

Thermoelectric properties of Bi₂Te₃ nanowire array in thickness direction

H. Kawakami^{1*}, Y. Isoda¹, Y. Shinohara¹, B. Abad-Mayor², O. Caballero-Calero², M. S. Martin-Gonzalez²

¹ Eco-Energy Materials Group, National Institute for Materials Science, 1-2-1 Sengen,

Tsukuba, Ibaraki, 3050047, JAPAN

² Thermoelectric Group, IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac

Newton 8, PTM, E-28760 Tres Cantos, Madrid, SPAIN

* E-mail: KAWAKAMI.Hiroshi@nims.go.jp

Theoretical studies have predicted a possibility of increasing thermoelectric efficiency of nanostructure materials, owing to quantum confinement effect on the charge carriers and lattice vibrations[1][2]. On the other hand, Bi_2Te_3 is well known to be the most efficient thermoelectric material that can be operated around room temperature [3].

In this study, we have focused Bi_2Te_3 nanowire-arrays. Bi_2Te_3 nanowires were grown in the nano-holes of alumina template by electrodeposition. The electrodeposition can be described by the chemical reaction $3HTeO_2^+ + 2Bi^{3+} + 18e^- + 9H^+ \rightarrow Bi_2Te_3(s) + 6H_2O$ [4]. Seebeck coefficient and electrical conductivity of nanowire-arrays were measured in thickness direction using a custom made setup (Fig.1). The Seebeck coefficient S =-57 μ V in the thickness direction at room temperature. The detail of thermoelectric properties of nanowire-arrays and will be presented.

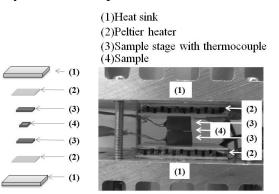


Figure 1 Schematic and photo image of the custom made setup.

Acknowledgement:

This work has been supported by the bilateral Spanish–Japanese NANOTHERMA projects of Strategic International Reserch Cooperative Program and KAKENHI for Challenging Exploratory.

References:

[1] L.D. Hicks and M. S. Dresselhaus, Phys. Rev. B,47, 1993, pp. 12727.

- [2] L.D. Hicks and M. S. Dresselhaus, Phys. Rev. B,47, 1993, pp.16631.
- [3] H. J. GoldSmid, Thermoelectric Refrigeration, A Heywood Book, 1964, pp.114.
- [4] Marisol S. Martin-Gonzalez, Amy L. Prieto, Ronaldo Gronsky, Timothy Sands and Angelica M. Stacy, 149 (11), 2002, pp. C546-C554