

 

H= N̆ 0 [H 0+∑n⃗ ,±
H 2

n⃗ ,± ]+∑n⃗ ,±
g n⃗ ,± H̆ 1

n⃗ ,±
+∑n⃗ ,±

k n⃗ ,± H̃ ↑ 1
n⃗ ,± ,

N̆ 0=N 0+3 e
3α∑n⃗ ,±

g n⃗ ,± a n⃗ ,± .



Full system Full system 

 We now include the zero modes  as variables of the system, and 
complete the canonical transformation.

 We re-write the Legendre term of the action, keeping its canonical 
form at the considered perturbative order:

 Zero modes:  Old                       New

Inhomogeneities: Old                             New: 

∫dt [∑a
ẇq
aw p

a
+∑l , n⃗ ,±

Ẋ q l

n⃗ ,± X p l

n⃗ ,± ]≡∫dt [∑a
˙̃wq
a w̃ p

a
+∑l , n⃗ ,±

V̇ ql

n⃗ ,±V p l

n⃗ ,± ].

{V q l

n⃗ ,± ,V pl

n⃗ ,± }={(v n⃗ ,± ,C̆1n⃗ ,± ,C̃ ↑1
n⃗ ,±) ,(π̄v n⃗ ,± , H̆ 1

n⃗ ,± , H̃ ↑ 1
n⃗ ,±)}.

{wq
a ,w p

a }→ {w̃q
a , w̃ p

a }. ({wq
a}={α ,φ }.)

{X ql

n⃗ ,± , X pl

n⃗ ,± }→



Full system Full system 

 Using that the change of perturbative variables is linear, it is not 
difficult to find the new zero modes, which include modifications 
quadratic in the perturbations.

 Expressions:

                           Old perturbative variables in terms of the new ones.

wq
a=w̃q

a−
1
2∑l , n⃗ ,± [X ql

n⃗ ,±
∂ X pl

n⃗ ,±

∂ w̃ p
a
−
∂ X ql

n⃗ ,±

∂ w̃ p
a
X p l

n⃗ ,± ] ,
w p
a
=w̃ p

a
+
1
2
∑l , n⃗ ,± [ X q l

n⃗ ,± ∂ X p l

n⃗ ,±

∂ w̃q
a −

∂ X q l

n⃗ ,±

∂ w̃q
a X pl

n⃗ ,± ].
{X ql

n⃗ ,± , X pl

n⃗ ,± }→



New Hamiltonian New Hamiltonian 

 Since the  change of the zero modes is quadratic  in the 
perturbations, the new scalar constraint at our truncation order is

 The perturbative contribution to the new scalar constraint is:

H 0(w
a
)+∑n⃗ ,±

H 2
n⃗ ,± (wa , X l

n⃗ ,± )⇒

H 0(w̃
a)+∑b

(wb−w̃b)
∂H 0

∂ w̃b
(w̃a)+∑n⃗ ,±

H 2
n⃗ ,± [w̃a , X l

n⃗ ,± (w̃a ,V l
n⃗ ,±)] ,

wa−w̃a
=∑n⃗ ,±

Δ w̃ n⃗ ,±
a .

H̄ 2
n⃗ ,±=H 2

n⃗ ,±+∑a
Δ w̃ n⃗ ,±

a ∂H 0

∂ w̃a
.



New Hamiltonian New Hamiltonian 

 Carrying out the calculation explicitly, one obtains: 

 The      's  are well determined functions. 

 The term           is the Mukhanov-Sasaki Hamiltonian. 

 It has no linear contributions of the Mukhanov-Sasaki momentum.

 It is linear in the momentum 

H̄ 2
n⃗ ,±
=H̆ 2

n⃗ ,±
+F 2

n⃗ ,± H 0+ F̆ 1
n⃗ ,± H̆ 1

n⃗ ,±
+(F ↑1n⃗ ,±−3 e

−3 α̃

πα̃
H̆ 1

n⃗ ,±
+
9
2
e−3α̃ H̃ ↑1

n⃗ ,± ) H̃ ↑1
n⃗ ,± ,

H̆ 2
n⃗ ,±=

e−α̃

2 {[ωn2+e−4 α̃πα̃2+m̃2e2 α̃ (1+15 φ̃2−12 φ̃ πφ̃πα̃−18e6 α̃ m̃2 φ̃
4

πα̃
2 )](v n⃗ ,±)2+(π̄v n⃗ ,±)2}.

πφ̃ .

H̆ 2
n⃗ ,±

F



New Hamiltonian New Hamiltonian 

 We re-write the total Hamiltonian  of the system at our truncation 
order, redefining the Lagrange multipliers: 

H̄ 2
n⃗ ,±
=H̆ 2

n⃗ ,±
+F 2

n⃗ ,± H 0+F̆ 1
n⃗ ,± H̆ 1

n⃗ ,±
+(F ↑1n⃗ ,±−3 e

−3 α̃

πα̃
H̆ 1

n⃗ ,±
+
9
2
e−3 α̃ H̃ ↑1

n⃗ ,± ) H̃ ↑ 1
n⃗ ,±

⇒

H= N̄ 0 [H 0+∑n⃗ ,±
H̆ 2

n⃗ ,± ]+∑n⃗ ,±
Ğ n⃗ ,± H̆ 1

n⃗ ,±
+∑n⃗ ,±

K̃ n⃗ ,± H̃ ↑1
n⃗ ,± .



Approximation: Quantum geometry effects
are especially relevant in the background

Hybrid quantizationHybrid quantization

 Adopt a quantum cosmology scheme for the zero modes and a Fock 
quantization for the perturbations. The scalar constraint couples them.

 We assume:
a) The zero modes commute with the perturbations under quantization. 
b) Functions of      act by multiplication. φ̃



Uniqueness of the Fock descriptionUniqueness of the Fock description

The Fock representation in QFT is fixed (up to unitary equivalence) by: 

1) The background isometries; 2) The demand of a UNITARY evolution. 

The introduced scaling of the field by the scale factor is essential for unitarity.

The proposal selects a UNIQUE canonical pair for the Mukhanov-Sasaki 
field, precisely the one we chose to fix the ambiguity in the momentum.

 We can use the massless representation (due to compactness), with its  
creation  and   annihilation  operators,   and  the  corresponding  basis  of
occupancy number states   ⌈N 〉 .



Representation of the constraints Representation of the constraints 

 We admit that the operators that represent the linear constraints (or an 
integrated version of them) act as derivatives (or as translations). 

 Then, physical states are independent of 

 We pass to a space of states                            that depend on the zero 
modes and the Mukhanov-Sasaki modes, with no gauge fixing. 

 In this covariant construction, physical states still must satisfy the 
scalar constraint given by the FLRW and the Mukhanov-Sasaki 
contributions. 

H S=e
−3α(H 0+∑n⃗ ,±

H̆ 2
n⃗ ,± )=0.

.

(C̆1
n⃗ ,± , C̃ ↑ 1

n⃗ ,±).

H kin
grav⊗H kin

matt⊗F



Consider states whose dependence on the FLRW geometry and the 
inhomogeneities         split: 

The FLRW state is normalized, peaked and evolves unitarily:

     is a unitary evolution operator close to the unperturbed one.   

Born-Oppenheimer ansatzBorn-Oppenheimer ansatz

Ψ=Γ(α̃ , φ̃)ψ(N , φ̃) ,

Γ(α̃ , φ̃)=Û (α̃ ,φ̃)χ(α̃).

(N )

Û



Effective Mukhanov-Sasaki equationsEffective Mukhanov-Sasaki equations

Using the Born-Oppenheimer form of the constraint (diagonal in 
the FLRW geometry) and assuming a direct effective counterpart:

where we have defined the state-dependent conformal time

                                                  with

d ηΓ
2 v n⃗ ,±=−v n⃗ ,± [4π

2
ωn
2
+〈θ̂〉Γ ] ,

2π d ηΓ=〈e
2 ̂̃α〉ΓdT , dt=σ e3 α̃dT.

〈θ̂〉Γ=2π
2 〈2 ϑ̂e

q
+ϑ̂o

̂̃H 0+
̂̃H 0 ϑ̂o+[π̂φ̃−

̂̃H 0, ϑ̂o]〉Γ

〈e2
̂̃α
〉Γ

, H 0
(2)
=πα̃

2
−e6 α̃ m̃2 φ̃2 ,

ϑo=−12e
4 α̃ m̃2

φ̃
πα̃
, ϑe

q
=e−2α̃ H 0

(2)(19−18 H 0
(2)

πα̃
2 )+m̃2e4α̃ (1−2 φ̃2) ,

[π̂φ̃ ,Û ]=
̂̃H 0 ,



Effective Mukhanov-Sasaki equationsEffective Mukhanov-Sasaki equations

For all modes:

The expectation value depends (only) on the conformal time,
through      It  is the  time  dependent  part  of the  frequency, 
but it is mode independent.

The effective equations are of harmonic oscillator type, with 
no dissipative term, and hyperbolic in the ultraviolet regime. 

d ηΓ
2 v n⃗ ,±=−v n⃗ ,± [4π

2
ωn
2
+〈θ̂〉Γ ].

φ̃ .



ConclusionsConclusions

We have considered a FLRW universe with a massive  scalar field 
perturbed at quadratic order in the action.

We have found a canonical transformation for the full system  that 
respects covariance at the perturbative level of truncation. 

The system is described by the Mukhanov-Sasaki gauge invariants, 
linear perturbative constraints and their momenta, and zero modes.

We have discussed the hybrid quantization of the system. This can 
be applied to a variety of quantum FLRW cosmology approaches.

A Born-Oppenheimer ansatz leads to Mukhanov-Sasaki equations 
that include quantum corrections. The ultraviolet regime is 
hyperbolic.
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