DIRECT SPECIFIC ISOTOPIC ANALYSIS OF COMPOUNDS RELEASED BY PYROLYSIS (Py-CSIA): **NOVEL APPLICATIONS IN PALEOENVIRONMENTAL STUDIES**

José M. De la Rosa*1, Nicasio T. Jiménez-Morillo1, Ana Z. Miller1, Gonzalo Almendros2, José A. González-Pérez1.

- ¹ Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Reina Mercedes Av. 10 Seville, Spain. *jmrosa@irnase.csic.es
- ² Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115b. Madrid, Spain.

Introduction

The combination of pyrolysis and compound specific isotopic analysis (Py-CSIA) and analytical pyrolysis (Py-GC/MS) opens new windows of information and is particularly useful to study solid materials that are not soluble and therefore not amenable by conventional GC/MS techniques. Py-CSIA is a rather novel hyphenated technique that combines the chromatographic separation of compounds released by pyrolysis (Py-GC) with an isotope ratio mass spectrometer (IRMS). The technique allows the measurement of stable isotope proportions i.e., δ^{13} C, δ^{15} N and δ^{2} H, δ^{18} O in specific compounds released by pyrolysis. The sample preparation is minimized and a molecular fingerprinting of the material is achieved.

Experimental procedures

The analytical facilities used for conducting the direct pyrolysis compound specific isotopic analysis (Py-CSIA) consists of a micro-furnace double-shot pyrolyzer (Frontier Laboratories, model 3030D) attached to a Trace Ultra GC system. At the end of the chromatographic column the chromatographic flux is conducted to a GC-Isolink System equipped with micro-furnaces for combustion (C) and for pyrolysis (TC). The system is coupled to a Delta V Advantage IRMS via a ConFlo IV universal interface unit (Py-GC-C/TC-IRMS) (Fig. 1a). Specific peaks (structural information) are identified by comparing the mass spectra from a conventional Py-GC/MS system and Py-GC/IRMS chromatograms obtained using the same chromatographic conditions [1-

Case studies


- ▶ Coralloid speleothems from lava caves of Easter Island
- ▶ Remains of the fossil conifer *Frenelopsis* oligoestomata from central Spain

Siliceous speleothems from Ana Heva lava tube - Easter Island

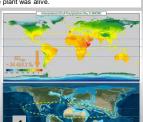
A) Geographical localization of Roiho lava field in Easter Island; B) sampling point in Ana Heva lava tube, and Coralloid-type



Analytical pyrolysis (Py-GC/MS) at 500°C of the

Frenelopsis oligostomata (coniferous fossil)

Age: 72 mya Senonian Location: Central Spain



Due to the known source and stability of biopolymers, compound-specific analysis has been focused on lipids with various carbon chain lengths, such as C25-C29 alkanes which are believed to derive exclusively from leaf waxes of higher plants.

From Py-CSIA [1] isotopic signatures of alkyl molecules we could estimate atmospheric CO_α δ13C and rainfall H_αO δD at the time the plant was alive.

Two stages of deposition during the last Paleo-atmospheric CO₂ δ¹³C and rainfall 12.000 years at Easter Island:

- 1. Subtropical climate
- 2. Recent times
- Humid conditions
- Dry conditions
- Woody vegetation
- Grass vegetation

paleo-H₂O δD c.lberian Peninsula 72 myr

- 3. $\delta^{13}C_{CO2}$ -5.0 ± 0.5 % 4. δD_{PW} -24.4 ± 5.2 %
- Emissions of ¹³C volcan Warm environment
- Uptake of ¹²C plants - Continental drift

[1] González-Pérez, J.A., et al. J. Chromatogr. A, 2015a, 1388 236-243

[2] González-Pérez, J.A., et al. J. Sci. Food Agr. 2015b. in press (DOI: 10.1002/isfa.7169)

[3] De la Rosa J.M., et al. XVI-COLACRO, Lisbon (2016). Ed. J.M. Nogueira. Univ. of Lisbon (Portugal)

Seville 2-4 Nov, 2016 www.secyta2016.com