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 10 

Abstract 11 

 Novel antimicrobial biopolymer films based on the incorporation of ethyl-N
α
-dodecanoyl-L-12 

arginate hydrochloride (LAE) in zein matrices were manufactured and characterized as materials for 13 

LAE controlled released applications such as active food packaging. Characterization of the films’ 14 

functional properties revealed that incorporation of LAE (5 and 10%) in the biopolymer matrix did 15 

not cause substantial changes in morphological, optical, thermal, mechanical and barrier properties.  16 

As the mechanism of action of these films is mainly based on release of the antimicrobial, this process 17 

was characterized when the active biofilms were exposed to three food simulants (water, 3% acetic 18 

acid, and 10% alcohol) at three temperatures (4, 23, and 37 °C). The data obtained revealed that, with 19 

the exception of exposure to water at 4 °C which achieved a release of more than 80% of the LAE 20 

incorporated, the agent was almost completely extracted in all conditions. Release of LAE was faster 21 

at higher temperatures, and the diffusion coefficient values varied according to the Arrhenius law, and 22 

increased with temperature. Antibacterial activity of films was assayed against L. monocytogenes and 23 

E. coli. Zein films with 5% LAE produced 2.02 and 3.07 log reduction against L. monocytogenes and 24 

E. coli, respectively, after 5 days of storage at 4 °C. Greater antibacterial activity was observed with 25 

films containing 10% LAE (5 log reduction) at 37 °C. This work highlighted that LAE incorporation 26 

in a packaging film constructed with renewable polymer materials offers an interesting and efficient 27 

hurdle for control of bacterial contamination in foods. 28 

Keywords: Antimicrobial packaging, bioplastics, LAE, zein, antimicrobial release, release kinetics. 29 

 30 

1. INTRODUCTION 31 

Post-processing contamination is one of the major causes of foodborne illness and of the 32 

associated food product recalls, and is becoming a major public health issue and an economic 33 

burden for the food industry. Within the technologies developed to avoid this problem, active 34 

packaging incorporating antimicrobial substances is one of the most promising methods in 35 

the so-called hurdle technologies to improve food safety (inhibiting pathogenic bacteria) and 36 
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quality (reducing the incidence of spoilage microorganisms) (Gavara, et al., 2015). Direct 37 

addition of active agent may cause rapid diffusion of the antimicrobial into the food matrix 38 

and partial inactivation by interaction with product constituents. As an alternative, active 39 

packaging can offer slow, continuous release of antimicrobial agents from polymer packaging 40 

materials to food surfaces, thus maintaining an adequate concentration during storage and 41 

distribution, concentrated on the food surface where the antimicrobials are generally most 42 

needed (Arancibia, Lopez-Caballero, Gomez-Guillen, & Montero, 2014; Barbiroli, et al., 43 

2012; Muriel Galet, et al., 2013). 44 

There is a large number of antimicrobial compounds that have been proved to inhibit the 45 

growth of pathogenic and spoilage microorganisms present in food. One that is receiving 46 

particular attention is a novel molecule, ethyl-N
α
-dodecanoyl-L-arginate hydrochloride 47 

(LAE). The antimicrobial properties of LAE are due to its action as a cationic surfactant on 48 

the cytoplasm and outer membrane of Gram-negatives, and the cell membrane and cytoplasm 49 

of Gram-positives, resulting in cell growth inhibition and loss of viability (Luchansky, et al., 50 

2005). In addition to the good antimicrobial properties of LAE, this molecule remains stable 51 

from pH 3 to pH 7 and does not add flavor, suggesting that this substance may be useful as an 52 

antimicrobial agent for a wide range of foods (Becerril, Manso, Nerin, & Gómez-Lus, 2013). 53 

Moreover, LAE is hydrolyzed in the human body and transformed into natural components 54 

such as arginine and lauric acid (Hawkins, Rocabayera, Ruckman, Segret, & Shaw, 2009), 55 

and is considered as a safe product and permitted as a food preservative by the Food and 56 

Drug Administration (FDA) and the European Food Safety Agency (EFSA). 57 

LAE has been successfully incorporated into conventional polymer (Virginia Muriel-Galet, et 58 

al., 2012; Otero, et al., 2014) and into biopolymeric chitosan (Guo, Jin, Wang, Scullen, & 59 

Sommers, 2014; Guo, Jin, & Yang, 2014) film coatings to inhibit various pathogenic bacteria. 60 

With respect to biopolymers, growing environmental concern about the use of packaging 61 

materials is driving the food industry and packaging manufacturers to explore the use of 62 

alternative biopolymers in all packaging technologies, including active packaging (Petersen, 63 

et al., 1999). Among these biopolymers, many efforts are being focused on animal and 64 

vegetable proteins. Zein (the major storage protein in corn endosperm) is a very attractive 65 

packaging material because it is the main residue from production of corn starch, is 66 

commercially available, and is soluble in hydroalcoholic mixtures from which it can be easily 67 

converted into transparent films with attractive properties due to high content of nonpolar 68 

amino acids (Matsushima, Danno, Takezawa, & Izumi, 1997), such as good moisture barrier, 69 
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and excellent oxygen barrier (Gioia & Guilbert, 1999; Ozcalik & Tihminlioglu, 2013). 70 

Taking advantage of the film-forming solution, several antioxidant and antimicrobial agents 71 

have been successfully incorporated in zein films, such as butylated hydroxyanisole BHA 72 

(Herald, Hachmeister, Huang, & Bowers, 1996), nisin (Janes, Kooshesh, & Johnson, 2002), 73 

salicylic acid, acetyl salicylic acid (Singh, Georget, Belton, & Barker, 2010), or thymol (del 74 

Nobile, Conte, Incoronato, & Panza, 2008; Mastromatteo, Barbuzzi, Conte, & Del Nobile, 75 

2009). 76 

The main objective of this study was the development and characterization of zein films 77 

containing 5 and 10% of LAE. The characterization included optical, mechanical, and barrier 78 

properties, studies of antimicrobial release into aqueous food simulants at 4 and 37 °C, and 79 

antimicrobial activity. 80 

 81 

2. MATERIALS AND METHODS 82 

2.1. Reagents and microbial strains 83 

Decolored and deodorized Kobayashi zein powder was purchased from CBC-Iberia 84 

(Barcelona). Ethyl-N
α
-dodecanoyl-L-arginate hydrochloride (C20H41N4O3Cl) was kindly 85 

provided by Vedeqsa Grupo LAMIRSA (Terrassa, Barcelona, Spain). Ethanol, acetic acid, 86 

and acetonitrile were purchased from Scharlau (Barcelona, Spain), and trifluoroacetic acid 87 

and glycerol from Sigma (Madrid, Spain). These reagents were used without further 88 

purification. Deionized water was supplied by a Millipore Milli-Q Plus purification system 89 

(Molsheim, France). 90 

Gram-positive bacteria, Listeria monocytogenes CECT 934 (ATCC 19114), and Gram-91 

negative bacteria, Escherichia coli CECT 434 (ATCC 25922), were obtained from the 92 

Spanish Type Culture Collection (CECT, Valencia, Spain) and selected for use in the 93 

antimicrobial assays because of their relevance in the food industry. The strains were stored 94 

in Tryptone Soy Broth (TSB, Scharlau, Barcelona) with 20% glycerol at −80 °C until needed. 95 

For experimental use, the stock cultures were maintained by regular subculture on Tryptone 96 

Soy Agar (TSA) slants from Scharlau (Barcelona, Spain) at 4 °C and transferred monthly. 97 

Prior to tests, a loop of each strain was transferred to 10 ml of TSB and incubated at 37 °C for 98 

18 h to obtain early stationary phase cells. 99 

 100 

2.2. Film preparation 101 
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Sixteen g of zein powder was added to 84 g of hydroalcoholic solution (80% v/v) with 102 

continuous stirring at 70 °C until complete dissolution, and then cooled down to 40 °C. 103 

Owing to the fragility of the zein film, the addition of glycerol as plasticizer was required; 104 

otherwise, the film was too fragile to be handled. After preliminary trials (not included in this 105 

report and in agreement with previous reports (Liang, et al., 2015; Naushad Emmambux & 106 

Stading, 2007)) to select the minimum concentration required to obtain films flexible enough 107 

to be handled without breaking, 15% of glycerol (w/w of zein) was added to the solution and 108 

it was stirred for another 8 min at 40 °C. Finally, LAE was added to the polymer solutions at 109 

5 or 10% with respect to zein content and they were stirred for another 8 min. Film-forming 110 

solutions were spread on a clean glass plate, using a spreading bar with a thread 250 µm deep 111 

(LinLab, Logroño, Spain), and dried in a forced-air drying tunnel equipped with a 2500 W IR 112 

heat source for 20 min. Then the films were peeled off and stored in desiccators with silica 113 

gel until tested. Control films were prepared without the active agent. Film thickness was 114 

determined individually with a digital micrometer (Mitutoyo, Kanagawa, Japan) prior to 115 

testing. 116 

2.3. Film characterization 117 

2.3.1. Morphology and optical properties 118 

The morphology of the zein films was analyzed by observation of the cryo-fracture surface 119 

by scanning electron microscopy (SEM). The film color was determined with a colorimeter 120 

and the results were expressed in the CIELAB system, and the opacity was estimated by 121 

measuring the transmittance in a UV-visible spectrophotometer. A complete description of 122 

the procedures used is included in the supplementary material. 123 

2.3.2. Fourier-transform infrared (FTIR) spectroscopy 124 

The IR spectra of the films were determined using an infrared spectrometer (FTIR) (Perkin 125 

Elmer 16 PC spectrometer, Boston, USA), in Attenuated Total Reflectance mode (ATR) 126 

between 400 and 4000 cm
–1

, using 16 scans at a resolution of 4 cm
–1

. 127 

2.3.3. Differential scanning calorimetry (DSC) 128 

Differential scanning calorimetry (DSC) measurements were performed with a Q2000 unit 129 

(TA Instruments, USA). Samples were cooled down to –60 °C, and after 5 min they were 130 

heated to 220 °C at a heating rate of 10 °C min
–1

 under a nitrogen atmosphere. 131 

2.3.4. Mechanical properties 132 
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After at least 24 hours of film preconditioning at 50 ± 5% RH and room temperature, tensile 133 

strength (TS), percentage of elongation at break (EB), and Young’s modulus (YM) of the 134 

films were determined using a Mecmesin MultiTest 1-I universal machine (Landes Poli 135 

Ibérica, S.L., Barcelona, Spain), following the conditions of the ASTM D882 standard 136 

(ASTM, 2009). 137 

2.3.5. Mass transport properties 138 

2.3.5.1. Water solubility 139 

Samples of films (2 × 2 cm) were dried in a desiccator containing phosphorus pentoxide for 140 

one week to reach constant weight (wi), and then immersed in aqueous solution buffered at 141 

pH 5 at 23 °C. After 24 h, film pieces were removed from the solution, wiped off with a 142 

paper towel, and dried in the desiccator until constant weight (final weight, wf). The 143 

percentage of water solubility (WS) was calculated as follows: 144 

        
     

  
            (1) 145 

The experiment was performed in triplicate. 146 

2.3.5.2. Water vapor permeability (WVP) 147 

The water vapor permeability of the films was determined gravimetrically at 25 °C according 148 

to ASTM E96-95 (ASTM, 2010), with a humidity gradient of 75% RH to 0% RH and 100% 149 

RH to 0% RH. 150 

2.3.5.3. Oxygen permeability 151 

The measurements of O2 and CO2 permeance through the film samples were carried out using 152 

isostatic methods (Cerisuelo, Gavara, & Hernández-Muñoz, 2015). 153 

2.3.6. Release studies of active zein films 154 

The release of the active compound from the zein films was investigated by immersing film 155 

samples measuring 3 cm
2
 into 5 mL of food simulants. Water, acetic acid (3% v/v), and 156 

ethanol (10% v/v) were used as food simulants, in accordance with European legislation 157 

(Directive 58/572/ECC). Sample tubes were stored at 4 and 37 °C under gentle agitation. 158 

Pieces of film were removed from the food simulants at different time intervals and the liquid 159 

was collected for analysis. Liquid samples were filtered and the concentration of LAE 160 

released was evaluated by HPLC (Agilent 1200 series). The chromatographic column used 161 

was a C18 reverse phase column, 150 mm × 3.9 mm, particle size 5 µm. The mobile phase 162 
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was acetonitrile:water 50:50 (v/v) containing 0.1% trifluoroacetic acid at a flow rate of 1 163 

mL/min, and the injection volume was 20 µL. The LAE elution time was about 6 min and it 164 

was detected using a wavelength of 205 nm. A calibration curve was constructed by injection 165 

of known LAE concentrations between 5 and 100 ppm. From the concentration evolution, the 166 

partition coefficient (K), defined as the ratio of LAE concentration in the film over 167 

concentration in the simulant, and the diffusion coefficient (D) as defined by Fick’s laws 168 

were estimated. The procedure for determining these two coefficients is fully described in the 169 

supplementary file. 170 

2.3.7. Evaluation of antimicrobial activity of zein films with LAE in a liquid medium 171 

To evaluate the antimicrobial efficacy of the zein films incorporating 5 and 10% LAE, they 172 

were against E. coli and L. monocytogenes. Prior to the experiment, a loop of each strain was 173 

transferred to 10 mL of TSB and incubated at 37 °C for 18 h to obtain early stationary phase 174 

cells. Cell cultures of each microorganism in stationary phase, with an optical density of 0.9 175 

at 600 nm, were diluted in TSB and incubated at 37 °C until exponential phase, 176 

corresponding to an optical density of 0.2 at 600 nm (10
5 

CFU/ml). One hundred µL of 177 

exponential phase microorganism was inoculated into tubes with 10 mL of TSB. A 0.025 g 178 

portion of film (cut into pieces measuring 1.5 cm
2
) was added to each tube in sterile 179 

conditions. The tubes were then incubated at 37 °C for 18 h and 4 °C for 5 days. As a control, 180 

zein film without active agent was also used in every experiment. Depending on the turbidity 181 

of the tubes, serial dilutions with peptone water were made and plated in Petri dishes with 15 182 

mL of TSA culture medium. Colonies were counted after incubation at 37 °C for 18 h. 183 

2.3.8. Statistical analysis 184 

Statistical analysis of the results obtained was performed with the aid of IBM SPSS Statistics 185 

21 commercial software (IBM Corp., Armonk, NY, USA). Specifically, a one-way analysis 186 

of variance (ANOVA) was carried out, and differences found between mean values for the 187 

materials studied were assessed by means of confidence intervals, using Tukey’s test at a p ≤ 188 

0.05 level of significance. 189 

 190 

3. RESULTS AND DISCUSSION 191 

In this work, a decolored deodorized zein was used to obtain films by the casting procedure 192 

described in the experimental section. Passive and active zein films were transparent to 193 

visible light although partially opaque to UV light owing to the high content of aromatic 194 
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amino acids which absorb UV light (Hosseini, Rezaei, Zandi & Ghavi, 2013),  slightly 195 

yellowish, with chroma values of ca. 7 (despite the type of zein used), and practically 196 

odorless compared with standard zein, which smells strongly of animal feed. 197 

Morphologically, the film matrix was homogeneous, without phase separation and without 198 

substantial differences between active and control samples. All film formulations included 199 

15% of glycerol, which was required to reduce brittleness and ease handling. Mechanically, 200 

the films presented low resistance to strain. A fuller description of optical and mechanical 201 

properties is provided in the supplementary material. 202 

3.1. Thermal properties 203 

The thermal properties of pure zein powder and plasticized zein film with and without the 204 

antimicrobial agents were measured by DSC and are presented in Figure 1. The thermogram 205 

for pure zein shows a high glass transition temperature (Tg) of about 132 °C, close to the 139 206 

°C value reported in the literature (Madeka & Kokini, 1996). This expected value is also in 207 

agreement with the fragility observed in pure films during preliminary assays. After 208 

plasticization with 15% of glycerol, the glass transition of the prepared zein films decreases 209 

to values of 57 °C, close to values observed in other reports for zein films plasticized with 210 

various percentages of glycerol (di Gioia & Guilbert, 1999; Ghanbarzadeh, Oromiehie, 211 

Musavi, Razmi, & Milani, 2006). When the plasticized film is immersed in water, the film is 212 

highly plasticized and swells (Madeka, et al., 1996), and the glycerol diffuses rapidly in the 213 

polymer matrix and dissolves in the liquid medium. When the film is re-dried and the water 214 

removed, the final film does not contain any plasticizer. The glass transition of such films 215 

(Zein-G-Water in Figure 1) was found at 153 °C, even higher than that of the powder. This 216 

value might be caused by the removal of other residues in the zein powder, which might 217 

affect the glass transition of the pure polymer. The addition of LAE at 5 and 10% to the 218 

plasticized film did not produce any substantial effect on the Tg, as can be seen in Figure 1. 219 

Also, in the film samples (Zein-G, Zein-G-5%LAE, and Zein-G-10%LAE), two endotherms 220 

can be observed, at ca. 100 and 160 °C, which are associated with the evaporation of residual 221 

solvent and of glycerol, respectively. 222 

 223 

3.2. Barrier properties 224 

Barrier properties are important to protect packaged products from the environment and 225 

maintain their quality for longer storage times. The barrier properties of polymer films are 226 
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generally related to the physical and chemical nature of the polymers. This section deals 227 

with the evaluation of water vapor, oxygen, and carbon dioxide permeability of zein-based 228 

films. 229 

 230 

3.2.1. Water vapor permeability (WVP)  231 

 Water transport in food packaging can accelerate food spoilage mechanisms such as 232 

browning, lipid oxidation, vitamin degradation, enzyme activity, microbial growth, and 233 

textural changes, reducing food shelf life and quality. Thus, water permeability is a critical 234 

parameter for packaging materials. In this work, water flow through the film into the cell was 235 

measured at humidity gradients of 70% and 90%. The evolution of cell weight shown in the 236 

left plot of Figure 2 shows that the water flow increases with the gradient, as expected, 237 

because the gradient is the driving force of the mass transport phenomena. From the slopes in 238 

this representation (dm/dt) and the film thickness (L) and the vapor pressure gradient 239 

(        ), the WVP values (right plot of Figure 2) were estimated. 240 

    
 
  

  
   

              
         (2) 241 

WVP values for the control zein film were 3.7 and 5.5 × 10
–14

 Kg·m/(m
2
·s·Pa) at 70% and 242 

90% relative humidity, respectively, slightly lower than the values reported in the literature 243 

(McHugh & Krochta, 1994). In hydrophobic materials, WVP is usually not influenced by the 244 

humidity gradient. However, hydrophilic materials suffer swelling and plasticization with the 245 

presence of water, and these processes result in an increase in WVP values with exposure to 246 

humidity. As can be seen in Figure 2, water permeability values increased with the humidity 247 

to which the film was exposed. Even though zein is less hydrophilic than other protein 248 

materials, such as whey or gluten, the water gained by the film upon exposure to high 249 

humidity environments results in film plasticization, and, as in many other hydrocolloid 250 

materials, the barrier characteristics worsen (McHugh, et al., 1994). Statistical analysis of the 251 

results showed that the addition of 10% LAE could reduce water permeability of the films, 252 

this effect being more evident at high water activities. The ambiphilic properties of LAE as 253 

surfactant are probably responsible for this effect, limiting the swelling effect of water and 254 

maintaining the zein interchain interactions even when exposed to wet environments (Figure 255 

2). 256 

 257 
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3.2.2. Oxygen (OP) and carbon dioxide (CO2P) permeability 258 

Oxygen barrier was measured for the three zein-based film samples equilibrated at three 259 

humidity conditions and the oxygen permeability values are plotted in Figure 3. Dry samples 260 

presented a good barrier to oxygen, similar to the values reported in the literature (McHugh, 261 

et al., 1994), i.e., a much better barrier than commodity plastics such as PE or PP, and in the 262 

range of engineering materials such as PET or PA6. When the films were equilibrated at 263 

increasingly humid environments, their oxygen permeability increased greatly, 4-fold at 70% 264 

RH and 30-fold at 90%. This observation was in agreement with the matrix plasticization by 265 

sorbed water mentioned earlier. On comparing the various samples, no significant differences 266 

could be attributed to the addition of LAE. 267 

Carbon dioxide permeability is also important in food packaging systems because this gas is a 268 

major component of modified atmosphere packaging systems and is exchanged by fresh fruit 269 

and vegetables during the postharvest period. Values of the carbon dioxide permeability 270 

presented the same profile as oxygen permeability. The zein films presented a CO2P of 5.4 ± 271 

1.2·10
–19

, 2.1 ± 0.4·10
–18

, and 2.0 ± 0.6·10
–17

 [m
3
.m]/[m

2
.s.Pa] at 0, 70, and 90% RH, 272 

respectively, without differences caused by the incorporation of LAE. Compared with oxygen 273 

mass transport, carbon dioxide permeates about 4 times faster, similar to most conventional 274 

oil-based polymers, and unlike other hydrocolloid films, whose permselectivity (CO2P/OP) 275 

increases with humidity up to 20-fold (Balaguer, Cerisuelo, Gavara, & Hernandez-Munoz, 276 

2013). 277 

 278 

3.2.3. Water solubility (WS) 279 

From a traditional point of view, ideal packaging should present negligible interactions with 280 

the contained product. Although this characteristic has changed with the development of 281 

active and intelligent packaging, food/package/environment mass exchange processes should 282 

be limited to those that actually provide a beneficial effect on product preservation. One of 283 

the largest interactions taking place in a food/flexible package system is derived from partial 284 

dissolution of the polymer matrix. This process is especially important with aqueous foods 285 

and packaging materials based on hydrocolloids. Water resistance and integrity are required 286 

for packaging foods with high moisture contents, and partial dissolution might be 287 

disadvantageous. Contrary to a previous report (Yamada, Takahashi, & Noguchi, 1995) films 288 

were water resistant and maintained integrity in water throughout the diverse tests carried out 289 
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in this work. The WS values of the prepared zein films were 12.8 ± 1.4 for the Zein-G films, 290 

17.7 ± 0.3 for Zein-G-5%LAE, and 22.6 ± 0.6% for Zein-G-10%LAE. To understand this 291 

result, our hypothesis is that the principal migrant is glycerol (a highly water-soluble 292 

plasticizer). As this compound is practically at the same final concentration in all the films, 293 

i.e., ca. 15%, it can be considered that most of the glycerol added is released into the aqueous 294 

medium. Obviously, LAE, which is also water-soluble, should also be partially released, 295 

being part of the WS values. Compared with other hydrocolloids often reported as alternative 296 

materials to oil-based polymers for film applications, such as gelatin (WS=63.81%) 297 

(Hosseini, Rezaei, Zandi, & Ghavi, 2013), chitosan (WS=31.64%) (Martins, Cerqueira, & 298 

Vicente, 2012), alginate (WS=99.5%) (Abdollahi, Alboofetileh, Behrooz, Rezaei, & Miraki, 299 

2013), and kefiran (WS=27.91%), it can be considered that zein is practically insoluble in 300 

water. This behavior can be explained by the fact that 50% of zein amino acid residues are 301 

hydrophobic, including high percentages of leucine (20%), proline (10%), and alanine (10%) 302 

(Cabra, et al., 2005; Geraghty, Peifer, Rubenstein, & Messing, 1981). 303 

The increase in WS with the incorporation of LAE is clearly related to the full release of the 304 

antimicrobial agent into the aqueous medium. This hypothesis is in agreement with the 305 

release values described in the next section. 306 

 307 

3.3. Antimicrobial agent release 308 

The mechanism of action of antimicrobial food packaging systems like the one developed in 309 

this work is based on the release of an antimicrobial compound from the packaging film into 310 

the food product. Consequently, it is important to characterize the substance released into the 311 

food. To carry out this study, the films were exposed to three food simulants, water and the 312 

two food simulants recommended by EU regulations, 10% ethanol as a simulant of aqueous 313 

food, and 3% acetic acid as a simulant of acid products. The release of LAE was monitored 314 

until a constant concentration was observed. Three exposure temperatures were included, 4 315 

°C to simulate refrigerated storage, 23 °C to simulate room temperature (as in supermarkets), 316 

and 37 °C to simulate temperature abuse conditions (non-conditioned warehouses or trucks). 317 

Figure 4 is a representative plot of the results obtained for a simulant. As can be seen, the 318 

data can be described by exponential growth to maximum profiles. From the data at 319 

equilibrium, the K values were obtained for all samples and conditions. From the data during 320 

the non-equilibrium period, the values of D were evaluated by curve fitting as described in 321 
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the supplementary material. Figure 4 also includes the curves obtained with the K and D data 322 

that provide the best fit, data that are represented in Figure 5. As the concentration of LAE is 323 

assumed not to affect the process substantially, the data of samples with 5 and 10% of LAE 324 

were considered together in the curve fitting process. As Figure 4 shows, this assumption is 325 

easily acceptable. The K values obtained were very low; the highest values were obtained for 326 

water at 4 °C (K=7.5) and 10% ethanol at 4 °C (K=5.5). The rest of the K values were below 327 

1. From these data, the percentages of LAE release from the films into the simulant were 328 

calculated, and they are represented in Figure 5 together with the values of D. As can be seen, 329 

the amount of antimicrobial substance released increases with temperature, and, with the 330 

exception of exposure to water at 4 °C, which results in a release of about 82%, the release is 331 

almost complete for all other conditions. 332 

With respect to the process kinetics, temperature severely affects the release rate, as can be 333 

seen in the experimental data and the theoretical curves plotted in Figure 4. The values of the 334 

diffusion coefficient obtained through this fitting are represented as a function of the inverse 335 

of temperature in Figure 5. For the three simulants, this representation of the Arrhenius plot 336 

approaches a linear plot from which the activation energies for the diffusion of LAE can be 337 

obtained and they are included in the figure. With respect to the effect of the simulants, few 338 

differences were observed. In general, exposure to the acid simulant results in greater release 339 

of the agent from the polymer film at all temperatures, and the release is also faster than with 340 

the other simulants, especially at low temperatures. Very similar profiles were observed for 341 

water and 10% ethanol. There is a significant difference in the percentage of agent released 342 

from the film at 4 and 23 °C. Apparently, the presence of the alcohol shifts the equilibrium 343 

toward the liquid phase. No effect on the kinetics was observed at these temperatures. 344 

The release of LAE from other polymer materials has been characterized previously. Our 345 

team studied the release from two hydrophilic polymers, chitosan (Higueras, López-Carballo, 346 

Hernández-Muñoz, Gavara, & Rollini, 2013) and EVOH (V. Muriel-Galet, López-Carballo, 347 

Hernández-Muñoz, & Gavara, 2014). From comparison of the results we can conclude that 348 

LAE is released more slowly from zein films than from chitosan or EVOH. This more 349 

controlled release might be related to the fact that zein is less hydrophilic than those two 350 

polymers and therefore sorbs less water. This lower water gain results in less matrix swelling 351 

and plasticization, and consequently slower LAE diffusion. 352 

 353 
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3.4. Antimicrobial effect of zein films with LAE 354 

Table 1 shows the results of the antibacterial activity analysis carried out on the zein films 355 

incorporating 5 and 10% LAE by exposing them to L. monocytogenes and E. coli inoculated 356 

in TSB tubes at 37 and 4 °C. Zein film without LAE was used as control (a previous analysis 357 

not reported here proved that plasticized zein has no bactericidal or bacteriostatic effect). The 358 

listericidal results of zein films containing 5 and 10% LAE showed a 2.61 and 4.99 log 359 

reduction, respectively, after 18 h of exposure at 37 °C. These film samples containing 5 and 360 

10% of LAE also yielded 2.95 and 4.16 log reductions against E. coli in the same conditions. 361 

Clearly, the higher the LAE concentration in the film, the greater the antimicrobial efficiency 362 

of the zein film, a trend that is in agreement with the greater amount of LAE released into the 363 

culture medium. Similar growth inhibition was observed after exposure at 4 °C for 5 days. 364 

This result is also in agreement with the release process observed. After 5 days, practically all 365 

the agent had been released into all the food simulants studied, and therefore the LAE 366 

contents to which the microorganisms were exposed in these conditions were similar to those 367 

to which they were exposed after 18 h at 37 °C. The activity results obtained here showed 368 

that LAE-containing zein films are less efficient than chitosan (Higueras, et al., 2013) or 369 

EVOH films (V. Muriel-Galet, Lopez-Carballo, Gavara, & Hernandez-Munoz, 2015). This 370 

can be attributed to the slower agent release mentioned earlier. 371 

Considering that the experimental conditions used for the antimicrobial effect analysis were 372 

similar to those used in the release study, that is same film/liquid ratio, the amount of LAE 373 

release into the media should be similar to that observed in water at 4 and 37ºC, that is 82% 374 

and 100%, respectively. This release percentage are indicative of an agent concentration in 375 

the broth after equilibrium of 100-125 ppm for the 5% LAE film and 200-250 ppm for the 376 

10% LAE. To prove the effectiveness of antimicrobial films as vehicle to release an agent 377 

with respect to the agent direct addition, a simple experiment was made by adding LAE to the 378 

TSB tubes containing E. coli. at 50, 100 and 200 ppm. The results were 2.82, 5,03 and 5,38 379 

log reductions, respectively. A simple comparison shows that the use of the film provides 380 

slightly lesser effect than the direct addition, probably because the controlled release delays 381 

the achievement of the final agent dose. 382 

 383 

4. CONCLUSIONS 384 
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Zein has been proved to be an excellent vehicle for delivering LAE, a novel wide-spectrum 385 

antimicrobial agent, into food products and for improving the stability and safety of food. 386 

LAE (5 and 10%) was incorporated in glycerol-plasticized zein films prepared by casting. 387 

The resulting films presented good barrier properties against oxygen and carbon dioxide and 388 

a poor barrier to water. Although the films were stable when immersed in water and did not 389 

degrade, as occurs with many other protein films, these properties were substantially affected 390 

by water. The incorporation of the antimicrobial agent did not affect optical, thermal, barrier, 391 

or mechanical properties of the zein films. When the films were immersed in aqueous food 392 

simulants, LAE was released to a large extent or nearly completely at a fast rate which was 393 

accelerated by an increase in temperature. Antimicrobial tests carried out on these films 394 

showed that they are efficient at inhibiting the growth of L. monocytogenes and E. coli. The 395 

material developed could be applied as a coating to a biopolymer film to provide a renewable 396 

packaging structure with antimicrobial properties. 397 

 398 
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LEGENDS TO FIGURES 512 

 513 

Figure 1. DSC thermograms of the various zein samples with indication of Tg values. Tg 514 

values with different letters are significantly different (P < 0.05). 515 

Figure 2. Water gain during the water vapor transmission experiment at the two humidity 516 

gradients tested (left figure). Water vapor permeability of zein films with different LAE 517 

levels (right figure). Values with different letters are significantly different (P < 0.05). 518 

 519 

Figure 3. Oxygen permeability values for the zein-based film samples at 23 °C and 0, 70, and 520 

90% RH. 521 

Figure 4. Relative release of LAE from Zein-G-5%LAE and Zein-G-10%LAE into 10% 522 

EtOH at 4, 23, and 37 °C. Symbols are experimental data, lines are obtained by curve fitting 523 

following the appropriate resolution to Fick’s equation (described in the supplementary file). 524 

Figure 5. Percentage of LAE released from films into the various simulants at equilibrium 525 

(left image) and Arrhenius plots of the diffusion coefficient values for LAE in zein films 526 

exposed to the three simulants considered, including the activation energies for the diffusion 527 

(Ea). Different letters indicate that for a simulant, percentage values are affected by 528 

temperature, different numbers indicate that for a temperature percentage values are affected 529 

by the simulant (P < 0.05). 530 

 531 

 532 

 533 
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Table 1. Antimicrobial effectiveness of LAE films against L. monocytogenes and E. coli at 37 °C for 

18 h and 4 °C for 5 days Values expressed as logarithm of colony forming units (log CFU/mL) and 

log reduction value (LRV). 

Film sample L. monocytogenes E. coli 
 37 ºC 4ºC 37 ºC 4ºC 

 
    

   

  
  

LRV 
    

   

  
  

LRV 
    

   

  
  

LRV 
    

   

  
  

LRV 

Zein-G 8.46 ± 0.05  7.30 ± 0.03  9.19 ± 0.05  9.20 ± 0.01  

Zein-G-5%LAE 5.85 ± 0.57 2.61 5.27 ± 0.59 2.02 6.23 ± 0.19 2.95 6.13 ± 0.62 3.07 

Zein-G-10%LAE 3.47 ± 0.37 4.99 3.38 ± 0.08 3.91 5.02 ± 0.96 4.16 4.68 ± 1.27 4.51 
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1. EXPERIMENTAL SECTION 

 

1.1. Film preparation 

Zein powder was dissolved in a hydroalcoholic solution (80% v/v) to obtain 16% (w/w) film-forming 

solutions. The solution was stirred for 30 min at 70 °C using a magnetic stirrer hotplate and with the 

use of a reflux vapor system. Due to the fragility of the zein film, the addition of glycerol as 

plasticizer was required, otherwise the film could not be handled. Glycerol was added in increasing 

concentrations of 5%. After the film was formed (as described below), the film was removed from 

the casting surface. The amount of glycerol selected was the minimum amount that made it possible 

to remove the film from the casting surface without breaking in three consecutive trials. Accordingly, 

15% glycerol (w/w of zein) was added to the solution and it was stirred again for 8 min at 30 °C. 

Then LAE was added to the polymer solutions at 5 and 10% with respect to polymer content and it 

was stirred for 8 min. The film-forming solutions were cooled down to 40 °C and then spread on a 

clean glass plate using a spreading bar with a thread 250 µm deep (LinLab, Logroño, Spain) and 

dried in a forced-air drying tunnel equipped with a 2500 W IR heat source for 20 min. Then the films 

were peeled off and stored in desiccators until tested. Control films were prepared without active 

agent. Film thickness was determined individually with a digital micrometer (Mitutoyo, Kanagawa, 

Japan) prior to testing. 

 

1.2. Film characterization 



1.2.1. Water solubility 

Samples of films (2 × 2 cm) were dried in a desiccator containing phosphorus pentoxide for at least 

one week until a constant weight was reached (wi). Then the sample was immersed in aqueous 

solution buffered at pH 5 at 23 °C. After 24 h, film pieces were removed from the solution, wiped off 

with a paper towel, and dried in the desiccator until sample weight was constant (final weight, wf). 

The percentage of water solubility (WS) was calculated as follows: 

          
     

  
             (1) 

The experiment was performed in triplicate. 

1.2.2. Optical properties 

The film color was determined with a CR-300 Minolta Chroma meter (Minolta Camera Co., Ltd., 

Osaka, Japan). The colorimeter was calibrated using a standard white plate (L= 93.49, a= –0.25, b= –

0.09). Then the color measurements were performed by placing the film specimens over the 

colorimeter. The results were expressed in accordance with the CIELAB system with reference to 

illuminant D65 and a visual angle of 10°.At least three points on each sample were selected randomly 

to measure the color properties of the zein films. Color parameters L* (lightness), a* (red/green), b* 

(yellow/blue) were measured, color difference (ΔEab), chroma (Cab
*
), and hue (hab) were calculated 

using the following equations (Higueras, López-Carballo, Cerisuelo, Gavara & Hernández-Muñoz, 

2013 ). 

 Δ                                                                   (2) 

    
                             (3) 

               
  

   
              (4) 

 

The apparent transparency was evaluated, using a UV-visible spectrophotometer (Agilent, 8453, 

Barcelona, Spain), as the integrated area under the curve, which was calculated using UV-WIN-Lab 

software and expressed as the product of absorbance value (A) and wavelength (nm). Samples were 

measured in triplicate. 

 

 

1.2.3. Mechanical properties 



Tensile strength (TS), percentage of elongation at break (EB), and Young’s modulus (YM) of the 

films (preconditioned at 50 ± 5% RH at room temperature for at least 24 hours prior to testing) were 

determined using a Mecmesin MultiTest 1-I universal machine (Landes Poli Ibércia, S.L., Barcelona, 

Spain) according to ASTM D882(ASTM, 2009). Film samples were cut into rectangular strips (2.54 

× 10 cm) and mounted between the tensile grips of the instrument. The initial grip spacing and cross-

head speed were set at 5 cm and 25 mm min
–1

 respectively. The tensile properties were calculated 

from the plot of stress (tensile force/initial cross-section area) versus strain (elongation as a fraction 

of the original length). All determinations are the means of at least 8 measurements. 

 

1.2.4. Water vapor permeability (WVP) 

The water vapor permeability through the films was determined gravimetrically at 25 °C 

according to ASTM E96-95(ASTM, 2010). The cup had an internal diameter of 3.5 cm and an 

external diameter of 4.5 cm (exposed area: 7.065 cm
2
), and was 3.5 cm deep. The cup was filled with 

7 g of silica in order to generate a 0% RH internal environment, and the films were fixed on top of it. 

A rubber O-ring and silicon grease helped to ensure a good seal. The film and rubber O-ring were 

attached to the cup by an aluminum annulus and three metal clips. Then the cups were placed in 

desiccators containing saturated solutions of NaCl (75% RH) or water (100% RH). Cups under test 

were periodically weighed in an analytical balance. When the relationship between weight loss and 

time was linear, the slope of the plot was used to calculate the water vapor permeability as follows: 

      
  

    
 
     

  
     

     

  
     (6) 

where WVTR is the water vapor transmission rate through a film, calculated from the slope of the 

straight line divided by the exposed film area, L is the mean film thickness, and P is the partial 

water vapor pressure difference across the two sides of the film. Three replicates of each film were 

tested. 

1.2.5. Determination of oxygen and carbon dioxide permeability 

 The measurements of O2 and CO2 permeance through the film samples were carried out using 

isostatic methods (Cerisuelo, Gavara & Hernández-Muñoz, 2015). The O2 permeation rates of the 

materials were determined at 0, 70, and 90% RH and 23 °C using an OXTRAN Model 2/21 ML 

Mocon (Lippke, Neuwied, Germany). Samples were positioned in the permeation cells of the 

instrument and conditioned under nitrogen at the relative humidity of the test for at least 48 hours. 

After this preconditioning period, the runs started and were continued until three consecutive 

measurement cycles of 40 min showed constancy. 



The CO2 permeation rates of the materials were determined at 0, 70, and 90% RH and 23 °C using a 

two-chamber cell and an assembly that makes use of a gas chromatograph as detector. As in the case 

of oxygen, samples were preconditioned at the humidity of the experiment for at least 48 h. Analysis 

was carried out twice a day. The final CO2 transmission rate was obtained when 4 consecutive 

measurements provided a constant value. 

 

1.2.6. Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) measurements were performed with a Q2000 unit (TA 

Instruments, USA) previously calibrated with indium. Film samples were cut into small pieces and 

put in a desiccator with phosphorus pentoxide for one week, and then ca. 30 mg was weighed in 

aluminum hermetic pans and closed with the corresponding aluminum lid. The samples were cooled 

down to –60 °C and after 5 min, they were heated to 220 °C at 10 °C min
–1

 heating rate under a 

nitrogen atmosphere. Information on the thermogram was extracted with the instrument software 

(TA Universal Analysis). 

 

1.2.7. Fourier-transform infrared (FTIR) spectroscopy 

Zein films prepared in this work were analyzed in an infrared spectrometer (FTIR) 

(PerkinElmer 16 PC spectrometer, Boston, USA), in Attenuated Total Reflectance mode (ATR) 

between 400 and 4000 cm
–1

, using 16 scans at a resolution of 4 cm
–1

. 

 

1.2.8. Scanning Electron Microscopy (SEM) 

 Morphological changes in cross-sections of films resulting from exposure to food simulant 

were studied by scanning electron microscopy (SEM). Samples were prepared as follows: Active 

zein films were treated with acetic acid (3 mL/100 mL water), ethanol (10 mL/100 mL water) ,and 

deionized water for 8 hour at room temperature. After the treatment the samples were dried in a 

desiccator, and then they were frozen in liquid nitrogen and fractured. A double-sided copper tape 

was used to fix the film to the surface of an aluminum cube to observe the morphology of the cryo-

fractured section. SEM images of treated films were compared with untreated ones. Control films 

without the antimicrobial substance were also observed. 

 

1.3. Release studies of active zein films 



The release of active compound from the zein films was investigated by immersing film samples 

(3 cm
2
) into 5 mL of food simulants. Water and two types of food simulants (in accordance with 

European legislation (Directive 58/572/ECC)), acetic acid (3% v/v) and ethanol (10% v/v), were 

selected. Sample tubes were stored at 4 and 37 °C, and gently agitated in a shaker. Pieces of film 

were removed from the sample at different time intervals and the food simulant was filtered and 

analyzed by HPLC. Analyses were continued until an equilibrium value was reached. The 

concentration of LAE released in the food simulants was evaluated by HPLC (Agilent 1200 series) 

equipped with a DAD. The chromatographic column used was a C18 reverse phase column, 150 mm 

× 3.9 mm, particle size 5 µm. The mobile phase was a linear gradient elution with acetonitrile:water 

50:50 (v/v) containing 0.1% trifluoroacetic acid. The flowrate was 1 mL/min and the injection 

volume was 20 µL. The LAE elution time was about 6 min and the peak area at 205 nm was 

monitored. A calibration curve was constructed previously by analyzing LAE standard solutions 

from 5 to 100 ppm. Analyses were carried out in triplicate. Film thickness was determined before 

each test and the data corrected to an average film thickness of 30 µm. 

 

1.4. Mathematical models 

A release process is fully described by the kinetics of the agent diffusion in each phase (expressed by 

the diffusion coefficient, D) and the chemical equilibrium (expressed by the partition coefficient, K). 

In this paper, K is defined as the ratio of agent concentrations in the polymer (cP) to that of the 

contacting phase (cS) (Gavara & Hernandez, 1994; Hernandez & Gavara, 1994): 

   
  

  
         (1) 

Considering the mass transport of a substance from a polymer packaging film (surface area A, 

thickness L, polymer volume VP=AL, and initial agent concentration cP
i
) into a food simulant 

(volume VS), the mass of substance in the simulant at equilibrium (m
f
S) can be obtained by a mass 

balance from: 

   
 
 

     
     

        
        (2) 

K is assumed to be solely dependent on temperature (T) following Van’t Hoff's law: 

         
   

 
  

 

 
        (3) 

where HK is the enthalpy of the partition process and R the gas constant. 



In practice, two extreme behaviors are commonly considered: 1) the transport process advances until 

the extraction from the plastic phase is almost complete (K0) (Goydan, Schwope, Reid & Cramer, 

1990), and 2) the percentage of mass released is negligible because the migrant component is less 

preferred by the contacting phase and/or preferentially retained by the polymer (K>>1) (Chang, 

Guttman, Sanchez & Smith, 1988). The first approach is known in migration studies of residues as a 

worst case scenario assumption and is commonly used to overestimate real migration. In active 

packaging a more realistic assumption is required, and therefore, from the concentrations at 

equilibrium (long exposure time) in both the food (or food simulant) and the packaging film, the 

values of K can easily be estimated. 

Kinetically, the migration process depends on the diffusion of the transferred substance in both the 

plastic and the food product. Some reports discuss the effect of substance diffusion through the food 

product on the kinetics of a release process (Limm & Hollifield, 1995; Schwope & Reid, 1988). The 

theories proposed closely model real migration into solid foodstuffs although they are hardly used in 

the description of experimental migration data in which liquid simulants are common. As occurs in 

this study, diffusion in a food liquid phase is much faster than in the polymer, and migrant 

concentration in the liquid can be considered to be homogeneous, as if the solution were being stirred 

(which is actually the boundary condition of the experiment). With these considerations, the 

migration of a substance from a polymer film into a food simulant would be given by (Crank, 1975): 

 
    

  
  

               

     
     

    
       

        
  

 
        

      
   

  
    (4) 

where D is Fick’s diffusion coefficient and is commonly assumed to depend exclusively on T 

according to (Hernandez & Gavara, 1994): 

        
  

 
  

 

 
        (5) 

where Ed is the activation energy for diffusion. =VS/(AK) and qn are the positive solutions of the 

following equation: 

                     (6) 

By fitting the experimental data to equation (4), the value of D can be estimated. The fitting process 

was carried out with the use of the Solver application of Excel 2010 and with the fitting program of 

Sigmaplot v. 10.0. 

 

1.5. Evaluation of antimicrobial activity of zein films with LAE in a liquid medium 



To evaluate the antimicrobial efficiency of the zein films with 5and 10% LAE, they were tested 

against E. coli and L. monocytogenes. Prior to the experiment, a loop of each strain was transferred 

to 10 mL of TSB and incubated at 37 °C for 18 h to obtain early stationary phase cells. Cell cultures 

of each microorganism in stationary phase, with an optical density of 0.9 at 600 nm, were diluted in 

TSB and incubated at 37 °C until exponential phase, corresponding to an optical density of 0.2 at 600 

nm (10
5 

CFU/mL). One hundred µl of exponential phase microorganism was inoculated into tubes 

with 10 mL of TSB. A 0.25 g portion of film (cut into pieces measuring 1.5 cm
2
) was added to each 

tube in sterile conditions. The tubes were then incubated at 37 °C for 18 h and 4 °C for 5 days. As a 

control, zein film without active agent was also used in every experiment. Depending on the turbidity 

of the tubes, serial dilutions with peptone water were made and plated in Petri dishes with 15 mL of 

TSA culture medium. Colonies were counted after incubation at 37 °C for 18 h. 

  



2. RESULTS 

2.1. Film morphology 

Films were analyzed by scanning electron microscopy (SEM) to check for any difference in 

morphology caused by the addition of LAE. Figure S1 shows representative examples of the images 

obtained. All samples showed a smooth fracture surface, free of features. These images are evidence 

of good compatibility between film components (zein, glycerol, LAE). Even at high magnification 

(inserts in upper images), there is no sign of phase separation but only of a fragile fracture. It is also 

worth mentioning the presence of air bubbles in the films containing LAE, which might be a 

consequence of the surfactant activity of LAE during the stirring process. Also, we analyzed the 

materials after exposure to the food simulants used in this work, i.e., 3% acetic acid (AcH), 10% 

ethanol, and water. As the lower images show, after 8 hours of immersion in these liquids the surface 

of the films was still smooth without deterioration due to swelling or partial dissolution. Only in the 

case of water exposure did the images reveal a rougher surface. 

 

 

Figure S1. SEM images obtained from the cryo-fracture surface of the plasticized zein film (Zein-G), 

the film after exposure to various food simulants (3% acetic acid, Zein-G in 3% AcH; ethanol, Zein-

G in ethanol; and water, Zein-G in water), and the active film containing 10% of LAE (Zein-G-

10%LAE). Inserts are detailed images of Zein-G and Zein-G-10%LAE films.  



 

2.2. Optical properties 

Color properties of films are very important in food packaging applications because they can 

directly affect food appearance and consumer acceptance. Visually, the zein films with 5 and 10% 

LAE were transparent, flexible, and uniform, without discontinuities, and differences were not 

visually perceptible in comparison with the control film. The influence of LAE incorporation on the 

color parameter values (L
*
, a

*
, b

*
, c ab

*
, h, ΔE) of the zein film is presented in Error! Reference 

source not found.. The high values of L* (> 88) are indicative of good lightness of zein films; the L 

value of the films was increased from 88.30 to 90.90 by the addition of LAE. The surfactant capacity 

of this compound might improve the homogeneity of the film and surface gloss. 

 

Table S1. Color parameter values of zein films with different amounts of LAE 

Film type L* a* b* Cab* hab ΔE 

Zein-G 88.3±0.1
b
 1.85±0.02

a
 6.68±0.13

a
 7.00±0.13

a
 105.6±0.1

a
 10.15±0.07

a
 

Zein-G-5%LAE 90.5±0.2
a
 1.70±0.07

a
 6.23±0.21

a
 6.50±0.16

a
 105.4±0.2

a
 8.10±1.03

b
 

Zein-G-10%LAE 90.9±0.4
a
 1.80±0.07

a
 6.67±0.20

a
 7.10±0.12

a
 104.5±0.1

b
 8.05±1.10

b
 

a
 Data reported are mean values and standard deviations. Values within each column with different 

letters are significantly different (P < 0.05). 

 

On the other hand, the slightly negative values of a
*
 and positive values of b

*
 are indicative of a 

yellow-green color. As can be seen in Table S1, a
*
 and b

*
 values of the films, as well as those of 

chroma (Cab*), were not significantly different; this result indicates that the color is mainly due to 

zein even though the material used is a decolored protein. The presence of LAE in the polymer 

matrix decreased ΔE significantly, although the concentration of LAE did not present a significant 

effect. A similar effect on hab was observed, although in this case, the difference was only significant 

for the film with 10% of the antimicrobial agent. 



 

Figure S2. Light transmission characteristics for the films (control and films with LAE). 

 

Opacity, a magnitude inversely related to transparency (Abdollahi, Alboofetileh, Behrooz, 

Rezaei & Miraki, 2013), was measured by UV-visible spectrophotometry. As shown in Figure S2, 

light transmission of the zein films was negligible at UV wavelengths and increased in the visible 

regions (400–800 nm). Protein-based films are considered to have high UV barrier properties, owing 

to their high content of aromatic amino acids which absorb UV light (Hosseini, Rezaei, Zandi & 

Ghavi, 2013). The zein films presented higher UV barrier properties than chitosan (57.70%) and 

gelatin (6.32%) films. So zein film could help to prevent oxidative deterioration of packaged foods, 

which is responsible for nutrient losses, discoloration, and off-flavors (Martins, Cerqueira & Vicente, 

2012). An increase in LAE concentration from 5 to 10% led to a decrease in the light transmittance 

(47.6 and 55.90%, respectively) of the zein films in the visible regions (Figure S2). 

 

2.3. Mechanical properties 

Mechanical properties are very important in materials for packaging manufacture because they are 

related to structural integrity, which is critical to provide physical protection to the contained 

product. Tensile strength (TS), elongation at break (% EB), and Young’s modulus (YM) of zein-

based films were determined and the data are summarized in Error! Reference source not found.. 

TS values and YM values are similar to those observed for plasticized zein by other authors 

(Gennadios, Park & Weller, 1993) and to conventional oil-based polymer films such as polyethylene. 

However, the films presented very low elongation at break compared with thermoplastic films, 
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indicative of fragile breakage, as was observed during the assays. As can be seen, the addition of 

LAE to the plasticized zein caused a reduction of TS from 19.0 MPa to values below 17 MPa for 

both samples, with 5% and 10% LAE content, although the dispersion between specimens reduced 

the significance of these differences to p < 0.10. Although this TS depression appears to be 

accompanied by a decrease in YM and a decrease in EB, differences between samples were not 

significant for these parameters. These results are in agreement with the constancy of Tg observed in 

the DSC assays. Similar results were obtained by Theinsathid, Visessanguan, Kruenate, Kingcha and 

Keeratipibul (2012), who observed that the mechanical properties of LAE-coated PLA films were 

similar to those of neat PLA film. 

 

Table S2. Mechanical properties of zein films with different LAE levels 

Film type 
Tensile strength 

(MPa)  

Young's modulus 

(MPa)  

Elongation at break 

(%) 

Zein-G 19.0 ± 3.4
b
 8.7 ± 1.1 2.68 ± 0.17 

Zein-G-5%LAE 16.9 ± 2.5
a
 8.9 ± 1.1 2.56 ± 0.08 

Zein-G-10%LAE 16.6 ± 1.7
a
 8.9 ± 1.1 2.51 ± 0.15 

Data reported are mean values and standard deviations. Values within each column with different 

letters are significantly different (P < 0.1). 

 

2.3.1. FTIR analysis of films 

Figure S3 shows the spectra recorded for the films. As can be seen, no important differences were 

observed in the zein spectra caused by the addition of LAE. The same features appear to be present 

in all spectra, without visual displacement of signals throughout the spectra, as could be expected 

from the similar chemical groups present in zein and LAE (or its components), with the strongest 

signals at ca. 1700, 2900, and 3300 cm
–1

. Also, the intensity of the bands in the 1000–1200 cm
–1

 

range was maintained in all spectra with very few differences. The intensity of the signals increases 

with the incorporation of LAE, except in the 1400–1500 cm
–1

 range, where it decreases. These 

features show some proportionality with the conentration of agent, which could be used to quantify 

the percentage of LAE actually present after calibration with standard films, although that is beyond 

the scope of this work. 



 

Figure S3. Spectra obtained for the various zein films developed, which have been shifted by 0.002 

absorbance units for better observation. The insert includes the spectra obtained for the various 

materials to compare signal intensity between the films in the most relevant range. 
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