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We analyze the full relativistic force experienced by swift electrons moving close to planar

films for the experimental conditions commonly used in electron energy loss spectroscopy

in STEM. In metals the main effects derive from the dispersion of the surface plasmons,

which are clearly observed in the EEL spectra. In insulators we explore the role played

by the Cherenkov radiation (CR) emitted in the energy gap window. The focus is placed

on the transverse force and different factors which may turn this force into repulsive, as

reported in recent experimental and theoretical works.
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1. Introduction

The retarding force experienced by electron probes in inhomogeneous media has at-

tracted great attention in the last decades due to its interest in electron energy loss

spectroscopy (EELS) in scanning transmission electron microscopy (STEM). Nowadays

this technique has become a very accurate tool to characterize nano-structures and map

plasmons with high resolution. The transverse component of the force has received less

attention, but in general it is assumed to be attractive and small. Nevertheless, several

experiments and theoretical predictions have questioned the expected behaviour.

Early experiments [1,2] detected strong deflections when a 100 keV electron beam passed

close to targets of MgO and Au of 100 nm side at a distance of around 1 nm, which

stimulated different calculations of the image force within classical dielectric theory [3,4],

considering infinite planar surfaces or spherical targets [5]. More recently, advances in

electron microscopy have allowed to monitor the movement of nanometric gold particles

under the action of a well focused electron beam, finding that the force experienced by

the particle becomes repulsive at small impact parameters. These experiments have stim-

ulated new relativistic calculations of the momentum transferred to nanoparticles (NPs),

accounting for a precise description of the target [6–8], which reproduce the observed re-

pulsive interaction, but the physics behind this effect is still unclear. In fact this repulsive

force near small metallic particles at small impact parameter was also reported by Garćıa

de Abajo [9] in a previous work. In a very recent paper Rebernik [10] predicted that the

interaction between a planar surface and a charge packet moving parallel to it becomes

repulsive above a critical relativistic energy.

In the present work the retardation effects on the force between 300 keV electron beams

and metallic (Al, Au) or insulator (MgO) films are explored, with the focus on the sign

of the transverse component, extending a recent study for a semi-infinite medium [11].

First we analyze the effects of retardation induced plasmon dispersion clearly observable

in the EEL spectra. In the case of insulator targets it has been proved that most of the

relativistic effects derive from Cherenkov radiation (CR). The behavior of the transverse

force with impact parameter is finally studied, finding that it is always attractive for the

common STEM setups, but different factors providing repulsive forces are discussed.
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2. Theory

The Lorentz force experienced by a fast electron moving at velocity v and impact

parameter b, paralell to a planar film of thickness a (see inset of figure 1(a)), characterized

by a dielectric function ε(ω), is calculated following the same method used for semi-infinite

targets in a previous reference [11]. Both transverse and longitudinal components are

written in terms of a single complex response function Σ, which depends on frequency ω

and parallel component of the momentum ky :

Fx =
−2

πv

∫ ∞
0

dky

∫ ∞
0

dων0Re[Σ(ky, ω)]e−2ν0b (1)

Fz =
−2

πv

∫ ∞
0

dky

∫ ∞
0

dω
ω

v
Im[Σ(ky, ω)]e−2ν0b, (2)

where

Σ(ky, ω) =
ε− 1

∆0

[
2ν0

∆
Λ− ω2

c2
1− β2

ν0

(1− e−2νa)], (3)

and

∆0 = (ν + ν0)
2 − (ν − ν0)

2e−2νa

∆ = (ν + ν0ε)
2 − (ν − ν0ε)

2e−2νa

Λ = (ν + ν0)(ν + ν0ε) + (ν − ν0)(ν − ν0ε)e
−4νa − 2(ν2 + ν2

0ε)e
−2νa, (4)

with ν =
√
k2
y + [1− β2ε(ω)]ω2/v2, ν0 =

√
k2
y + ω2/γ2v2, β = v/c and γ = (1 − β2)−1/2

the Lorentz factor. Notice that these general equations lead to the simpler expressions for

the semi-infinite medium [11] as a→∞. From one side, for EELS applications in electron

microscopy, it is helpful to consider the ω dependent integrand in the longitudinal force

[12],

Fz = −
∫ ∞
0

ωdω
dP

dzdω
, (5)

which corresponds to the probability P (per unit length) of losing energy w,

dP

dzdω
=

2

πv2

∫ ∞
0

dkye
−2ν0bIm[Σ(ky, ω)]. (6)

On the other side, in order to describe the nature (attractive or repulsive) of the inter-

action, it is illustrative to analyze the transverse momentum transfer px per unit length

and energy,

dpx
dzdω

=
Fx
vdω

= − 2

πv2

∫ ∞
0

dkyIm[kxΣ(ky, ω)]e−2ν0b. (7)
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Notice also that ν0 may be interpreted as the modulus of kx, the transverse wave vector

component associated to the evanescent fields, kx = iν0 =
√
ω2c−2 − k2

y − ω2v−2.

The previous formalism provides a description of the scattering of the probe in terms

of excitations of momentum k = (kx, ky, ωv
−1) and energy ω, where Σ(ky, ω) is a key

function describing the probability (always per unit length) of exciting such a process.

In [11] we described in detail the behavior of this function for metals and insulators in a

semi-infinte medium. It is worth mentioning that its imaginary part is always positive in

the whole ω − ky space, while its real part changes its sign around the surface plasmon

dispersion curve.

Finally, notice that the non-retarded limits are directly recovered from these expressions

for β → 0.

Following reference [11] we have also calculated the force experienced by the film, finding

that, for any dielectric function, it is equal to the force on the probe. It is important

to consider that the total momentum transfer to the film can contain some radiative

contributions in the case of CR supporting media.

3. Results

First we analyze the energy loss probability, which is the magnitude commonly mea-

sured in EELS experiments, and the effects of retardation in Al slabs of different thick-

nesses, represented by a Drude dielectric function ε(ω) = 1−ω2
p/(ω

2 + iωγ), with ωp=15.3

eV and γ=1eV. The effects of retardation in metals derive mainly from the dispersion of

the surface plasmon ω(ky), as described by equations (1) and (2) and discussed in [11] for

semi-infinite planar targets. In that case the surface plasmon is red-shifted as ky → 0.

For films there are two surface plasmon modes [13], symmetric (ω−) and antisymmet-

ric (ω+), which in the non-retarded limit are given by ω± = ωp[(1 ± e−qa)/2]1/2, where

q = (k2
y + ω2/v2)1/2 is the parallel momentum. In the retarded case the modes (given by

the zeros of the denominator of Σ function) exhibit a shift towards the surface plasmon

frequency of the semi-infinite medium as ky → 0, as is clearly observed in figure 1(b).

This behavior is illustrated in the EEL spectra of figure 1(a) for three different values

of the thickness a=1, 10 and a=100nm, corresponding to 300 keV electrons at impact

parameter b =1nm. In the last case of the thickest film the spectra are pretty similar to



5

the ones obtained for a semi-infinite medium at the same impact parameter. Moreover,

retardation produces a shift and broadening of the surface plasmon peaks, which is much

stronger for thicker films. For a=1nm the non-retarded approximation works pretty well,

as observed in the figure.

Furthermore, as the probe trajectory is more distant from the surface, the effects of

retardation become stronger. This is because the small momenta have more weight in the

loss spectrum, as inferred from the exponential factor in the ky integral in equation (2),

and it is just at small ky where dispersion is more relevant, as shown by the dispersion

curves described above.

In insulators, which are transparent in an energy range, there is an additional mechanism

entering into play within the relativistic formalism: the emission of Cherenkov radiation.

In the case of MgO this happens for ω <6.6 eV, where the dielectric function (we use

experimented data [14]) is a pure real magnitude with a maximum value of 7.3 at the

gap edge, decreasing to 3.2 as ω → 0. Then, for electron velocities such that εβ2 > 1,

the momentum ν becomes purely imaginary and the term e−νx describes propagating

electromagnetic fields in the medium. For 300 keV (β=0.78) electrons considered in the

present study the CR condition is fulfilled in the whole energy window.

The CR propagating fields are emitted forward, in a cone given by cos θC = β−1ε−1/2.

In the case of films, in contrast with the previously studied semi-infinite medium [11],

the radiation is reflected at the interfaces producing standing waves propagating as in a

planar waveguide. The radiative modes may be derived from the poles of the Σ function,

in the region where ε is real. Given that the main contribution in the ky integral arises

from small values of this variable, it is easy to prove that the allowed modes satisfy the

following condition:

ω =
v

a
√
ε(ω)β2 − 1)

(nπ − 2φ), (8)

where n = 1, 2, 3 . . . is an integer and φ = arctan{1/ε[(ε(ω)β2 − 1)/(1− β2)]1/2} a phase-

shift. Notice that, neglecting the phase, equation (8) states that the transverse compo-

nent of the wave vector of the allowed radiation satisfies the quantization condition for

the transverse momentum, kx = nπ/a. A similar behavior was found within a cylin-

drical model used to explain EEL spectra in porous alumina [15] some years ago. This
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phenomenon is visualized in figure 2, where the calculated EEL spectra corresponding

to MgO films of three different thicknesses (a=10 nm, 100nm and 1mm) are compared.

The electron impact parameter is b =1nm, except for the black curve in figure 2(c) corre-

sponding to a thick film and b =10nm. The non-retarded probabilities are show in dashed

line for comparison. Notice that for the thinest film of 10 nm, there is no excitation

below 6.6 eV. In fact equation (8) states a minimum thickness of about 29 nm for the first

n=1 mode to be activated. As the thickness increases more modes are excited at smaller

energies, until the whole CR window is covered, so that for very thick films the spec-

trum approaches the continuum calculated for the corresponding semi-infinite medium,

as shown in figure 2(c) corresponding to a =1mm. The CR effects really dominate the

EEL spectrum for distant trajectories, as it is observed for the case of b =10nm, in which

the main losses occur in the CR window.

Now we turn our attention to the transverse component of the force experienced by the

probe and the different factors which might turn this force from attractive into repulsive,

as reported in recent works [7,10]. In figure 3 results are shown for both MgO and Au

films, always for 300 keV electrons. For other metals as Al similar results are obtained.

The dashed line, as in the previous figures, corresponds to the non-retarded calculations.

Moreover, we notice that the non-retarded approximation overestimates the force, which

is always attractive, except for figure 3(b) corresponding to Au. We observe that at im-

pact parameters below 1nm, the force becomes repulsive when the experimental dielectric

function extracted from [16] is used to describe the film. This result is an unphysical

consequence of the non-causal character of the dielectric function used for this calcula-

tion, as found for semi-infinite media [11]. Causality turns out to be a key issue in this

calculation, because the total force is obtained as an integral in the whole ω spectrum,

Fx =
∫∞
0 F(ω)dω, where F(ω) is an integral in ky involving the Re[Σ(ω, ky)] function.

The real part of the Σ function changes its sign around the surface resonances, so that

when integration in ω is performed there are strong cancellations of contributions below

and above its corresponding resonance energies [11]. The correct causal behavior of the

dielectric function is critical at small b because in this case the contributions from the

high ω values to the total force is important, contrary to the case of distant trajectories.

In order to check this point we have considered the parametrization for the Au dielectric
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function proposed by Werner et al. [17], which considers a set of nine Lorentzians and by

construction fulfills the K-K relations. In this case we observe that the force is attractive

also at very small impact parameters.

At large impact parameters only the low ky and ω contribute to the integrals and, as a

consequence, all the contributions to the force are attractive (see inset of figure 3(a)),

so that for b → ∞ it is proved numerically that the quasi-static limit Fx → −(4b2γ)−1

is reached. Moreover, the non-retarded approximation overestimates the attractive force

except for b→ 0 as the force becomes divergent in the local approximation of ε(ω) consid-

ered. At b ≈10nm we notice that both retarded and non-retarded expressions lead to the

same value of the force. We observe again that retardation is more important for wider

films, as it is evident from the comparison of Fx for a = 1nm and a =10nm in the case of

Au.

The importance of considering the contribution of the magnetic field in the Lorentz force

calculated to compute Fx also worths some attention. Even at lower probe energies than

the one considered in the present work, we proved [11] that the only contribution of the

electric field provides a repulsive force at small impact parameters, which is turned into

attractive when the contribution of the magnetic field is added. Although the contribu-

tion of the magnetic field to the force is much smaller than that of the electric field, the

cancellation effects in the ω spectrum explain this result [11].

Another point worth of attention is the width of the beam. In the present work we have

considered a point electron beam, which is a good approach for the EELS experimental

setup. Nevertheless, Rebernik [10] claimed that the lateral extension of the beam in the

y direction would turn the interaction repulsive for very swift electrons in a semi-infinite

medium. This relativistic effect is confirmed for films within the present formalism and

using a gaussian profile of the beam. The detailed expressions were given in a previous

article for semi-infinite media [11]. Nevertheless, the beam widths required for such an

effect are of the order of 100 nm, a size which does not correspond to the beams currently

used in electron microscopy experiments.

Finally we would like to mention that, although we have focussed on the force experienced

by the probe, the studies [6] performed to explain the Au NP displacements calculated

the force on the target, using the Maxwell stress tensor formalism. We have compared

both forces and for semi-infinite targets we have found that for metals they are equal,
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i.e., they are action-reaction forces. Nevertheless, for the case of MgO where Cherenkov

radiation is produced, the transverse force on the target is slightly larger than the force

on the probe, so that the momentum conservation law is fulfilled when the momentum

carried by CR is considered. In the case of films, we have proved that both forces are

equivalent also for MgO.

4. Conclusions

In this work the retardation effects on the interaction between fast electrons and planar

films have been explored. First the longitudinal force and its spectral form reflected in

the EEL spectra have been studied for metals and insulators sustaining CR. Then the

transverse component has been calculated, finding that it is always attractive. Neverthe-

less, we have also proved the relevance of including the contribution of the magnetic field

and of using Kramers-Kronig consistent dielectric functions, warning about the need for

checking the later point when using tabulated data, specially for small impact parameters.

For point probes the force is found to be attractive in all the cases, but for very extended

beams the interaction turns out to be repulsive at small impact parameters, even at mod-

erate relativistic velocities, in agreement with recent studies, but these conditions are far

from the setup commonly used in STEM.
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Figure 1. (a) Energy loss probability per unit length for 300 keV electrons parallel to

Al slabs of thicknesses a=1, 10 and 100nm at impact parameter b=1nm. The sketch in

the inset represents the geometry of the problem. (b) Dispersion relation for 300 keV

electron in front of an Al film of thickness a=20 nm (red) and a semi-infinite medium

(blue). Dashed lines correspond to non-retarded approximation in both (a) and (b).

Figure 2. Energy loss probability per unit length experienced by 300 keV electrons mov-

ing close to MgO slabs of thickness (a) a=10, (b) a=100nm and (c) a=1mm at impact

parameter b=1nm (red). The blue lines represent the corresponding calculations for a

semi-infinite medium. The sketch in the inset of the figure (b) represents the confinement

of Cherenkov radiation in the film. In figure (c) the black line corresponds to b=10nm.

The dashed lines represent the corresponding non-retarded approximations.

Figure 3. (a) Transverse force experienced by 300 keV electrons moving close to a MgO

film of thickness a=1nm as a function of impact parameter. The ω component of the force

is represented in the inset. (b) The same for Au slabs of a =1nm (black) and a =10nm

(red) but using Werner’s dielectric function [17]. For a =1nm the same is represented

(green line) but using Palik’s dielectric function [16]. The dashed lines represent the

corresponding non-retarded expressions.
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Figure 3
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