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cLOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence, France

Abstract

A method is presented to compute the dielectric function for extended systems using linear response time-dependent
density functional theory. Localized basis functions with finite support are used to expand both eigenstates and
response functions. The electron-energy loss function is directly obtained by an iterative Krylov-subspace method.
We apply our method to graphene and silicon and compare it to plane-wave based approaches. Finally, we compute
electron-energy loss spectrum of C60 crystal to demonstrate the merits of the method for molecular crystals, where it
will be most competitive.
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1. Introduction

The dielectric function (DF) describes the linear re-
sponse of a solid to external electromagnetic fields [1, 2]
and so contains information about experimentally ob-
servable quantities like optical absorption spectra and
electron energy loss spectra (EELS) [3]. Computing
the DF ab initio can be efficiently done within time-
dependent density function theory (TDDFT). Most ap-
proaches in the literature employ plane-wave (PW) ba-
sis sets [4–8], although several alternatives that use
atomic orbital basis sets have been published [9–11].
PWs offer a natural framework for solids, a stable con-
vergence with the basis set size and diagonal represen-
tation of some of the relevant operators. On the other
hand, the linear combination of atomic orbitals (LCAO)
method allows for an economical description of the
electronic structure, especially for molecular solids and
open nano structures. In this work, we present a method
that consistently uses basis sets of finite support both
in the initial density-functional theory (DFT) and in
the subsequent TDDFT calculation. We directly ob-
tain the electron-energy loss function by using an itera-
tive method, thus avoiding costly matrix inversions. We
start the derivation from widely used PW formulas to
make apparent the connections between PW and LCAO
in TDDFT.

2. Basic theory

The macroscopic DF is given by a spatial average
over the inverse microscopic DF [5]

ε(q, ω) = 1/ε−1
G=0,G′=0(q, ω). (1)

The inverse microscopic DF is connected to the inter-
acting response function χG′′G′ (q, ω)

ε−1
GG′ (q, ω) = δGG′ + vGG′′χG′′G′ (q, ω), (2)

where vGG′ =
4πδGG′

|G+q|2 is a Coulomb interaction matrix
element between PWs. In the last equation and below
in this text we assume summation over repeating indices
unless they appear on right-hand side of the equations.
The interacting response function satisfies a Petersilka-
Gossman-Gross equation [5, 6]

χGG′ (q, ω) = χ0
GG′ (q, ω)+χ0

GG′′ (q, ω)KG′′G′′′ (q)χG′′′G′ (q, ω).
(3)

Here the non-interacting response function χ0
GG′ (q, ω)

and the TDDFT interaction kernel KGG′ (q) appear. In
this work, we use the so-called RPA approximation
KGG′ (q) = vGG′ for the TDDFT kernel. The non-
interacting response function χ0

GG′ (q, ω) has a conve-
nient expression in terms of the Kohn-Sham (KS) eigen-
states

χ0
GG′ (q, ω) =

1
Nk

∑
n,m,k

( fn,k − fm,k+q)UG
nm(k, q)U

G′

nm(k, q)
ω − (Em,k+q − En,k) + iη

,

(4)
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where the occupation numbers fn,k, band energies En,k,
broadening constant η and number of k-points Nk ap-
pear. UG

nm(k, q) are matrix elements of PWs in the basis
of KS eigenstates Ψn,k(r)

UG
nm(k, q) ≡

∫
V

Ψ∗n,k(r)e−i(q+G)rΨm,k+q(r)d3r. (5)

3. Method

Using the general expression for the macroscopic DF
from section 2, we can establish the connection to elec-
tronic structure calculations. We will start with LCAO
eigenfunctions and expand the DF (2) in a suitable set
of localized basis functions.

3.1. Localized orbitals in the bulk calculations

We use LCAO in order to expand the eigenstates
Ψn,k(r) of Kohn-Sham Hamiltonian

Ψn,k(r) = Xn
a(k)Φa(r, k) (6)

in terms of Bloch-symmetrized atomic orbitals [1, 2]

Φa(r, k) =
1
√

N

∑
R

eik(R+Ra) f a(r − Ra − R). (7)

Here the number of lattice translations N enters in the
normalization constant. (7). The summation in the
last equation runs over lattice translations R. The local
atomic orbitals f a(r) are translated to each periodically
repeated copy in the crystal. However, a finite spatial
support of localized orbitals f a(r) leaves the possibility
for operators to become sparse when the unit cell size
exceeds the spatial support. The expansion coefficients
in eq. (6) Xn

a(k), are determined during a self-consistent
Kohn-Sham procedure. We use a DFT package SIESTA
[12] for this step.

3.2. Dominant products in the bulk calculations

We want to use functions of finite support not only
in DFT, but also in the TDDFT calculation of the DF
(1). For this sake, we will construct a set of functions
of finite support which is suitable for expanding the re-
sponse functions (3) and (4). The matrix elements of
PWs (5) contain the products of eigenstates. There-
fore, it is obvious that the new product basis must repre-
sent these products accurately. A product of eigenstates
translates to a product of Bloch orbitals by virtue of the
LCAO expansion (6). Using the definition of the Bloch
orbital (7) one gets

Φ
a
(r, k)Φb(r, k + q) =

1
N

∑
R,R′

e−ik(Ra+R)ei(k+q)(Rb+R′)×

f a(r − Ra − R) f b(r − Rb − R′). (8)

Due to the finite support of the local orbitals f a(r) and
f b(r), the double infinite summation over lattice trans-
lations R and R′ can be converted to a summation in
which only one translation runs infinitely, while the
other translation runs only in the neighborhood of the
first. For this sake, we introduce a summation over
translations S = R′ − R that will be finite. Using the
super cell translation S, one can rewrite eq. (8)

Φ
a
(r, k)Φb(r, k+q) =

1
N

∑
R,S

e−ik(Ra+R)ei(k+q)(Rb+R+S)×

f a(r − Ra − R) f b(r − Rb − R − S). (9)

The product of localized function in the last equation is
translated infinitely over the lattice. Hence, it is suffi-
cient to find a representation of this product for a zero
translation R = 0. In our previous work we used a ba-
sis of dominant products [13, 14] to expand products of
localized functions

f a(r − Ra) f b(r − Rb − S) = VabS
µ Fµ(r − Rµ), (10)

where expansion coefficients VabS
µ and product func-

tions Fµ(r) are found in a diagonalization-based pro-
cedure. The product functions Fµ(r − Rµ) are cen-
tered at the midpoint of the connecting length Rµ =

(Ra + Rb + S)/2. By inserting the ansatz (10) into eq.
(9) one gets

Φ
a
(r, k)Φb(r, k + q) = Vab

µ (k, k + q)Fµ(r, q), (11)

where a Bloch product vertex

Vab
µ (k, k + q) = e−ikRa e−iqRµ

∑
S

VabS
µ ei(k+q)(Rb+S),

and a Bloch dominant product function are used

Fµ(r, q) =
1
N

∑
R

eiq(Rµ+R)Fµ(r − Rµ − R). (12)

Finally, there is a possibility of using only atom-
centered functions in the ansatz (11) instead of using
functions centered on the midpoint of two atoms. We
will use these atom-centered products in the calcula-
tions, although we have to skip a formal derivation here.
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3.3. Expansion of response function
The expansion (11) can be used in the non-interacting

response function (4). To this end, we insert the product
of Bloch orbitals (11) with help of eq. (6) into the matrix
element (5)

UG
nm(k, q) = X

n
a(k)Vab

µ (k, k+q)Xm
b (k+q)Fµ

G(q), (13)

where the Fourier transform of the Bloch function (12)
appears

Fµ
G(q) =

1
√

Vuc
e−iGRµ

∫
V

e−i(q+G)rFµ(r)d3r.

Here Vuc is the volume of unit cell. Using eq. (13), we
find for the response function (4)

χ0
GG′ (q, ω) = Fµ

G(q)χ0
µν(q, ω)F

ν

G(q). (14)

Here the expansion coefficients χ0
µν(q, ω) must be de-

fined by

χ0
µν(q, ω) =

1
Nk

∑
n,m,k

( fn,k − fm,k+q)Unm
µ (k, q)U

nm
ν (k, q)

ω − (Emk+q − Enk) + iη
,

(15)
where the expansion coefficients Unm

µ (k, q) of products
of eigenstates in terms of product functions are used

Unm
µ (k, q) = X

n
a(k)Vab

µ (k, k + q)Xm
b (k + q).

Furthermore, for the interacting response function
χGG′ (q, ω) we use an ansatz similar to eq. (14) and
rewrite eq. (3) in the basis of Bloch product functions

χµν(q, ω) = χ0
µν(q, ω) + χ0

µµ′ (q, ω)Kµ′ν′ (q)χν′ν(q, ω),
(16)

where the interaction kernel Kµν(q) has to be introduced

Kµν(q) =
∑
GG′

F
µ

G(q)KGG′ (q)Fν
G′ (q). (17)

In the calculations, we only use the Hartree kernel
KGG′ (q) = vGG′ (q), although any local or semi-local in-
teraction kernel can be used.

3.4. Iterative computation of dielectric function
Using eqs. (1), (2) with ansatz (14), we get the in-

verse macroscopic DF in terms of localized functions

ε−1(q, ω) = 1 +
4π
q2 Fµ

0 (q)χµν(q, ω)F
ν

0(q), (18)

where the interacting response function χµν(q, ω) can be
determined by solving eq. (16). The solution of the

matrix equation is a computationally demanding task.
However, if only the DF (18) is needed, then one can
avoid the solution of matrix eq. (16). We reformulate
the problem in terms of solving of a linear equation

(1 − χ0K)X = χ0F0

and a subsequent calculation of the DF (18) ε−1(q, ω) =

1 + 4π
q2 Fµ

0 (q)Xµ(q). Moreover, applying an iterative,
Krylov subspace scheme [15] for solving the linear
equation, one can significantly reduce the computa-
tional cost. The whole problem of computation of the
DF will be done in terms of matrix–vector operations,
applying (1 − χ0K)νµ to vectors zν. One can split the
matrix–vector operation in two: application of the ker-
nel K to the vector zν and subsequent application of
response function to the intermediate vector Kz. The
kernel (17) is a full matrix. We precompute the kernel
before the iterative procedure and apply it to vectors us-
ing standard BLAS subroutines. The application of the
non-interacting response function (15) to a vector can
also be split into several steps. The particular sequence
of operations in the computation of χ0

µνz
ν is shown in

figure 1. Firstly, we compute the product Vcd
ν zν. Sec-

χ0
µνz

ν =
∑

k Vab
µ

∑
n Xn

a
∑

m Xm
b Xm

c Vcd
ν zν Xn

d

Figure 1: The realized sequence of operations for χ0 ×vector product.

ondly, we multiply with the eigenvector Xn
d , etc. Be-

cause the vertex coefficients Vab
µ are k-dependent, we

perform the sum over the Brillouin zone (BZ) in an outer
loop and compute products χ0

µνz
ν simultaneously for a

set of frequencies {ω}. This method reduces the number
of operations significantly. The asymptotical compu-
tation complexity of the method is N3

a Nk, where Na is
number of atoms in the unit cell. As iterative solver, we
use modified CERFACS subroutines which implement
the Generalized Minimal Residue method [16].

4. Results

In the figure 2, we compare the EELS of graphene
computed by our iterative method with published cal-
culations [6]. The parameters for this comparison were
chosen as in the publication [6]. Namely, the momen-
tum transfer q = 0.046Å−1 in plane in the Γ − M di-
rection, the distance between graphene layers 20Å and
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Figure 2: EELS of graphene computed with our iterative method ver-
sus a mixed Grid–PW calculation [6].

the sampling of BZ 64 × 64 × 1 were used. The fre-
quency broadening was set to η = 0.24 eV. In the DFT
calculation we used a double zeta polarized (DZP) ba-
sis with an energy shift parameter 50 meV, the Perdew–
Zunger (LDA) exchange-correlation functional [17] and
Troullier–Martins pseudo-potentials [18]. For the com-
putation of the Hartree kernel (17), a set of PWs with
an energy cutoff of Ecut = 200eV (resulting in 651
PWs) was seen to give converged results and was sub-
sequently used. The number of product basis functions
was 138 (69 per atom in the unit cell), which is substan-
tially lower than number of plane waves needed for con-
vergence in this calculation. There are small discrepan-
cies between the calculations. These discrepancies are
most probably due to the basis sets used (spatial grid
versus DZP basis in our calculation) as well as to the
differences in the TDDFT kernel (LDA versus RPA).

The next comparison is shown in the figure 3. We
compare our calculation for silicon with measurements
[19] and with other independent calculations [20]. The
parameters in the DFT calculation were the same as
in the graphene example. We chose a small momen-
tum transfer q = 0.1336Å−1, and an energy cutoff

Ecut = 250eV, which resulted in 339 PWs. The fre-
quency broadening was set to η = 0.6 eV. The BZ sam-
pling was seen to be converged with 15×15×15 points.
The number of product basis functions was 136 (68 per
atom in the unit cell), which is again lower than number
of PWs needed for convergence (about 250). In figure 3
we see a good agreement between calculations but less
satisfactory agreement with experiment. The discrepan-
cies between theory and experiment must be attributed
to deficiencies in the LDA functional and the RPA ker-
nel.

The final calculation concerns the solid state of C60
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Figure 3: EELS of silicon with computed with our iterative method
versus calculation in PW basis [20] and measurements [19].

fullerenes. The structure and electronic properties of
fullerite has been extensively studied in the past [21–
26]. It is known that buckminster fullerene crystallizes
into one of the cubic lattices [21] and one should ex-
pect non-negligible effects on the electronic structure
induced by the crystal structure [27].

In this work, we compute EELS for the fcc crys-
tal of C60 found by Dorset and McCourt [28]. The
structure is a result of direct electron-crystallographic
analysis of crystals at room temperature — most rele-
vant for applications in organic electronics. The geom-
etry was taken from an open crystallography database
[29] (id 9011073) and converted to SIESTA format by
cif2cell utility [30]. In the DFT calculation, we used
the LDA functional, less extended atomic orbitals (en-
ergy shift parameter 200 meV), an electronic tempera-
ture of 300 K and a 3 × 3 × 3 BZ sampling. The elec-
tronic structure corresponds to a semiconductor with a
direct band gap of 0.85 eV. The gap value coincides
rather well with other LDA calculation by Benning etal
[31] (0.98 eV), a recent calculation by Zólyomi etal [32]
(1.06 eV) and with Troullier and Martins [33] (1.18 eV).
The momentum transfer was taken as the small value
0.0039 Bohr−1 and the broadening constant was set to
0.6 eV. The BZ sampling was seen to be converged with
3 × 3 × 3 points for the resolution defined by broaden-
ing of η = 0.6 eV. An energy cutoff Ecut = 200eV was
used to define the set of PWs, which resulted in 4015
PWs. The number of product basis functions was 4140
(69 functions per atom, i.e. the same as in the case of
graphene example). The runtime on a 12-core machine
with Intel Xeon X5550 processor at 2.67GHz was 10
hours, during which a maximum of 10 GMRES itera-
tions per frequency point was performed. EELS curves
computed with 9 and 10 iterations are not distinguish-
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able on the plot. In figure 4 we see a comparison of our
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Figure 4: EELS of solid C60 computed with our iterative method is
compared to measured spectra. Experimental data is taken from [23]
and [26].

calculation with experimental data taken from [23] and
[26]. As in the case of other carbon-only systems, we
find a low-frequency π−π∗ resonance (at about 5.6 eV in
the calculation and at about 6.4 eV in the measurements)
and σ − π resonance (at about 25 eV in calculation and
measurements). At low resolution, the theoretical result
match experimental data rather well. However, a more
detailed comparison with higher resolution data in the
low frequency range (0–12 eV) is less satisfactory. The
discrepancies are probably connected to the accuracy of
the DFT functional (determining χ0) and the TDDFT
kernel (RPA in our case). However, the method pre-
sented here opens a possibility of practical TDDFT cal-
culations for large systems which would be difficult to
achieve with other methods.
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