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INFINITESIMAL MODULI FOR THE STROMINGER

SYSTEM AND KILLING SPINORS IN GENERALIZED

GEOMETRY

MARIO GARCIA-FERNANDEZ, ROBERTO RUBIO, AND CARL TIPLER

Abstract. We construct the space of infinitesimal variations for the Stro-
minger system and an obstruction space to integrability, using elliptic op-
erator theory. We initiate the study of the geometry of the moduli space,
describing the infinitesimal structure of a natural foliation on this space.
The associated leaves are related to generalized geometry and correspond to
moduli spaces of solutions of suitable Killing spinor equations on a Courant
algebroid. As an application, we propose a unifying framework for metrics
with holonomy SU(3) and solutions of the Strominger system.
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1. Introduction

The Strominger system couples a pair of Hermite–Yang–Mills connections
with a conformally balanced hermitian metric on a Calabi–Yau threefold X ,
by means of an equation for 4-forms—known as the Bianchi identity. Although
originated in string theory [39, 63], its mathematical study was proposed by
Yau [70] as a natural generalization of the Calabi problem [11, 69], in relation
to moduli spaces of Calabi-Yau threefolds which are not necessarily Kählerian.
Pioneered by Fu, Li and Yau [27, 50], the existence problem for the Stro-

minger system has been an active area of research in mathematics in the last
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ten years (see [4, 20, 21, 25, 26, 28, 64] and references therein). There is an
important conjecture by Yau [71], which states that any stable holomorphic
vector bundle V over a homologically balanced Calabi–Yau threefold X [58]
with c2(V ) = c2(X) admits a solution of the Strominger system. This conjec-
ture is widely open, the main difficulties being its non-Kähler nature and the
lack of understanding of the geometry of the equations.
A problem closely related to Yau’s conjecture is the construction of a moduli

space of solutions of the Strominger system. This moduli problem remained
almost unexplored for a long time, despite its interest in string theory, where it
describes the most basic pieces (scalar massless fields) of the four-dimensional
theory induced by a heterotic string compactification. Indeed, only a few
references that tackle the preliminary question of constructing the tangent
space at a given solution can be found in the physics literature [3, 7, 8, 16, 57,
17]. This first step turns out to be rather challenging, and a complete answer
has been so far elusive.
The prime motivations for this work are the construction of the moduli space

of solutions of the Strominger system and its interrelation with Yau’s conjec-
ture. In this paper we make a contribution to the first problem, constructing
the space of infinitesimal variations of a solution and an obstruction space
to integrability. We initiate the study of the geometry of the moduli space,
describing the infinitesimal structure of a natural foliation, whose leaves are
intimately related to generalized geometry [37]. By investigating the tangent
to a leaf, we give an interpretation of the leaves as moduli spaces of solutions
of suitable Killing spinor equations on a Courant algebroid. This last tangent
space arises naturally as a quotient of a bigger finite-dimensional vector space
by the second de Rham cohomology group of X . Our construction provides
a unifying framework for metrics with holonomy SU(3) and solutions of the
Strominger system, that we expect will have future applications to Yau’s con-
jecture. To explain our results, let us first recall the definition of the equations.

Background. Let (X,Ω) be a Calabi-Yau threefold, that is, a complex man-
ifold of dimension three endowed with a nowhere vanishing holomorphic sec-
tion of the canonical bundle Ω ∈ H0(X,Λ3,0T ∗). We do not assume that X is
Kählerian. Let PK be a principal bundle over X with compact structure group
K. The Strominger system is

F 0,2 = 0, F ∧ ω2 = 0,

R0,2 = 0, R ∧ ω2 = 0,

d∗ω − i(∂̄ − ∂) log ‖Ω‖ω = 0,

ddcω − α′(trR ∧ R− trF ∧ F ) = 0,

(1.1)

with unknowns given by a hermitian metric g on X with fundamental form ω, a
connection A on PK and a metric connection ∇ on the (smooth) tangent bundle
of X . Here, α′ is a positive real constant and F and R denote, respectively, the
curvature 2-forms of A and ∇. The notation − tr refers to the Killing form on
the Lie algebra of K. In this paper we impose that ∇ is unitary with respect
to the hermitian structure (Ω, ω).
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The Strominger system comprises, essentially, three conditions—the first two
well understood in the literature. First, the equation in the third line, often
known as the dilatino equation, is strongly reminiscent of the complex Monge-
Ampère equation on a Kähler manifold (see e.g. [29]). It restricts the holonomy
of the Bismut connection

∇+ = ∇g − 1

2
g−1(dcω)

to SU(3), where ∇g denotes the Levi-Civita connection of the metric g. Fur-
thermore, as observed by Li and Yau [50], the dilatino equation is equivalent
to the condition

d(‖Ω‖ωω2) = 0, (1.2)

which implies that ω′ = ‖Ω‖1/2ω ω is the fundamental form of a balanced metric,
namely d∗ω′ = 0, and hence g is conformally balanced. A classical result of
Michelsohn [58] characterizes the existence of balanced metrics on a complex
manifold using a condition on the homology—formulated in terms of currents
and known as the homologically balanced condition.
Second, the first two lines in (1.1) correspond to the Hermite–Yang–Mills

condition for the connections A and∇ with respect to the conformally balanced
metric g. There is a well-known theory for Hermite–Yang–Mills connections
on a hermitian manifold (X, g) [53], which ranges from existence results to
the construction of the moduli space (which turns out to be Kähler when g
is conformally balanced). The main result of the theory is Li–Yau’s theorem
[49], which characterizes the existence of solutions in terms of (slope) stability
of the bundle, generalizing the Donaldson–Uhlenbeck–Yau theorem in Kähler
geometry [18, 65].
Finally, the most demanding and less understood condition of the system is

the Bianchi identity

ddcω = α′(trR ∧ R− trF ∧ F ), (1.3)

which is ultimately responsible for the non-Kähler nature of the problem. The
non-vanishing of the Pontryagin term trR ∧ R − trF ∧ F prevents the her-
mitian form ω to be closed and hence allows the complex manifold X to be
non-Kählerian. This subtle condition, which arises in the quantization of the
physical theory, was studied by Freed [24] in the context of index theory for
Dirac operators and more recently by Sati–Schreiber–Stasheff from the point of
view of differential string structures [62]. Despite these important topological
insights, we have an almost total lack of understanding of this last equation
from an analytical point of view.

Main results. In this work we add to the understanding of the moduli prob-
lem for the Strominger system. The first contribution of this work is a complete
and direct construction of the vector space of infinitesimal variations of a given
solution—the infinitesimal moduli space— using an elliptic complex S∗.
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Theorem 1.1. The space of infinitesimal deformations of solutions of the Stro-
minger system is given by the first cohomology group H1(S∗) of an elliptic com-
plex of multi-degree differential operators S∗. This complex admits a natural
extension S̃∗, and the space of obstructions is defined as H2(S̃∗).

To clarify the exposition, we first undertake the construction of the complex
for a toy model in Section 2. For this, we introduce an abelian version of the
equations (1.1) depending on a real parameter. The analysis in the abelian case
will show that the combination of the Bianchi identity with the conformally
balanced equation (1.2) is well-behaved at the level of symbols.
In Section 3 we construct the elliptic complex of differential operators S∗

and identify its first cohomology

H1(S∗)

with the infinitesimal moduli of solutions of the Strominger system. Some of
the difficulties that arise in the construction of S∗ come from the symmetries
of the system, which turn out to have a Lie groupoid structure due to the
compatibility of the connection ∇ with the metric g.
In Section 4 we investigate the geometry on the moduli space of solutions

of the Strominger system M derived from the Bianchi identity. This moduli
space is endowed with a canonical H3(X,R)-valued closed 1-form

δ ∈ Ω1(M, H3(X,R))

which is constructed via the variation of (1.3). The kernel of δ defines an
integrable distribution on the tangent bundle of M and hence a foliation on
the moduli space. A striking fact about this foliation is that its leaves can be
understood by using Hitchin’s theory of generalized geometry [37]. The aim
of Section 4 is to give a rigorous account of the infinitesimal version of this
picture. The construction of a differentiable structure on M and the local
structure of the foliation will be addressed in future work.
Neglecting obstructions to integrability, the tangent to a leaf at a point is

defined by an exact sequence

0 // H1(S̊∗) // H1(S∗)
δ
// H3(X,R).

As the notation suggests, H1(S̊∗) is the cohomology of a complex which, sur-
prisingly, needs generalized geometry for its rigorous definition. In this new
framework H1(S̊∗) has a natural interpretation, as variations of a suitable
generalized metric modulo generalized diffeomorphisms. A special feature of
H1(S̊∗) is that it cannot be constructed by standard elliptic operator theory,
as the space of generalized vector fields cannot be identified with the space of
global sections of a vector bundle (similarly as the space of symplectic vector
fields on a symplectic manifold). Motivated by this problem, we construct a
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refinement of H1(S̊∗), which fits into the following exact diagram

0

��

H2(X,R)

��

H1(Ŝ∗)

��

0 // H1(S̊∗)

��

// H1(S∗)
δ
// H3(X,R).

0

(1.4)

Unlike H1(S̊∗), the refined vector space H1(Ŝ∗) is constructed by considering
inner symmetries of a smooth, transitive, Courant algebroid, and is defined as
the first cohomology of an elliptic complex of degree 1 differential operators.
Motivation for the previous construction comes from two basic principles in the
physics of the heterotic string, given by the Green-Schwarz mechanism [34], and

the flux quantization condition. We should stress that the space H1(Ŝ∗) is the
one that comes closer to the physics of the heterotic string.
Section 5 gives a geometric interpretation of the leaves of the foliation in the

moduli space, showing the strong connection between the Strominger system
and generalized geometry. For this, we define suitable Killing spinor equations

Dφ
+η = 0, /D

φ
−η = 0, (1.5)

for an admissible metric on a smooth transitive Courant algebroid and prove
the following result.

Theorem 1.2. The Strominger system (1.1) is equivalent to the Killing spinor
equations (1.5), on a transitive Courant algebroid obtained from reduction. As
a consequence, (1.1) is a natural system of equations in generalized geometry,
that is, solutions are exchanged under generalized diffeomorphisms.

This result builds on previous work of the first author in the relation between
generalized geometry and heterotic supergravity [30]. Theorem 1.2 gives a pre-

cise interpretation of the vector space H1(S̊∗), as infinitesimal deformations for
solutions to the Killing spinor equations (1.5) modulo infinitesimal symmetries
of the Courant algebroid. As a consequence, a leaf of the foliation determined
by δ can be interpreted as a moduli space of solutions of these equations.
The proof of Theorem 1.2 reveals a strong parallelism with the theory of

metrics with holonomy SU(3), once generalized geometry enters into the game.
The same equations, formulated instead on an exact Courant algebroid, pin
down precisely Riemannian metrics with holonomy SU(3) on a six dimensional
manifold. Generalized geometry provides a unifying framework for the theory
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of the Strominger system and the well-established theory of Calabi–Yau met-
rics, which we expect will have interesting applications in the former. We will
explore further this analogy in future work.
In the physics literature, de la Ossa and Svanes [17] and Anderson, Gray and

Sharpe [3] have recently proposed a close approximation to the infinitesimal
moduli for the Strominger system in terms of the Dolbeault cohomology of
a holomorphic double extension—based on previous ideas by Melnikov and
Sharpe [57]. In a sequel to the present paper we will show that their proposal
admits a natural interpretation in generalized geometry, and relates in a certain
way to the infinitesimal moduli of the Strominger system. After Section 5 was
completed, we were informed by A. Coimbra that an alternative formulation
of the Strominger system using generalized geometry was provided recently in
the physics literature [15]. Our approach has the benefit of making evident
that the Strominger system is invariant under generalized diffeomorphisms.
Acknowledgments: We thank Luis Álvarez-Cónsul, Bjorn Andreas, Ves-

tislav Apostolov, Henrique Bursztyn, Ryushi Goto, Marco Gualtieri, Nigel
Hitchin, Laurent Meersseman, Xenia de la Ossa, Dan Popovici, Brent Pym and
Eirik Svanes for useful discussions. Part of this work was undertaken while CT
was visiting IMPA, UFRJ, CRM, during visits of MGF and CT to CIRGET,
and of RR to EPFL and ICMAT. We would like to thank these very welcoming
institutions for providing a nice and stimulating working environment.

2. Infinitesimal moduli: abelian case

The aim of this section is to study a toy model for the construction of
the infinitesimal moduli space of the Strominger system, which avoids the
difficulties arising from the treatment of the unitary connection on the tangent
bundle and non-abelian groups. In particular, we will consider deformations
of a Calabi-Yau structure on a compact, six dimensional, smooth manifold
M , endowed with a holomorphic line bundle. We do not require our complex
manifolds to be Kählerian.

2.1. The abelian equations. LetM be a compact, oriented, six dimensional
smooth manifold. Let L be a hermitian line bundle over M . We fix a non-zero
real constant c. We denote by T the smooth tangent bundle of M and its
complexification by TC. Consider triples (Ω, θ, ω) where Ω is a complex 3-form
such that

T 0,1 := {V ∈ TC | ιVΩ = 0} (2.1)

determines an almost complex structure JΩ on M , θ is a unitary connection
on L, and ω is a JΩ-compatible 2-form, that is,

ω(JΩ·, JΩ·) = ω and ω(·, JΩ·) > 0 (2.2)
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is a Riemannian metric on M . We aim to construct a space of infinitesimal
deformations for solutions of the equations

dΩ = 0, d(||Ω||ωω2) = 0,

F 0,2
θ = 0, Fθ ∧ ω2 = λω3,

ddcω − c(Fθ ∧ Fθ) = 0,

(2.3)

where λ ∈ iR is a constant that depends on the unitary structure determined
by (Ω, ω) and the first Chern class of L, as follows from the identity

deg(L) := c1(L) · [‖Ω‖ωω2] =
iλ

2π

∫

M

‖Ω‖ωω3. (2.4)

Our convention for the point-wise norm of a (3, 0)-form ϕ with respect to ω is

‖ϕ‖2ωω3 = 6iϕ ∧ ϕ. (2.5)

Recall that the integrability of JΩ is equivalent to the condition

dΩ = 0

and hence, by the first two equations in (2.3), any solution determines a Calabi-
Yau threefold structure on M endowed with a holomorphic line bundle.
When c1(L) = 0 and c = −1 the system (2.3) corresponds to the field

equations of abelian heterotic supergravity considered in [55] (note that in our
notation Fθ is a purely imaginary 2-form). The reason why we do not work
directly with this case, which is the situation that comes closer to the Stro-
minger system, is the following observation, that shall be compared with [12,
p. 55].

Proposition 2.1. Let (Ω, θ, ω) be a solution of (2.3). If c1(L) = 0 and (M,Ω)
is a ∂∂̄-manifold, then θ is flat and ω has holonomy SU(3) (in particular, ω is
Kähler Ricci-flat).

Proof. As c1(L) = 0, Fθ is exact. By the ∂∂̄-lemma, Fθ = ∂∂̄f for some smooth
function f on X . After conformal re-scaling of the hermitian metric on L, we
obtain a flat Chern connection on the holomorphic line bundle (L, ∂̄θ). Then,
since θ is the Chern connection of a hermitian-Einstein metric on L, θ has
to be flat by uniqueness, and hence it follows that ω is strong Kähler with
torsion. By the conformally balanced condition, the Bismut connection of ω
has holonomy SU(3) (see [63, Section II]). Applying now [41, Corollary 4.7], ω
is Kähler and the result follows. �

In this work we are mainly interested in non-Kähler solutions of (2.3), and
therefore we will assume that c1(L) 6= 0. Non-Kähler solutions of (2.3) can be
obtained using the perturbative method in [4], from holomorphic line bundles
L over a projective Calabi-Yau threefold X with non-torsion c1(L) ∈ H2(X,Z)
satisfying

c1(L)
2 = 0.

Remark 2.1. It is perhaps more natural to consider the Hermite-Yang-Mills

equations in (2.3) with respect to the conformally balanced metric ‖Ω‖
1

2
ωω. The
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linearization of these alternative abelian equations is, however, more involved
and does not add to the understanding of the Strominger system.

2.2. Notation, parameter space and symmetries. Let Ω be a complex
3-form on M such that (2.1) determines an almost complex structure J on M
with anti-holomorphic tangent bundle T 0,1. Denote by Ωk (resp. Ωk

C
) the space

of real (resp. complex) smooth k-forms on M . We denote by Ωp,q the space of
(p, q)-forms on (M,J) and by Ωp,q(W ) the space of (p, q)-forms taking values in
a vector bundle W . Given a q-form σ on M (that may take values in a vector
bundle) and γ ∈ Ωp(TC), we define a (q + p− 1)-form σγ by

σγ = (σ(γ, ·))skw (2.6)

where skw denotes the skew-symmetric part of the tensor σ(γ, ·) satisfying :

∀(Vj) ∈ (TC)
q+p−1 , σ(γ, ·)(V1, . . . , Vq+p−1) = σ(γ(V1, · · · , Vp), Vp+1, . . . , Vq+p−1).

As Ω is nowhere vanishing, it induces an isomorphism on forms

T0 : Ω0,j(T 1,0) → Ω2,j

γ 7→ Ωγ .
(2.7)

We will also denote by T0 the induced isomorphism in cohomology [59].
To study the infinitesimal moduli of (2.3) we define the following parameter

space. Let A be the space of unitary connections on L and Ω3
0 ⊂ Ω3

C
the

non-linear subspace of complex 3-forms such that (2.1) determines an almost
complex structure on M . We set

P := {(Ω, θ, ω) | ω is JΩ − compatible} ⊂ Ω3
0 ×A× Ω2, (2.8)

where the compatibility condition is as in (2.2).
Let Diff0 be the identity component of the group of diffeomorphisms of M .

Consider the group G̃ of automorphisms of L that preserve the unitary bundle
structure and cover an element in Diff0. This group preserves P, exchanging
solutions of (2.3). Denote by G the gauge group of the hermitian bundle L.
Then we have an exact sequence [1]

1 → G −→ G̃ p−→ Diff0 → 1. (2.9)

Given a connection θ on L, we have a lift Ω0(T ) → Lie(G̃) and at the level of
vector spaces the corresponding Lie algebra sequence splits

0 → Lie(G) −→ Lie(G̃) p−→ Ω0(T ) → 0. (2.10)

2.3. Linearization and ellipticity. In the sequel, we fix a solution (Ω, θ, ω)
of (2.3). The integrable almost complex structure determined by Ω will be
denoted by J and the curvature of θ will be denoted by F . The complex
encoding infinitesimal deformations of (2.3) is built from an elliptic complex
parameterizing infinitesimal deformations of the complex structure that pre-
serve the Calabi-Yau condition, that is, with trivial canonical bundle, [33]

0 → Ω0(T 1,0)
L·Ω−→ Ω3,0 ⊕ Ω2,1 d−→ Ω3,1 ⊕ Ω2,2. (2.11)
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Here, the first non-trivial arrow is defined by the infinitesimal action of Diff0,
given by the Lie derivative of Ω and we use the following characterization of
the tangent space of Ω3

0 at Ω:

TΩΩ
3
0 = Ω3,0 ⊕ Ω2,1.

The variations in Ω3,0 are just rescaling of the holomorphic 3-form, while el-
ements in Ω2,1 correspond via T0 to deformations of the complex structure.
Given Ω̇ ∈ Ω3,0 ⊕ Ω2,1, we will denote by J̇ the associated variation of almost
complex structure given by

J̇1,0 = 2iT−1
0 (Ω̇2,1), (2.12)

with J̇1,0 = 1
2
(J̇ − iJJ̇).

Let T0P be the tangent space of P at the initial solution:

T0P = {(Ω̇, θ̇, ω̇) ∈ Ω3,0 ⊕ Ω2,1 ⊕ Ω1(iR)⊕ Ω2 | Jω̇ − ω̇ = −ωJ̇J}.
Note that the equations that define T0P can be equivalently written as

2iω̇0,2 = ωJ̇1,0

(2.13)

and therefore there is a canonical isomorphism

T0P ∼= A1 := Ω3,0 ⊕ Ω2,1 ⊕ Ω1(iR)⊕ Ω1,1
R
, (2.14)

where Ω1,1
R

⊂ Ω1,1 denotes the space of real (1, 1)-forms on (M,Ω), given ex-
plicitly by

ω̇ = ω̇1,1 +
1

2
ωJ̇J . (2.15)

Consider the linearization of the equations (2.3)

L : T0P → A2 := Ω3,1 ⊕ Ω2,2 ⊕ Ω0,2 ⊕ Ω4 ⊕ Ω5 ⊕ Ω6(iR).

Using the vector space splitting (2.10) given by the fixed connection θ, the
infinitesimal action

P : Lie(G̃) → T0P
reads explicitly

P : A0 := Ω0(T )× Ω0(iR) → T0P
(V, r) 7→ (dιV 1,0Ω, ιV F + dr,LV ω)

(2.16)

with V 1,0 = 1
2
(V − iJV ). We construct a complex of differential operators

(A∗) A0 P−→ A1 L−→ A2, (2.17)

combining the operators P and L with the isomorphism (2.14). Our aim is to
prove that this complex is elliptic. Note that an arbitrary unitary connection on
L is of the form θ+ θ̇ where θ̇ ∈ Ω1(iR), with corresponding curvature F + dθ̇,
and also that λ = λ(Ω, ω) is a function of the hermitian structure given by
(2.4). Using this, we obtain the following expression for the differential L,
regarded as an operator with domain T0P.
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Lemma 2.1. The differential L = ⊕5
i=1Li is given by

L1(Ω̇, θ̇, ω̇) = dΩ̇,

L2(Ω̇, θ̇, ω̇) = ∂̄θ̇0,1 + i
2
(F J̇)0,2,

L3(Ω̇, θ̇, ω̇) = d
(
Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F )

)
,

L4(Ω̇, θ̇, ω̇) = d (2||Ω||ωω̇ ∧ ω + δ(||Ω||ω)ω2) ,

L5(Ω̇, θ̇, ω̇) = dθ̇ ∧ ω2 + (2F − 3λω) ∧ ω̇ ∧ ω − λ̇ω3.

(2.18)

where J̇ and λ̇ are, respectively, the infinitesimal variations of almost-complex
structure and constant λ defined by Ω̇ and ω̇, and

δ(||Ω||ω) = ||Ω||−1
ω Re(Ω̇,Ω)ω − 1

2
||Ω||ωΛωω̇. (2.19)

Proof. The calculation of L1, L4 and L5 is straightforward and for the calcu-
lation of L2 see e.g. [31]. Formula (2.19) follows from (2.5). To compute L3,
note that dc = JdJ−1, where the action of J on forms b ∈ Ωp is

Jb = b(J−1·, . . . , J−1·) = (−1)pb(J ·, . . . , J ·).
Then, using the compatibility between ω and JΩ in (2.3) we have dcJΩω = JΩdω
and therefore

d

dt |t=0
(JtdJ

−1
t ωt) =

d

dt |t=0
(Jt(dω)) + Jdω̇.

Lastly,

d

dt |t=0
(Jtdω) = −dω(J̇·, J ·, J ·)− dω(J ·, J̇·, J ·)− dω(J ·, J ·, J̇·)

= dω(J̇J2·, J ·, J ·) + dω(J ·, J̇J2·, J ·) + dω(J ·, J ·, J̇J2·)
= −J(dω(J̇J ·, ·, ·) + dω(·, J̇J ·, ·) + dω(·, ·, J̇J ·))
= −J(dω)J̇J .

�

We note that the differential operator L is of first order in the components
L1,L2,L4 and L5, but L3 has order two. We shall use the generalized notion
of ellipticity provided by Douglis and Nirenberg [19]. For the general theory of
linear multi-degree elliptic differential operators we refer to [51, 52]. Here we
recall the basic definition. Let E and F be smooth real vector bundles over
the compact manifold M with a direct sum decomposition

E =
m⊕

j=1

Ej, F =
l⊕

i=1

Fi,

and L : Ω0(E) → Ω0(F ) a linear differential operator with corresponding de-
composition L = ⊕i,jLij .
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Definition 2.1. Two tuples, t = (t1, . . . , tm) and s = (s1, . . . , sl) of non-
negative integers form a system of orders for L if for each 1 ≤ j ≤ m, 1 ≤ i ≤ l
we have order Lij ≤ tj − si (if tj − si < 0 then Lij = 0). The (t, s)-principal
part of L is obtained by replacing each Lij by its terms which are exactly of
order tj − si, and the (t, s)-principal symbol of L is obtained by replacing each
Lij with its tj − si principal symbol.

We apply now this definition to our setup.

Lemma 2.2. The leading symbol of P is given by the formula

σP(v)(V, r) = (v ∧ ιVΩ, vr, v ∧ ιV ω), (2.20)

where v ∈ T ∗ \M . The tuples t = (2, 2, 2) and s = (1, 1, 0, 1, 1) form a system
of orders for L and the associated leading symbol is

σL(v)(Ω̇, θ̇, ω̇) = (σL1
(v), σL2

(v), σL3
(v), σL4

(v), σL5
(v)), (2.21)

with
σL1

(v)(Ω̇, θ̇, ω̇) = v ∧ Ω̇,

σL2
(v)(Ω̇, θ̇, ω̇) = (v ∧ θ̇)(0,2),

σL3
(v)(Ω̇, θ̇, ω̇) = v ∧ J(v ∧ ω̇),

σL4
(v)(Ω̇, θ̇, ω̇) = v ∧ (2||Ω||ωω̇ ∧ ω + δ(||Ω||ω)ω2) ,

σL5
(v)(Ω̇, θ̇, ω̇) = v ∧ θ̇ ∧ ω2.

(2.22)

Proof. To apply Definition 2.1 we use the direct sum decomposition (2.14),
setting Ω0(E1) = Ω3,0 ⊕ Ω2,1, Ω0(E2) = Ω1(iR) and Ω0(E3) = Ω1,1

R
. The proof

is a routine check and is left to the reader. �

A linear multi-degree complex of differential operators is elliptic if the in-
duced sequence of symbols is exact, as in the standard case. The usual Fred-
holm properties of elliptic complexes hold, and therefore given any elliptic
complex we have an associated finite dimensional cohomology.

Proposition 2.2. The sequence (2.17) is an elliptic complex. The space of in-
finitesimal deformations of the system (2.3) is defined as the finite-dimensional
vector space

H1(A∗) =
KerL

ImP
.

Proof. By G̃-invariance of (2.3), L ◦P = 0. We prove next that the associated

sequence of symbols is exact. Assume that σL(v)(Ω̇, θ̇, ω̇) = 0 for v ∈ T ∗ \M .
From the equations σLj

(v) = 0, j = 2, 5, we deduce that there is a purely

imaginary constant r such that θ̇ = vr. Using the ellipticity of the complex
(2.11) and the isomorphism (2.7) there exists a unique V ∈ T such that

Ω̇ = v ∧ ιVΩ.
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In terms of J̇ , this translates to

J̇ = Jv ⊗ V + v ⊗ JV. (2.23)

It remains to show that ω̇ = v ∧ ιV ω. From σL4
(v) = 0 we deduce

(Jv) ∧ v ∧
(
2||Ω||ωω̇ ∧ ω + δ(||Ω||ω)ω2

)
= 0. (2.24)

Using now J(σL3
(v)) = 0, we obtain

δ(||Ω||ω)(Jv) ∧ v ∧ ω2 = 0,

and from this,

δ(||Ω||ω) = 0. (2.25)

Using now (2.5) and (2.19)

‖Ω‖2ωω̇ ∧ ω2 = 2i
(
Ω̇ ∧ Ω+ Ω ∧ Ω̇

)

= 2iv ∧ iV (Ω ∧ Ω)

= ‖Ω‖2ωv ∧ (iV ω) ∧ ω2.

(2.26)

Define τ = ω̇ − v ∧ (iV ω) and notice from (2.13) and (2.23) that τ is a real
(1, 1)-form. Furthermore, from (2.26) and (2.25), combined with the vanishing
of σL3

(v) and σL4
(v), we deduce

τ ∧ ω2 = 0,

τ ∧ v ∧ ω = 0,

τ ∧ v ∧ Jv = 0.

(2.27)

From the last equation

τ = v ∧ a + Jv ∧ b
for suitable 1-forms a and b. Complete the family {v, Jv} into a basis of T ∗

with forms {X, JX, Y, JY } such that ω is written

ω = lv ∧ Jv +X ∧ JX + Y ∧ JY (2.28)

for some real constant l. Now, from the second equation in (2.27) we obtain
that b is proportional to v and therefore

τ = v ∧ (t1Jv + t2X + t3JX + t4Y + t5JY )

for suitable real constants t1, . . . , t5 ∈ R. We note that a basis of the space of
real (1, 1)-forms is

Λ1,1
R

=〈 v ∧ Jv, X ∧ JX, Y ∧ JY, X ∧ v + JX ∧ Jv,
JX ∧ v + Jv ∧X, Y ∧ v + JY ∧ Jv, JY ∧ v + Jv ∧ Y,
X ∧ Y + JX ∧ JY, JX ∧ Y + JY ∧X 〉

and therefore necessarily

τ = t1v ∧ Jv.
Finally, from the first equation in (2.27) we obtain t1 = 0, which implies that
ω̇ = v ∧ (iV ω) as claimed. �
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2.4. Extension of the complex. We extend the complex (2.17) in order to
define a space of obstructions to integrability of infinitesimal deformations of
the abelian equations (2.3).
We first define a complex parameterizing joint deformations of a Calabi-Yau

structure onM endowed with a holomorphic line bundle. For this, we combine
an elliptic complex defined by Goto [33] with previous work of Huang [38].
Goto’s complex is an extension of the complex (2.11) given by

0 → Ω2,0 d−→ Ω3,0 ⊕ Ω2,1 d−→ Ω3,1 ⊕ Ω2,2 d−→ Ω3,2 ⊕ Ω2,3 d−→ Ω3,3 −→ 0,
(2.29)

where we use the identification Ω0(T 1,0) ∼= Ω2,0 provided by the isomorphism
(2.7). Following [38] (cf. [31]) we define an elliptic complex

(C∗) 0 → C0 ∂̄0−→ C1 ∂̄0−→ C2 ∂̄0−→ C3 ∂̄0−→ C4 −→ 0 (2.30)

where

Cj := Ω3,j−1 ⊕ Ω2,j ⊕ Ω0,j , j ≥ 0,

(by convention Ω3,−1 = 0) with differential given by

∂̄0(α, β) = (dα, ∂̄β − F T−1
0

(α2,j )).

To include deformations of the metric, we build on the complex for the
Hermite–Yang–Mills equations defined by Kim [44] (see also [45, p. 246]).
Consider the following commutative diagram

(Ã∗) 0 // Ã0 P
//

p0

��

Ã1 L̃
//

p1

��

Ã2
∂̄0⊕d̃

//

p2

��

Ã3
∂̄0⊕d

//

p3

��

Ã4 //

p4

��

0

(C∗) 0 // C0 ∂̄0
// C1 ∂̄0

// C2 ∂̄0
// C3 ∂̄0

// C4 // 0

(2.31)

with

Ã0 := A0, p0(V, r) = (iVΩ, r),

Ã1 := A1, p1(Ω̇, θ̇, ω̇) = (Ω̇, θ̇0,1),

Ã2 := C2 ⊕ Ω2,2
R

⊕ Ω5 ⊕ Ω6(iR), p2(s, γ, δ, ǫ) = s,

Ãj := Cj ⊕ Ωj+2 ⊕ Ωj+3, pj(s, τ, σ) = s, j = 3, 4,

where s denotes an element in Cj for j ≥ 2. It remains to define the maps

L̃ and d̃ in (2.31), given by suitable modifications of the operator L in (2.17)
(see Lemma 2.1) and the exterior differential. Firstly, we define

L̃ = L1 ⊕ L2 ⊕ L
2,2
3 ⊕ L4 ⊕ L5,

where L2,2
3 denotes the (2, 2) part of L3 in (2.18). We note that d ◦L3 = 0, but

d ◦ L2,2
3 does not vanish in general. In fact, we have the following formula.

Lemma 2.3. The (1, 3) part of L is given by

L
1,3
3 = −2i∂(ωT−1

0
(L2,2

1
))− 2i(∂ω)T

−1
0

(L2,2
1

) − 2cL2 ∧ F. (2.32)
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This motivates the introduction of the map

d̃ : Ã2 → Ω5 ⊕ Ω6,

defined by

d̃(α, β, γ, δ, ǫ) =
(
d
(
γ − 2Re

(
2i(∂ω)T

−1
0

(α2,2) + 2cβ ∧ F
))

, dδ
)

We are now ready to prove the main result of this section.

Proposition 2.3. The sequence Ã∗ defines an elliptic complex of differential
operators, whose first cohomology H1(Ã∗) equals the cohomology H1(A∗) of

(2.17). The space of obstructions for the system (2.3) is defined as H2(Ã∗).

Remark 2.2. The complex Ã∗ has a slightly different flavour from the one of
Kim [44] (see also [45]), due to the conformally balanced equation. In Kim’s
complex, the linearization of the hermitian-Yang-Mills equation is extended by
zero, while in (2.31) we need to introduce an exterior differential to extend
the linearization of the conformally balanced equation as part of an elliptic
complex.

We start with the proof of (2.32). We need the following.

Lemma 2.4. Let γ ∈ Ωd(T 1,0) and α ∈ Ωp,q. Then

∂(αγ) = α∂γ − (−1)d(∂α)γ. (2.33)

Proof. Write locally γ =
∑

k γk
∂

∂zk
so that

αγ =
∑

k

γk ∧ ι ∂
∂zk

α.

Then
∂αγ =

∑

k

(∂γk) ∧ ι ∂
∂zk

α + (−1)d
∑

k

γk ∧ ∂(ι ∂
∂zk

α).

The formula
∂(ι ∂

∂zk

α) = −ι ∂
∂zk

∂α

follows from ι ∂
∂zk

dzj = 0 and the expression of α in local coordinates. �

Proof of Lemma 2.3. By (2.18) and (2.13)

(L3(Ω̇, θ̇, ω̇))
(3,1)+(1,3) = − ∂∂̄(ωJ̇)− (dJ(dω)J̇J)(3,1)+(1,3)

− 2c(∂θ̇1,0 + ∂̄θ̇0,1) ∧ F,
(2.34)

and
(dJ(dω)J̇J)1,3 = ∂̄((∂ω)J̇

1,0

)− ∂((∂̄ω)J̇
1,0

). (2.35)

From formula (2.33), we obtain

(L3(Ω̇, θ̇, ω̇))
(1,3) = −∂∂(ωJ̇1,0

)− ∂̄((∂ω)J̇
1,0

) + ∂((∂̄ω)J̇
1,0

)

− 2c(∂̄θ̇0,1) ∧ F
= −∂(ω∂̄J̇1,0

)− (∂ω)∂J̇
1,0

+ (∂∂ω)J̇
1,0

− 2c(∂̄θ̇0,1) ∧ F.
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The proof follows now using the third equation in (2.3). �

Using Lemma 2.3, we go now for the proof of Proposition 2.3.

Proof of Proposition 2.3. We first prove that (2.31) is a complex. Note that

L ◦ P = 0 implies L̃ ◦ P = 0 and trivially d ◦ d̃ = 0. Hence, using that C∗

is a complex, it remains to prove that d̃ ◦ L̃ = 0. Given (Ω̇, θ̇, ω̇) ∈ Ã1, using
Lemma 2.3 we obtain

d̃ ◦ L̃(Ω̇, θ̇, ω̇) = (d(2 Re(∂(ω∂̄J̇1,0

))), 0),

which vanishes for type reasons. We next prove that Ã∗ is elliptic. Ellipticity
at steps one, two and five follows from ellipticity of the complex C∗ and the
proof of Proposition 2.2. Ellipticity at step four follows from ellipticity of C∗

and of the complex

Ω2,2 d−→ Ω5 d−→ Ω6 −→ 0,

combined with the formula for the symbol of d̃. We verified the ellipticity of Ã∗

at all steps but one, so it remains to show that an alternated sum of dimensions
vanishes. Given a complex B∗ as above and x ∈ M , set Bj

x to be the fiber at
x of the bundle on M whose space of smooth global sections is Bj . With this
notation, we need to show that

∑

j

(−1)j dim(Ãj
x) = 0. (2.36)

By (2.14),

Ã1 ∼= C1 ⊕ Ω1,1
R

(2.37)

and note that

Ã0 ⊕ Ω0 ∼= C0. (2.38)

By ellipticity of C∗, the following sum vanishes:
∑

j

(−1)j dim(Cj
x) = 0. (2.39)

Then, by (2.39), (2.37) and (2.38), equation (2.36) is equivalent to

dim(Λ0T ∗
x ) = − dim(Λ1,1

R
T ∗
x ) + dim(Λ2,2

R
T ∗
x ⊕ Λ5T ∗

x ⊕ Λ6T ∗
x )

− dim(Λ5T ∗
x ⊕ Λ6T ∗

x ) + dim(Λ6T ∗
x ),

which is trivially satisfied. Finally, by (2.32), L̃ = 0 is equivalent to L = 0, so
the first cohomology of Ã∗ equals the cohomology of (2.17). �

3. Infinitesimal moduli: general case

In this section we construct the infinitesimal moduli space of solutions for
the Strominger system. The main novelty with respect to the abelian setting is
that the symmetries of the system must preserve the compatibility between the
connection ∇ and the U(3)-structure on the tangent bundle. As a result, the
specific gauge transformations that we consider do not have a group structure,
but nevertheless fit into the more general framework of Lie groupoid-actions.
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3.1. Notation and parameter space. Let M be a compact, oriented, six
dimensional smooth manifold. Let PGL+ be the principal GL+(6,R)-bundle of
oriented frames of M . Let PK be a principal bundle, with compact structure
group K. Let P be the principal G-bundle given by the fiber product

P = PK ×M PGL+

with G = K ×GL+(6,R). We fix a non-degenerate pairing on the Lie algebra

g = k⊕ gl(6,R)

of G, given by

c = 2α′(− trk −cgl). (3.1)

Here, − trk denotes the Killing form on k and cgl is a non-degenerate invari-
ant metric on gl(6,R), which extends the non-degenerate Killing form − tr on
sl(6,R) ⊂ gl(6,R).
Let A denote the space of product connections θ = A×∇ on P , where A is

a connection on PK and ∇ is a connection on the tangent bundle T of M . As
in Section 2, we denote by Ω3

0 ⊂ Ω3
C
the space of complex 3-forms Ω such that

(2.1) determines an almost complex structure JΩ on M . For our analysis, we
consider a parameter space

P ⊂ Ω3
0 ×A× Ω2,

defined by

P = {(Ω, θ, ω) | ω is JΩ − compatible and ∇ is (JΩ, ω)− unitary}.
The points in P are regarded as unknowns for the system of equations

dΩ = 0, d(||Ω||ωω2) = 0,

F 0,2
θ = 0, Fθ ∧ ω2 = 0,

ddcω − c(Fθ ∧ Fθ) = 0,

(3.2)

where Fθ denotes the curvature of θ = A×∇, given explicitly by

Fθ = FA +R∇ ∈ Ω2(adP ).

Our convention for the curvature tensor is [9]

Fθ = −θ[θ⊥·, θ⊥·] ∈ Ω2(adP ),

where θ is identified with a bundle morphism θ : TP → V P , θ⊥ := Id − θ is
the projection into the horizontal subspace and the Bracket denotes the Lie
bracket of vector fields on P . Alternatively, we will use the formula

Fθ = dθ +
1

2
[θ, θ],

where θ is regarded as a G-invariant 1-form in P with values in g and the
bracket is the one on the Lie algebra. The induced covariant derivative on the
bundle of Lie algebras adP = P ×G g is

iV d
θr = [θ⊥V, r],

which satisfies dθ ◦ dθ = [Fθ, ·].
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Remark 3.1. The compatibility between ∇ and the SU(3)-structure on M is
unmotivated from the physics point of view, but it is helpful for the mathemat-
ics that follow, making our discussion more standard. For the physics of the
Strominger system it is required the weaker assumption that ∇ is compatible
with the metric underlying the SU(3)-structure.

Solutions of (3.2) are in correspondence with structures of Calabi-Yau mani-
fold onM , endowed with a solution of the Strominger system (1.1), as it follows
from

c(Fθ ∧ Fθ) = α′ (trR∇ ∧R∇ − trk FA ∧ FA) .

Note here that the compatibility between ∇ and (JΩ, ω) reduces the holonomy
of ∇ to U(3) ⊂ SL(6,R), and c|sl(6,R) = − tr.
We now proceed to the description of the tangent space of P. Fix an ele-

ment (Ω, θ, ω) of P and set T0P to be the tangent space of P at this point.
Differentiating the compatibility conditions ∇J = 0 and ∇ω = 0, we obtain

∇J̇ + [∇̇, J ] = 0, ∇ω̇ − ω∇̇ = 0, (3.3)

where ∇̇ ∈ Ω1(EndT ) is the variation of ∇ and

ω∇̇(X, Y ) = ω(∇̇X, Y ) + ω(X, ∇̇Y )

for all X, Y ∈ Ω0(T ). Then, the non skew-hermitian part of ∇̇ with respect to

(JΩ, ω) is determined by the variations J̇ and ω̇ and we find an isomorphism

T0P ∼= S1 := Ω3,0 ⊕ Ω2,1 ⊕ Ω1(adPh)⊕ Ω1,1
R
, (3.4)

where
Ph = PK ×M PU(3),

and PU(3) ⊂ PGL+ is the =U(3)-reduction determined by the bundle of unitary
frames of (JΩ, ω). This isomorphism is explicitly defined combining (2.15) and

∇̇ = ∇̇h −∇
(
1

2
JJ̇ +

1

4
(ω̇J + Jω̇)

)
, (3.5)

for ∇̇h ∈ Ω1(adPU(3)). Note that in (3.5), ω̇ stands for the element of Ω0(End(T ))
associated to ω̇ via the metric g = ω(·, J ·). We also note that, unlike (2.14),
the isomorphism S1 → T0P is a differential operator of order 1, and hence it is
not induced by a bundle isomorphism. This will be important in what follows.

3.2. Gauge groupoid and infinitesimal action. We define now the sym-
metries that we will use to construct the space of infinitesimal variations of the
Strominger system. Given g ∈ AutP , we denote by ǧ ∈ Diff the diffeomor-
phism in the base that it covers. Consider the groupoid

G̃ ⇒ P
given by

G̃ := {(g,Ω, θ, ω) ∈ AutP × P | g∗(JΩ, ω) = ǧ∗(JΩ, ω)},
with source and target maps

s(g, x) = x, t(g, x) = xg,
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where x ∈ P and the right action is given by pull-back. We refer to [54] for basic
definitions on groupoids. The proof of the following result is straightforward
and is therefore omitted.

Lemma 3.1. The action of G̃ on P preserves (3.2), that is, if x ∈ P is a
solution of (3.2) then xg is also a solution for all (g, x) ∈ s−1(x).

We fix an element (Ω, θ, ω) ∈ P and denote F = Fθ, R = R∇ and J = JΩ.
There is a natural bijection

s−1(Ω, θ, ω) ∼= AutPK × GU(3), (3.6)

where GU(3) denotes the gauge group of the U(3)-structure (J, ω). Hence, using
the connection A on PK , the vector space of infinitesimal symmetries is given
by

S0 = Ω0(T )⊕ Ω0(adPh).

Lemma 3.2. The infinitesimal action of (V, t) ∈ Ω0(T ) ⊕ Ω0(adPU(3)) on ∇
is given by

d∇t+ d∇(∇V ) + iVR (3.7)

where d∇(∇V ) denotes the exterior derivative d∇ on Ω∗(EndT ), induced by ∇,
acting on the endomorphism ∇V ∈ Ω0(End T ).

Proof. For an arbitrary element ζ ∈ LieAutPGL+ we can write uniquely

ζ = t +∇⊥V,

for suitable t ∈ Ω0(adPGL+) and V ∈ Ω0(T ), where∇⊥V denotes the horizontal
lift of V with respect to ∇. Then, using this splitting, the infinitesimal action
of ζ on ∇ reads

ζ · ∇ = d∇t+ iVR.

Here we note that adPGL+ = End T and ∇t denotes the covariant derivative on
EndT acting on the endomorphism t ∈ Ω0(EndT ). Finally, given V ∈ Ω0(T ),
we note that dV : T → T (T ) is the image of V by the Lie algebra morphism

Ω0(T ) → LieAutPGL+

induced by the natural inclusion 0 → Diff0 → AutPGL+ , and hence the result
follows from the formula

∇V = dV −∇⊥V.

�

By Lemma 3.2, the infinitesimal action of G̃ on (Ω, θ, ω) ∈ P reads:

(V, r) · (Ω, θ, ω) = (dιVΩ, (r + θ⊥V ) · θ,LV ω), (3.8)

where r = s+ t ∈ Ω0(adPK ⊕ adPU(3)) and

(r + θ⊥V ) · θ = (dAs+ ιV FA, d
∇t+ d∇(∇V ) + iVR). (3.9)

Here, dA denotes the exterior derivative induced by A on Ω∗(adPK). Using the
previous formula and the isomorphism (3.4), we define a differential operator

P : S0 → S1

(V, r) 7→ (dιVΩ, θ̇h, (LV ω)
1,1),

(3.10)
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where

θ̇h = (r + θ⊥V ) · θ +∇
(
1

2
JJ̇ +

1

4
(ω̇J + Jω̇)

)
∈ Ω1(adPh),

for ω̇ = LV ω and J̇ given by (2.12). We conclude this section with the following
lemma, whose proof is left to the reader.

Lemma 3.3. The tuples t = (2, 1, 1) and s = (1, 0, 0, 1) form a system of
orders for P and the associated leading symbol is given by

σP(v)(V, r) = (v ∧ ιV Ω, v ⊗ s, v ⊗ (t + (v ⊗ V )h), (v ∧ ιV ω)1,1), (3.11)

where v ∈ T ∗\M and (v⊗V )h is the skew-hermitian part of the endomorphism
v ⊗ V .

3.3. Linearization and ellipticity. Let (Ω, θ, ω) ∈ P be a solution of (3.2).
Let us denote by L the differential at (Ω, θ, ω) of (3.2) with respect to variations
in T0P. We set

S2 = Ω3,1 ⊕ Ω2,2 ⊕ Ω0,2(adPh)⊕ Ω4 ⊕ Ω5 ⊕ Ω6(adPh).

Lemma 3.4. The operator L takes values in S2 and induces an operator

L = ⊕5
i=1Li : S

1 → S2 (3.12)

via (3.4), given by

L1(Ω̇, θ̇h, ω̇
1,1) = dΩ̇,

L2(Ω̇, θ̇h, ω̇
1,1) = ∂̄θ(θ̇h)

0,1 +
i

2
(F J̇)0,2,

L3(Ω̇, θ̇h, ω̇
1,1) = d

(
Jdω̇ − J(dω)J̇J − 2c(θ̇h ∧ F )

)
,

L4(Ω̇, θ̇h, ω̇
1,1) = d

(
2||Ω||ωω̇ ∧ ω + δ(||Ω||ω)ω2

)
,

L5(Ω̇, θ̇h, ω̇
1,1) = dθθ̇h ∧ ω2 + 2F ∧ ω̇ ∧ ω,

(3.13)

where ω̇ = ω̇1,1 + 1
2
ω̇J̇J , J̇ is the infinitesimal variation of almost-complex

structure (2.12), δ(||Ω||ω) is given by formula (2.19), and ∂
θ
= p(0,1) ◦ dθ is the

Dolbeault operator induced by θ.

Proof. The computations follow as in the proof of Lemma 2.1. The crucial step
is to show that the only contribution to L : T0P → S2 in the variation of F

dθθ̇ = dAȦ + d∇∇̇
comes from dAȦ + d∇∇̇h, where θ̇ = Ȧ + ∇̇ and θ̇h = Ȧ + ∇̇h (see (3.5)). To
simplify the exposition, for a moment we denote

q =
1

2
JJ̇ +

1

4
(ω̇J + Jω̇) (3.14)

so that

∇̇ = ∇̇h −∇q.
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With this notation,

d∇∇̇ = d∇∇̇h − d∇d∇q

= d∇∇̇h − [R, q].
(3.15)

Then, as (Ω, θ, ω) is a solution of (3.2), R0,2 = 0 and R∧ω2 = 0, and therefore

[R, q]0,2 = 0,

[R, q] ∧ ω2 = 0.

Jointly with (3.15), formulae for L2 and L5 follow. Finally, to calculate L3, we
note that

tr([R, q] ∧R) = 0.

�

Consider the following complex of differential operators

(S∗) S0 P−→ S1 L−→ S2. (3.16)

Theorem 3.1. The complex (3.16) is elliptic. The space of infinitesimal de-
formations of solutions to the Strominger system of equations is defined as the
first cohomology group H1(S∗).

Proof. As the G̃-action preserves solutions of (3.2), L ◦ P = 0. Assume that

σL(v)(Ω̇, θ̇h, ω̇
1,1) = 0, with θ̇h = Ȧ + ∇̇h (see (3.14)). Then, arguing as in the

proof of Proposition 2.2 we obtain

(Ω̇, Ȧ, ∇̇h, ω̇
1,1) = (v ∧ ιVΩ, v ⊗ s, v ⊗ t, (v ∧ ιV ω)1,1)

for some V ∈ T and s+ t ∈ adPh. Trivially,

∇̇h = v ⊗ (t′ + (v ⊗ V )h)

for t′ ∈ adPh and hence the result follows. �

We finish this section extending the complex (3.16), in order to define a space
of obstructions to integrability for infinitesimal deformations of the Strominger
system. We follow closely the method in Section 2.4. Define

S̃0 := S0,

S̃1 := S1,

S̃2 := Ω3,1 ⊕ Ω2,2 ⊕ Ω0,2(adPh)⊕ Ω2,2
R

⊕ Ω5 ⊕ Ω6(adPh),

S̃3 := Ω3,2 ⊕ Ω2,3 ⊕ Ω0,3(adPh)⊕ Ω5 ⊕ Ω6,

S̃4 := Ω3,3 ⊕ Ω6,

and

(S̃∗) 0 // S̃0 P
// S̃1 L̃

// S̃2 ∂̄0⊕d̃
// S̃3 ∂̄0⊕d

// S̃4 // 0. (3.17)

Here

∂̄0(α, β) = (dα, ∂̄θβ − F T−1
0

(α2,j)).
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for α ∈ Ω3,j−1 ⊕ Ω2,j and β ∈ Ω0,j(adPh), for j = 2, 3, and

d̃(α, β, γ, δ, ǫ) =

(
d

(
γ − 4Re

(
i(∂ω)T

−1
0

(α2,2) +
1

2
c(β ∧ F )

))
, dδ

)
.

The proof of the following result follows easily combining the proof of Propo-
sition 2.3 with the ellipticity of Kim’s complex [44] (see also [45, p. 246]).

Theorem 3.2. The complex S̃∗ is elliptic and there is a natural isomorphism
H1(S̃∗) = H1(S∗). The space of obstructions to integrability of infinitesimal
deformations of the Strominger system of equations is defined as the second
cohomology group H2(S̃∗) of S̃∗.

4. Anomaly cancellation, flux quantization and
generalized geometry

The aim of this section is to initiate the study of the geometry of the moduli
space of solutions of the Strominger system which emerges from the Bianchi
identity. We describe the infinitesimal structure of a natural foliation in the
moduli space, whose leaves are intimately related to generalized geometry.

4.1. An integrable distribution in the moduli space. This prelude in-
tends to serve as motivation for the rest of this section. Our discussion is to
be taken rather formally, since we do not want to get involved here with the
differential-topological aspects of the problem. In particular, the construction
of a natural differentiable structure on the moduli space of solutions of the
Strominger system will be addressed in a sequel of the present work.
Following the notation of Section 3, the moduli space of solutions of the

Strominger system can be identified with the quotient

M = PS/G̃,
where PS ⊂ P is the locus where the equations (3.2) are satisfied. Using the
transgression formula for the Chern–Simons 3-form, given any point (Ω, θ, ω)
in M we define a H3(M,R)-valued function

ϑ(Ω′, θ′, ω′) = [dc
′

ω′ − dcω − 2c(a ∧ F )− c(a ∧ dθa)− 1

3
c(a ∧ [a, a])],

where θ′ = θ+a. This function is well-defined up to the action of the equivariant
mapping class group of the principal bundle P and hence it defines a global,
closed, H3(M,R)-valued 1-form

δ ∈ Ω1(M, H3(M,R)),

induced by the explicit expression

δ(Ω̇, θ̇, ω̇) = [Jdω̇ − J(dω)J̇J − 2c(θ̇h ∧ F )].
Neglecting obstructions to integrability, the tangent space of M at a point
can be identified with the cohomology group H1(S∗) and the closed 1-form δ
induces now an integrable distribution

0 // Ker δ // H1(S∗)
δ
// H3(M,R)
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and therefore a foliation on the moduli space. The leaves of this foliation
are closely related to generalized geometry, as we will rigorously show in this
section at the infinitesimal level.
Motivation for our construction comes from the Green-Schwarz mechanism

[34] and the flux quantization condition, two basic principles in the physics of
the heterotic string. On the one hand, physics claims that the fundamental
equation relating the unitary structure on the manifold with the pair of con-
nections ∇ and A is a local equation for 3-forms, the so-called Green-Schwarz
anomaly cancellation condition (or anomaly equation, for short)

H = db− α′(CS(∇)− CS(A)), (4.1)

written in terms of the Chern–Simons 3-forms of A and ∇, where H := dcω is
the 3-form flux. This requires the introduction of an additional ingredient: a
local real 2-form b—usually known as B-field potential. The Bianchi identity
(1.3) is obtained by taking the exterior derivative in (4.1). On the other hand,
the second principle says that the ‘closed part’ of the flux H , obtained by gluing
the local closed 3-forms db, is quantized (see e.g. [3, 17]), giving a fixed integral
cohomology class in H3(M,Z). Although the Green-Schwarz mechanism can
be rigorously understood in topological grounds using the theory of differential
string structures [62], here we shall focus on its interpretation in terms of
geometry in the moduli space. In this setup, level sets of the multi-valued
function ϑ correspond formally to solutions of the anomaly equation (4.1),
while the kernel of the 1-form δ can be interpreted as infinitesimal variations
which preserve the flux quantization.

4.2. Constraining infinitesimal variations: abelian case. To simplify
the exposition and highlight the main ideas, we start our discussion with the
abelian case studied in Section 2. Let H1(A∗) be the finite-dimensional vector
space of infinitesimal variations of the given solution (Ω, θ, ω), constructed in
Section 2. We note from (2.18) that there is a natural linear map

δ : H1(A∗) → H3(M,R) (4.2)

given by

[(Ω̇, θ̇, ω̇)] 7→ [Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F )],
and we denote by H1(Å∗) := Ker δ. For an element [(Ω̇, θ̇, ω̇)] of H1(Å∗), the

equation L3((Ω̇, θ̇, ω̇)) = 0 is satisfied as a consequence of the stronger condition

Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F ) = db, (4.3)

for a 2-form b ∈ Ω2.
Being a fundamental parameter space, we would like to identify precisely the

objects thatH1(Å∗) parameterizes. In a first approximation, it is natural to ask

whether H1(Å∗) arises naturally as the cohomology of a complex of geometric
origin. We give next an affirmative answer to this preliminary question, but
somehow in an unexpected way: to construct the complex, we need to enlarge
the first two vector spaces in (2.17) (or (2.31)) by adding the space of 2-
forms Ω2. The 2-forms become part of the symmetries of the problem, but
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also contribute as additional data for the geometric objects parameterized by
H1(Å∗). Consider the following sequence

A0 ⊕ Ω2 P̊−→ A1 ⊕ Ω2 L̊−→ R̊, (4.4)

where we follow the notation of Section 2.4. Here,

R̊ := Ω3,1 ⊕ Ω2,2 ⊕ Ω0,2(iR)⊕ Ω3 ⊕ Ω5 ⊕ Ω6(iR),

and the maps P̊ and L̊ are defined by

P̊(V, r, B) = (P(V, r),−B)

and
L̊ = L1 ⊕ L2 ⊕ L̊3 ⊕ L4 ⊕ L5,

where
L̊3(Ω̇, θ̇, ω̇, b) = Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F )− db.

The main difference with (2.17) is that we have decreased by one the degree of

the original map L3 in such a way that L̊3 = 0 is precisely the equation (4.3).
Unlike (2.17), equation (4.4) is a sequence of differential operators of degree 1,
but it is not a complex.

Lemma 4.1. The sequence (4.4) defines a complex by restriction of the first
arrow to elements (V, r, B) ∈ A0 ⊕ Ω2 satisfying the equation

LV (d
cω) = 2c((dr + ιV F ) ∧ F )− dB. (4.5)

The proof follows from a direct calculation of L̊3◦P̊ and is therefore omitted.
Note that using the Bianchi identity (last equation in (2.3)), we can rewrite
(4.5) as

d(iV d
cω − 2crF ) = −dB. (4.6)

A fact worth mentioning is that the space of (V, r, B) satisfying (4.5) has a
natural Lie algebra structure. We will come back to this in Section 4.5. By
now, we use the suggestive notation

Lie ˚AutE := {(V, r, B) ∈ A0 ⊕ Ω2 satisfying (4.5)}. (4.7)

Lemma 4.2. The cohomology of the complex of vector spaces

(Å∗) Lie ˚AutE
P̊−→ A1 ⊕ Ω2 L̊−→ R̊ (4.8)

is naturally isomorphic to H1(Å∗). Consequently, the cohomology of Å∗ is finite
dimensional.

Proof. For a moment, denote by H1 the cohomology of (4.8). Then, we have a

natural linear map Φ: H1 → H1(Å∗) given by sending a class [(Ω̇, θ̇, ω̇, b)] inH1

to the class [(Ω̇, θ̇, ω̇)] in H1(Å∗). By definition of H1(Å∗), this map is trivially

surjective. Assume now that [(Ω̇, θ̇, ω̇, b)] ∈ H1 is such that [(Ω̇, θ̇, ω̇)] = 0 in

H1(Å∗). Then, (Ω̇, θ̇, ω̇) = P(V, r) and from the condition

L̊3(P(V, r), b) = 0

it follows that (V, r, b) ∈ Lie ˚AutE, proving that the map Φ is injective. �
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Note that the complex (4.8) is not a complex of differential operators in

the standard sense. This is due to the fact that Lie ˚AutE is described by the
differential equation (4.5) and hence it does not correspond to the space of
sections of any vector bundle. Therefore, the theory of elliptic operators does
not apply to (4.8), and there is no direct way of proving that its cohomology
is finite dimensional. We obtain this result by comparison with the elliptic
complex (2.17).

4.3. Weakening the symmetries: the elliptic complex Â∗. Leaving aside
for a moment the geometric interpretation of the parameter space H1(Å∗), we

would like to construct a related complex Â∗ which is, unlike Å∗, an elliptic
complex of differential operators in the standard sense. Furthermore, we will

construct Â∗ using degree 1 operators, and therefore simplifying the complex
A∗. The cohomology of this new complex, constructed by weakening the sym-
metries of Å∗, will fit into an exact diagram of linear maps

0

��

H2(M,R)

��

H1(Â∗)

��

0 // H1(Å∗)

��

// H1(A∗)
δ
// H3(M,R).

0

In the way, we will pin down some of the additional ingredients that we need
to describe H1(Å∗). Consider the vector bundle

E = T ⊕ iR⊕ T ∗

and note that Ω0(E) := A0⊕Ω1. We define a sequence of differential operators

(Â∗) Ω0(E)
P̊−→ A1 ⊕ Ω2 L̊−→ R̊, (4.9)

where the map P̊ is now defined by

P̊(V, r, ξ) = (P(V, r), dξ + iV (d
cω)− 2crF ).

A straightforward calculation shows that

(V, r,−dξ − iV (d
cω) + 2crF ) ∈ Lie ˚AutE (4.10)

and therefore (4.9) is a complex of differential operators.
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Proposition 4.1. The sequence (4.9) is an elliptic complex of differential op-
erators of degree 1. There is an exact sequence

0 → H2(M,R) → H1(Â∗) → H1(Å∗) → 0

where H1(Â∗) denotes the cohomology of (4.9).

Proof. By ellipticity of (2.17), σ
L̊
(Ω̇, θ̇, ω̇, b) = 0 implies (Ω̇, θ̇, ω̇) = σ

P̊
(V, r).

In addition,

0 = σ
L̊3
(v)(Ω̇, θ̇, ω̇, b) = J(v ∧ v ∧ iV ω)− v ∧ b = −v ∧ b

and therefore b = v ∧ v′ by ellipticity of the De Rham complex, proving ellip-
ticity of (4.9).

The linear map Φ which sends a class [(Ω̇, θ̇, ω̇, b)] ∈ H1(Â∗) to the class of

(Ω̇, θ̇, ω̇, b) in H1(Å∗) is trivially well-defined and surjective. Assume now that

the class of (Ω̇, θ̇, ω̇, b) is zero in H1(Å∗). Then, (Ω̇, θ̇, ω̇) = P(V, r) and from

the condition L̊3(P(V, r), b) = 0 and (4.6) it follows that

d(b− iV (d
cω) + 2crF ) = 0.

We can construct a map KerΦ → H2(M,R), defined by

[(P(V, r), b)] 7→ [b− iV (d
cω) + 2crF ],

which is an isomorphism. �

Remark 4.1. Note the strong analogy between Ω0(E) and Lie ˚AutE and, re-
spectively, the Hamiltonian vector fields and the symplectic vector fields on
a symplectic manifold. In fact, the natural map defined by (4.10) defines an
exact sequence

0 → Ω0(E) → Lie ˚AutE → H2(M,R) → 0,

which provides an analogue for the (differential of the) flux map in symplectic

geometry. In the next section, we will see that Lie ˚AutE has the structure
of a Lie algebra while Ω0(E) can be endowed with the structure of a Courant
algebra.

4.4. Relation with generalized geometry of type Bn. The construction
in Section 4.2 and Section 4.3 may look rather strange from a classical per-
spective, but turns out to be very natural in generalized geometry. The precise
theoretical framework that we need was introduced by Baraglia [5] and de-
veloped by the second author [61], and goes under the name of generalized
geometry of type Bn.
To explain the most basic aspects of this relation, in this section we consider

the vector bundle
E = T ⊕ iR⊕ T ∗ (4.11)

with an additional structure—the one of a smooth Courant algebroid. This
bundle is such that its space of global sections Ω0(E) provides the infinitesimal
symmetries for the elliptic complex (4.9) and the Lie algebra of infinitesimal

automorphisms of the Courant algebroid structure contains Lie ˚AutE as a
Lie subalgebra. In addition, the space of parameters A1 ⊕ Ω2—the middle
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step in the complexes (4.8) and (4.9)—will be naturally interpreted as a space
of infinitesimal variations of a generalized metric on E. The explanation of
more intricate aspects of our construction in terms of generalized geometry is
postponed to Section 5.
We fix our solution (Ω, θ, ω) of the abelian system (2.3). We shall emphasize

that the rest of this section relies solely on having a solution of the abelian
Bianchi identity

dH = c(F ∧ F ) (4.12)

with H = dcω and does not use the other structures provided by the equations.
Consider the smooth vector bundle (4.11) endowed with the symmetric pairing

〈X + r + ξ, Y + t+ η〉 = 1

2
(η(X) + ξ(Y )) + c(rt),

and the canonical projection
π : E → T.

Using the quantities H and F , we can endowed Ω0(E) with a Dorfman bracket

[X + r + ξ, Y + t+ η] = [X, Y ] + LXη − iY dξ + iY iXH

− F (X, Y ) + iXdt− iY dr

+ 2c(tdr) + 2c(iXFt)− 2c(iY Fr).

(4.13)

It can be checked from the Bianchi identity (4.12) that (E, 〈·, ·〉, [·, ·], π) satisfies
the axioms of a Courant algebroid (see [61, Sec. 2.3.3]).

Definition 4.1. A Courant algebroid (E, 〈·, ·〉, [·, ·], π) over a manifoldM con-
sists of a vector bundle E → M together with a non-degenerate symmetric
bilinear form 〈·, ·〉 on E, a (Dorfman) bracket [·, ·] on the sections Ω0(E), and
a bundle map π : E → TM such that the following properties are satisfied, for
e, e′, e′′ ∈ Ω0(E) and φ ∈ C∞(M):

(D1): [e, [e′, e′′]] = [[e, e′], e′′] + [e′, [e, e′′]],
(D2): π([e, e′]) = [π(e), π(e′)],
(D3): [e, φe′] = π(e)(φ)e′ + φ[e, e′],
(D4): π(e)〈e′, e′′〉 = 〈[e, e′], e′′〉+ 〈e′, [e, e′′]〉,
(D5): [e, e′] + [e′, e] = 2π∗d〈e, e′〉.
Automorphisms of this object were characterized in [61, Prop. 2.23]. For

our discussion, we just need the infinitesimal automorphisms, given by a linear
subspace

LieAutE ⊂ Ω0(T )⊕ Ω1(iR)⊕ Ω2.

Proposition 4.2 ([61]). The Lie algebra of infinitesimal automorphisms of E
is given by

LieAutE = {(V, a, B) : LV F = da,LVH = −dB + 2c(a ∧ F )}. (4.14)

From (4.14) and (4.7), we obtain a natural map

Lie ˚AutE → LieAutE : (V, r, B) 7→ (V, dr + iV F,B).

In fact, the image defines a subspace closed under the Lie bracket (see Corol-
lary 4.2), which justifies the notation and gives the desired interpretation of
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Lie ˚AutE. The space of sections Ω0(E) corresponds to the inner symmetries
of E, via the natural action induced by the Dorfman bracket.
To interpret geometrically the space of parameters A1⊕Ω2 in (4.8) and (4.9),

we need generalized metrics. A generalized metric on E is given by a linear
subspace

V+ ⊂ E

such that the restriction of the pairing on E is non-degenerate. For simplicity,
we assume c < 0 and the induced metric on V+ to be positive definite. Then,
a generalized metric is equivalent to a Riemannian metric g on M and an
isotropic splitting of E that, using the canonical isotropic splitting of (4.11),
can be regarded as an orthogonal transformation by (b, a) ∈ Ω2 ⊕ Ω1(adP ).
Hence, the fixed solution of the abelian system (2.3) determines a generalized
metric V+, such that the metric is determined by the SU(3)-structure (Ω, ω),
b = 0 and a = 0. Variations of V+ are given by variations of the metric, the
imaginary 1-form a and the 2-form b ∈ Ω2, which are precisely the elements
parameterized by A1 ⊕ Ω2.
The conclusion is that the finite-dimensional vector space H1(Å∗) corre-

sponds to a space of infinitesimal variations of V+ as a generalized metric mod-
ulo the natural symmetries of the smooth Courant algebroid E (4.11), while

H1(Â∗) is cut out by inner symmetries of E. Of course, H1(Å∗) and H1(Â∗)
contain more information related to variations of the SU(3)-structure on M
and the abelian system itself, that we ignore at this point of our discussion.

4.5. Relation with generalized geometry: symmetries. We address now
the relation between generalized geometry and the space of infinitesimal vari-
ations of the Strominger system H1(S∗), constructed in Section 3. We start
our discussion with the definition of a suitable transitive Courant algebroid
over M and the characterization of its group of automorphisms. We follow the
notation introduced in Section 3.1.
We fix a solution (Ω, A,∇, ω) of the Strominger system (1.1). We define the

quantities H := dcω and

F = FA +R∇,

the curvature of θ = ∇× A, and consider the covariant derivative dθ induced
by θ in adP . With this notation, the Bianchi identity (last equation in (1.1))
can be written as

dH = c(F ∧ F ). (4.15)

Consider the vector bundle

E = T ⊕ adP ⊕ T ∗ (4.16)

endowed with the symmetric pairing

〈X + r + ξ, Y + t+ η〉 = 1

2
(η(X) + ξ(Y )) + c(r, t),

and the canonical projection

π : E → T.
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Using the quantities H , θ and F , we can endow Ω0(E) with a Dorfman bracket

[X + r + ξ, Y + t+ η] = [X, Y ] + LXη − iY dξ + iY iXH

− [r, t]− F (X, Y ) + dθXt− dθY r

+ 2c(dθr, t) + 2c(F (X, ·), t)− 2c(F (Y, ·), r).
(4.17)

Following [13], it can be checked from the Bianchi identity (4.15) that the tuple
(E, 〈·, ·〉, [·, ·], π) satisfies the axioms of a Courant algebroid (see Definition 4.1).
An indirect way of proving that the previous axioms are satisfied is to construct
the Courant algebroid from reduction [10] (see [30, Section 2] and [6]). We will
use the fact that E is obtained from reduction of an exact Courant algebroid
over P in Corollary 4.2.
Let AutE denote the space of automorphisms of the vector bundle E that

preserve the bracket and the pairing. Given f ∈ AutE we denote by f̌ ∈ Diff
the diffeomorphism onM that it covers. The property (D3) gives π◦f = df̌ ◦π,
so f is compatible with the anchor map. Note that any ν ∈ O(adP ) covering
a diffeomorphism f̌ defines an orthogonal transformation of E ∼= T +adP +T ∗

given by

fν :=




df̌
ν

(df̌ ∗)−1


 .

Orthogonal transformations of E compatible with π and acting as the identity
on adP , and hence covering the identity, are of the form

(B, a) :=




Id 0 0
a Id 0

B − c(a, a) −2c(a, ·) Id


 ,

with B ∈ Ω2, a ∈ Ω1(adP ). To characterize the group Aut(E), we note that
an element ν ∈ O(adP ) covering f̌ ∈ Diff acts on the covariant derivative dθ

by

iV (ν · dθ)r = ν · (if̌∗V d
θ(ν−1 · r)),

where we use the action of ν on a section r ∈ Ω0(adP ), given by ν · r(x) =
ν(rf̌−1(x)), for x ∈M . Similarly, we have an action on F , given by

(iW iV (ν · F )) (x) = ν(if̌∗W if̌∗V F (f̌
−1(x))).

Furthermore, any a ∈ Ω1(adP ) can be used to deform the connection θ to a
new connection θ + a : TP → V P on P such that

iV d
θ+ar = [θ⊥V − iV a, r] = iV (d

θr + [a, r]),

where the bracket in the middle expression denotes Lie bracket of vector fields
on P , while the bracket in the right expression denotes the bracket on adP .
The induced curvature is (note that dθ ◦ dθ = [F, ·])

Fθ+a = F + dθa +
1

2
[a, a],

where [a, a](V,W ) = 2[a(V ), a(W )].
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Proposition 4.3. The group Aut(E) is the set of orthogonal transformations
{
fν(B, a) | ν ∈ Aut(adP, 〈·, ·〉, [·, ·]), B ∈ Ω2, a ∈ Ω1(adP ),

dθ = ν · dθ+a, F = ν · Fθ+a,

f̌ ∗H = H − dB + 2c(a, F ) + c(a ∧ dθa) + 1

3
c(a ∧ [a, a])

}

together with the product given, for f = fν(B, a) and f
′ = fν′(B

′, a′), by

f ◦ f ′ = fνν′(f̌
′∗B +B′ + c((ν ′−1 · a) ∧ a′), ν ′−1 · a + a′).

Proof. Given f ∈ Aut(E), the compatibility with the anchor map gives that
the first row is (df̌ , 0, 0). Then, as f preserves the pairing, we have that the
entry (2, 3) vanishes and f is of the form

f =




df̌ 0 0
∗ ν 0
∗ ∗ df̌−1


 ,

for some ν ∈ O(adP ). The transformation f−1
ν f preserves the pairing, is the

identity on adP and is compatible with π, so it has to be (B, a) for some
B ∈ Ω2 and a ∈ Ω1(adP ). Thus, f = fν(B, a). We next check what are the
constraints on ν, B, a for f to preserve the Courant bracket.
First, ν must preserve the bracket on adP . If that condition is satisfied,

fν [f
−1
ν ·, f−1

ν ·]dθ,F,H = [·, ·]ν·dθ,ν·F,f̌∗H .
On the other hand, after several elementary calculations, we have

(B, a)[(−B,−a)·, (−B,−a)·]dθ ,F,H = [·, ·]dθ+a,Fθ+a,H′

with

H ′ = H − dB + 2c(a, F ) + c(a, dθa) +
1

3
c(a, [a, a]), (4.18)

which give the conditions for Aut(P ).
For the composition law, note that for ν ′ ∈ O(adP ),

(B, a)ν ′∗ = ν ′∗(ǧ
∗B, (ν ′)−1ǧ∗a),

and that (B, a)(B′, a′) = (B +B′ + c(a ∧ a′), a+ a′). �

Remark 4.2. The previous result applies in the more general setup studied in
[13], for an arbitrary transitive Courant algebroid not necessarily obtained from
reduction. Note that, for pure a-field transformations, the condition dθ = dθ+a

is in general very strong, as it forces a to take values in the centre of the bundle
of Lie algebras.

For the next result, we use the fact that E is obtained from reduction of an
exact Courant algebroid over P .

Corollary 4.1. The group AutE fits into an exact sequence of groups

0 // Ω2
cl

// AutE
q
// Aut TP/G (4.19)

where Ω2
cl denotes the space of closed 2-forms onM and Aut TP/G is the group

of automorphisms of the Lie algebroid TP/G.
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Proof. When projecting to TP/G ∼= T ⊕adP , the Courant bracket on sections
of E corresponds to the Lie bracket on sections of TP/G. From Proposition
4.3, we see that q−1(Id) consists of the elements such that ν = Id, f̌ = Id,
a = 0, that is, of the exponentials of 2-forms B, which must be closed by the
last defining condition of Aut(E). �

The group AutP can be regarded as a subgroup of Aut(TP/G). Given
g ∈ AutP covering a diffeomorphism ǧ, the corresponding element dg ∈
Aut(TP/G) preserves the vertical part, i.e. adP , and hence defines an ele-
ment

νg := dg| adP ∈ Aut(adP, 〈·, ·〉, [·, ·]).
The element dg ∈ Aut(TP/G) is described, in terms of the splitting T ⊕ adP ,
by

dg =

(
dǧ

νg

)(
1

g−1 · θ − θ 1

)
, (4.20)

where the isomorphism TP/G ∼= T ⊕ adP is given by a connection θ. We
denote by fg = fνg the induced orthogonal transformation of E. The next
result is a direct consequence of Proposition 4.3.

Corollary 4.2. Define ˚AutE = q−1(AutP ). Then, there is an exact sequence
of groups

0 → Ω2
cl → ˚AutE → AutP. (4.21)

Elements in ˚AutE correspond to transformations fg(B, a
g), with g ∈ AutP

covering ǧ, B ∈ Ω2 and ag := g−1 · θ − θ, which satisfy

ǧ∗H = H − dB + 2c(ag, F ) + c(ag, dθag) +
1

3
c(ag, [ag, ag]). (4.22)

Regarding ˚AutE ⊂ AutP × Ω2, the group structure is given by

(g, B)(g′, B′) = (gg′, ǧ′∗B +B′ + c((g′−1 · ag) ∧ ag′)),

with Lie algebra Lie ˚AutE ⊂ LieAutP ⊕ Ω2 given by

Lie ˚AutE = {V̂ +B : LVH = −dB + 2c((V̂ · θ) ∧ F )},

where V̂ · θ denotes the infinitesimal action of V̂ ∈ LieAutP on θ and V ∈
Ω0(T ) is the vector on M covered by V̂ .

Proof. The proof follows from Proposition 4.3, noticing that g · (θ + ag) = θ.
The claim about the Lie algebra follow from taking one-parameter subgroups
of generalized diffeomorphisms in ˚AutE. �

Remark 4.3. Condition (4.22) is better understood in the total space of P ,
in terms of the transgression formula for the Chern-Simons 3-form for the
connection θ (see [30]). For this, we note that given g ∈ AutP , the elements
in q−1(g) correspond to B ∈ Ω2 such that

d
(
B + c(g−1θ ∧ θ)

)
= H − CS(θ)− g∗(H − CS(θ)).
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4.6. The complex S̊∗ and the elliptic complex Ŝ∗. We use next the sym-
metries of the Courant algebroid E to construct an exact diagram of linear
maps

0

��

H2(M,R)

��

H1(Ŝ∗)

��

0 // H1(S̊∗)

��

// H1(S∗)
δ
// H3(M,R)

0

such that H1(S̊∗) and H1(Ŝ∗) have a natural interpretation in generalized ge-
ometry. To make the link with the construction in Section 3, we need to
consider the reduction

Ph ⊂ P

of the bundle P to K ×U(3) provided by the hermitian structure (Ω, ω) of the

fixed solution. We define Lie ˚AutEh ⊂ Lie ˚AutE by

Lie ˚AutEh = {(V̂ , B) ∈ Lie ˚AutE : θV̂ −∇V ∈ Ω0(adPh)},
where θV̂ denotes the vertical part of V̂ with respect to the connection θ and
V ∈ Ω0(T ) is the vector field covered by V̂ .
Let H1(S∗) be the finite-dimensional vector space of infinitesimal variations

of the given solution (see Section 3). Then, by (3.13) there is a natural linear
map

δ : H1(S∗) → H3(M,R), (4.23)

given by

[(Ω̇, θ̇, ω̇)] 7→ [Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F )].
We define a sequence

S0 ⊕ Ω2 P̊−→ S1 ⊕ Ω2 L̊−→ R̊, (4.24)

where we follow the notation of Section 3. Here,

R̊ := Ω3,1 ⊕ Ω2,2 ⊕ Ω0,2(adPh)⊕ Ω3 ⊕ Ω5 ⊕ Ω6(adPh)

and the maps P̊ and L̊ are defined by

P̊(V, r, B) = (P(V, r),−B)

and
L̊ = L1 ⊕ L2 ⊕ L̊3 ⊕ L4 ⊕ L5,

where
L̊3(Ω̇, θ̇, ω̇, b) = Jdω̇ − J(dω)J̇J − 2c(θ̇ ∧ F )− db.
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For the next result, we note that we can regard Lie ˚AutEh ⊂ S0⊕Ω2 by using
the natural map

(V̂ , B) → (V, θV̂ −∇V,B),

which satisfies

P(V, θV̂ −∇V ) = (LVΩ, V̂ · θ,LV ω).

Lemma 4.3. The sequence (4.24) induces a complex

(S̊∗) Lie ˚AutEh
P̊−→ S1 ⊕ Ω2 L̊−→ R̊ (4.25)

by restriction of the first arrow, whose cohomology H1(S̊∗) is naturally iso-

morphic to the kernel of (4.23). Consequently, the cohomology of S̊∗ is finite
dimensional.

The proof follows as in Lemma 4.2. Consider now the vector bundle

Eh = T ⊕ adPh ⊕ T ∗

and note that Ω0(Eh) = S0⊕Ω1. We define a sequence of differential operators

(Ŝ∗) Ω0(Eh)
P̊−→ S1 ⊕ Ω2 L̊−→ R̊, (4.26)

where

P̊(V, r, ξ) = (P(V, r), dξ + iV (d
cω)− 2c(r +∇V, F )).

A straightforward calculation shows that

(V, r,−dξ − iV (d
cω) + 2c(r +∇V, F )) ∈ Lie ˚AutEh (4.27)

and therefore (4.26) is a complex of differential operators.

Proposition 4.4. The sequence (4.26) is an elliptic complex of differential
operators of degree 1. There is an exact sequence

0 → H2(M,R) → H1(Ŝ∗) → H1(S̊∗) → 0 (4.28)

where H1(Ŝ∗) denotes the cohomology of (4.26).

The proof is analogue to the proof of Proposition 4.1.

Remark 4.4. The ellipticity of the complex (4.26) gives an alternative proof of

the finite-dimensionality of H1(S̊∗).

4.7. Relation with generalized geometry: metrics. We finish this section
by providing an interpretation of S1 ⊕ Ω2—the middle step in the complexes
(4.25) and (4.26)—as a space of infinitesimal variations of a generalized metric
on E. For this, we recall a few basic facts about generalized metrics on the
Courant algebroid E following [30]. This will provide the necessary background
for Section 5.
Let (t, s) be the signature of the pairing on the Courant algebroid E. A

generalized metric of signature (p, q), or simply a metric on E, is a reduction
of the O(t, s)-bundle of frames of E to

O(p, q)× O(t− p, s− q) ⊂ O(t, s).
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Alternatively, it is given by a subbundle

V+ ⊂ E

such that the restriction of the metric on E to V+ is a non-degenerate metric
of signature (p, q). We denote by V− the orthogonal complement of V+ on E.
A generalized metric determines a vector bundle isomorphism

G : E → E,

with ±1-eigenspace V±, which is symmetric, G∗ = G, and squares to the iden-
tity, G2 = Id. The endomorphism G determines completely the metric, as V+
is recovered by

V+ = Ker(G− Id).

Definition 4.2 ([30]). A metric V+ of arbitrary signature is admissible if

V+ ∩ T ∗ = {0} and rkV+ = rkE − dimM.

We recall the basic result that we need in order to understand the parameters
encoded by an admissible generalized metric.

Proposition 4.5 ([30]). An admissible metric V+ on E is equivalent to a pair
given by a metric g on M and an isotropic splitting. Using the canonical
isotropic splitting of (4.16), V+ is given by a metric g on M and an orthogonal
transformation by (b, a) ∈ Ω2 ⊕ Ω1(adP )

V+ = (−b,−a){X + g(X) + r : X ∈ T, r ∈ adP}. (4.29)

An admissible metric determines a connection θ′ = θ + a on P and a 3-form
H ′ on M given by (4.18), such that the bracket in the splitting provided by V+
is given by (4.17).

From the previous result, we note that the fixed solution of the Strominger
system determines an admissible generalized metric V+, given by the metric
determined by the SU(3)-structure (Ω, ω) and the canonical isotropic splitting,

with connection θ and 3-formH = dcω. Furthermore, cocycles for S̊∗ in S1⊕Ω2

correspond to infinitesimal variations of the admissible metric V+.
Therefore, the finite-dimensional vector space H1(S̊∗) corresponds to a space

of infinitesimal variations of V+ as a generalized metric modulo natural sym-

metries of the smooth Courant algebroid E (4.16), while H1(Ŝ∗) is cut out by
inner symmetries of E.

5. Killing spinors in generalized geometry

In this section we introduce a natural notion of Killing spinor in generalized
geometry. The Killing spinor equations

Dφ
+η = 0, /D

φ
−η = 0, (5.1)

depend on a generalized metric V+ on a smooth Courant algebroid E over M
and a smooth function φ ∈ C∞(M). We specify to the case of a spin manifold
of dimension six and study the equations (5.1) in two different cases. Firstly,
when E is exact, we show that a solution of (5.1) is equivalent to a metric on
M with holonomy SU(3). Secondly, for a suitable choice of transitive Courant
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algebroid E, by applying the original result of Strominger and Hull [39, 63],
we prove that the Killing spinor equations (5.1) correspond to the Strominger
system.
The present section gives a precise interpretation of the vector spaces H1(S̊∗)

and H1(Ŝ∗) constructed in Section 4, as spaces of infinitesimal deformations of
solutions of the Killing spinor equations (5.1) modulo infinitesimal symmetries
of a Courant algebroid, offering a conceptual explanation of the appearance of
generalized geometry in the study of the Strominger system. In addition, it
provides a unifying framework for the theory of the Strominger system and the
well-established theory of metrics with holonomy SU(3), which we expect will
have future applications in the former.

5.1. The canonical Levi-Civita connection. Let E be a smooth, transitive,
Courant algebroid over a smooth manifoldM of arbitrary dimension, that is, a
vector bundle satisfying the axioms of Definition 4.1 and such that the anchor
map

π : E → T

is surjective. In this section we introduce a canonical notion of Levi-Civita
connection on E—a natural torsion-free connection associated to an admissible
generalized metric. For simplicity, we will assume that E is obtained from
reduction of an exact Courant algebroid on a principal G-bundle P , as in [30,
Sec. 2]. The general case follows easily from [13].
Recall that a generalized connection D (or simply, a connection) on E is a

first order differential operator

D : Ω0(E) → Ω0(E∗ ⊗E)

satisfying the Leibniz rule De(φe
′) = φDee

′ + π(e)(φ)e′, for e, e′ ∈ Ω0(E) and
φ ∈ C∞(M). We will only consider connections compatible with the inner
product on E, that is, satisfying

π(e)(〈e′, e′′〉) = 〈Dee
′, e′′〉+ 〈e′, Dee

′′〉.
The space of connections on E is an affine space modelled on Ω0(E∗ ⊗ o(E)).
Following [36], we first introduce the notion of Gualtieri–Bismut connection.

Given an admissible metric V+ (see Definition 4.2), we define

C+ = (adP )⊥ ⊂ V+.

We can associate an endomorphism of the vector bundle E such that C(V+) =
V− and C(V−) = C+, defined by

C = π−1
|V−

◦ π ◦ Π+ + π−1
|C+

◦ π ◦ Π−,

where

Π± =
1

2
(Id±G) : E → V±

denote the orthogonal projections. In the canonical splitting provided by V+

E ∼= T ⊕ adP ⊕ T ∗ (5.2)

we have (see Proposition 4.5)

V+ = {X + g(X) + r : X ∈ T, r ∈ adP}, (5.3)
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and then we can write explicitly

C(X + r + gX) = X − gX and C(Y − gY ) = Y + gY.

Definition 5.1. The Gualtieri–Bismut connection DB of V+ on E is defined
by

DB
e e

′ = [e−, e
′
+]+ + [e+, e

′
−]− + [Ce−, e

′
−]− + [Ce+, e

′
+]+, (5.4)

where e± = Π±e.

We check now that DB is well-defined.

Proposition 5.1. The expression (5.4) defines a well-defined connection on
E compatible with V+, that is, D

B sends V± to V±.

Proof. The Leibniz rule and the facts that DB preserves V± and the inner
product on E follow exactly as in [36, Th. 3.1]. To prove that DB

φee
′ = φDB

e e
′

for any φ ∈ C∞(M), using the properties of the Dorfman bracket we calculate

DB
fe−

e′ = [fe−, e
′
+]+ + [C(fe−), e

′
−]−

= −f [e′+, e−]+ − π(e′+)(f)(e−)+

− f [e′−, Ce−]− − π(e′−)(f)(Ce−)−

= f([e−, e
′
+]+ + [Ce−, e

′
−]−)

and similarly for DB
fe+

e′. �

The generalized torsion [36] of a connection D on E is a totally skew tensor
TD ∈ Λ3E∗ defined by

TD(a, b, c) = 〈Dab−Dba− [[a, b]], c〉+ 1

2
(〈Dca, b〉 − 〈Dcb, a〉) ,

where

[[a, b]] =
1

2
([a, b]− [b, a])

is the skew-symmetrization of the Dorfman bracket on sections of E. A con-
nection with vanishing torsion will be referred as a torsion-free connection. By
analogy with hermitian geometry, we introduce the following notion of Levi-
Civita connection associated to a generalized metric.

Definition 5.2. The canonical Levi-Civita connection of V+ is defined by

DLC = DB − 1

3
TDB , (5.5)

where we identify the torsion TDB with the element 〈·, ·〉−1TDB ∈ E ⊗ Λ2E∗.

By construction, DLC is a natural object on E, that is, given an automor-
phism f ∈ AutE and a generalized metric V+, we have

f∗(D
LC(V+)) = DLC(f(V+)).

As in [30], we can modify DLC by elements in E∗, while preserving the torsion-
free property—hence, torsion-free, metric connections are not unique (see also
[14]). Note that any other compatible generalized connection differs from DLC

by
χ ∈ E∗ ⊗ (o(V+)⊕ o(V−)) .
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Given ϕ ∈ E∗, consider the Weyl term

χϕ ∈ E∗ ⊗ o(E)

defined by
χϕ
e e

′ = ϕ(e′)e− 〈e, e′〉〈·, ·〉−1ϕ. (5.6)

We introduce the notation

χ±±±
e e′ = Π±χe±(e

′
±).

for χ ∈ E∗ ⊗ (o(E)) and e, e′ ∈ E. Then, we obtain a new torsion-free,
compatible, generalized connection by the formula

Dϕ = DLC +
1

3(rkV+ − 1)
(χϕ)+++ +

1

3(rkV− − 1)
(χϕ)−−−. (5.7)

Once more, we have that the connection Dϕ is natural, in the following sense

f∗(D
f∗ϕ(V+)) = Dϕ(f(V+)),

for any f ∈ AutE.

Remark 5.1. A more natural approach to the previous construction would be
to derive Dϕ as the canonical Levi-Civita connection on a modified version of a
Courant algebroid, which keeps track of conformal changes in the pairing 〈·, ·〉.
5.2. Some explicit formulae. We fix a generalized metric V+ on E and con-
sider the associated splitting (5.2) and triple (g,H, θ) (see Proposition 4.5).
We denote by c the symmetric pairing induced by 〈·, ·〉 in adP . We define
connections on T with skew torsion, compatible with the metric g, given by

∇± = ∇g ± 1

2
g−1H,

∇±1/3 = ∇g ± 1

6
g−1H,

(5.8)

where ∇g denotes the Levi-Civita connection of the metric g on M . Consider
the covariant derivative dθ on adP determined by θ. Considering

a+ = X + r + gX,

b− = Y − gY,

c+ = Z + t+ gZ,

d− =W − gW,

(5.9)

we have

DB
a+
c+ = 2Π+

(
∇+

XZ + g−1c(iXF, t)
)
+ dθXt− F (X,Z),

DB
b−
c+ = 2Π+

(
∇+

Y Z + g−1c(iY F, t)
)
+ dθY t− F (Y, Z),

DB
a+b− = 2Π−

(
∇−

XY + g−1c(iY F, r)
)
,

DB
b−
d− = 2Π−

(
∇−

YW
)
,

(5.10)

where F is the curvature of θ. To calculate the torsion of DB, consider the
auxiliary covariant derivative

D′ = ∇g ⊕ dθ ⊕∇g∗



MODULI, STROMINGER AND KILLING SPINORS IN GENERALIZED GEOMETRY 37

on E, compatible with V+. For e = X + r + ξ, define

χ′
e = −〈·, ·〉−1TD′ =




0 0 0
−iXF −c−1(c(r, [·, ·])) 0

iXH − 2c(F, r) 2c(iXF, ·) 0


 ∈ o(E),

(note that χ′ = χ0 in the notation of [30]). We also define

χ′
C ∈ E∗ ⊗ o(E)

by χ′
Ce = χ′

C(e), which is explicitly given by

χ′
Ce =




0 0 0
−iXF 0 0
iXH 2c(iXF, ·) 0


 ∈ o(E).

Then, we have

DB = D′ + (χ′
C)

+++ + (χ′)−−− + (χ′)+−+ + (χ′)−+−. (5.11)

With the previous formula, a direct calculation using [30, Lemma 3.5] leads us
to the following expression for the torsion. Let

πQ : E → Q = E/T ∗ ∼= TP/G

be the natural projection and denote by CS(θ) ∈ Ω3(P ) the Chern-Simons
3-form of θ.

Lemma 5.1. The torsion TDB is the element of Λ3V ∗
+ ⊕ Λ3V ∗

− given by

TDB = π∗
Q|V+

(H − CS(θ)) + π∗
|V−
H. (5.12)

More explicitly, taking a+, c+ as in (5.9) and b+ = Y + s + gY , we obtain
the formula

T+
DB(a+, b+, c+) = H(X, Y, Z) + c(r, [s, t])

− c(F (X, Y ), t) + c(F (X,Z), s)− c(F (Y, Z), r),

for TDB = T+
DB + T−

DB the natural decomposition. Similarly, setting a− =
X − gX we have

T−
DB(a−, b−, d−) = H(X, Y,W ).

We calculate now an explicit formula for the Levi-Civita connection of V+. We
have

〈·, ·〉−1TDB = (χB)+++ + (χB)−−−,

where

χB
e =




0 0 0
−iXF c−1(c(r, [·, ·])) 0

2iXH − 2c(F, r) 2c(iXF, ·) 0


 ∈ o(E).

Therefore

DLC = DB − 1

3
(χB)+++ − 1

3
(χB)−−− (5.13)
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and we conclude that

DLC
a+
c+ = 2Π+

(
∇1/3

X Z +
2

3
g−1c(iXF, t) +

1

3
g−1c(iZF, r)

)

+ dθXt−
2

3
F (X,Z)− 1

3
c−1c(r, [t, ·]),

DLC
b−
c+ = 2Π+

(
∇+

YZ + g−1c(iY F, t)
)
+ dθY t− F (Y, Z),

DLC
a+ b− = 2Π−

(
∇−

XY + g−1c(iY F, r)
)
,

DLC
b−
d− = 2Π−

(
∇−1/3

Y W
)
.

(5.14)

Remark 5.2. The connection DLC differs by the torsion-free connection D0

constructed in [30] by the term 1
3
(χ′′)+++, where

χ′′
e =




0 0 0
−iXF 0 0
4c(F, r) 2c(iXF, ·) 0


 ∈ o(E) (5.15)

(that vanishes identically in the exact case), as it follows from

DLC = D′ +
1

3
(χ′)+++ +

1

3
(χ′′)+++

+
1

3
(χ′)−−− + (χ′)+−+ + (χ′)−+−.

(5.16)

This provides a new example of a pair of different torsion-free connections on
E compatible with the same metric (cf. [14]). We note that the connection D0

is not natural for the action of AutE (this disproves a claim in [30, Remark
3.8]). For example, for (B, a) ∈ AutE we have

χ′′((B, a) · V+) = χ′′(V+)

(B, a)−1
(
χ′′
(B,a)e(V+)

)
(B, a)e′ = (χ′′

e(V+)) e
′ − 2c(a, F (X, Y ))

+ 4c(iY F, a(X)) + 2c(iXF, a(Y ))

for e = X + r + ξ and e′ = Y + t+ η.

Finally, we provide an explicit formula for the connection (5.7). In this
work, we are interested in the case that ϕ is an exact 1-form, so we assume
ϕ ∈ Ω1(M). Then, Dϕ satisfies

Dϕ
a+c+ = DLC

a+ c+ +
(rkV+ − 1)−1

3
Π+ (ϕ(Z)a+ − 2(g(X,Z) + c(r, t))ϕ) ,

Dϕ
b−
c+ = DLC

b−
c+,

Dϕ
a+
b− = DLC

a+
b−,

Dϕ
b−
d− = DLC

b− d− +
(rkV− − 1)−1

3
Π− (ϕ(W )b− + 2g(Y,W )ϕ) .

(5.17)
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5.3. The Killing spinor equations. We introduce now the notion of Killing
spinor of our interest and study its relation with classical geometry. We will
restrict ourselves to the case when M is a six dimensional spin manifold and
E is transitive or exact.
As in the previous section, let E be a transitive Courant algebroid, obtained

from reduction. Consider an admissible generalized metric V+ ⊂ E such that
the corresponding metric on M (see (5.3)) is positive definite. Then, there
exists a positive-definite metric g on M such that

V+ = {X + g(X) + r : X ∈ T, r ∈ adP},
V− = {X − g(X) : X ∈ T}, (5.18)

and π|V−
: V− → (T, g) induces an anti-isometry. The spin condition w2(T ) = 0

for the manifold M implies the existence of a spinor bundle S(V−). As rkV− is
even, we have a direct sum decomposition into positive and negative chirality
half-spinor bundles

S(V−) = S+(V−)⊕ S−(V−) ⊂ Cl(V−).

Here, Cl(V−) is the Clifford bundle for V−, with fibre Cl((V−|x)
∗) for any x ∈ X .

Given φ ∈ C∞(M), consider the generalized connection Dφ = Dϕ(V+) de-
termined by V+ and the 1-form

ϕ = 6dφ.

By compatibility, Dφ induces differential operators

Dφ
± : V− → V− ⊗ (V±)

∗,

where we omit, here and below, the symbol of sections for the sake of simplicity.
From Dφ

+ and Dφ
− we get differential operators on spinors

Dφ
± : S+(V−) → S+(V−)⊗ (V±)

∗

and the associated Dirac operator

/D
φ
− : S+(V−) → S−(V−).

Definition 5.3. Given a generalized metric V+, as before, and φ ∈ C∞(M),
the Killing spinor equations for a spinor η ∈ S+(V−) are given by

Dφ
+η = 0,

/D
φ
−η = 0.

(5.19)

Proposition 5.2. The system (5.19) is a natural system of equations in gen-
eralized geometry, that is, solutions are exchanged under generalized diffeomor-
phisms.

Proof. Given a triple (V+, φ, η) which satisfies (5.19) and f ∈ AutE, we have
to check that the triple (f(V+), f̌∗φ, f∗η) is also a solution of the equations.
Here, f̌ is the diffeomorphism on M covered by f (see (4.21)). This follows
from the naturality of the Bismut connection DB, the torsion TDB and the
Weyl term χϕ. �
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In the next result we provide a more explicit characterization of the Killing
spinor equations, that will be applied in Section 5.5 to the Strominger system.
Recall that given a generalized metric V+, by Proposition 4.5 we obtain a
corresponding triple (g,H, θ).

Lemma 5.2. The Killing spinor equations (5.19) are equivalent to the system

F · η = 0

∇−η = 0,

(H + 2dφ) · η = 0,

dH − c(F ∧ F ) = 0,

(5.20)

Proof. We use the anchor map π|V−
: V− → (T, g) to identify S(V−) with S(T ),

so that F,H and dφ, as sections of ∧•T ∗ ⊂ Cl(T ) = End(S(T )), act on the
spinor η.
Let {e1, . . . , en} be a local orthonormal frame for T . We use the following

convention for the Clifford algebra relations

eiej + ejei = 2δij .

An endomorphism A ∈ End(T ) satisfies

A =
n∑

i,j=1

g(Aei, ej)e
i ⊗ ej ,

for {ej} the dual frame of {ej}. Since ei⊗ ej − ej ⊗ ei ∈ so(T ) embeds as 1
2
ejei

in the Clifford algebra, an endomorphism A ∈ so(T ) corresponds to

A =
1

2

∑

i<j

g(Aei, ej)e
jei ∈ Cl(T ). (5.21)

Using (5.13) combined with (5.14) and (5.17), we have

Dφ
+η = ∇gη +

1

2

∑

i<j

g((χ′)−+−ei, ej)e
jei · η,

= ∇gη − 1

2

∑

i<j

H(ei, ej, ·)ejei · η +
∑

i<j

c(F (ei, ej), ·)ejei · η

= ∇−η − c(F · η, ·),

and therefore the vanishing of Dφ
+η is equivalent to the first two equations in

(5.20). Similarly,

Dφ
−η = ∇−η +

1

3

∑

i<j

H(ei, ej , ·)ejei · η

+
1

5

∑

i<j

(
dφ(ei)e

jeiη ⊗ ej − dφ(ej)e
jeiη ⊗ ei

)
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and hence, assuming that Dφ
+η = 0, we have

/D
φ
−η =

1

3

∑

i<j

H(ei, ej, ek)e
kejei · η − 2dφ · η

= −(H + 2dφ) · η.
The last equation follows from the compatibility condition between H and θ
for any admissible metric (see Proposition 4.5). �

5.4. Hull-Strominger’s theorem. We study next the consequences of the
existence of a Killing spinor (5.19) in terms of complex hermitian geometry.
The link is provided by Lemma 5.2 combined with the following result, origi-
nally due to Hull and Strominger [39, 63], which constitutes the starting point
for the theory of the Strominger system. We give here a different proof, using
Gauduchon’s formula for the Bismut connection on the canonical bundle [32].

Theorem 5.1 ([63]). Given a real 3-form H ∈ Ω3 and a real smooth function
φ ∈ C∞(M), a solution (g, η) of the system

∇−η = 0,

(H + 2dφ) · η = 0,
(5.22)

for a non-vanishing half-spinor η ∈ S+ is equivalent to an SU(3)-structure
(ω,Ω) on M with integrable almost complex structure J , Kähler form ω =
g(J ·, ·) and holomorphic volume form Ω, satisfying

H = dcω,

φ = −1

2
log ‖Ω‖ω − κ,

d∗ω = dc log ‖Ω‖ω,
(5.23)

for a suitable real constant κ.

Proof. We start with a solution (g, η) of (5.22), and note that the first equation
reduces the holonomy of∇− to SU(3). This follows from the equality Spin(6) =
SU(4) (see also [47, Lem. 9.15] and [47, Rem. 9.12]). Let (ψ, ω) be the
corresponding SU(3)-structure on M . Here ψ is a parallel complex 3-form
which determines an orthogonal almost complex structure J via (2.1) and ω =
g(J ·, ·) is the corresponding (parallel) Kähler form.
Using the SU(3)-structure we have an explicit model for the half-spinor bun-

dle S+: the Clifford module

S+
∼= Λ0,even

with Clifford action

ξ · σ =
√
2(i(g−1ξ1,0)σ + ξ0,1 ∧ σ)

for ξ a 1-form and σ ∈ Λ0,even. For SU(3), the space of even parallel spinors
is 1-dimensional and η is identified with a non-vanishing function ([66]), which
we can assume to be 1.
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Choosing a basis {dzj, dzj} of (1, 0) and (0, 1) forms at a point such that

g =
3∑

j=1

dzj ⊗ dzj + dzj ⊗ dzj

we have

dzj · 1 = 0,

dzj · 1 =
√
2dzj,

dzi ∧ dzj ∧ dzk · 1 = 0,

dzi ∧ dzj ∧ dzk · 1 =
√
2(δkidzj − δkjdzi).

This implies

(H + 2dφ) · 1 = 2
√
2

(
H0,3 +

1

2

∑

i<j

(H1,2

iji
dzj −H1,2

ijj
dzi) + ∂̄φ

)

where H = H3,0+H2,1+H1,2+H0,3 is the decomposition in types with respect
to J and

H1,2 =
∑

i<j

H1,2

ijk
dzi ∧ dzj ∧ dzk.

Then, it follows that the second equation in (5.22) is equivalent to the two
conditions

H0,3 = 0,

iΛωH
1,2 = −2∂̄φ.

(5.24)

Using now that ∇− is unitary and has totally skew-torsion −H , by [32, Eq.
(2.5.2)],

H = −N + (dcω)2,1+1,2,

where N denotes the Nijenhuis tensor of J , which is of type (3, 0) + (0, 3) [32,
Prop. 1].
Hence, N = 0, H = dcω and also

Λωdω = 2dφ,

where, recall, Λωdω = Jd∗ω is the Lee form of the hermitian structure, and
therefore ω is conformally balanced. Using now Gauduchon’s formula [32, Eq.
(2.7.6)]

∇C = ∇− + id∗ω ⊗ Id, (5.25)

relating the connections induced by ∇− and the Chern connection ∇C on the
canonical bundle, combined with ∇−ψ = 0, it follows that

Ω := e−2φψ

is a holomorphic volume form for the given complex structure. Finally, from
(2.5) we obtain that

φ = −1

2
(log ‖Ω‖ω − log ‖ψ‖ω) (5.26)
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where ‖ψ‖ω is constant and therefore

d∗ω = dc log ‖Ω‖ω.
For the converse, we simply define η = 1 in the model for S+ provided by the
SU(3)-structure. �

5.5. Metrics with holonomy SU(3) and the Strominger system. We
want to give a complete characterization of (5.19) in terms of complex geom-
etry using Hull-Strominger’s theorem, when E is either a exact or a transitive
Courant algebroid.
We assume first that E is exact. By definition, E fits into an exact sequence

0 → T ∗ → E → T → 0

and the admissible metric V+ induces a splitting

E = T ⊕ T ∗.

In this splitting, the generalized metric takes the form

V+ = {X + g(X) : X ∈ T},
V− = {X − g(X) : X ∈ T},

and the induced 3-form H is closed

dH = 0.

Theorem 5.2. Assume that E is exact. Then (V+, φ, η) is a solution of (5.19)
with η 6= 0 if and only if H = 0, φ is constant and g is a metric with holonomy
contained in SU(3).

The proof will follow from Hull-Strominger’s theorem and Lemma 5.2, which
in the present setup specifies to the following result.

Lemma 5.3. Assume that E is exact. Then (5.19) is equivalent to the system

∇−η = 0,

(H + 2dφ) · η = 0,

dH = 0.

(5.27)

Theorem 5.2 is a well-known fact in the literature, that originally appeared
in [41, 42], but we sketch here a proof with the complete argument for the
convenience of the reader.

Proof of Theorem 5.2. For the ‘only if’ part, we note that from Theorem 5.1

Λωρ
C = −2Λωdd

cφ,

where ρC is the Ricci form of the Chern connection ∇C . On the other hand,
(5.25) implies that [2, (2.11)]

Λωρ
C = Λωρ

B + 4d∗(Jd∗ω) + 8|d∗ω|2ω,
where ρB is the Ricci form of the Bismut connection, and from [56, Th. 1.1]
(see also [23, Eq. (18)]) we have

1

32
Λ2(ddcω) = 2d∗(Jd∗ω) + 2|d∗ω|2 − |dcω|2.
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Using now that ddcω = dH = 0 and that ∇− has holonomy contained in
SU(3)—hence ρB = 0—we obtain (cf. [23])

− 2Λωdd
cφ = 2|dcω|2 + 4|d∗ω|2 > 0. (5.28)

Integrating (5.28) over M , we conclude that ω is Kähler, H = 0 and φ is
constant. Therefore, g is a metric with holonomy contained in SU(3).
For the converse, we define η = 1 ∈ Λ0,even in the model for S+(V−) given by

the SU(3)-structure. Then, since g has holonomy SU(3) we have that ∇− = ∇g

preserves the previous isomorphism and hence we obtain a solution of (5.27)
with H = 0 and φ constant. �

We go now for the transitive case, using the notation introduced in Section
3.1. We make the assumption that the first Pontryagin class of the principal
bundle P with respect to the non-degenerate pairing on the Lie algebra of the
structure group g = k⊕ gl(6,R)

c = 2α′(− trk−cgl)
vanishes p1(P ) = 0 or, equivalently,

p1(PK) = p1(PGL+).

By [30, Prop. 2.3], this condition determines a canonical exact Courant alge-
broid

0 → T ∗P → Ê → TP → 0

endowed with a (lifted) G-action and non-degenerate pairing c (such that it
admits an equivariant isotropic splitting). The transitive Courant algebroid of
our interest

0 → T ∗ → E → T → 0,

is then obtained from reduction [30, Prop. 2.4] (alternatively, one can apply
[13, Th. 1.7] for a direct construction).
On E, we consider admissible metrics V+ such that the metric g on M

induced by V+ is positive definite and the connection θ on P is a product of
a connection A on PK and a g-compatible connection ∇ on PGL+ . With this
ansatz, the compatibility between θ and H given in Proposition 4.5 reads

dH = 2α′ (−cgl(R ∧ R)− trk(FA ∧ FA)) . (5.29)

We are ready to prove the main result of this section, which states the
equivalence of the Strominger system with the Killing spinor equations.

Proof of Theorem 1.2. Given a solution of (5.19), from Theorem 5.1 we obtain
a Calabi-Yau threefold structure Ω on M and a conformally balanced Kähler
form ω with H = dcω . Note that by (5.29) H is not closed, and therefore the
last part of the argument in the proof of Theorem 5.2 does not apply. Using
Lemma 5.2 and the first equation in (5.20), it follows from [66] that

F ∧ ω2 = 0, F ∧ Ω = 0

and hence both A and ∇ are hermitian-Yang-Mills connections. Furthermore,
since ∇g = 0, the inclusion so(6) ⊂ sl(6,R) and (5.29) imply

ddcω = 2α′(trR ∧ R− trk FA ∧ FA),
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by definition of cgl. For the converse, given a solution of the Strominger system
we define θ = A×∇, H = dcω and φ by (5.26). Then, the spinor η determined
by the given SU(3)-structure (see proof of Theorem 5.2) on M satisfies (5.20)
and therefore is Killing.
The last part of the statement follows from Proposition 5.2. �

Theorem 1.2 shows that the Strominger system provides natural equations in
generalized geometry. As a direct consequence, we obtain a precise geometric

interpretation of the vector spaces H1(S̊∗) and H1(Ŝ∗), as spaces of infinites-
imal deformations of solutions of the Killing spinor equations (5.1) modulo
infinitesimal symmetries of a Courant algebroid.
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