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Introduction

@ QOur Universe is approximately homogeneous and isotropic:
Background with perturbations.

» Need of gauge invariant descriptions (Bardeen, Mukhanov-Sasaki).

@ Canonical formulation with constraints (Langlois, Pinto-Neto).

¢ Quantum treatment including the background (Halliwell-Hawking,
Shirai-Wada).

» Recently studied in Loop Quantum Cosmology.




Classical system

@ We consider a FLRW universe with compact flat topology.

@ We include a scalar field subject to a potential (e.g. a mass term).

@ For simplicity, we analyze only SCALAR pertubations.

- T . T -




Classical system: Modes

a Wetake n,=0. The eigenvalue of the Laplacian is — =

n

@ Zero modes are treated exactly (at the considered perturbative order).




Classical system: Inhemoegeneities

@ Scalar perturbations: metric and field.
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Gauge invariant perturbations
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» Consider the sector of zero modes as describing a fixed background.

* Look for a transformation of the perturbations --canonical only with
respect to their symplectic structure-- adapted to gauge invariance:

a) Find new variables that abelianize the perturbative constraints.
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b) Include the gauge-invariant Mukhanov-Sasaki variable.

c) Complete the transformation with suitable momenta.



Gauge invariant perturbations
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*» Mukhanov-Sasaki momentum (removing ambiquities):
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2 ® The Mukhanov-Sasaki momentum is independent of (T[a* ,Ttbw)-

n,x

The perturbative Hamiltonian constraint is independent of 7, .
The perturbative momentum constraint depends through n, —m,

n,+

@ |t is straightforward to complete the transformation:
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» The redefinition of the perturbative Hamiltonian constraint amounts to
a redefinition of the lapse at our order of truncation in the action:




Fullf system

» We now include the zero modes as variables of the system, and |
complete the canonical transformation.

g ¢ We re-write the Legendre term of the action, keeping its canonical
form at quadratic perturbative order: :
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s Zero modes: Old [wz,w;}ﬂ New [Vvqﬂ/p} ([wa}=[oc,cp].)

s Inhomogeneities: Old [le’i,X’;i]e New:




Eull system A‘!'”

= ~

Z PSSR

o9 A =N

11 -
1

S:* | !‘\ 7,

I _
X \ ,
N . A.A___e-‘ ‘n [— I"""""

o

@ Using that the change of perturbative variables is linear, it is not =
difficult to find the new zero modes, which include modifications 5=
quadratic in the perturbations. =
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» Expressions:
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w —w +— me[ q[

~ d ~ d
8wq qu

{le’i , X’;’i]—> Old perturbative variables in terms of the new ones.




New Hamiltonian

@ Since the change of the zero modes is quadratic in the
perturbations, the new scalar constraint at our truncation order is
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New Hamiltonian
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@ The F''s are well determined functions.

s The term H)~ is the Mukhanov-Sasaki Hamiltonian.

@ It has no linear contributions of the Mukhanov-Sasaki momentum.

@ |t is linear in the momentum T




New Hamiltonian

*» We re-write the total Hamiltonian of the system at our truncation
order, redefining the Lagrange multipliers:



Hybrid guantization

Approximation: Quantum geometry effects
are especially relevant in the background

d - Adopt a quantum cosmology scheme for the zero modes and a Fock
. quantization for the perturbations. The scalar constraint couples them.

» \WWe assume:
a) The zero modes commute with the perturbations under quantization.
b) Functions of ¢ act by multiplication.




Unigueness ofi the Fock description

The Fock representation in QFT is fixed (up to unitary equivalence) by:

1) The background isometries; 2) The demand of a UNITARY evolution.
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¢ The introduced scaling of the field by the scale factor is essential for unitarity.

¢ The proposal selects a UNIQUE canonical pair for the Mukhanov-Sasaki
field, precisely the one we chose to fix the ambiguity in the momentum.

¢ We can use the massless representation (due to compactness), with its
creation and annihilation operators, and the corresponding basis of

occupancy number states | N ).



Representation of the, constraints

» We admit that the operators that represent the linear constraints (or an
integrated version of them) act as derivatives (or as translations). |

-

s Then, physical states are independent of (C}*,C’;").

» We pass to a space of states that depend on the zero modes and the
I Mukhanov-Sasaki modes, with no gauge fixing.

@ In this covariant construction, physical states still must satisfy the
| scalar constraint given by the FLRW and the Mukhanov-Sasaki
contributions.
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Born-Oppenheimer ansatz . ' ~ &
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Consider states whose dependence on the FLRW geometry and the
inhomogeneities (N) split:

The FLRW state is normalized.

s Uisa unitary evolution operator close to the unperturbed one.




Effiective Mukhanov-Sasaki eguations, l |
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» Using the Born-Oppenheimer form of the constraint (diagonal in

the FLRW geometry) and assuming a direct effective counterpart:
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where m; is a state-dependent conformal time.

» The effective equations are of harmonic oscillator type, without
dissipation, and hyperbolic in the ultraviolet.




Conclusions

///
,{/ ¢ We have considered an FLRW universe with a massive scalar field
?‘ perturbed at quadratic order in the action.
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7 ¢ We have found a canonical transformation for the full system that
« respects covariance at the perturbative level of truncation.

5;\\’ ¢ We have discussed the hybrid quantization of the system. This can
f//{ be applied to a variety of quantum FLRW cosmology approaches.

¢ A Born-Oppenheimer ansatz leads to Mukhanov-Sasaki equations
’ with quantum corrections.
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