Effects of vibrational excitation on the reactivity of D+MuH
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observed for the F+HD [5] and Cl+F

In a previous work by our group
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The use of muonic isotopic variants in studies of the H+H, reaction has provided extreme mass combinations for the investigation of kinetic isotope effects and has
stimulated a vivid discussion on the role of tunneling, zero point energy (ZPE), and vibrational adiabaticity in the reaction dynamics [1, 2]. The crucial influence of
vibrational energy for this system has been recently highlighted by the publication of an accurate experimental value for the rate coefficient for the Mu+H,(v=1)
reaction [3]. A very interesting aspect of Mu chemistry is the possibility of inducing a fundamental change in the nature of chemical bonding by isotopic substitution.
Specifically, rigorous quantum mechanical calculations have shown the heavy-light- heavy (HLH) system BrLBr, where L is an isotope of hydrogen, changes from Van de
Waals to vibrational bonding when L=Mu [4]. This type of bonding is a consequence of the decrease in the ZPE of the triatomic system at the saddle point of the
potential energy surface (PES). Recently, dynamical resonances, associated also with decreases in the ZPE in the saddle point region, have been experimentally
D [6] reactions, especially for vibrationally excited states of HD.

7] the reaction dynamics of the asymmetric D+MuH (v=0) reaction was investigated. The reaction path leading to DMu, which
corresponds to a HLH mass combination, is characterized by a well of ~ 0.2 eV in the vibrationally adiabatic potential at the saddle point. The dynamics of this channel
was found to be more quantal with higher tunneling and more structured reaction probabilities and cross sections. In the present study we investigate the effect of
vibrational excitation of MuH on the reactivity of the system.

QM calculations were carried out on the BKMP2 [3] potential energy surface (PES),
using the coupled-channel hyperspherical coordinate method implemented in the ABC

Method

code of Skouteris et al. [4]. Reaction probabilities, cross sections and rate coefficients
were determined for the two exit channels (DMu+H and DH+Mu) of the reaction.
Thermal cumulative reaction probabilities (CRP) [6] have also been used for the
analysis of the dynamics. They are defined as:

where C(E) is the CRP as a function of total energy and @, (T) and QJ¢(T) are the
translational and coupled nuclear-rovibrational partition functions. The integration of

_ Cy(E) exp(~E/kgT)
1D (T)QFC(T)

v,J

C(E;T)

the thermal CRP over the total energy E yields the thermal rate coefficient k(T). /
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 The distinct dynamical features of the two exit channels of the D+MuH(v=1)
reaction are mostly determined by their respective vibrationally adiabatic
potentials (VAP). The VAP of the D+MuH(v=1)->DMu+H channel has no
threshold and presents a deep well (~ 1.eV) at the location of the saddle point
(vibrational bonding), whereas that of the D+MuH(v=1)->HD+Mu channel has
a small threshold and no well.

* The og(E) for D+MuH(v=1)->DMu+H has a sharp maximum, due to a resonance
associated with the well in the VAP, as soon as the channel is energetically

for D+MuH(v=1)->DH+Mu has a small tail coincident with the maximum in the
other channel and then rises sharply. For the two channels vibrational energy is
more efficient than translational energy for promoting the D+MuH reaction.

e The k(T) for D+MuH(v=1)->DMu+H has a weak temperature dependence
typical of barrier-less reactions. The k(T) for D+MuH(v=1)->DH+Mu has a small
curvature suggestive of tunneling through the small threshold in the VAP. The
k(T) for the two channels of D+MuH (v=1) are orders of magnitude larger than

those for MuH(v=0).

* The thermal CRPs are bimodal for the D+MuH(v=1)->DH+M channel showing
that there are two mechanisms at play. The first peak corresponds to an initial
entrance via D+MuH(v=1)->DMu+H followed by a crossing to

Conclusions

No resonance peak is observed in the reaction with MuH(v=0). The oy(E)

H(v=1)->DH+M within the well. This mechanism explains the tail in og(E)
ne curvature in k(T). The second peak corresponds to the direct

D+MuH(v=1)->DMu+H mostly forward. At the lowest (total) energy considered
(1.72 eV) close to the channel opening, they are more isotropic and correspond
to the resonance peak in D+MuH(v=1)->DMu+H and to the small tail in

H(v=1)->DH+M reaction above the VAP barrier.
DCSs for D+MuH(v=1)->DH+M are mostly backward and for

!)+MuH(v=1)9DH+M. J
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