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ABSTRACT 

Thermal inactivation kinetics of Listeria innocua CECT 910 inoculated in a vegetable 

beverage at three pH conditions (4.25, 4.75, and 5.20), four levels of temperature (50, 55, 

60, 65 °C), and different treatment times (0–75 min) were obtained. Survival curves did 

not follow a log-linear relationship, and consequently were fitted to various mathematical 

models: Weibull, Geeraerd, Cerf with shoulder, and the modified Gompertz equation. 

Results indicated that the best model for the treatment conditions was the modified 

Gompertz equation, which provides the best goodness of fit and the lowest Akaike 

information criterion value. Sensitivity analysis indicated that the most influential factors 

affecting the final microbial load were temperature and time in the case of the higher 

temperature level (65 °C), and time in the case of the lower temperature level (50 °C). 

Keywords: Inactivation kinetic, L. innocua, thermal treatment, vegetable beverage, 
mathematical modeling. 



INTRODUCTION 

Today there is strong evidence that links the consumption of fruit and vegetables with 

prevention of some health disorders, such as cardiovascular disease and cancer associated 

with the absence or low concentration of some nutrients in foodstuffs. A daily intake of 

around 400 g of fruit and vegetables is recommended owing to the supply of 

micronutrients and other substances that produce health benefits (Steinmetz and Potter, 

1996; WHO, 2003). 

A very convenient way that can be used to supply these nutrients is by producing 

vegetable- and fruit-based beverages. These beverages can be drunk everywhere and not 

necessarily at home. However, to preserve the nutritional and sensory properties of these 

products, it is necessary to apply mild preservation processes. In the case of thermal 

processes, a tendency to use mild processes has been observed in recent years, and these 

processes are applied together with other control measures to produce the desired 

preservative effect as a whole (Hurdle Technology). Of course, foods preserved in such 

a way have a limited shelf life. One of the oldest and most widespread additional measures 

is acidification of foods. Acidic pH values reduce the heat resistance of microorganisms, 

directly affecting the primary kinetic parameter “D” (Ocio et al., 1994; Tejedor et al., 

2001). However, it is necessary to apply enough heat to produce at least 5 log reductions 

in the pathogenic microbial load, considering the effect of all the control factors. 

To calculate proper preservation processes, survival curves should be fitted to a 

mathematical model and some kinetic parameters should be deduced. Traditionally, the 

Bigelow model (Bigelow 1922) has been used to obtain the necessary death kinetic 

parameters for the development of heat preservation processes. But when minimum 

preservation processes are used (low processing temperature, high hydrostatic pressure, 



pulsed electric fields, etc.) significant deviations from linearity in the survival curves have 

been observed. The deviations include shoulders or delay periods followed by exponential 

inactivation, tails, or subpopulations of bacteria that are more resistant to treatment 

(Fernandez et al., 1999). The use of non-linear modeling strategies to fit these non-log-

linear curves is a recent development area. Various models have been developed and 

used: the survival function associated with a Weibull probability distribution based on the 

assumption that the stress resistance of a population (survival curve) is a cumulative form 

of a distribution of lethal events with time (Peleg and Cole, 1998; Fernández et al., 1999; 

Corradini and Peleg, 2003; Virto et al., 2005; Haimmer et al., 2006); the Cerf model, 

based on the hypothesis of the existence of two subpopulations with different levels of 

resistance to stress (Cerf et al., 1977); the Baranyi model (Baranyi and Roberts, 1994); 

the Geeraerd model (Geeraerd et al., 2000); and Gompertz (Bhaduri et al., 1991), among 

others. These models are able to adjust to sigmoidal functions. 

This study is aimed at describing the behavior of L. innocua CECT 910, a nonpathogenic 

biological surrogate for heat inactivation of L. monocytogenes inoculated in a mixed 

vegetable drink, at three different pH levels (4.25, 4.75, 5.20), under very mild heat. Often 

biological indicators are used in studies because they are nonpathogenic and have similar 

physiology and metabolism characteristics to those of pathogenic species (Ponce et al., 

1998; Murphy et al., 2002). 

The suitability of the above-mentioned mathematical models was estimated from survival 

data. The discussion and subsequent selection of the most appropriate model for this type 

of process was based on traditional statistical indicators (Residual Mean Square (RSM), 

adjusted coefficient of multiple determination, the accuracy factor, and the bias factor), 

and the Akaike information criterion (AIC). 



MATERIAL AND METHODS 

Preparation of the mixed vegetable beverage 

The composition of the vegetable beverage was: 31% tomato, 17% Italian pepper, 26% 

water, 9% celery, 5% cucumber, 4% carrot, 3% onion, 0.87% extra virgin olive oil (v/v), 

0.2% solution of NaCl, 0.03% basil powder (w / v), and lemon juice. The three levels of 

pH in the beverage were obtained by varying the amount of lemon juice added; for pH 

4.25 the percentage used was 2%, for intermediate pH (4.75) 0.5% was used, and in the 

absence of lemon juice (0%) a pH of 5.20 was achieved. The pH of the sterilized beverage 

was controlled by means of a pH meter (Crison Instruments®, GLP 21 pH meter). 

Beverages with different pH levels were frozen at –80 °C until used. 

Microbial culture preparation 

Lyophilized samples of Listeria innocua CECT 910 were obtained from the Spanish Type 

Culture Collection. For rehydration, they were transferred to 10 mL of tryptone soy broth 

(TSB) (Scharlab Chemie SA, Barcelona, Spain). After 30 min, 5 mL of the above culture 

was inoculated into 200 mL of TSB and incubated at 37 °C under continuous agitation 

(200 rpm). Forty mL of the resulting culture was transferred to 400 mL of culture medium 

and incubated for 12 h at 37 °C under continuous agitation (200 rpm). After this time, the 

culture was centrifuged twice at 4000 × g for 15 min at 4 °C and resuspended in 20 mL 

of TSB. Listeria innocua cells were deposited into sterile plastic cryovials, adding 2 mL 

of TSB with 20% glycerol in a 1:1 ratio. The cells were immediately stored at –80 °C 

until used for further studies. The approximate concentration was 5 × 109 CFU / mL 

Thermal death studies 



For inactivation studies, 1 mL of microorganism culture from cryovials was transferred 

to 9 mL of previously thawed vegetable beverage; this procedure was repeated for each 

formulation. Capillaries (BLAUBRAND®, Ref. 78744). previously sterilized at 240 °C 

for 24 h, were filled with 100 µl of the cell suspension and both ends were immediately 

sealed with the help of an oxygen-flame. Ten sets of six capillaries were filled for each 

pH level. 

Capillary tubes with microorganism were immersed in a water bath (Haake CF3) and 

heated at 50, 55, 60, and 65 °C. The heat treatment was isothermal, with a "Come Up 

Time" (CUT) of 3 seconds, considered as the time needed to reach the same temperature 

throughout the capillary measured by a type T thermocouple (Control Company, Texas, 

USA). Capillary tubes were removed from the bath at regular time intervals (0–75 min), 

immersed in an ice-water bath, and plated to estimate the survivors for each treatment. 

All treatments were given in quadruplicate. A series of untreated capillary tubes was used 

as control. 

Count of survivors 

For the suspension of treated cells and controls a series of decimal dilutions was carried 

out with sterile peptone water at 1% (Scharlab Chemie SA). The medium used for viable 

cell enumeration was tryptone soya agar (TSA) (Scharlab Chemie SA). Selected dilutions 

were incubated at 37 °C for 48 h. The decimal reductions in the number of survivors were 

calculated from the count of viables. 

Mathematical models 

Survival curves were fitted to the Weibull, Geeraerd, and Cerf with shoulder models using 

the GInaFIT tool (Geeraerd et al., 2005) The fit to the modified Gompertz equation was 

carried out with a nonlinear regression model, using Statgraphics Centurion XV 



(StatPoint, Inc.). The models were estimated by using nonlinear least squares assuming 

that residuals are randomly distributed, following a normal distribution with an average 

equal to zero (Cunha et al., 1988). 

WEIBULL DISTRIBUTION 

The survival function of a Weibull distribution has been used to describe the inactivation 

of microorganisms, determining different single cell resistances to heat treatments. It is 

identified as follows (Van Boekel 2002; Geeraerd et al.,.,, 2005): 

10
(0)

ptN
N


  
  

 
 

     (1) 

where N (CFU / mL) represents the final concentration of cells, N (0) (CFU / mL) is the 

initial concentration of cells; t is the time (min); δ is the scale parameter; p is the shape 

parameter, which corresponds to a concave upward curve if p < 1, a downward convex 

curve if p > 1, and if p = 1 it describes a linear behavior (Peleg and Cole, 1998). 

The reparameterization of the density function included in GInaFIT (Geeraerd et al.,.,, 

2005), is the one proposed by Mafart Weibull et al.,., (2002), which makes it possible for 

parameter δ to represent the time to the first decimal reduction: 
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GEERAERD MODEL 

This model is based on several arguments that describe the behavior of microorganism 

inactivation curves when shoulder, log-linear phase, and tail appear (Cerf 1977; Casolari 

1988; Mossel et al., 1995; Geeraerd et al., 2000; Geeraerd et al., 2005). Incorporation of 



each of the phenomena (shoulder, log-linear phase, and tail) is described by the following 

formula: 
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where N (CFU / mL) represents the final concentration of cells; N (0) (CFU/mL) is the 

initial concentration of cells; Nres is the concentration of residual cells (CFU/mL); kmax is 

the specific inactivation rate (1/unit time); S1 is the parameter representing the shoulder 

(time units); t is the time (min). 

CERF MODEL WITH SHOULDER 

Cerf (1977) proposed a model of two fractions which is formulated as follows: 

max1 max 2
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where N (CFU/mL) represents the final concentration of cells; N(0) (CFU/mL) is the 

initial concentration of cells; f is the fraction of the initial population considered as the 

bigger subpopulation, (1–f) is the fraction of the initial population considered as the 

smaller subpopulation (which is more heat resistant than the previous subset); kmax1 and 

kmax2 (1/time unit) are the rates of inactivation for the two subpopulations, respectively; t 

is the time (min). 

GOMPERTZ MODIFIED EQUATION 

The initial application of the modified Gompertz equation was to describe sigmoidal 

growth curves (Gibson et al., 1987). The utility of the formula in describing survival 

curves was demonstrated by Bhaduri et al., (1991) for the inactivation of L. 

monocytogenes after heat treatments. The empirical formula used has the following form: 



)(

)(10
MtBeCeANLog

    (5) 

where N (CFU/mL) represents the final concentration of cells; A is the highest value of 

the asymptote (CFU/mL); B is the rate of death at M (1/time unit); C is the difference 

between the highest and lowest asymptote (CFU/mL) values; M is the time (min) at which 

the absolute death rate is maximal; t is the time (min). A minus sign before the C parameter 

means inactivation of microorganisms. 

From the parameters of the modified Gompertz equation it is possible to derive kinetic 

parameters related to the growth or death of microorganisms such as maximum growth 

rate, generation time, and lag phase (McMeekin et al., 1993). 

Xiong et al., (1999) made it possible to characterize kinetic parameters related to 

inactivation of microorganisms through the equations proposed by McMeekin et al., 

(1993). The inactivation kinetic parameter μmax (maximum death rate) can be determined 

by the relationship between parameters B and C: 
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Model comparison 

The criteria used to compare the goodness of fit of the models were: 

Adjusted coefficient of multiple determination: 
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Estimated standard deviation of the regression error term: 
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where m is the number of observations, j is the number of model parameters, SSE and SST

are the residual and total sum of squares, respectively, and SD or RMS is the standard 

deviation of the residuals (Reyns et al., 2000; Ly-Nguyen et al.,.,, 2003). 

Accuracy factor (Af) and Bias factor (Bf): 

These statistics have been generally used in model validation and were proposed by Ross 

(1996) with a set of m randomly selected experimental data reserved for this purpose: 
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where m is the total number of observations; Yo represent the observations of the response 

variable of the new set of data, and Yp the subsequent predicted values set with the initial 

regression model. 

Information theory criteria for model selection 

It is perfectly reasonable that several models would serve nearly equally well in 

approximating a set of data. Inference must admit that there are sometimes competing 

models and the data do not support selecting only one. Using the Principle of Parsimony, 

if several models fit the data equally well, the one with the fewest number of parameters 

might be preferred; however, some consideration should be given to the other (few) 

competing models that are essentially tied as the best approximating model. 



For this type of analysis the Akaike information criterion (AIC) was used (Burnham and 

Anderson 2002; Stoica and Selen 2004) 

ln ln 2AIC m SSE m m j      (11) 

where m is the number of observations, j is the number of model parameters, and SSE is 

the residual sum of squares. 

The first term of the Akaike statistic decreases with the number of parameters and 

increases with the number of data, the second increases with the number of data, and the 

third increases with the number of parameters. The smaller the AIC computed value, the 

better the subsequent model can describe a particular data set (Burnham and Anderson, 

2002; Stoica and Selen, 2004). 

Burnham and Anderson (2002) strongly recommend using the corrected Akaike 

information criterion, AICc, when m is small or j is large. Since AICc converges to AIC

as m becomes larger, AICc should generally be employed regardless. Thus, AICc is AIC 

with a greater penalty for extra parameters. AICc can be calculated by the following 

equation: 
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Note that when all the candidate models have the same dimension j, AICc and AIC will 

give identical (relative) results. In this situation, AIC can always be used. Because AIC or 

AICc is on a relative scale, computing the AIC differences for each Mi model is 

recommended rather than the actual AIC or AICc values 

mini AICi AIC         (13) 

where min AIC corresponds to the best candidate model. 



Models for which Δi ≤ 2 have substantial support and should receive consideration when 

making inferences. Models having Δi between 4 and 7 have considerably less support, 

while models with Δi ≥10 have essentially no support, and might be omitted from further 

consideration because they fail to explain some substantial variability of the data. 

It is useful to normalize the model likelihoods so that they sum to 1 and treat them as 

probabilities. The AIC value for each model Mi can be transformed to construct the so-

called Akaike weights, Wi, which for each model can be interpreted as the probability that 

Mi is the best model, given the data and the set of candidate models (e.g., Burnham and 

Anderson, 2001). 
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Sensitivity analysis 

Sensitivity Analysis allows determination of the effects of variable inputs on variable 

outputs. In this study the input variables are the initial number of microorganisms, the 

temperature, the pH value, and treatment time, and the output variable is the number of 

survivors for each combination of temperature, initial number of microorganisms, pH, 

and treatment time. To perform this analysis, @Risk from Palisade was used. 

Statistical analysis 

To evaluate the effect of time and temperature intensity on microbial inactivation of L. 

innocua, multivariate analysis of variance (ANOVA) models were used. To determine 

the significant levels associated with the difference between any pair of means, a multiple 

range test (MRT) was applied, using the Fisher distribution (LSD) for the equality of 



variances. All statistical computations were done with Statgraphics Centurion XV 

(StatPoint, Inc.). 



RESULTS AND DISCUSSION 

Survival curves 

Inactivation curves for Listeria innocua cells inoculated in a vegetable beverage were 

obtained at three pH levels (4.25, 4.75, 5.20), 4 temperature levels (50, 55, 60, and 65), 

and various exposure times (0–75 min) (Figure 1). 

As can be seen in the figure, the survival curves have non-linear behavior and there is a 

noticeable presence of shoulders and tails for the various temperature and pH levels. This 

type of behavior is very common in minimum processes and requires the use of 

mathematical models other than the log-linear Bigelow model (Bigelow 1922). The 

curves clearly show that increasing the temperature and exposure time increases the 

inactivation achieved. 

Significant differences (p<0.05) in the logarithm of the final cell count for each 

temperature and time combination were observed. Likewise, a marked effect of pH was 

observed at each temperature studied. 

As the pH of the beverage decreases, the number of microorganisms surviving each 

treatment decreases too, the effect being greater as the temperature increases. At the 

highest temperature (65 °C) (figure 1d), more than five log unit reductions were achieved 

for times lower than 1 min in the cases of pH 4.25 and 4.75 and lower than 2 min. at pH 

5.20 . This difference could be due to the combined effect of temperature and pH on the 

variation of exposure time to be applied to achieve significant reductions of the initial 

population of microorganisms. 

Fitting of mathematical models 



Given the shape of the inactivation curves, four models frequently used in kinetic studies 

were selected: the Weibull frequency distribution model (Equation 2); the Geeraerd 

model (Equation 3); the Cerf with shoulder model (Equation 4), and the Gompertz 

modified equation (Equation 5) (Bhaduri et al., 1991; Linton 1995; Xiong et al.,1999; 

Chen and Hoover, 2004; Geeraerd et al., 2006; Buzrul et al., 2008). 

The various non-linear regression models considered in this study produced different 

estimations of the respective parameters for each temperature and pH combination. Table 

1 shows the values for the various kinetic parameters describing the inactivation of 

microorganisms, as well as the significant differences (p<0.05) for each temperature and 

pH combination. As can be seen, only the µmax kinetic parameter of the Gompertz equation 

varied as the treatment temperature varied: for all pH levels, the parameter increased as 

the temperature increased. Nevertheless it is necessary to note that in the case of the 

Weibull model, the scale parameter (δ) considered as a reaction rate constant (Cunha et 

al 1998), could not be a function of temperature if the shape parameter (p) value is not 

constant for all “δ” values corresponding to one pH value (Mafart et al., 2002). 

The suitability of each model for fitting the experimental data was evaluated by R2
c

(Equation 7) and RMS (Equation 8), (Table 2). The regression coefficients obtained were 

significant at 90% in all cases except 50 °C and pH 4.75 and 65 °C and pH 5.20, where 

they were significant at 80%. According to these results, for each pH level it was the 

Gompertz modified equation that presented the best goodness of fit, followed by the 

Geeraerd and Cerf models, the Weibull distribution function being the last one. Figure 2 

shows an example of model fitting. 

Model validation 



To assess the ability of a model to predict the response of microorganisms under certain 

environmental conditions, the Accuracy Factor (Af) and the Bias Factor (Bf) have been 

proposed (McMeekin et al., 1993; Ross 1996). In this paper, the validation of the 

mathematical models was carried out by these indices, (Af) (Equation 9) and (Bf) 

(Equation 10), in a set of experimental data not used previously in the estimated 

regression models. The values of these two factors for each temperature and pH 

combination are shown in Table 3. 

The Accuracy Factor (Af) indicates the difference between the observed and predicted 

values. Unlike other models, the modified Gompertz equation presents minimal 

prediction error. The Bias Factor (Bf) assesses the model reliability in predicting the 

response of bacterial inactivation. A model that is considered reliable must have a Bf value 

≤ 1. The Gompertz modified equation was the most reliable at the three pH levels, 

followed by the Geeraerd model. 

Information theory criteria for model selection results 

Table 4 shows the values for the Akaike increments (Δi). According to the definition given 

in the Material and Methods section, models with Δi ≤ 2 have substantial support and 

should receive consideration when making inferences. Models having Δi of about 4 to 7 

have considerably less support, while models with Δi ≥10 have essentially no support, 

and might be omitted from further consideration. In our study, the Weibull model should 

receive consideration when making inferences in 33.33% of the curves tested (12), 

Geeraerd in 8.33%, Cerf with shoulder in 16.67%, and finally the Gompertz model in 

58.33%. According to these calculations, the Gompertz model should be the first choice 

for interpreting the non-linear survival curves obtained at low treatment temperatures, 

followed by the Weibull model. 



If we compare the estimated models by means of the various tools used in this study, we 

detect discrepancies in the case of the Cerf with shoulder model, the Weibull distribution 

function, and the Geeraerd model. This is probably due to the fact that the Weibull 

distribution function has fewer parameters than the other two models. It is well known 

that information theory criteria penalize models with a higher number of parameters. 

Secondary kinetic parameter estimation of Z(T) 

According to the analysis carried out in the previous sections, the Gompertz modified 

equation was the most suitable one to describe the inactivation curves of L. innocua. As 

mentioned above, the estimates of the kinetic parameters (μmax) increased with treatment 

intensity level for each pH (Table 1). 

With the linear relationship between the logarithm of μmax versus temperature it was 

possible to estimate Z(T) values for each pH level. Regression coefficients for each linear 

relationship obtained are significant at 95%. Values of Z(T) for each pH were 7.11, 7.95, 

and 7.56 °C for pH values of 4.25, 4.75, and 5.20, respectively. 

Sensitivity analysis 

Advanced Sensitivity Analysis allows determination of the effects of inputs on @RISK 

outputs. The results show how simulation outcomes changed as the input values changed. 

The initial number of microorganisms, temperature, pH, and heating time were used as 

input variables and the final number of microorganisms as the output variable. 

Figure 3 shows a tornado graph for the final number of microorganisms with regard to 

the inputs defined in the analysis: bars indicate the relative importance of each input and 

are arranged in decreasing order. According to the tornado graph, the most influential 

input variables depend on the severity of the process. For example, as can be seen in 

Figure 3a, time was the most influential parameter when the treatment temperature was 



low (50 °C), while for the higher temperature level (65 °C) the most influential parameter 

was temperature (Figure 3b). In this kind of very mild heating process, good control of 

the process temperature is essential in order to achieve the goal of 5 log reductions in the 

initial load of Listeria innocua. Figure 4 show the impact of modifying the base input 

value for each parameter on the estimated final microbial load. As can be seen in figure 

4a, 10% change on initial microbial load and pH have an important impact in the final 

load for very low thermal treatments while at 65ºC of treatment (Figure 4b) changes on 

those factors had a meaningless impact in the final microbial load. 

CONCLUSIONS 

The survival curves obtained at low processing temperatures (50–65 °C) differed from 

log-linear behavior and showed shoulders or tails, and in some cases they were sigmoidal. 

According to the various tools used to discriminate among the models studied, the 

Gompertz modified equation was the one that best described the experimental data, with 

the lowest Akaike increment in 58.33% of the inactivation curves obtained. 

Consequently, the Gompertz modified equation should be the first choice for describing 

the thermal inactivation of Listeria innocua at low treatment temperatures in the vegetable 

beverage tested in this work. Although, with the traditional indices for comparing models, 

the Weibull distribution function was the worst one, when the Akaike increment was 

applied as a tool to discriminate between models this distribution function was the second 

choice for describing the experimental data. 

For these very low heat treatments in combination with low pH, the sensitivity analysis 

concluded that very good control of the temperature is necessary because of the important 



impact that small changes can make on the final load of the pathogenic or spoilage 

microorganism. 
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Figure 1. L. innocua survival curves at different temperatures (50, 55, 60, and 65 °C) and 
pHs (4.25, 4.75, and 5.20) 

Figure 2: Example of fitting to the different model tested in this study at the 
temperature of 60ºC pH 5.2

Figure 3: Tornado graph for the final number of microorganisms as affected by input 
parameters at a temperature of 50 °C (a) and 65 °C (b)

Figure 4 Effect of percentage change of input parameters from a base value on the 
estimated final load for a thermal treatment of 50 °C (a) and 65 °C (b). 
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Table 1. Parameter values for the various models used to describe experimental data 

  WEIBULL GEERAERD CERF WITH SHOULDER GOMPERTZ 
MODIFIED 
EQUATION 

pH T [°C] δ ± (a)

[min*mL/UFC] 
kmax ± (a)

[UFC/mL min] 
kmax1 ± (a)

[UFC/mL min] 
kmax2 ± (a)

[UFC/mL min] 
µmax ± (a)

[UFC/mL min] 

4.25 50 25.538 ± 0.318 0.250 ± 0.006 0.250 ± 0.006 0.250 ± 0.006 0.134 ± 0.007 
55 3.635 ± 0.073 1.802 ± 0.032 1.802 ± 0.032 1.802 ± 0.032 0.873 ± 0.043 
60 0.536 ± 0.030 10.722 ± 0.481 41.988 ± 4.340 9.593 ± 0.915 5.334 ± 0.218 
65 0.119 ± 0.001 30.429 ± 1.100 34.867 ± 1.754 8.342 ± 1.018 16.250 ± 1.374 

4.75 50 24.619 ± 0.774 0.294 ± 0.019 0.389 ± 0.167 0.206 ± 0.153 0.178 ± 0.011 
55 5.347 ± 0.258 1.246 ± 0.045 1.246 ± 0.045 1.246 ± 0.045 1.433 ± 0.092 
60 0.340 ± 0.028 9.294 ± 0.552 9.069 ± 0.710 0 ± 0.0 4.202 ± 0.450 
65 0.467 ± 0.044 12.237 ± 0.382 17.541 ± 0.600 4.644 ± 0.481 15.581 ± 4.909 

5.20 50 51.379 ± 0.858 0.201 ± 0.029 0.201 ± 0.029 0.201 ± 0.029 0.100 ± 0.010 
55 11.249 ± 0.117 0.457 ± 0.214 0.326 ± 0.014 0.326 ± 0.014 0.283 ± 0.049 

 60 0.086 ± 0.002 7.123 ± 0.337 7.135 ± 0.318 0.363 ± 0.059 3.226 ± 0.189 
 65 0.564 ± 0.158 2.013 ± 0.966 11.560 ± 3.692 1.537 ± 0.384 7.094 ± 1.379 

(a) σ, standard deviation. 



Table 2. Goodness of fit for the various models used to describe the experimental data

(a) Estimated standard deviation of the non-linear regression model. 

WEIBULL GEERAERD CERF WITH 
SHOULDER 

GOMPERTZ 
MODIFIED 
EQUATION 

pH T (°C) RMS(a) R²c
(b) RMS(a) R²c

(b) RMS(a) R²c
(b) RMS (a) R²c

(b)

4.25 50 0.354 0.966 0.229 0.986 0.235 0.985 0.195 0.990 
55 0.170 0.991 0.183 0.990 0.187 0.990 0.161 0.992 
60 0.226 0.985 0.203 0.988 0.492 0.893 0.175 0.991 
65 0.422 0.933 0.379 0.946 0.309 0.964 0.298 0.967 

 Average 0.293 0.969 0.248 0.978 0.306 0.958 0.207 0.985 

4.75 50 0.169 0.642* 0.170 0.639* 0.166 0.650* 0.140 0.752*
55 0.309 0.964 0.256 0.975 0.261 0.974 0.108 0.996 
60 0.291 0.954 0.156 0.983 0.174 0.979 0.177 0.979 
65 0.908 0.770* 0.272 0.979 0.177 0.991 0.183 0.990 

 Average 0.419 0.832 0.213 0.894 0.195 0.899 0.152 0.929 

5.20 50 0.133 0.910 0.139 0.903 0.142 0.899 0.121 0.917 
55 0.178 0.918 0.155 0.935 0.177 0.919 0.106 0.971 

 60 0.657 0.864 0.224 0.984 0.208 0.986 0.248 0.980 
 65 0.221 0.745* 0.223 0.741* 0.225 0.736* 0.310 0.975 

Average 0.297 0.859 0.185 0.891 0.188 0.885 0.196 0.961 



Table 3. Validation of models used to describe the experimental data by Af and Bf (Ross, 
1996). 

(a) Af, Accuracy Factor. 
(b) Bf, Bias Factor. 

WEIBULL GEERAERD CERF WITH 
SHOULDER 

GOMPERTZ 
MODIFIED 
EQUATION 

pH T (°C) Af 
(a) Bf 

(b) Af 
(a) Bf 

(b) Af 
(a) Bf 

(b) Af 
(a) Bf 

(b)

4.25 45 1.020 0.990 1.031 0.993 1.022 0.990 1.025 0.994 
50 1.023 0.998 1.014 0.999 1.014 0.999 1.016 0.997 
55 1.034 1.016 1.036 1.000 1.065 1.047 1.018 1.002 
60 1.114 1.016 1.138 1.008 1.094 1.030 1.072 1.009 

 Promedio 1.048 1.005 1.055 1.000 1.049 1.017 1.033 1.000 

4.75 45 1.025 0.986 1.022 0.984 1.022 0.984 1.020 0.992 
50 1.022 1.000 1.022 1.007 1.022 1.007 1.020 1.000 
55 1.031 1.006 1.028 0.999 1.028 0.999 1.032 0.997 
60 1.025 1.005 1.013 1.002 1.014 1.002 1.084 0.934 

 Promedio 1.026 0.999 1.021 0.998 1.022 0.998 1.039 0.981 

5.20 45 1.016 0.997 1.016 0.997 1.016 0.997 1.017 0.996 
50 1.029 1.003 1.022 1.004 1.023 1.004 1.021 1.005 

 55 1.020 0.988 1.019 0.988 1.019 0.988 1.018 0.988 
 60 1.060 1.018 1.056 1.011 1.055 1.010 1.044 1.011 

Promedio 1.031 1.002 1.028 1.000 1.028 1.000 1.025 1.000 



Table 4: Akaike increments (Δi) for the various models used to interpret the 
experimental data 

pH Model Temperature °C 
50 55 60 65 

4.2 

Weibull 87.19 14.24 61.30 34.37
Geeraerd 24.91 22.26 35.09 21.64
Cerf with 
shoulder 28.43 25.50 226.31 3.26
Gompertz 0.00 0.00 0.00 0.00

4.7 

Weibull 0.00 119.14 352.40 141.36
Geeraerd 61.76 132.51 0.00 38.67
Cerf with 
shoulder 58.52 135.41 23.59 0.00
Gompertz 32.30 0.00 24.25 3.00

5.2 

Weibull 0.00 0.00 290.96 0.00
Geeraerd 115.93 152.25 290.96 160.76
Cerf with 
shoulder 118.83 172.16 40.34 161.56
Gompertz 158.91 154.90 0.00 186.85

Models with Δi ≤ 2 have substantial support and should receive consideration when making 
inferences. Models having Δi of about 4 to 7 have considerably less support, while models with 
Δi ≥10 have essentially no support and might be omitted from further consideration. 


