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ABSTRACT: Square-planar alkylidyne and five-coordinate alkylidene mixed iPr3P−
Os−IPr (IPr = 1,3-bis(diisopropylphenyl)imidazolylidene) complexes have been
discovered and characterized, and their formation has been rationalized. The cationic
five-coordinate hydride-alkylidyne compounds [OsHX(CPh)(IPr)(PiPr3)]OTf (X =
Cl (1), F (4); OTf = CF3SO3) undergo deprotonation with KOtBu to afford the trans-
halide-alkylidyne square-planar derivatives OsX(CPh)(IPr)(PiPr3) (X = Cl (2), F
(5)). Oxidative addition of the C(sp)−H bond of phenylacetylene and methyl
propiolate along the Cl−Os−CPh axis of 2 with the hydrogen atom directed to the
alkylidyne leads to alkynyl-cis-hydride-alkylidyne intermediates, which rapidly evolve into the five-coordinate alkylidene
complexes Os(CCR)Cl(CHPh)(IPr)(PiPr3) (R = Ph (6), CO2Me (7)) as a consequence of the migration of the hydride
from the metal center to the Cα atom of the alkylidyne. Oxidative addition of the C(sp)−H bond of methyl propiolate along the
X−Os−CPh axis of 2 and 5 with the hydrogen atom directed to the halide gives the alkynyl-trans-hydride-alkylidyne derivatives
OsH(CCCO2Me)X(CPh)(IPr)(PiPr3) (X = Cl (8), F (9)). Complex 8 evolves into 7. However, complex 9 containing the
stronger π-donor fluoride is stable. The oxidative addition of HCl to 2 selectively yields the cis-hydride-alkylidyne compound
OsHCl2(CPh)(IPr)(PiPr3) (10), which is also stable.

■ INTRODUCTION
Unsaturated transition metal complexes play a decisive role in
homogeneous catalysis. Those of platinum group metals are
particularly efficient for developing atom-economic processes
and therefore are especially relevant from an environmental
point of view.1 The unsaturated character is favored by less basic
metal centers. While an almost unlimited number of d8 square-
planar rhodium complexes2 are knownwith 16-valence electrons,
the number of iridium compounds of this type is much lower.3 A
nice example of this trend is shown by eq 1. In contrast to

RhCl{xant(PiPr2)2} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis-
(diisopropylphosphino)xanthene), the iridium analogue acti-
vates a C−H bond of a methyl substituent of the phosphine to
afford a saturated d6 species.4 In contrast to group 9, only a few
families of square-planar ruthenium complexes have been
described,5 whereas the osmium compounds are limited to
trans-Os(N-2,6-C6H3

iPr2)2(PMe2Ph)2,
6 trans-Os(O)2(P

iPr3)2,
7

Os{κ3-P,N,P-[N(SiMe2CH2P
tBu2)2]}I,

8 and trans-OsCl(NO)-
(PiPr2R) (R = iPr, Ph),9 the latter being the only truly d8 square-
planar compounds (Chart 1).

The unsaturated ruthenium complexes are dominated by five-
coordinate species.10 Within this type of compounds, the
alkylidene catalysts for olefin metathesis, RuCl2(CHR)-
(PR3′)2, occupy a prominent place.11 In agreement with the
trend denoted by eq 1, the osmium counterparts evolve into six-
coordinate hydride-alkylidyne derivatives (eq 2).12 As a
consequence, the isolated neutral five-coordinate osmium-
alkylidene complexes are carbon-disubstituted and as rare as
the d8 square-planar species of this element (Chart 2). Lin, Jia,
and co-workers observed in 2011 that unstable osmabenzynes
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Chart 1. Previously Isolated Square-Planar Osmium
Complexes
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rearrange into cyclopentadienylidene derivatives,13 and we have
recently reported the amide-directed synthesis of OsCl2{
C(CH3)(CH2)nC(O)NHPh}(P

iPr3)2 (n = 3, 4) and OsCl2{
C(CH3)(CH2)3NHC(O)Ph}(P

iPr3)2.
14 The alkylidene-amide

derivatives are unstable in spite of being carbon-disubstituted and
evolve into six-coordinate hydride-alkylidyne compounds.
The electron richness of the metal center, and therefore the

saturated or unsaturated character of the complex, can be also
governed with the ligands. As a proof of concept, eq 3 must be

pointed out. For RhX{xant(PiPr2)2} complexes, it has been
observed that strong π-donor groups, such as chloride, stabilize
saturated d6 species, whereas σ-donor ligands, such as hydride,
silyl, boryl, or aryl, favor d8 square-planar derivatives.4,15 In the
same sense, the electron density impoverishment of the osmium
center increases the stability of the alkylidene form. Thus, the
coordination of a π-acceptor group, such as CO, facilitates the
transformation from hydride-alkylidyne to alkylidene (eq 4).16

A remarkable π-acceptor capacity of the pz orbital at the
metalated carbon atom of N-heterocyclic carbenes (NHCs),
which has no counterpart in phosphines, has been recently
demonstrated by means of DFT calculations using AIM and
NBO methods.17 The complementary properties of NHC and
phosphine ligands provide to the mixed R3P-M-NHC complexes
special stability toward distribution reactions and allow a subtle
governing of the electron density of the metal center.18 In this
Article, we demonstrate that d8 square-planar alkylidyne and five-
coordinate alkylidene−osmium complexes can be stabilized with
the help of a mixed R3P−Os−NHC skeleton and that the

transformation from alkylidene to hydride-alkylidyne follows the
same electronic pattern as the oxidative additions from d8 to d6.

■ RESULTS AND DISCUSSION
Square-Planar Alkylidyne Complexes. Transition metal

hydride complexes are usually amphoteric. Thus, they act not
only as hydride donors but also as Brønsted−Lowry acids.19 In
agreement with this, treatment of tetrahydrofuran solutions of
the five-coordinate hydride-alkylidyne cation [OsHCl(CPh)-
(IPr)(PiPr3)]OTf (1, IPr = 1,3-bis(diisopropylphenyl)-
imidazolylidene, OTf = CF3SO3) with 1.1 equiv of potassium
tert-butoxide (KOtBu) leads to proton abstraction and the
formation of the 16-valence-electron square-planar complex
OsCl(CPh)(IPr)(PiPr3) (2), which was isolated as a green
solid in 70% yield (eq 5). In the search for 2, we had previously

treated complex 1with a water solution of NaOH. Unfortunately,
in that case, replacement of the chloride ligand by a hydroxide
group took place, to form [OsH(OH)(CPh)(IPr)(PiPr3)]-
OTf (3), instead of hydride removal.18b

Complex 2 was characterized by X-ray diffraction analysis.
Figure 1 shows a view of the molecule. The structure

demonstrates the formation of this novel species. The
coordination geometry around the osmium atom is certainly
square-planar, with the chloride trans disposed to the alkylidyne
(Cl(1)−Os−C(1) = 164.9(2)°) and the NHC ligand trans
disposed to the phosphine (C(8)−Os−P(1) = 168.83(19)°).
The greatest deviation from the best plane through Os, C(1),
C(8), Cl(1), and P(1) atoms is 0.219(3) Å and involves C(1).
The Os−C(1) bond length of 1.722(7) Å supports an Os−C
triple bond and therefore the alkylidyne formulation,20 whereas
the Os−C(8) distance of 2.095(6) Å is consistent with a normal

Chart 2. Previously Isolated Neutral Five-Coordinate
Alkylidene−Osmium Complexes

Figure 1.Molecular diagram of 2. Selected bond lengths (Å) and angles
(deg): Os−Cl(1) = 2.4323(16), Os−P(1) = 2.3635(17), Os−C(8) =
2.095(6), Os−C(1) = 1.722(7); C(8)−Os−P(1) = 168.83(19), C(1)−
Os−Cl(1) = 164.9(2). Displacement ellipsoids are given at the 50%
probability level.
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coordination for the NHC ligand.21 In agreement with the
stereochemistry shown in Figure 1, the 13C{1H} NMR spectrum
of 2, in benzene-d6, at room temperature shows the alkylidyne
and NHC OsC resonances at 229.0 and 196.5 ppm as doublets
with C−P coupling constants of 13.6 and 83.4 Hz, respectively.
The 31P{1H} NMR spectrum contains a singlet at 43.6 ppm. In
the visible region, the absorption spectrum of a 5.9 × 10−5 M
pentane solution shows two main absorptions centered at 446
and 610 nm, which were assigned to HOMO−1 → LUMO+1
and HOMO−1→ LUMO transitions, respectively, on the basis
of time-dependent DFT calculations.
The mixed iPr3P−Os−IPr skeleton also stabilizes a fluoride

counterpart of 2, which is more challenging than the latter
because of the higher π-donor power of the halide. The
compound has been prepared according to Scheme 1, starting

from 3. In agreement with the marked trend of the BF4
− anion to

decompose in the presence of bases, releasing fluoride,22 the
addition of 1.1 equiv of HBF4·OEt2 to dichloromethane solutions
of 3 leads to the fluoride derivative [OsHF(CPh)(IPr)-
(PiPr3)]OTf (4), as a result of replacement of the hydroxide
ligand of the starting complex by the halide. This compound was
isolated as a yellow solid in 90% yield. The presence of the
fluoride at the metal coordination sphere is strongly supported
by the 1H, 13C{1H}, 31P{1H}, and 19F NMR spectra, in
dichloromethane-d2, at room temperature. In the 1H NMR
spectrum, the hydride ligand appears at −15.52 ppm as a double
doublet with H−F and H−P coupling constants of 27.0 and 14.2
Hz, respectively. The 13C{1H} NMR spectrum shows the
alkylidyne and NHC OsC resonances at 275.4 and 185.4 ppm,
respectively. The first of them appears as a double doublet with
C−F and C−P coupling constants of 69.9 and 8.2 Hz, whereas
the second one is observed as a doublet with a C−P coupling
constant of 91.0 Hz. The 31P{1H} NMR spectrum contains at
50.6 ppm a doublet with a P−F coupling constant of 35.2 Hz.
The 19F spectrum shows a singlet at −78.9 ppm due to the OTf
anion and a double doublet at −118.0 assigned to the fluoride
ligand. In accordance with 1, complex 4 undergoes proton
abstraction. Thus, treatment of its tetrahydrofuran solutions with
1.1 equiv of KOtBu affords the square-planar derivative OsF(
CPh)(IPr)(PiPr3) (5), which was isolated as a red solid in 71%
yield. The fluoride trans-alkylidyne disposition is strongly
supported by the 13C{1H} NMR spectrum of the complex, in
benzene-d6, at room temperature. It shows at 236.8 ppm a double
doublet with a large C−F coupling constant of 133.9 Hz, and a
C−P coupling constant of 13.6 Hz, corresponding to the
alkylidyne Cα carbon atom. The carbene OsC resonance is
observed at 198.5 ppm, also as a double doublet but with C−F
and C−P coupling constants of 11.2 and 92.4 Hz, respectively.
The 31P{1H} and 19F NMR spectra show doublets (2JP−F = 47.8
Hz) at 51.4 and −178.7 ppm, respectively.
Five-Coordinate Alkylidene Complexes. The square-

planar complex 2 reacts with terminal alkynes such as
phenylacetylene and methyl propiolate to give the five-
coordinate alkylidene derivatives Os(CCR)Cl(CHPh)-

(IPr)(PiPr3) (R = Ph (6), CO2Me (7)), as a result of the formal
addition of the C(sp)−H bond of the alkyne to the Os−C triple
bond of 2 (eq 6). These compounds were isolated as purple (6)

and red (7) solids in 74% and 82% yield, respectively. In contrast
to the bis(phosphine) derivatives OsCl2{C(CH3)(CH2)nC-
(O)NHPh})(PiPr3)2 (n = 2, 3) and OsCl2{C(CH3)-
(CH2)3NHC(O)Ph})(P

iPr3)2, complexes 6 and 7 are stable
and do not evolve into the corresponding hydride-alkylidyne
species in spite of the monosubstituted character of their
alkylidene ligand.
The formation of this elusive type of compounds was

confirmed by means of the X-ray diffraction structure of 6.
Figure 2 gives a view of the molecule. The geometry around the

metal center can be rationalized as a square pyramid with the
alkylidene in the apex. At the base, the chloride lies trans to the
alkynyl group (Cl(1)−Os−C(8) = 173.9(4)°), and the NHC
ligand is trans disposed to the phosphine (C(16)−Os−P(1) =
158.3(3)°). The four atoms forming the base are approximately
in a plane, whereas the osmium atom is located 0.281(5) Å above
this plane toward the apical position. The Os−C(1) bond length
of 1.810(16) Å is consistent with a double bond and supports the
alkylidene formulation.14,16a,23 In agreement with the sp2

hybridization at C(1), the angle Os−C(1)−C(2) is
140.5(12)°. The osmium−alkynyl distance of 1.975(12) Å
(Os−C(8)) agrees with an Os−C(sp) single bond24 and
indicates a low degree of metal-to-ligand back-bonding.25 The

Scheme 1. Formation of the Fluorine-Alkylidyne Complex 5

Figure 2.Molecular diagram of 6. Selected bond lengths (Å) and angles
(deg): Os−Cl(1) = 2.481(3), Os−P(1) = 2.405(4), Os−C(16) =
2.074(10), Os−C(8) = 1.975(12), Os−C(1) = 1.810(16), C(8)−C(9)
= 1.211(18); Os−C(8)−C(9) = 177.1(13), Cl(1)−Os−C(8) =
173.9(4), C(8)−C(9)−C(10a) = 172.0(2), C(16)−Os−P(1) =
158.3(3), Os−C(1)−C(2) = 140.5(12), C(1)−Os−C(16) =
101.7(5), C(1)−Os−C(8) = 99.6(6), C(1)−Os−P(1) = 98.5(4),
C(1)−Os−Cl(1) = 86.3(5). Displacement ellipsoids are given at the
50% probability level.
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C(8)−C(9) bond length and the Os−C(8)−C(9) angle are
1.211(18) Å and 171.1(13)°, respectively. The Os−NHC
distance of 2.074(10) Å (Os−C(16)) is statistically identical to
that of 2.
The purple color of 6 is consistent with its electronic spectrum.

Thus, in the visible region, the absorption spectrum of a 7.7 ×
10−5 M pentane solution exhibits a broad absorption centered at
about 552 nm, which was assigned to a HOMO → LUMO+1
transition on the basis of time-dependent DFT calculations.
The 1H, 13C{1H}, and 31P{1H} NMR spectra of 6 and 7, in

benzene-d6, at room temperature are consistent with the
structure shown in Figure 2. The 1H NMR spectra contain a
singlet at about 24 ppm, characteristic for an OsCH hydrogen.
In the 13C{1H} NMR spectra, the resonances due to the
metalated carbon atoms of the alkylidene, NHC, and alkynyl
ligands are observed as doublets at 246.7 (2JC−P = 5.7 Hz), 187.3
(2JC−P = 71.5 Hz), and 102.0 (2JC−P = 10.8 Hz) ppm for 6 and at
246.9 (2JC−P = 4.2 Hz), 187.5 (2JC−P = 68.8 Hz), and 116.45
(2JC−P = 10.2 Hz) for 7. The

31P{1H}NMR spectra show a singlet
at 29.9 ppm for 6 and at 33.4 ppm for 7.
The course of the reactions summarized in eq 6 has a marked

dependence upon the alkyne substituent. According to the 1H
and 31P{1H} NMR spectra of the reaction mixtures in toluene, at
room temperature, the formation of 6 is quantitative after 3 h,
whereas the quantitative formation of 7 needs about 52 h, or
about 12 h at 60 °C. During the reaction of 2 with
phenylacetylene to give 6, no intermediate species were detected.
However, during the reaction of 2 with methyl propiolate to
afford 7, the transitory formation of the hydride-alkynyl-
alkylidyne species OsH(CCCO2Me)Cl(CPh)(IPr)(PiPr3)
(8) is clearly observed; it can be isolated as a pure orange solid in
85% yield after 5 min of reaction. Its formation is strongly
supported by the 1H, 13C{1H}, and 31P{1H} NMR spectra of the
reaction mixture, and the isolated orange solid in benzene-d6. In
agreement with the presence of the hydride ligand, the 1H NMR
spectrum contains at −2.27 ppm a doublet with a H−P coupling
constant of 28.2 Hz. In the 13C{1H} NMR spectrum, the
metalated carbon atoms of the alkylidyne, NHC, and alkynyl
ligands appear at 283.2, 173.1, and 92.9 ppm as doublets with C−
P coupling constants of 4.0, 74.1, and 8.6 Hz, respectively. The
31P{1H} NMR spectrum shows a singlet at 24.3 ppm, which is
split into a doublet under off-resonance conditions.

Influence of the π-Donor Power of the Halide on the
Formation of Five-Coordinate Alkylidene Complexes.
The square-planar fluoride complex 5 also reacts with methyl
propiolate. The reaction leads to the hydride-alkynyl-alkylidyne
derivative OsH(CCCO2Me)F(CPh)(IPr)(PiPr3) (9), as a
result of the oxidative addition of the C(sp)−H bond of the
alkyne to 5. At room temperature, in toluene, the transformation
is quantitative after 15 min. Complex 9, which was isolated as a
red solid in 73% yield, is the fluoride counterpart of 8. Although
the migration of the hydride from the metal center to the
alkylidyne Cα atom is not observed in this case, the chemical
shifts in the 1H, 13C{1H}, and 31P{1H} NMR spectra of 9, in
benzene-d6, at room temperature are very similar to those
observed in the NMR spectra of 8. This suggests that both
compounds have the same stereochemistry, which is that shown
in eq 7, according to the H−F, C−F, H−P, and C−P coupling
constants. The resonance corresponding to the hydride, which
lies trans to the alkylidyne ligand, appears at lower field in the
higher field region of the 1H NMR spectrum, −0.46 ppm,
consistent with the high trans effect of the alkylidyne. The H−F
and H−P coupling constants of 7.8 and 28.3 Hz, respectively,
support the cis disposition of the hydride to both fluoride and
phosphine. In the 13C{1H} NMR spectrum, the alkylidyne,
NHC, and alkynyl OsC resonances are observed at 284.4, 176.8,
and 95.8 ppm, respectively, as double doublets. The C−P and
C−F coupling constants, in the NHC and alkynyl resonances, of
81.4 and 50.6 Hz prove the NHC trans phosphine and alkynyl
trans fluoride dispositions. Doublets (2JP−F = 29.6Hz) at 31.0 and
−153.4 ppm in the 31P{1H} and 19F NMR spectra, respectively,
are also characteristic features of 9.
The oxidative addition of methyl propiolate to 2 and 5 to give

8 and 9 and the formation of the five-coordinate alkylidenes 6
and 7 can be rationalized according to Scheme 2. It is well

Scheme 2. Oxidative Addition of Phenylacetylene and Methyl Propiolate to 2 and 5: Hydride-Alkylidyne versus Alkylidene
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established that the formation of hydride-alkynyl transition metal
complexes by addition of terminal alkynes to unsaturated
compounds occurs via the initial coordination of the carbon−
carbon triple bond of the alkyne to the metal center, to form π-
alkyne intermediates.26 Subsequently, the metal center slips to
the C−H bond to form η2-(C,H)-species.27 Thus, the oxidative
addition to square-planar complexes, such as 2 and 5, is a
diastereoselective process with specific C−H bond orienta-
tion.4,28 At first glance, the oxidative addition of the alkyne to
these compounds can take place along the iPr3P−Os−IPr or X−
Os−CPh axis, the latter being favored from a steric point of view.
Addition along the X−Os−CPh axis can occur with the hydrogen
directed toward the halide and the substituent of the alkyne on
the alkylidyne (A) or vice versa (B). The first orientation leads to
isomers C, with the hydride trans disposed to the alkylidyne and
the halide (X) trans disposed to the alkynyl group, whereas the
second one affords isomers D containing the alkylidyne cis
disposed to the hydride and trans to the alkynyl group.
Concerted migration of the hydride from the metal center to
the alkylidyne Cα atom in D gives the five-coordinate alkylidene
derivatives 6 and 7. Complexes 8 and 9 are particular cases of C
and therefore result from the oxidative addition of the C(sp)−H
bond of methyl propiolate through A. This disposition avoids the
close contact between the electron-rich halide and the CO2Me
group.
The trans disposition of hydride and alkylidyne ligands in 8

prevents the direct migration of the hydride to the alkylidyne,
because the process is concerted.16b So, complex 8 is not an
intermediate in the formation of 7 from 2 and methyl propiolate,
but a side kinetic isomer. In this context, it should be noted that
the formation of 6, where repulsive interactions between the
chloride and the alkyne substituent do not take place during the
oxidative addition process, is much faster. The transformation of
8 into 7 should involve reductive elimination of the alkyne to
regenerate A. Thus, the alkyne could change its orientation into
B, by rotation around the coordination axis, in order to afford a
D-type isomer. To gain insight into the process, the isomer-
ization was followed by 31P{1H}NMR spectroscopy as a function
of time between 293 and 333 K. As shown in Figure 3 for the
transformation at 323 K, the increase of 7with the corresponding
decrease of 8 is an exponential function of time, in agreement
with a first-order process. This, along with the fact that no

intermediate species were detected during the isomerization,
suggests that the reductive elimination of the alkyne to form A is
the rate-determining step of the conversion of 8 into 7. The
activation parameters obtained from the Eyring analysis (Figure
4),ΔH⧧ = 20 ± 1 kcal·mol−1 andΔS⧧ = −4 ± 4 cal·mol−1·K, are
consistent with this.

The higher π-donor power of fluoride with regard to chloride29

stabilizes 9 with regard to 8, toward the reductive elimination of
the alkyne. This explains why complex 9 does not evolve into a
fluoride counterpart of 7. In addition, it should be mentioned
that the π-donor capacity of the ligand trans disposed to the
alkylidyne in D-type isomers controls the hydride migration. In
fact, substitution of the alkynyl group by a strong π-donor
chloride prevents the formation of the alkylidene. As a proof of
concept, we have observed that complex 2 reacts with HCl in
toluene to give the cis-hydride-alkylidyne OsHCl2(IPr)(P

iPr3)
(10), which does not evolve into the corresponding alkylidene
(eq 8). Complex 10 was isolated as a pink solid in 62% yield. In

agreement with the presence of the hydride ligand in the
complex, the 1H NMR spectrum, in benzene-d6, at room
temperature shows at−5.95 ppm a doublet with a H−P coupling
constant of 16.5 Hz. In the 13C{1H} NMR spectrum, the
alkylidyne and NHC resonances appear at 256.5 and 168.2 ppm
as doublets with C−P coupling constants of 12.9 and 96.5 Hz,
respectively. The 31P{1H} NMR spectrum contains a singlet at
11.4 ppm, which is split into a doublet under off-resonance
conditions.

■ CONCLUDING REMARKS
This study reveals the existence of 16-valence-electron square-
planar alkylidyne−osmium and stable five-coordinate mono-
substituted alkylidene−osmium complexes and demonstrates
that the transformation from alkylidene to hydride-alkylidyne
follows the same electronic pattern as the oxidative additions
from d8 to d6; i.e., π-donor halides destabilize the monosub-
stituted alkylidene and favor the hydride−alkylidyne form.
Square-planar alkylidyne complexes have been prepared by

deprotonation of cationic five-coordinate hydride-alkylidyne
Figure 3. Stacked 31P{1H} NMR spectra illustrating the transformation
from 8 into 7 in C6D6 at 323 K.

Figure 4. Eyring plot of kobs for the transformation from 8 into 7.
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precursors through a formal reduction of the metal center. The
five-coordinate alkylidene compounds result from the addition of
the C(sp)−H bond of terminal alkynes to the Os−C triple bond
of the square-planar alkylidyne derivatives. The addition
regenerates the initial oxidation state of the metal center.
The addition of the C(sp)−H bond of the alkyne to the Os−C

triple bond occurs in stages. The square-planar alkylidyne
complexes coordinate the C−C triple bond of the alkyne.
Subsequent oxidative addition of the C(sp)−H bond leads to an
alkynyl-cis-hydride-alkylidyne intermediate, which evolves into
the alkylidene product by migration of the hydride from the
metal center to the Cα atom of the alkylidyne. The lack of π-
electrons at the donor Cα atom of the alkynyl ligand seems to be
the driving force for the migration. In contrast to the alkynyl
group, the π-donor chloride prevents the hydride migration and
stabilizes the hydride-alkylidyne intermediate.
In conclusion, elusive 16-valence-electron square-planar

alkylidyne and five-coordinate alkylidene complexes of a third-
row transition metal have been prepared, isolated in the solid
state, and characterized by X-ray diffraction analysis, and their
formation has been rationalized.

■ EXPERIMENTAL SECTION
All reactions were carried out with rigorous exclusion of air using
Shlenck-tube techniques. Solvents (except THF and benzene, which
were dried and distilled under argon) were obtained oxygen- and water-
free from an MBraun solvent purification apparatus. Reagents were
dried by standard procedures and distilled under argon prior to use. The
starting materials [OsHCl(CPh)(IPr)(PiPr3)]OTf and [OsH(OH)-
(CPh)(IPr)(PiPr3)]OTf were prepared by the published method-
s.18a,d 1H, 13C{1H}, 31P{1H}, and 19F NMR spectra were recorded on
Bruker Avance 300 MHz and Bruker Avance 400 MHz instruments.
Chemical shifts (expressed in parts per million) are referenced to
residual solvent peaks (1H, 13C{1H}), external 85% H3PO4 (

31P{1H}),
or external CFCl3 (19F). Coupling constants J are given in hertz.
Attenuated total reflection infrared spectra (ATR-IR) of solid samples
were run on a PerkinElmer Spectrum 100 FT-IR spectrometer. UV−vis
spectra were recorded on an Evolution 600 spectrophotometer. C, H,
and O analyses were carried out with a PerkinElmer 2400 CHNS/O
analyzer. Electrospray mass spectra were acquired using a time-of-flight
hybrid quadrupole time-of-fly spectrometer (Bruker Daltonics, Bremen,
Germany).
Preparation of OsCl(CPh)(IPr)(PiPr3) (2). An orange solution of

[OsHCl(CPh)(IPr)(PiPr3)]OTf (1) (100 mg, 0.12 mmol) in THF
(5 mL) was treated with potassium tert-butoxide (12.4 mg, 0.13 mmol).
The resulting mixture was stirred for 5 min at room temperature. After
this time, the resulting dark green solution was evaporated to dryness.
The residue was filtered through Celite with pentane and evaporated to
dryness, affording a green solid. Yield: 60 mg (70%). Anal. Calcd for
C43H62ClN2OsP: C, 59.80; H, 7.24N, 3.24. Found: C, 59.74; H, 7.47; N,
3.06. 1HNMR (300MHz, C6D6, 298 K): δ 7.30 (t,

3JH−H = 7.6, 3H, CPh,
Ph), 7.15 (d, 3JH−H = 7.6, 4H, Ph), 7.09 (d, 3JH−H = 7.6, 2H, CPh), 6.89
(s, 2H, NCH), 6.70 (t, 3JH−H = 7.7, 2H, CPh), 3.78 (sept, 3JH−H = 7.0,
4H, CHCH3), 2.35 (dsept,

2JH−P = 8.7,
3JH−H = 7.3, 3H, PCH), 1.35, 1.14

(both d, 3JH−H = 6.8, 24H, CHCH3), 1.20 (dd,
3JH−P = 12.7,

3JH−H = 7.2,
18H, PCHCH3).

31P{1H} NMR (121.4 MHz, C6D6, 298 K): δ 43.6 (s).
13C{1H}-APT NMR, HSQC, and HMBC (75.4 MHz, C6D6, 298 K): δ
229.0 (d, 2JC−P = 13.6, OsC), 196.5 (d, 2JC−P = 83.4, OsC), 147.0 (s,
Cipso-CPh), 146.9 (s, Ph), 138.2 (s, Cipso-Ph), 129.3 (s, Ph), 127.9, 125.3
(both s, CPh), 124.1 (s, Ph), 124.0 (s, CPh), 123.4 (s, NCH), 29.8 (s,
CHCH3), 27.7, 27.3 (both s, PCH), 26.1, 23.3 (both s, CHCH3), 20.9 (s,
PCHCH3).
Preparation of [OsHF(CPh)(IPr)(PiPr3)]OTf (4). A yellow

solution of [OsH(OH)(CPh)(IPr)(PiPr3)]OTf (3) (100 mg, 0.1
mmol) in dichloromethane (5 mL) was treated with HBF4·OEt2 (16 μL,
0.11 mmol). The resulting mixture was stirred for 1 h at room
temperature. After this time, the resulting yellow solution was

evaporated to dryness. The addition of 3 mL of diethyl ether caused
the formation of a yellow solid which was washed with diethyl ether (3×
3 mL) and dried under vacuo. Yield: 90 mg (90%). Anal. Calcd for
C44H63F4N2O3OsPS: C, 52.99; H, 6.37; N, 2.81; S, 3.21. Found: C,
52.97; H, 6.53; N, 2.81; S, 3.58. MS (electrospray, m/z):
C43H63FN2OsP, 849.4; found, 849.4. IR (cm−1): ν(OsH) 2180. 1H
NMR (300 MHz, CD2Cl2, 298 K): δ 7.68 (t, 3JH−H = 7.7, 1H, CPh),
7.50−7.41 (4H, Ph), 7.30 (s, 2H, NCH), 7.21 (dd, 3JH−H = 7.7, 2H,
CPh), 7.08 (dd, 3JH−H = 7.3, 4JH−H = 2.1, 2H, Ph), 6.76 (d, 3JH−H = 7.7,
2H, CPh), 3.06, 2.57 (both sept, 3JH−H = 7.2, 4H, CHCH3), 2.26 (dsept,
2JH−P = 9.7, 3JH−H = 7.1, 3H, PCH), 1.53, 1.15, 1.13, 1.10 (all d, 3JH−H =
6.8, 24H, CHCH3), 0.88, 0.85 (both dd,

3JH−P = 14.0, 3JH−H = 7.1, 18H,
PCHCH3),−15.52 (dd, 2JH−P = 14.2, 2JH−F = 27.0, 1H, OsH). 19F NMR
(287.2 MHz, CD2Cl2, 298 K): δ−78.9 (s, CF3SO3),−118.0 (dd, 2JF−P =
35.2, 2JF−H = 27.0, OsF).

31P{1H} NMR (121.4 MHz, CD2Cl2, 298 K): δ
50.6 (d, 2JP−F = 35.2). 13C{1H}-APT NMR, HSQC, and HMBC (75.4
MHz, CD2Cl2, 298 K): δ 275.4 (dd,

2JC−F = 69.9, 2JC−P = 8.2, OsC),
185.4 (d, 2JC−P = 91.0, OsC), 147.4, 146.2 (both s, Ph), 144.5 (s, Cipso-
Ph), 134.5 (s, Cipso-CPh), 133.9 (s, CPh), 131.9 (s, Ph), 129.4 (s, CPh),
129.3 (s, Ph), 126.0 (s, NCH), 125.6 (s, CPh), 124.9 (s, Ph), 29.6, 29.4
(both s, CHCH3), 26.1, 25.5, 23.5 (all s, CHCH3), 25.7 (d,

1JC−P = 27.8,
PCH), 19.6 (d, 2JC−P = 23.1, PCHCH3).

Preparation of OsF(CPh)(IPr)(PiPr3) (5). A yellow solution of 4
(100 mg, 0.12 mmol) in THF (5 mL) was treated with potassium tert-
butoxide (12.4 mg, 0.13 mmol). The resulting mixture was stirred for 5
min at room temperature. After this time, the resulting dark red solution
was evaporated to dryness. The residue was filtered through Celite with
pentane and evaporated to dryness, affording a red solid. Yield: 60 mg
(71%). Anal. Calcd for C43H62FN2OsP: C, 60.96; H, 7.38 N, 3.31.
Found: C, 60.94; H, 7.62; N, 3.30. 1H NMR (300MHz, C6D6, 298 K): δ
7.28, 7.15 (both d, 3JH−H = 8.2, 6H, Ph), 7.07 (dt, 3JH−H = 7.4, 4JH−H =
1.3, 1H, CPh), 7.00 (dd, 3JH−H = 8.0,

4JH−H = 1.3, 2H, CPh), 6.79 (s, 2H,
NCH), 6.73 (dd, 3JH−H = 8.0,

3JH−H = 7.4, 2H, CPh), 3.61 (sept,
3JH−H =

6.8, 4H, CHCH3), 2.15 (dsept,
2JH−P = 9.0,

3JH−H = 7.2, 3H, PCH), 1.43,
1.19 (both d, 3JH−H = 6.8, 24H, CHCH3), 1.23 (dd,

3JH−P = 12.7,
3JH−H =

7.2, 18H, PCHCH3).
19F NMR (287.2MHz, C6D6, 298 K): δ−178.7 (d,

2JF−P = 47.8, OsF).
31P{1H} NMR (121.4 MHz, C6D6, 298 K): δ 51.4 (d,

2JP−F = 47.8). 13C{1H}-APT NMR, HSQC, and HMBC (75.4 MHz,
C6D6, 298 K): δ 236.8 (dd,

2JC−F = 133.9, 2JC−P = 13.6, OsC), 198.5
(d, 2JC−P = 92.4, 2JC−F = 11.2, OsC), 149.4 (d, 2JC−F = 11.5, Cipso-
CPh), 146.7 (s, Ph), 138.4 (s, Cipso-Ph), 129.0 (s, CPh), 127.4 (s, Ph),
124.8 (s, CPh), 124.0 (s, Ph), 123.8 (s, CPh, Ph), 123.3 (s, NCH), 29.7
(s, CHCH3), 25.9 (s, PCH), 25.6, 23.7 (both s, CHCH3), 20.6 (s,
PCHCH3).

Preparation of Os(CCPh)Cl(CHPh)(IPr)(PiPr3) (6). A green
solution of 2 (100 mg, 0.12 mmol) in pentane (5 mL) was treated with
phenylacetylene (32 μL, 0.3 mmol). The resulting mixture was stirred
for 3 h at room temperature. After this time, the resulting dark purple
solution was filtered through Celite and evaporated to dryness, affording
a purple solid. Yield: 83 mg (74%). Anal. Calcd for C51H68ClN2OsP: C,
63.43; H, 7.10 N, 2.90. Found: C, 63.10; H, 7.18; N, 2.96. MS
(electrospray, m/z): C51H68N2OsP [M−Cl], 931.5; found, 931.5. 1H
NMR (300 MHz, C6D6, 298 K): δ 24.16 (s, 1H, OsCHPh), 7.42−
7.34 (5H, CPh), 7.32−7.17 (1H, Ph), 7.00−6.92 (5H, CPh), 6.73 (t,
3JH−H = 7.8, 2H, Ph), 6.92−6.83 (2H, Ph), 6.64, 6.63 (both s, 2H,
NCH), 6.58−6.52 (1H, Ph), 4.33, 3.83, 3.75, 3.65 (all sept, 3JH−H = 6.6,
4H, CHCH3), 2.77 (dsept, 2JH−P = 10.4, 3JH−H = 7.2, 3H, PCH), 1.75,
1.73, 1.49, 1.36, 1.08, 1.04 (all d, 3JH−H = 6.5, 24H, CHCH3), 0.90, 0.73
(ambos dd, 2JH−P = 13.5, 3JH−H = 7.3, 18H, PCHCH3).

31P{1H} NMR
(121.4MHz, C6D6, 298 K): δ 29.9 (s).

13C{1H}-APTNMR,HSQC, and
HMBC (75.4 MHz, C6D6, 298 K): δ 246.7 (d,

2JC−P = 5.7, OsCHPh),
187.3 (d, 2JC−P = 71.5, OsC), 162.6 (s, Cipso-OsCHPh), 148.9, 147.1,
146.0, 145.2 (all s, Ph), 137.6, 135.5 (both s, Cipso-Ph), 134.0, 130.9,
130.4 (all s, CPh), 129.8 (s, Ph), 129.3 (s, Os−CC-Ph), 128.6, 127.6,
127.4 (all s, CPh), 125.5 (s, NCH), 125.0, 124.3, 123.9, 123.8 (all s, Ph),
123.6 (s, C-Os-CC-Ph), 102.0 (d, 2JC−P = 10.8, Os-CC-Ph), 29.5,
29.4, 28.5, 28.1 (all s, CHCH3), 27.5, 26.5, 26.4, 22.9 (all s, CHCH3),
24.2, 23.9, 23.6 (all s, PCH), 19.8, 19.2 (both s, PCHCH3).
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Preparation of Os(CC-COOCH3)Cl(CHPh)(IPr)(PiPr3) (7). A
green solution of 2 (100 mg, 0.12 mmol) in toluene (5 mL) was treated
with methyl propiolate (21 μL, 0.24 mmol). The resulting mixture was
stirred overnight at 60 °C. After this time, the resulting dark red solution
was filtered through Celite and evaporated to dryness, affording a red
solid. Yield: 90 mg (82%). Anal. Calcd for C47H66ClN2O2OsP: C, 59.57;
H, 7.02; N, 2.96. Found: C, 59.42; H, 7.00; N, 2.91. MS (electrospray,
m/z): C47H66N2O2OsP [M−Cl], 913.5; found, 913.5. 1H NMR (300
MHz, C6D6, 298 K): δ 22.59 (s, 1H, OsCHPh), 7.32−6.98 (5H,
CHPh), 6.87 (d, 3JH−H = 7.7, 1H, Ph), 6.71−6.56 (5H, Ph), 6.61 (s, 1H,
NCH), 4.17, 3.86 (both sept, 3JH−H = 6.6, 2H, CHCH3), 3.69 (s, 3H,
CH3), 3.66, 3.50 (both sept,

3JH−H = 6.6, 2H, CHCH3), 2.81 (dsept, 3H,
2JH−P = 10.1, 3JH−H = 7.2, PCH), 1.84, 1.69, 1.66, 1.13, 1.10, 1.07, 1.05,
1.01 (all d, 3JH−H = 6.6, 24H, CHCH3), 0.87, 0.64 (both dd,

3JH−P = 13.8,
3JH−H = 7.2, 18H, PCHCH3).

31P{1H} NMR (121.4 MHz, C6D6, 298
K): δ 33.4 (s). 13C{1H}-APT NMR, HSQC, and HMBC (75.4 MHz,
C6D6, 298 K): δ 246.9 (d, 2JC−P = 4.2, OsCHPh), 187.5 (d, 2JC−P =
68.8, OsC), 161.0 (s, Cipso-CPh), 151.9 (s, CC-COOCH3), 148.8,
147.9, 145.9 (all s, Ph), 137.3, 135.2 (both s, Cipso-Ph), 131.1, 130.1,
129.6, 128.8, 128.7 (all s, CPh), 125.1, 124.5, 124.1 (all s, Ph), 123.8 (s,
NCH), 116.45 (d, 2JC−P = 10.2, CC−COOCH3), 51.0 (s, CC−
COOCH3), 30.2 (s, CC-COOCH3), 29.4, 29.1, 28.8, 28.0 (all s,
CHCH3), 27.5, 26.5, 22.8 (all s, CHCH3), 23.9, 23.5 (both d,

1JC−P = 4.4,
PCH), 19.9, 19.0 (s, PCHCH3).
Preparation of OsH(CC−COOCH3)Cl(CPh)(IPr)(PiPr3) (8).

A green solution of 2 (100 mg, 0.12 mmol) in pentane (5 mL) was
treated with methyl propiolate (21 μL, 0.24 mmol). The resulting
mixture was stirred for 5 min at room temperature. After this time, the
resulting red solution was filtered through Celite and evaporated to
dryness. The addition of 3 mL of cold pentane caused the formation of
an orange solid which was washed with pentane (3 × 3 mL) and dried
under vacuo. Yield: 93 mg (85%). Anal. Calcd for C47H66ClN2O2OsP:
C, 59.57; H, 7.02 N, 2.96. Found: C, 59.22; H, 6.98; N, 2.96. MS
(electrospray, m/z): C47H66N2O2OsP [M−Cl], 913.5; found, 913.5. IR
(cm−1): ν(OsH) 2098. 1H NMR (400 MHz, C7D8, 233 K): δ 7.49 (d,
3JH−H = 7.7, 1H, Ph), 7.41 (t, 3JH−H = 7.7, 1H, Ph), 7.32 (t, 3JH−H = 7.7,
1H, Ph), 7.25−7.13 (2H, CPh), 7.08 (s, 1H, CPh), 6.96 (t, 3JH−H = 7.7,
2H, CPh), 6.92 (s, 1H, NCH), 6.89 (d, 3JH−H = 7.8, 1H, Ph), 6.71 (s, 1H,
NCH), 6.66, 6.56 (both d, 3JH−H = 7.8, 2H, Ph), 4.22, 3.55 (both sept,
3JH−H = 6.7, 3H, CHCH3), 3.58 (s, 3H, CH3), 3.45 (sept, 3JH−H = 6.7,
1H, CHCH3), 2.72 (br, 3H, PCH), 1.97, 1.78, 1.76, 1.66, 1.28, 1.25 (all
d, 3JH−H = 6.7, 24H, CHCH3), 1.17, 0.86 (both dd,

2JH−P = 13.8,
3JH−H =

7.1, 18H, PCHCH3), −2.27 (d, 2JH−P = 28.2, 1H, OsH). 31P{1H} NMR
(162.0MHz, C7D8, 233 K): δ 24.3 (s).

13C{1H}-APTNMR, HSQC, and
HMBC (100.6 MHz, C7D8, 233 K): δ 283.2 (d, 2JC−P = 4.0, OsC),
173.1 (d, 2JC−P = 74.1, OsC), 154.3 (s, CC-COOCH3), 150.6 (s, Cipso-
CPh), 147.2, 146.9, 146.6, 145.5 (all s, Ph), 140.2, 139.4 (both s, Cipso-
Ph), 130.0, 129.9 (both s, Ph), 129.7, 128.9, 127.3 (all s, CPh), 126.0 (s,
NCH), 125.0, 124.9, 124.1 (all s, Ph), 123.6 (s, NCH), 104.8 (s, CC-
COOCH3), 92.9 (d, 2JC−P = 8.6, CC−COOCH3), 51.4 (s, CC−
COOCH3), 30.1, 29.4, 28.7 (all s, CHCH3), 27.4, 27.2, 26.5, 26.1, 24.8
(all s, CHCH3), 24.5 (s, PCH), 19.9, 18.8 (both s, PCHCH3).
Preparation of OsH(CC−COOCH3)F(CPh)(IPr)(PiPr3) (9). A

red solution of 5 (100 mg, 0.12 mmol) in benzene (5 mL) was treated
with methyl propiolate (11 μL, 0.12 mmol). The resulting mixture was
stirred for 15 min at room temperature. After this time, the resulting red
solution was filtered through Celite and evaporated to dryness, affording
a red solid. Yield: 80 mg (73%). Anal. Calcd for C47H66FN2O2OsP: C,
60.62; H, 7.14 N, 3.01. Found: C, 60.28; H, 7.00; N, 2.98. MS
(electrospray,m/z): C48H66FN2O2OsP [M+H], 933.5; found, 933.5. IR
(cm−1): ν(OsH) 2097. 1H NMR (300 MHz, C6D6, 298 K): δ 7.93 (d,
3JH−H = 7.8, 2H, CPh), 7.21 (d,

3JH−H = 7.6, 2H, Ph), 7.12 (t,
3JH−H = 7.4,

1H, CPh), 7.07−6.67 (2H, CPh), 6.93 (t, 3JH−H = 7.6, 4H, Ph), 6.71 (s,
2H, NCH), 3.58, 3.20 (both m, 4H, CHCH3), 3.45 (dsept,

3JH−P = 10.2,
3JH−H = 7.10, 3H, PCH), 1.81, 1.54, 1.20, 1.12 (all d, 3JH−H = 6.7, 24H,
CHCH3), 1.00, 0.95 (both dd, 2JH−P = 13.4, 3JH−H = 7.10, 18H,
PCHCH3), −0.46 (dd, 2JH−P = 28.3, 2JH−F = 7.8, 1H, OsH). 19F NMR
(287.2 MHz, C6D6, 298 K): δ −153.4 (dd, 2JF−P = 29.6, 2JF−H = 7.8).
31P{1H} NMR (121.4 MHz, C6D6, 298 K): δ 31.0 (d, 2JP−F = 29.6).

13C{1H}-APT NMR, HSQC, and HMBC (75.4 MHz, C6D6, 298 K): δ
284.4 (broad, OsC), 176.8 (dd, 2JC−P = 81.4,

2JC−F = 8.3, OsC), 153.9
(s, CC-COOCH3), 150.2 (s, Cipso-CPh), 147.0, 146.6 (both s, Ph),
139.3 (s, Cipso-Ph), 129.9, 129.7, 129.6 (all s, CPh), 127.2, 123.9, 123.8
(all s, Ph), 123.6 (s, NCH), 106.1 (d, 3JC−F = 12.6, CC-COOCH3),
95.8 (dd, 2JC−F = 50.6, 2JC−P = 6.8, CC−COOCH3), 50.8 (s, CC−
COOCH3), 29.1, 29.0 (both s, CHCH3), 26.7, 25.8 (both s, CHCH3),
24.9 (d, 1JC−P = 26.3, PCH), 23.2, 22.8 (both s, CHCH3), 19.3 (d,

2JC−P
= 7.11, PCHCH3).

Preparation of OsHCl2(CPh)(IPr)(PiPr3) (10). A green solution
of 2 (100 mg, 0.12 mmol) in toluene (5 mL) was treated with HCl (1
mL, 0.12 M). The resulting mixture was stirred for 2 h at room
temperature. After this time, the resulting pale red solution was
evaporated to dryness. The addition of 3 mL of cold pentane caused the
formation of a pink solid which was washed with pentane (3 × 3 mL)
and dried under vacuo. Yield: 65 mg (62%). Anal. Calcd for
C43H63Cl2N2OsP: C, 57.38; H, 7.06; N, 3.11. Found: C, 57.52; H,
6.74; N, 3.41. MS (electrospray, m/z): C43H63ClN2OsP, 865.4; found,
865.4. IR (cm−1): ν(OsH) 2151. 1H NMR (300 MHz, C6D6, 298 K): δ
7.38 (m, 2H, CPh), 7.30 (t, 3JH−H = 7.6, 2H, Ph), 7.24, 7.12 (both dd,
3JH−H = 7.6,

4JH−H = 1.8, 4H, Ph), 7.02 (t,
3JH−H = 7.5, 1H, CPh), 6.70 (t,

3JH−H = 8.2,
3JH−H = 7.5, 2H, CPh), 6.65 (s, 2H, NCH), 3.52, 3.29 (both

sept, 3JH−H = 6.7, 4H, CHCH3), 2.43 (dsept,
2JH−P = 9.4,

3JH−H = 7.1, 3H,
PCH), 1.52, 1.28, 1.07, 1.06 (all d, 3JH−H = 6.7, 24H, CHCH3), 1.22, 1.14
(both dd, 3JH−P = 13.1, 3JH−H = 7.1, 18H, PCHCH3), −5.95 (d, 2JH−P =
16.5, 1H, OsH). 31P{1H} NMR (121.4 MHz, C6D6, 298 K): δ 11.4 (s).
13C{1H}-APT NMR, HSQC, and HMBC (75.4 MHz, C6D6, 298 K): δ
256.5 (d, 2JC−P = 12.9, OsC), 168.2 (d, 2JC−P = 96.5, OsC), 148.2 (s,
Cipso-CPh), 146.9, 146.3 (both s, Ph), 139.5 (s, Cipso-Ph), 130.0, 128.8,
129.6 (all s, CPh), 129.3, 128.6 (both s, Ph), 128.0 (s, CPh), 125.8 (s,
NCH), 124.2, 123.6 (both s, Ph), 29.1 (s,CHCH3), 26.5, 26.4, 23.3, 23.2
(all s, CHCH3), 26.2, 25.8 (both s, PCH), 20.2, 19.9 (both s, PCHCH3).

Structural Analysis of Complexes 2 and 6. X-ray data were
collected for the complexes on a Bruker Smart APEX Duo (2) or Smart
APEX (6) diffractometers equipped with a normal or fine focus, 2.4 kW
sealed tube source (Mo radiation, λ = 0.71073 Å) operating at 50 kV and
40 mA (2) or 30 mA (6). Data were collected over the complete sphere.
Each frame exposure time was 60 s (2) or 30 s (6), covering 0.3° in ω.
Data were corrected for absorption by using a multiscan method applied
with the SADABS program.30 The structures were solved by Patterson
or direct methods and refined by full-matrix least squares on F2 with
SHELXL97,31 including isotropic and subsequently anisotropic
displacement parameters. The hydrogen atoms were observed in the
least Fourier maps or calculated, and refined freely or using a restricted
riding model. In both structures, pentane solvent molecules were
observed in the asymmetric unit and were refined with restrained
geometry and isotropic thermal parameters. In 6, the phenyl group of
the alkynyl ligand was observed disordered in two positions and refined
with two moieties with complementary occupancy factors, restrained
geometry, and isotropic thermal parameters.

Crystal Data for 2. C43H62ClN2OsP·0.5(C5H12), MW = 899.64, red,
irregular block (0.22 × 0.19 × 0.15), tetragonal, space group P42/n, a =
24.642(3) Å, b = 24.642(3) Å, c = 16.016(2) Å,V = 9725(2) Å3, Z = 8, Z′
= 1,Dcalc = 1.229 g cm

−3, F(000) = 3704, T = 100(2) K, μ = 2.739mm−1;
103 123 measured reflections (2θ = 3−58°, ω scans = 0.3°), 12 728
unique (Rint = 0.0755); min./max. transmission factors = 0.697/0.862;
final agreement factors R1 = 0.0499 (7669 observed reflections, I >
2σ(I)) and wR2 = 0.1621; data/restraints/parameters = 12 728/44/510;
GoF = 1.096. Largest peak and hole: 3.033 (close to osmium atom) and
−0.157 e/Å3.

Crystal Data for 6. C51H68ClN2OsP·C5H12, MW = 1037.84, purple,
irregular block (0.11 × 0.07 × 0.06), monoclinic, space group P21/c, a =
12.5093(11) Å, b = 13.2893(12) Å, c = 31.967(3) Å, β = 93.9270(10)°,
V = 5301.7(8) Å3, Z = 4, Z′ = 1,Dcalc = 1.300 g cm

−3, F(000) = 2152, T =
100(2) K, μ = 2.522 mm−1; 40 780 measured reflections (2θ = 3−51°,ω
scans = 0.3°), 9860 unique (Rint = 0.0914); min./max. transmission
factors = 0.701/0.862; final agreement factors R1 = 0.0968 (7296
observed reflections, I > 2σ(I)) and wR2 = 0.1962; data/restraints/
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parameters 9860/16/520; GoF = 1.219. Largest peak and hole: 2.453
(close to osmium atom) and −3.843 e/Å3.
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H.; Flügel, R.; Windmüller, B. Chem. Ber. 1997, 130, 493−505.
(10) (a) Whittlesey, M. K. in Comprehensive Organometallic Chemistry
III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Amsterdam, 2007;
Chapter 6.11, pp 353−384. (b) Whittlesey, M. K. In Comprehensive
Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.;
Elsevier: Amsterdam, 2007; Chapter 6.12, pp 385−440. (c) Whittlesey,
M. K. In Comprehensive Organometallic Chemistry IIICrabtree, R. H.,
Mingos, D. M. P., Eds.; Elsevier: Amsterdam, 2007; Chapter 6.13, pp
441−463.
(11) (a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J.
Am. Chem. Soc. 1992, 114, 3974−3975. (b) Nguyen, S. T.; Grubbs, R.
H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858−9859. (c) Schwab, P.;
France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2039−2041. (d) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc.
Chem. Res. 1995, 28, 446−452. (e) Schwab, P.; Grubbs, R. H.; Ziller, J.
W. J. Am. Chem. Soc. 1996, 118, 100−110. (f) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413−4450. (g) Trnka, T. M.; Grubbs, R. H. Acc.
Chem. Res. 2001, 34, 18−29. (h) Grubbs, R. H. Tetrahedron 2004, 60,
7117−7140. (i) Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007,
32, 1−29. (j) Herbert, M. B.; Grubbs, R. H. Angew. Chem., Int. Ed. 2015,
54, 5018−5024.
(12) (a) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N.
J. Am. Chem. Soc. 1993, 115, 4683−4689. (b) Buil, M. L.; Esteruelas, M.
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34, 547−550. (e) Buil, M. L.; Cardo, J. J. F.; Esteruelas, M. A.;
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