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Abstract

Background: An essential question in cancer is why individuals with the same disease have different clinical
outcomes. Progress toward a more personalized medicine in cancer patients requires taking into account the
underlying heterogeneity at different molecular levels.

Results: Here, we present a model in which there are complex interactions at different cellular and systemic levels
that account for the heterogeneity of susceptibility to and evolution of ERRB2-positive breast cancers. Our model is
based on our analyses of a cohort of mice that are characterized by heterogeneous susceptibility to ERBB2-positive
breast cancers. Our analysis reveals that there are similarities between ERBB2 tumors in humans and those of
backcross mice at clinical, genomic, expression, and signaling levels. We also show that mice that have tumors with
intrinsically high levels of active AKT and ERK are more resistant to tumor metastasis. Our findings suggest for the
first time that a site-specific phosphorylation at the serine 473 residue of AKT1 modifies the capacity for tumors to
disseminate. Finally, we present two predictive models that can explain the heterogeneous behavior of the disease
in the mouse population when we consider simultaneously certain genetic markers, liver cell signaling and serum
biomarkers that are identified before the onset of the disease.

Conclusions: Considering simultaneously tumor pathophenotypes and several molecular levels, we show the
heterogeneous behavior of ERBB2-positive breast cancer in terms of disease progression. This and similar studies
should help to better understand disease variability in patient populations.
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Background
Worldwide, breast cancer is one of the most frequent tu-
mors in women and indeed more than a million women
are diagnosed with this disease every year [1]. An essential
question underlying this circumstance is why patients who
seem to have the same pathological condition, even in her-
editary forms of breast cancer, progress differently and
have different clinical outcomes [2-4]. Clinical manifesta-
tions reflect perturbations of complex intra- and intercel-
lular networks that link molecular and cellular processes
with tissue/organ subphenotypes and clinical semiology.
Functionally interconnected layers comprising, among
others, genotype, gene expression, cell signaling and meta-
bolic pathways form these networks, leading to patho-
physiological and clinical manifestations [5,6]. The genetic
backgrounds of patients would influence such networks of
interactions [7,8]. Identifying associations at different
levels, and the influence of the genetic background in
them, is crucial if we are to fully understand the different
patterns of behavior of the disease, and will help to design
better strategies for individualized cancer prevention and
therapy. The identification of these complex networks in
human populations is a difficult task owing to genetic het-
erogeneity and complex interactions with the environment
[7,9,10]. However, crosses of inbred mouse strains with
homogenous genomes and fairly uniform phenotypes offer
a unique opportunity to tackle these questions under sim-
pler conditions [7,11,12].
ERBB2/NEU/HER2 (henceforth ERBB2)-positive breast

cancers constitute 20 to 30% of all mammary gland tu-
mors. The amplification and overexpression of ERBB2 is a
marker of poor prognosis [13], but the progression of
these tumors is heterogeneous [3]. Complex networks at
different molecular levels influenced by the genetic back-
ground could account for this variable progression of
breast cancer [5,6], and the consideration of molecular
features from different profiling data types may help to
predict therapeutic response [14]. To address this issue,
we generated a genetically heterogeneous population of
mice with different susceptibilities to breast cancer by a
backcross between MMTV-ErbB2 transgenic mice [15] in
a FVB genetic background showing high tumor suscepti-
bility and C57BL/6 resistant mice [16-18]. Here, for the
first time we differentiate ERBB2-positive breast cancers
according to different pathophenotypes and molecular
subphenotypes to evaluate their associations by a systems
biology approach (Figure 1A). We report a global scenario
of complex interactions at cellular and systemic levels that
accounts for the heterogeneity in ERBB2-positive breast
cancer behavior and susceptibility. We integrated these
different molecular levels to better define cancer progno-
sis. This global scenario enabled specific achievements:
first, we demonstrate parallels between ERBB2-positive tu-
mors from humans and backcross mice at the clinical,
genomic, gene expression and signaling levels. We defined
different tumor traits and mouse clusters of prognosis at
those different levels. Second, the global architecture of
signaling pathways was similar in breast tumors and livers
(where the oncogene is not expressed), and these signaling
pathways also defined both tumor pathophenotypes and
mouse clusters of prognosis. For instance, mice with in-
trinsically higher levels of AKT and ERK pathways were
less likely to develop tumors. Third, we recognized specific
molecular features of the disease; for example, pAKT1
(S473) levels modified metastatic capability. Thus, tumors
that metastasized to the lung showed lower levels of
pAKT1(S473). In addition, mice that developed tumors
with a short latency expressed low levels of pERK1/2 due
to a partial block in the phosphorylation at the RAF-MEK
step. Fourth, we identified a pattern of serum metabolites
collected at the disease-free stage that predicted different
traits of tumor progression and defined mouse clusters as-
sociated with prognosis. Finally, we combined the different
data types in Cox-regression models that predict cancer
susceptibility and progression to identify the specific risk
in single mice. The connections identified at different mo-
lecular and phenotypic levels with this approach should
eventually permit a better understanding of heterogeneous
breast cancer susceptibility and progression among pa-
tients and the development of more individualized clinical
strategies.

Results
The genetic background modifies ERBB2-induced breast
cancer susceptibility and progression
We studied the susceptibility and progression of breast
cancer in MMTV-ErbB2 transgenic mice from FVB,
F1FVBxC57 (henceforth F1) and backcross (F1BX) genetic
backgrounds. The FVB mice had a shorter tumor latency
than F1 and F1BX. The tumor latency and lifespan in
F1BX mice were between those of the FVB and F1 ani-
mals, 50% of them dying by 76.86 weeks of age (Figure 1B;
Table S1 in Additional file 1). Furthermore, the FVB mice
had a higher incidence, multiplicity, and average number
(P < 0.0001) of breast tumors than their F1 and F1BX
counterparts, but mice with a partial C57BL/6 genetic
background showed a faster local tumor growth rate than
the FVB animals, in agreement with previous work [17].
FVB mice had a higher incidence of metastases than the
F1 and F1BX animals, but the number of metastases per
mouse was very similar between the three groups (Table
S1 in Additional file 1). These results suggest that the
C57BL/6 genetic background carries genetic determinants
that build up resistance to most of these breast tumor
pathophenotypes in a dominant manner.
Next, we explored which breast tumor traits mainly in-

fluenced lifespan variability in the F1BX population. Tumor
latency was found to be the most important (P < 0.0001);
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Figure 1 Differentiation of ERBB2-induced breast cancer according to different traits. (A) Experimental design. We generated a cohort of
mice that were genetically heterogeneous and with different degrees of susceptibility and progression to breast cancer. Thus, we dissected the
disease into different pathophenotypes. Then, we classified the mice according to prognosis. We considered different clinical pathophenotypes of
ERBB2-positive tumors as the result of multiple molecular associations at different levels from a systems biology perspective to predict clinical
outcomes. In sum, we show a global scenario of complex interactions at different levels that account for the heterogeneity in tumor behavior
and susceptibility. (B) Comparison among different tumor pathophenotypes in FVB, F1 and F1BX mice. We show detailed comparisons of all the
different pathophenotypes elsewhere (Table S1 in Additional file 1). (C) The network shows associations among different tumor pathophenotypes
in the F1BX population (Cytoscape Software). Nodes represent breast cancer pathophenotypes: the yellow nodes are temporal stages of the
disease and the blue nodes depict tumor traits. Edges indicate correlation coefficients, green for positive and red for negative correlations. Edge
line width is directly proportional to the value of the r coefficient. We include all correlations with P < 0.05 in the figure. All r coefficient values are
in Table S2 in Additional file 1. (D) Prognosis clusters identified by principal component analysis as shown by an HJ-biplot. A fifth cluster formed
by the mice without tumors is not included in the figure. (E) Distribution of tumor pathophenotypes in each different cluster. The fifth cluster,
which encompasses the mice that did not develop tumors, is not represented in the figure. The numerical values of this figure and post hoc tests
are reported elsewhere (Table S3 in Additional file 1).
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in addition, tumor numbers, local growth and number of
metastases were negatively related to lifespan. The F1BX
tumors that appeared in older mice (>70 weeks) rarely
metastasized (P = 0.004) (Figure 1C; Table S2 in Additional
file 1), which mirrors the patterns observed in human
populations [19,20]. This tumor behavior regarding dis-
semination in ageing mice was not seen in the FVB or F1
mice (P = 0.788 and P = 0.975, respectively).
Based on a principal component and biplot analysis of

their clinical characteristics, we grouped the F1BX mice
in five prognostic clusters. Cluster 1 contained those
mice with the shortest lifespans and latencies, the high-
est number of metastases, and the highest final tumor
weight, whereas based on the same pathophenotypes
cluster 4 comprised animals with the best prognosis. We
also distinguished clusters 2 and 3, considered as medium-
poor and medium-good prognoses, respectively. Clus-
ter 5 included mice with no tumors after two years of
experimentation (Figure 1D,E; Table S3 in Additional
file 1). Intriguingly, the F1 mice with tumors where the
disease was least aggressive were mainly located in clusters
3 and 4 (and also in cluster 5 when mice without tumors
were considered) whereas FVB were grouped in clusters 1
and 2, with a poorer prognosis (Figure S1 in Additional
file 2). In conclusion, we generated a genetically het-
erogeneous population of mice, with variable degrees
of susceptibility to and progression of breast cancer.
Based on the behavioral patterns of the different
pathophenotypes, we were able to classify mice in dif-
ferent clusters of prognosis.

Identification of genomic regions associated with
heterogeneous susceptibility to and progression of breast
cancer
Since the genetic background influences the clinical pro-
gression of ERBB2-positive breast cancer, we investigated
the quantitative trait loci (QTLs) associated with hetero-
geneous tumor behavior in the F1BX mice by linkage
analysis. Four loci, on chromosomes 2, 7, 13 and 18,
were found to be associated with tumor latency; they
were designated tQTL1 (tumor QTL1) to tQTL4, re-
spectively (Figure 2A; Table S4 in Additional file 1).
Mice homozygous for these markers (FVB/FVB) had a
significantly shorter latency than heterozygous animals
(FVB/C57), except for tQTL4 (Figure 2B; Table S4 in
Additional file 1). A single locus, tQTL5, on chromo-
some 13 was associated with the number of tumors per
animal. There were a number of loci associated with
tumor incidence on chromosomes 4, 13 and 15. The
locus on chromosome 13 seemed to be the same as the
one previously identified for tumor latency (tQTL3). We
also identified several QTLs related to different local
tumor growth characteristics (including tumor volume,
weight, average growth speed, and growth rate), and me-
tastases. Four loci on chromosomes 7, 13, 15 and 18
were found to be associated with lifespan. As expected,
these QTLs were also related to different tumor patho-
phenotypes (Figure 2A; Table S4 in Additional file 1).
We next identified genetic markers associated with the

clinically defined clusters of prognosis. Significantly,
cluster 5 included more mice heterozygous for tQTL2
(chromosome 7), tQTL3 (chromosome 13), and tQTL6
(chromosome 4). The good-prognosis cluster 4 had the
highest percentage of mice heterozygous for tQTL9
(chromosome 17), whereas the poor-prognosis cluster 1
had the lowest proportion of heterozygosity for these
genetic markers (Figure 2C; Table S5 in Additional file 1).
These results showed that prognosis may also be deter-
mined genetically.

Transcriptomic expression patterns from mouse tumors
resemble human ERBB2-positive breast cancer
We then examined ERBB2-induced breast cancer in mice
at the transcriptomic level. Using a fold-change cutoff of 2
and false discovery rate ≤0.005 between normal mammary
tissues and tumors, together with a standard deviation of
0.7 relative to the expression values of that gene across all
samples, based on the gap statistic [21] the mouse tumors



Figure 2 (See legend on next page.)
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Figure 2 Genomic regions associated with tumor behavior. (A) Distribution of QTLs associated with different tumor pathophenotype (tQTL)
variability across different mouse chromosomes. The color intensity reflects the LOD score level. LOD scores <1.5 are homogenously represented
in gray. Detailed information concerning these results is reported in Table S4 in Additional file 1. (B) Effect on tumor latency of different loci
identified by the Kaplan-Meier estimator. F/F indicates FVB homozygous and F/C indicates FVB/C57 heterozygous at those loci. (C) Distinction of
all the clinical prognosis clusters defined at the genetic level. The figure shows the percentage of mice with a particular heterozygous genetic
marker differentially present in the five clusters of mice based on prognosis. The genetic markers and percentages represented can be found in
Table S5 in Additional file 1b.
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were classified in seven unsupervised clusters with prog-
nostic significance based on a 782-gene mouse signature
(mouse clusters frommouse signature (MCMS); Figure 3A;
Table S6 in Additional file 1). Expression clusters 5 and 7
encompassed mice with the best prognosis in terms of la-
tency and lifespan (Figure 3B). More than 50% of the tu-
mors of FVB origin were in expression cluster 3, and F1
tumors were mainly located in clusters 1 and 2, pointing
to the influence of the genetic background (Figure 3A).
We have already observed some similarities between

mouse and human tumors regarding disease evolution -
that is, the tumors that appear earlier are more aggres-
sive [19,20]. Interestingly, in the literature we discovered
that most of the QTLs identified had homologous syn-
tenic regions in humans related to breast cancer or other
tumor types (Table S7 in Additional file 1 and supple-
mentary references listed therein and shown in Additional
file 3). Accordingly, we also compared the gene expression
patterns of mouse tumors with human ERBB2 breast can-
cers available from Staaf et al. [3]. Interspecies unsuper-
vised cluster analysis between mouse and human tumors
revealed that the similarities between tumors from the
same cluster were more marked than among tumors from
the same species (Figure 3C). By measuring the distances
in the dendrogram, we identified the samples closest to
the human subgroups. The eight subgroups of human
samples (red) were grouped with clusters of tumors
formed mainly by backcross and F1 tumors (blue), but
rarely of FVB origin (Figure S2 in Additional file 2). This
indicates that tumors originating in mice with a heteroge-
neous background are more similar to human tumors
than those originating in the FVB inbred strain. Moreover,
354 out of 782 transcripts were also found in the ERBB2
human transcriptional data [3] (Table S8 in Additional
file 1). This 354-gene mouse signature allowed a classifi-
cation of human tumors in three different clusters with
significant differences in prognosis, in agreement with
Staaf et al. [3] (Figure 3D; Figure S3A in Additional file 2),
and, vice versa, the human signature also permitted mouse
tumors to be classified in terms of prognosis (mouse clus-
ters from human signature (MCHS)) (Figures S3B,C and
S4A in Additional file 2). This suggests a similar pattern of
gene expression between human and mouse ERBB2 tu-
mors. Moreover, the distribution of human tumors among
the three clusters identified with the mouse signature
overlapped the clusters identified by Staaf et al. (P =
1.05 E−8; R = 0.667; Figure S3A in Additional file 2).
We then wondered whether the prognostic clusters of

mouse tumors previously defined (Figure 1D) were
enriched in particular expression signatures. As ex-
pected, the clinical cluster 4, with the best prognosis
(shown in Figure 1D), mainly overlapped the gene
expression cluster 5, shown in Figure 3A,B, obtained
with the mouse signature (MCMS 5) (Figure S4B in
Additional file 2). The tumors from clinical clusters 1,
2 and 3 were not preferentially located in any cluster of
gene expression. They were more or less randomly dis-
tributed, mainly among the expression clusters 1, 2, 3,
4 and 6 (Figure S4B in Additional file 2), which is in
agreement with the overlapping curves of latency of
these clusters shown in Figure 4B. This indicates the
absence of significant differences among them.
It is important to highlight that the similarity of tumor

behavior in the F1BX and F1 mice and human patients
with regard to some aspects of clinical, genomic and
gene expression levels suggests the importance of F1BX
studies to extrapolate additional knowledge to the hu-
man population.

Differences in specific signaling molecules downstream of
ERBB2 are associated with heterogeneous susceptibility
to and progression of breast cancer
ERBB2 is essential in initiating and driving breast cancer
progression [22]. Thus, we wondered whether different
levels of ErbB2 expression in tumors might also contrib-
ute to variations in breast cancer pathophenotypes in
mice. We found a weak negative correlation between
ErbB2 RNA levels and tumor latency, and positive as-
sociations with the number of tumors and metastases
(Figure 4A,C; Table S9 in Additional file 1).
We then wondered whether different levels of some

specific signaling molecules downstream of ERBB2 might
influence susceptibility to and progression of breast cancer
among mice. The global scenario of associations among
some representative molecules of these pathways evalu-
ated by principal component analysis revealed that they
were associated to different extents with breast cancer
pathophenotypes. For example, these phospho (p)-pro-
teins, except p-mTOR, were positively correlated with
latency and lifespan, but were negatively related to



Figure 3 (See legend on next page.)
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Figure 3 Transcriptomic expression patterns from mouse and human tumors. (A) Unsupervised clusters of mouse tumors based on a
signature of 782 transcripts that defined seven mouse clusters derived from the mouse signature (MCMS; top). A list of transcripts included in this
signature is provided in Table S6 in Additional file 1. The percentage and absolute number of tumors from FVB, F1 and F1BX mice included in
each cluster are indicated at the bottom. ‘N’ means normal mammary glands. (B) The MCMS identified had prognosis implications in terms of
latency and lifespan. The best prognosis MCMS clusters were 5 and 7. (C) Mouse and human tumors clustered together independently of the
species of origin. The x-axis with the identification numbers is amplified in Figure S2 in Additional file 2. (D) Part of the mouse signature was able
to classify human ERBB2 tumors in three clusters of prognosis. We include the list of 354 transcripts in Table S8 in Additional file 1 together with
the heat map in Figure S3A in Additional file 2. The Kaplan-Meier curves show the different behavior of these clusters of human breast cancer
regarding distant metastases, relapse and survival.
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metastasis and tumor numbers (Figure 4A,C; Table S9
in Additional file 1). These signaling molecules from tu-
mors were also able to distinguish among previously de-
scribed clusters of prognosis. More distant clusters
showed more molecular differences than those close to
each other. For example, the poor prognosis cluster 1
was different from the good prognosis cluster 4 in hav-
ing significantly lower levels of activated pAKT1(S473)
(P = 0.0003) and pAKT(T308) (P < 0.0001), among
others (Figure 4E; Table S10 in Additional file 1), and
the poorest prognosis clusters 1 and 2 were those with
the highest levels of ErbB2 RNA (Table S10 in Additional
file 1; Figure S5C,D in Additional file 2).
In agreement with previous studies in patients and dif-

ferent types of cancer [23-25], tumor pERK1/2 levels
were found to be positively associated with mouse life-
span and latency (P < 0.0001; Figures 4A,C and 5A; Table
S9 in Additional file 1). Consistent with this defect in
ERK1/2 activation in short latency tumors, the phosphor-
ylation (and hence activation) of p-p90RSK(S380) and
pMSK1(T581), known downstream mediators of ERK
signaling, was impaired. Furthermore, the levels of pMEK
were also low in short latency tumors, despite the normal
activation of C- and B-RAF, indicating a partial blockage
in the phosphorylation step between RAF and MEK. We
evaluated the status of several scaffolding proteins, such as
KSR1 and 2, which modulate RAF/MEK/ERK phosphoryl-
ation [26]. Breast tumors with a short latency and low
levels of pERK1/2 and pMEK showed low levels of total
KSR1 and 2, consistent with the reduced phosphorylation
of MEK and ERK1/2 (Figure 5B).
High levels of pAKT(T308), pAKT1(S473) and pAKT3

(S472) were associated with lifespan and tumor latency
(P < 0.0001, for whichever pair was evaluated; Figure 4C;
Table S9 in Additional file 1). Within a population of
breast tumors with the same latency and similar levels of
pERK1/2, there was a subpopulation that metastasized to
the lung and showed low levels of pAKT(S473) (Figure 5C).
Evaluation of different AKT isoforms in tumors from
the backcross animals demonstrated that the isoform
responsible for this difference was mainly pAKT1(S473)
(Figure 5D), which highlights the importance of gener-
ating specific AKT isoform inhibitors. Unfortunately,
we were unable to identify the mechanism responsible
for this hypophosphorylation of AKT1(S473) (Figure
S6A in Additional file 2). Furthermore, we failed to de-
tect any changes in pAKT levels in tumors from the
FVB and F1 mice with different numbers of lung metas-
tases, showing that this effect only took place in the
F1BX population (Figure S6B in Additional file 2).
Breast tumors from patients that had metastases had
discretely lower levels of pAKT1(S473), similar to tu-
mors from the backcross mice (Figure 5E), which high-
lights the similarity between breast tumors from human
and mice in this respect.

Specific signaling molecules are controlled in a genetic
background-dependent manner in breast tumors and
livers
We evaluated the influence of the genetic background
on the heterogeneous levels of some representative mol-
ecules specific to pathways downstream of ERBB2. We
found differential protein levels between tumors from
FVB and F1 mice, such as mTOR (P = 0.0014) or p-
mTOR(S2448) (P = 0.030), among others (Table S11 in
Additional file 1). In the F1BX mice we identified a
number of tumor-signaling QTLs (tsQTLs) that could
control the heterogeneity of some of those signaling
molecules. Thus, for instance, a locus on chromosome 9
(tsQTL5) was simultaneously associated with the phos-
phorylation of the threonine 308 residue in AKT and
serines 473 and 474 in AKT1 and AKT2, respectively
(Figure 6; Table S12 in Additional file 1). The locus on
chromosome 13 associated with total AKT3 levels
(tsQTL11) shared the same marker peak as tQTL3, re-
lated to tumor latency, lifespan and tumor incidence,
suggesting that the effect of tQTL3 could occur through
the regulation of total AKT3 levels. Thus, despite the ef-
fect of the oncogene and the somatic progression of the
tumors, we were able to detect the influence of the gen-
etic background in the levels of these signaling mole-
cules in breast cancer.
We then asked ourselves whether the influence of the

genetic background in these signaling molecules was
also present in other tissues, such as liver, spleen or kid-
ney. The parental C57BL/6, FVB and F1 mice already
showed differences in the levels of a number of some
signaling molecules, such as pAKT1(S473) in kidney



Figure 4 (See legend on next page.)
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Figure 4 Associations among signaling molecules from tumors and livers, and tumor pathophenotypes. (A,B) Multivariate analysis
revealed relationships among tumor pathophenotypes and representative molecules from signaling pathways obtained from tumors (A) and liver
(B). We show analogous biplots representing only the signaling proteins from tumors and livers without pathophenotype variables elsewhere
(Figure S5A,B in Additional file 2). (C) Schematic of the correlations between specific signaling molecules from tumors and livers, together with
different tumor traits. All correlations with P < 0.05 were included. The correlation coefficient r is represented by a red-blue scale and for
non-significant correlations is represented homogeneously in gray. We show the complete information from this figure in Table S9 in
Additional file 1. (D) Correlation between pAKT1 and total AKT1 in liver and tumors. There was a strong correlation between total and
phosphorylated levels of AKT1 in liver (P < 0.0001), but not in tumors. As indicated in the manuscript, this means that the pAKT/total AKT
ratio in the liver is constant, but not in the tumors, indicating that the percentage of total AKT phosphorylated in the livers of these mice is
always the same, while in the tumors it is random. (E) Distribution of some protein signaling molecules from tumors and livers across the
different prognosis clusters. Note the similarities between these signaling molecules from tumors (red) and livers (green) regarding differential
statistically significant levels among prognosis clusters. We include further, similar examples in Figure S5C in Additional file 2. The values represented in
(D) are provided in Table S10 in Additional file 1.
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(P = 0.0019), pAKT(T308) in spleen (P = 0.0077) and
pERK1/2 in liver (P = 0.027) (Table S13 in Additional
file 1). Intriguingly, the FVB and F1 mice showed differ-
ences in signaling levels that were parallel in the different
tissues; for instance, the F1 mice had higher levels of
pAKT1(S473) than the FVB mice in liver, spleen and kid-
ney. Moreover, the same differences were observed in tu-
mors. Thus, the changes between F1 and FVB at these
molecular signaling levels in tumors seemed to mirror
what had taken place in other tissues. This suggests that
the genetic background could influence these protein
levels in the same way in several normal tissues and tu-
mors (Figure S8 in Additional file 2). Accordingly, to fur-
ther study the influence of the genetic background on
protein levels in normal tissues, we evaluated the signaling
molecules in livers from the whole F1BX population. We
identified a number of possible liver signaling QTLs
(LsQTLs; Figure 6; Table S14 in Additional file 1), but few
of these overlap with tsQTLs, such as LsQTL3 and
tsQTL6, indicating that the genetic control of these signal-
ing molecules could in part be tissue-specific (Figure 6).

Some signaling molecules in tumors and livers show
similar patterns and are associated with breast cancer
progression
Despite the observation of different QTLs related to sig-
naling molecules in livers and breast tumors, the archi-
tectures of the associations among specific molecules in
both tissues were similar (Figure 4A,B; Figure S5A,B in
Additional file 2). For example, in both livers and tu-
mors the levels of pERK1/2 and different pAKT isoforms
were strongly correlated with each other in each tissue
(P < 0.0001; Tables S15 and S16 in Additional file 1). In
fact, although we failed to detect the ERBB2 protein in
liver (Figure S5F in Additional file 2), we did note a
number of obvious pair-wise correlations between cer-
tain signaling molecules from both tissues, particularly
evident for pAKT(T308) (P < 0.0001), indicating that
the levels of this moiety in tumors and livers would be
very similar (Table S17 in Additional file 1). This can be
seen in the biplot analysis in Figure S5A,B in Additional
file 2. Indeed, the global correlations among certain spe-
cific signaling molecules in livers were analogous to
those observed in tumors. The main difference was that
livers showed a good association between the total levels
of AKT isoforms and their phosphoprotein counterparts.
Thus, there was a strong correlation between the total and
phosphorylated levels of AKT1 in liver (P < 0.0001), but
not in tumors. This indicates that the pAKT/total AKT ra-
tio in liver was constant, whereas this was not the case in
tumors. Accordingly, the percentage of total AKT phos-
phorylated in the livers of these animals is always the
same, while in tumors it is random (Figure 4D).
Moreover, in both breast tumors and liver the same

signaling molecules were related to variability in tumor
pathophenotypes. These included pERK1/2 and different
pAKT isoforms, both related to tumor latency and lifespan
(P < 0.0001 for whichever pair was evaluated) (Figure 4C;
Table S9 in Additional file 1). Principal component ana-
lysis revealed that the relationships among breast tumor
pathophenotypes and the signaling molecules were also
similar (Figures 4A,B). Moreover, the signaling molecules
in the liver also defined the previously described prog-
nostic clusters and allowed them to be discriminated
(Figure 4E; Table S10 in Additional file 1; Figure S5C,E
in Additional file 2).

Serum metabolites measured before the onset of breast
cancer are associated with prognosis
A close connection has been described between some of
these signaling molecules (for example, AKT and mTOR)
and metabolic processes [27,28]. Here, we observed an as-
sociation between signaling proteins from liver and tumor
traits and the influence of the genetic background in both
of them. We therefore evaluated whether there were any
metabolic differences determined by the genetic back-
ground among the F1BX mice that might help to predict
the variability in tumor characteristics. To address this
issue, we determined a number of metabolites in serum
collected from the backcross mice at 3 months of age,



Figure 5 (See legend on next page.)
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Figure 5 Analysis of representative signaling molecules from pathways downstream of ERBB2 in the tumors. (A) Positive correlation
between levels of pERK1/2 (ELISA) and tumor latency. (B) Evaluation of upstream and downstream elements from the ERK1/2 pathway in tumors
with short and long latencies. Tumors with a short latency show low levels of pERK1/2 and pMEK and lower levels of KSR1/2. (C) Evaluation of
some elements of signaling pathways downstream of ERBB2 in F1BX tumors with and without lung metastases. Tumors that metastasize to the
lung show low levels of pAKT(S473). We explored the AKT pathway to clarify this defect (Figure S6A in Additional file 2). This effect was not
present in mice with a homogeneous genetic background (Figure S6B in Additional file 2). (D) The main pAKT isoform associated with
dissemination to the lung in the F1BX population was pAKT1 (ELISA). (E) Breast tumors of human origin that disseminated show low levels of
pAKT compared with those that did not metastasize.
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before the first occurrence of tumors. We identified a
number of serum metabolites that were correlated with
the behavior of different breast tumor pathophenotypes.
For example, the serum levels of N-acetyl-D-mannosa-
mine were negatively associated with lifespan (P = 0.007)
and latency (P = 0.009); cysteine was negatively associated
with the duration of disease (P = 0.0002), and linoleic acid
and sorbitol were negatively associated with the number
of metastases, among others (Table S18 in Additional file 1;
Figure S7A in Additional file 2).
We also evaluated a number of standard biomarkers

routinely determined in clinical practice in humans. A
number of these common markers were also found to
be significantly associated with the behavior of different
breast tumor pathophenotypes. For example, lifespan
was positively related to body weight (P = 0.0016), total
proteins (P = 0.018) and glucose, whereas it was negatively
associated with amylase levels (P = 0.02). Some markers,
such as calcium, magnesium, and C3-complement, were
associated with tumor numbers (Table S19 in Additional
file 1; Figure S7A in Additional file 2).
In addition, we also report the global scenario of associa-

tions among the serum markers and other subphenotypes
connected to each tumor pathophenotype (Figure 7A,B;
Figure S7B in Additional file 2). Some of these potential
serum biomarkers also defined the prognostic clusters
described above. For example, maltose levels could dif-
ferentiate between clusters 2 and 4 (P = 0.016), and
mannitol between clusters 2 and 3 (P = 0.033), among
others (Figure 7C; Table S20 in Additional file 1). Thus,
the genetic background influenced the serum concen-
trations of some of these serum moieties associated with
tumor behavior and we identified a number of meta-
bolic QTLs (mQTLs) associated with them (Figure 6;
Table S21 in Additional file 1).
Finally, we integrated the interactions among molecu-

lar elements from these different levels associated with
the variability in disease susceptibility and progression in
a single scenario (Figure 8A; Additional file 4). To better
define the variability of the disease regarding tumor
latency and disease duration, we implemented two Cox
regression models and two corresponding prognostic in-
dices, including genetic markers, tumor traits and signal-
ing and metabolic levels as risk-predictor variables
(Figure 8B,C; Table S22 in Additional file 1). All these
results show that the heterogeneity of disease behavior
among mice can be better explained by taking several
levels of variability into account simultaneously.

Discussion
Breast cancer induced by ERBB2 exhibits a broad and
heterogeneous range of clinical progression in different
patients [3]. Explaining why individuals who seem to
suffer from the same histopathological disease show a
different clinical progression is one of the main prob-
lems to be understood. Here, we tackled this question
with a systems biology approach in a heterogeneous
population of mice that developed ERBB2-positive mam-
mary cancer with varied susceptibility and progression.
We report a global scenario of complex interactions at
cellular and systemic levels that accounts for the hetero-
geneity in ERBB2-breast cancer behavior and susceptibil-
ity. We integrated these different molecular levels to
better define cancer prognosis. Thus, we identified mul-
tiple associations between specific breast cancer patho-
phenotypes at different molecular levels. We defined the
specific prognosis of each individual mouse based on dif-
ferent pathophenotypes and, based on this, we classified
each one in precise clusters of prognosis. These clusters
were identified by principal component analysis and de-
marcated considering the progression of different patho-
phenotypes together. We then identified the associations
at the genomic, transcriptomic, molecular signaling and
metabolic levels associated with the progression of both
each individual pathophenotype and each prognostic
cluster. Thus, we individualized the prognosis of each
different mouse regarding the progression of breast can-
cer, which is the main goal of personalized medicine.
Importantly, the model used here showed some similar-

ity to the behavior of the disease in the human population,
such as the development of less aggressive tumors in older
mice, the fact that human and mouse ERBB2 tumors par-
tially share gene expression signatures and that, at the pro-
tein level, mouse and human mammary tumors that did
not disseminate along their progression show high levels
of pAKT1(S473).
We noted that the architecture of associations among

pERK1/2 and pAKT was similar in mammary tumors and



Figure 6 The heat map summarizes QTLs associated with different subphenotypes, including signaling pathways from tumors and
liver, and serum moieties. LOD scores <1.5 are represented homogeneously in gray. The data depicted here can also be found in Tables S12,
S14 and S21 in Additional file 1. HDL, high-density lipoprotein.
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Figure 7 Global scenario of subphenotypes associated with different tumor pathophenotypes and clusters of prognosis. (A,B) Networks
of subphenotypes associated with latency (A) and number of metastases (B). Red edges indicate a negative correlation, green edges a positive
correlation. All simple correlations with P < 0.05 and r > 0.3 were included (Cytoscape Software). Other examples are shown in Figure S7B in
Additional file 2. (C) This figure summarizes the distribution of tumor pathophenotypes and different levels of subphenotypes through the
clusters of prognosis. The values of the data integrated here can be found in Tables S3, S5, S10 and S20 in Additional file 1. In the case of tumor
pathophenotypes, signaling pathways and metabolites, the median is represented as a percentage of the highest value in each row. For genetic
markers the percentage of mice that are heterozygotic in each cluster is shown. Non-applicable traits are represented in black.

Figure 8 Global scenario of multiple associations at different molecular levels. (A) Network representation with tumor pathophenotypes
(red octagons), tumor and liver cell signaling (yellow and blue squares, respectively), serum markers from mass spectrometry (gray circles) and
clinical biochemical markers (green circles). Red edges indicate a negative correlation, green edges a positive correlation. All simple correlations
with P < 0.05 and r > 0.3 were included. The Cystoscape document with all this information is included as Additional file 4. It should be opened
with Cystoscape version 3.1.0. Readers can zoom in on and visualize all specific associations with the freely available Cytoscape software (see
Material and methods section). N, tumor number; MN, metastasis number; LS, lifespan; L, tumor latency; DD, duration of disease; V, tumor volume;
W, tumor weight; GS, average growth speed; GR, growth rate. (B,C) We constructed prognostic indices with the variables that predicted tumor
latency (B) and duration of disease or survival with tumor (C). In both models, mice were ranked according to their risk score and divided into
two groups (good and poor risk) using the median risk score as cutoff. We show additional information in Table S22 in Additional file 1. The
genetic markers used in these prognostic indices were gnf13.057.501 in tQTL 3, rs4231934 in tQTL 4, rs6193859 in tQTL 1, rs3696018 in tQTL 8,
and rs13481230 in tQTL 11. ManNAc, N-acetyl-D-mannosamine.
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livers from the backcrossed mice, and in both tissues
pERK1/2 and pAKT showed similar associations with dif-
ferent disease pathophenotypes. Although the expression
of the mouse mammary tumor virus (MMTV) promoter
in different mouse models is not restricted to mammary
tissue [15,29], we ruled out the presence of the ERBB2
protein in the liver. This indicates that ERBB2 oncogenic
activity in tumors would not modify the global associa-
tions among some of these signaling molecules very
much. However, there were also important differences;
whereas the phosphorylated forms of ERK and AKT
showed similar behavior, in terms of statistical associa-
tions, in tumors and livers, the case for total levels of
ERK and AKT was completely different. Thus, whereas
in livers there was a perfect correlation between total
and phosphorylated forms, in the tumors there was no
correlation at all, and hence they formed an approxi-
mately 90° angle in the biplot structure. This was par-
ticularly evident for the AKT1 isoform (Figure 4D). We
do not know the reason for this different behavior of the
AKT1 molecule between tumors and livers. It could be
due to ERBB2 overexpression in the tumors, which
might interfere with AKT1 phosphorylation. Overex-
pressed ERBB2 in the tumors could in turn increase the
levels of pAKT1 in a non-regulated manner - that is,
random - whereas in the livers the levels of pAKT1
would still be tightly regulated and constant without
interference from ERBB2 overexpression.
Levels of activated pAKT and pERK1/2 in breast tu-

mors would be determined by two main mechanisms:
signaling from the ERBB2 oncoprotein itself, and signal-
ing from other receptors and pathways normally present
in the cell. These other receptors could influence the ab-
sence of positive correlations between ERBB2 and the
phospho-proteins in tumor cells. Moreover, the exist-
ence of a negative correlation between ERBB2 and some
of these phospho-proteins suggests that the pattern of
correlation among them may be determined previously
by a selection pressure in favor of cells with lower levels
of ERBB2 expression and higher levels of phospho-
proteins induced by other receptors. These increased
levels of pAKT and pERK1/2 would be present not only
in tumors but also in liver, and perhaps other tissues,
due to a common general regulation. Thus, the expres-
sion levels of some molecules from different signaling
pathways were similar in tumors and organs from F1
and FVB mice (Figure S8 in Additional file 2). In agree-
ment with this possibility is the fact that even when the
oncoprotein was not detected, as in liver, the same asso-
ciations between pAKT and pERK1/2 and different breast
cancer pathophenotypes were still present in the back-
cross population. As expected, the mice with a good
prognosis were characterized by low levels of ErbB2 in
breast tumors but, surprisingly, also with high levels of
pERK1/2 and pAKT in both tumors and liver. The fact
that pERK1/2 and pAKT were increased in both breast
tumors and livers from mice with long-latency disease
would indicate that mice with naturally higher levels of
pAKT and pERK1/2 would be more resistant to develop-
ing breast tumors induced by ERBB2.
It has been described that the expression of ERK1/2 in

human breast cancer is heterogeneous and the implica-
tions of this for prognosis are controversial [23,30]. Our
data indicate that high tumor levels of ERK1/2 activation
were positively correlated with lifespan. Different studies
have implicated high levels of pERK1/2 in good prognosis
in breast cancer and other types of tumor [23-25]. In
our study, the levels of pERK1/2 in tumors and liver were
positively correlated with tumor latency and less aggres-
sive tumors. In agreement with our findings, it has been
suggested that ERBB2-positive tumors that are pERK1/2-
positive tend to appear in older patients, while pERK1/2-
negative tumors would predominate in younger individ-
uals [31]. Additionally, high pERK1/2 levels have been
linked to a significantly higher relapse-free survival rate
[23,32]. Regarding metastases, different groups have re-
ported that AKT1 down-regulation by short hairpin
RNA in human breast cancer cell lines or its complete
elimination by crossing MMTV-ErbB2 mice with Akt1
knockout animals leads to a higher rate of dissemination
[33,34]. Here, we show that a site-specific phosphorylation
defect at serine 473 of AKT1, with normal levels of total
AKT1, is associated with higher metastatic capability, and
this could help to explain the heterogeneity of this patho-
phenotype in the backcross population. Interestingly,
breast tumors from patients that suffered metastases
showed similar behavior in this aspect (Figure 5E).
We detected differences between specific mouse

strains in the levels of some components of the AKT/
mTOR pathway in liver tissue that are of great import-
ance in metabolism [27,28]. We also identified serum
biomarkers before the onset of the disease, associated
with the behavior of tumors in mice. In the literature,
some of them have already been reported to be modified
in the serum of patients with different tumor types (for
example, different fatty acids, taurine, inositol, and so
on), but our results suggest that these metabolites would
not only be useful as tumor progression biomarkers
[35,36], but might also be used as predictors in disease-
free individuals. We also found associations with a num-
ber of metabolites not previously identified as biomarkers,
but at some level directly or indirectly related to breast
or other types of cancer (Table S18 in Additional file 1
and supplementary references therein); however, more
studies are needed to confirm their usefulness as tumor
biomarkers.
We observed that ERBB2-induced breast cancer het-

erogeneity was associated with different molecular
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subphenotypes at the level of both the tumor pathophe-
notypes and the prognosis clusters (Figure 7; Figure S7B
in Additional file 2). We also identified tQTLs related to
the clinical progression of the disease and others associ-
ated with different subphenotypes (tsQTLs, LsQTLs and
mQTLs), but we only detected a few overlapping QTLs
associated with tumor traits and subphenotypes (Table
S23 in Additional file 1). This loss of overlapping QTLs
between subphenotypes that correlate could be associ-
ated with the ‘missing heritability’ described in the sus-
ceptibility of complex diseases, which remains a matter
of controversy [37,38]. tQTLs associated with tumor
progression are detected only if they exceed a particular
threshold of linkage [39,40]. These tQTLs influence the
heterogeneous behavior of known or unknown subphe-
notypes, which in turn determine the progression of
tumor pathophenotypes. Additionally, the progression of
each tumor pathophenotype is influenced by a number
of subphenotypes at different levels (Figure 8A; Figure
S9 in Additional file 2), each also modified by several
QTLs. It is possible that most such subphenotypic QTLs
might not be detected as tQTLs because their effect at
the tumor level would be very small, and hence it would
not be possible to detect their individual influence (Figure
S9 in Additional file 2). Thus, it would not be feasible to
capture the entire genetic variability of breast cancer
(the same would be true for any other complex diseases)
directly at the DNA level. This is in agreement with the
fact that the multivariate regression models proposed,
considering different tumor traits and molecular levels
simultaneously, explain the heterogeneous susceptibility
and progression of the disease better (Figures 8B,C;
Table S22 in Additional file 1; Figure S9 in Additional
file 2). The identification of QTLs that control different
subphenotypes at different molecular and pathophysio-
logical levels related to the disease could provide a way
to identify part of the ‘missing heritability’. Additionally,
the associations among all these subphenotypes estab-
lish a network of intra- and inter-level interactions leading
to a systems biology structure [5,6], whose interpretation
should permit a better understanding of disease variability
among patients and allow more personalized medical care.

Conclusions
Progress toward more personalized medicine in cancer
patients requires new strategies to analyze the under-
lying factors determining their heterogeneous clinical
evolution. We considered different clinical manifesta-
tions of ERBB2-positive mammary cancer as the result
of multiple associations at different molecular levels
from a systems biology perspective. We integrated gen-
etic, transcriptomic, cell signaling and metabolic profiles
to predict clinical outcomes in a population of mice with
heterogeneous susceptibility to breast cancer. With this
approach we modeled the heterogeneous behavior of the
disease among the mice, considering not only the gen-
etic level, but also several molecular layers and tumor
traits simultaneously. The generation in human patients
of similar structural networks formed by associations
among different molecular subphenotypes related to dif-
ferent susceptibility and progression to breast cancer
could reflect the global prognosis of the disease better
than genetic markers alone or any other individual
marker. In addition, the generation of these networks in
heterogeneous populations of mice of controlled genetic
and phenotypic variability could help identify the under-
lying molecular components that should contribute to
these networks in human studies. For example, it would
be interesting to evaluate the association between the
levels of signaling molecules such as AKT and ERK in
normal tissues and breast cancer susceptibility. The in-
terpretation in human populations of these systems biol-
ogy interactions should permit a better understanding of
disease variability among patients and help towards a
more personalized mode of medical care.

Materials and methods
Animals
All mice were housed in the Animal Research Facility of
the University of Salamanca. All practices were accepted
by the Institutional Animal Care and Bioethical Committee.
FVB mice carrying the ErbB2 protooncogene under the
control of the mouse mammary tumor virus (MMTV) 3′
promoter [15] were obtained from Jackson laboratories,
and wild-type FVB/N and C57BL/6 mice were purchased
from Charles River. Female mice were weaned at 3 to
4 weeks of age and analyzed for the inheritance of the
ErbB2 transgene. F1BX mice were generated by mating
C57BL/6 males with MMTV-ErbB2 transgenic females
from a FVB genetic background; the transgene-positive F1
males generated were mated with FVB non-transgenic fe-
males. We generated 147 ErbB2 F1BX mice. All mice were
maintained in ventilated filter cages under specific-
pathogen-free conditions and were fed ad libitum.

Patient samples
Human primary breast tumors were collected at the
University Hospital of Salamanca, Salamanca, Spain. The
collection and the use of patient samples were approved
by the institutional ethics review board of the University
Hospital of Salamanca. Written informed consent for re-
search using these tumor samples was obtained from all
patients. Fresh human tumor tissue samples were ob-
tained at the time of surgical resection of patient tumors.
The samples were immediately snap-frozen in liquid nitro-
gen and then stored at −80°C in a freezer before use.
Hematoxylin and eosin stained slides of frozen human
tumor tissues were examined by the pathologists involved
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in the study to ensure that the tumor tissues selected had
high-density cancer foci (>80%).

PCR screening
PCR of the MMTV 3′ long terminal repeat promoter
was used to detect the ErbB2 transgene in positive mice,
based on the method previously described by Gendler
and colleagues [17]. The presence of the ErbB2 transgene
was detected by PCR on tail DNA. PCR was performed in
a total volume of 25 μl in 200 μl PCR tubes or 96-well
plates, with the following reagents: 2.5 μl of 10× PCR buf-
fer with 1 mM MgCl2 (Takara, Otsu, Shiga, Japan)
200 μM dNTPs (Takara ), 5 μM 5′-CAGGTGCAAG
CACTATTGACC-3′ and 5 μM of 5′-CTCAGAGCTCA-
GATCAGAACC-3′, 10 units of Taq polymerase (Takara),
and ddH2O, 1 μl of DNA (approximately 200 ng). The
PCR amplification program consisted of one cycle of 5 mi-
nutes at 94°C and 35 cycles of 30 s each at 94°C, 58°C and
72°C. The PCR products were analyzed in 1% agarose gels.
Amplification of ErbB2-positive DNA resulted in a 559 bp
fragment, as described elsewhere [17].

Tumor pathophenotypes
Female transgene-positive mice were observed and pal-
pated once a week for the manifestation of primary
mammary tumors. We differentiated temporal stages of
progression and tumor progression traits in ERBB2-
positive disease. Within the first group, we distinguished:
(i) tumor latency, defined as the period of time between
the date of birth and the age when the first mammary
tumor was palpated, approximately when its size was
around 3 mm in diameter; (ii) duration of the disease,
defined as the period of time between the appearance of
the first tumor and the time of death; and (iii) lifespan.
Regarding tumor progression traits, we differentiated:

(i) the number of tumors, determined by counting all
visible tumors at necropsy. We distinguished between
absolute tumor numbers, incidence and multiplicity. We
used the absolute tumor number to designate the limit
values within each tumor distribution spanned in each
mouse group. Tumor incidence was defined as the pro-
portion of ErbB2 female mice that generated at least one
mammary tumor during the experiment, and tumor
multiplicity was considered as the percentage of female
mice with tumors that developed two or more lesions
after a given period of time. (ii) Local tumor progression
parameters: to determine these, once the tumor had ap-
peared its location was recorded, the mice were observed,
and the tumor volume was calculated every week. Tumor
growth was determined with digital calipers, and tumor
volume was estimated each week using the formula:
Tumor volume = Length ×Width2 × 0.5. We obtained the
tumor growth rate after transforming the data logarith-
mically, and estimated a linear regression curve for each
tumor. Then, we evaluated the means of the slopes of
these lines for each genetic background [17]. Average
growth speed was obtained using the expression (Final
volume - Initial volume)/Duration of disease (weeks). We
also considered final tumor weight and volume at the time
of necropsy. (iii) Distant tumor progression: the incidence
and multiplicity of lung metastases were quantified. The
mouse MMTV-ErbB2 breast cancer model only dissemi-
nates to the lung [15]. Here, we also considered the abso-
lute number, incidence and multiplicity of metastases. We
defined the incidence of metastases as the proportion of
ErbB2 female mice that had at least one mammary tumor
metastasis in the lung at the time of necropsy; the absolute
numbers of metastases were the extreme values between
each metastasis distribution range within each genotype,
and metastasis multiplicity was the proportion of female
mice with metastases that developed more than one (two
or more) lung metastases during the experiment. Mice
were euthanized when they showed signs of sickness,
when a rapidly growing tumor had developed, or wounds
were observed. All animals were necropsied; their tumors
were removed and fixed in 4% formaldehyde for 24 h, and
then fixed in 70% ethanol, embedded in paraffin, and
stained with hematoxylin and eosin for microscope exam-
ination to evaluate the pathology.

SNP genotyping
Tail DNA concentrations were measured with a Nanodrop
ND-1000 Spectrophotometer and PicoGreen double-
stranded quantification (Molecular Probes, Thermo
Fisher Scientific Inc., Waltham, MA USA). and were
used for genotyping. The genome-wide scan was car-
ried out at the Spanish National Center of Genotyping
(CeGEN) at the Centro Nacional de Investigaciones
Oncológicas (CNIO, Madrid, Spain). Illumina’s Mouse
Low Density Linkage Panel Assay was used to genotype
147 F1BX mice at 377 SNPs. Genotypes were classified
as FVB/FVB or FVB/C57BL/6. Ultimately, 250 SNPs
were informative among the FVB and C57BL/6 mice;
the average genomic distance between these SNPs was
9.9 Mb. The genotype proportion among the F1BX
mice showed a normal distribution.

Gene expression profiling and analysis
The quality and quantity of total RNA were determined
using an Agilent 2100 Bioanalyzer and a NanoDrop ND-
1000. Affymetrix mouse GeneChip mouse gene 1.0 ST
arrays were used according to the manufacturer’s protocol.
The data were initially normalized by robust multiarray
average (RMA) normalization algorithms in expression
console software (Affymetrix). The significance of analysis
of microarray (SAM) used a two-class analysis with 100
permutations per comparison of the reference class to the
target class, followed by a fold change cutoff of 2 and false
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discovery rate ≤0.005. The genes were further filtered by a
standard deviation of 0.7 relative to the expression values
of that gene across all samples. Gene clustering was ac-
complished by an uncentered correlation, and array clus-
tering was carried out with the Spearman rank correlation
using Gene Cluster v3.0 software and visualized using Java
TreeView v1.1.6 software. The number of clusters was
chosen based on the gap statistic for estimating the num-
ber of clusters together with the expression pattern [21].
Human orthologs of murine genes present on the human
array platforms were used to cluster human microarray
data, using gene clustering as above. To combine the
human and mouse datasets, we first identified well-
annotated mouse and human orthologous genes, after
which we identified the systematic difference present be-
tween the two datasets and made a global correction to
compensate for global biases using Z-score transform-
ation. Then, we carried out unsupervised clustering ana-
lysis. Gene expression data for human ERBB2-positive
breast cancers were obtained from Staaf et al. [3]. Their
data are available through Gene Expression Omnibus, ac-
cession number GSE18328. The gene expression data
from mouse ERBB2 tumors are also available through the
same database with accession number GSE54582 [41].

Protein analyses
Tumor, liver, kidney and spleen tissues were collected at
necropsy, snap-frozen in liquid nitrogen and kept at −80°C.
Proteins were extracted from frozen tissues. Ceramic beads,
Precellys Lysing Kit CkMix, (Precellys, Bertin Technologies,
catalog number 03961-1-009, Montigny le Bretonneux,
France) were added to the tissues (10 to 50 mg) and
these were homogenized for 10 s, 5.5 m/s (twice), using
FastPrep Homogenizer (Thermo Savant, Thermo Fisher
Scientific Inc., Waltham, MA USA) in RIPA buffer
(150 mM NaCl, 1% (v/v) NP40, 50 mM Tris–HCl at
pH 8.0, 0.1% (v/v) SDS, 1 mM EDTA, 0.5% (w/v) deoxy-
cholate) containing protease and phosphatase inhibitor
cocktails (Roche,Basel, Switzerland ) for tumors, or in
2× Cell Lysis Buffer containing protease inhibitors (Cell
Signaling, catalog number 9803, Danvers, MA, USA)
and 2 mM phenylmethylsulfonyl fluoride (PMSF) for
liver, kidney and spleen tissues. Samples were incubated
for 20 minutes on ice and protein extracts were passed
through QIAshredder homogenizer columns (Qiagen,
catalog number 79656, Hilden, Germany) to break down
DNA. Supernatants were collected and quantified using
the BCA Protein Assay Kit (Thermo Fisher Scientific Inc.,
catalog number 23228, Waltham, MA USA) and Albumin
Standard (Thermo Fisher Scientific Inc.,, catalog number
23209, Waltham, MA USA). Equivalent amounts of
proteins were resolved by SDS-PAGE and transferred to
polyvinylidene difluoride (Immobilon-P, or Immobilon-FL
(Millipore, Darmstadt, Germany) membranes for fluorescent
secondary antibodies. Immunoblotting was performed
using the following primary antibodies: anti-ERK1/2 (cata-
log number 9102), anti-phospho-ERK1/2 (Thr202/
Tyr204) (catalog number 4370), anti-phospho-MEK1/2
(Ser227/221) (catalog number 9154), anti-phospho-c-RAF
(Ser338) (catalog number 9427), anti-phospho-B-RAF
(Ser445) (catalog number 2696), anti-B-RAF (L12G7)
(catalog number 9434), anti-phospho-AKT (Ser473; D9E)
(catalog number 4060), anti-AKT (11E7) (catalog number
4685), anti-phospho-AKT (Thr308) (catalog number 4056),
anti-AKT1 (2H10) (catalog number 2967S), anti-phospho-
KSR1 (Ser392) (catalog number 4951S), anti-KSR1 (catalog
number 4640), anti-phospho-p90RSK (Ser380) (catalog
number 9335), anti-phospho-MSK1 (Thr581) (catalog
number 9595), anti-NFAT (catalog number 4389S), anti-
GβL (catalog number 3274S), anti-phospho-RICTOR
(D30A3) (catalog number 3806), anti-phospho-TSC2
(Thr1462) (catalog number 3617S), anti-phospho-TSC2
(Tyr1561) (catalog number 3614S), anti-TSC2 (catalog
number 3990S), mTOR pathway kit (catalog number
9964S) from Cell Signaling, anti-PROTOR1 (ab113269),
anti-FLJ14213 (ab58856), anti-DNAPK (ab69527), anti-
PHLPP (ab71972), anti-PHLPP2 (ab71973), anti-ERBB2
(ab2428), anti-phospho-ERBB2 (Tyr1248; ab47755),
anti-KSR2 (ab72753) from Abcam, (Cambridge, United
kingdom),; anti-TUBULIN (DM1A; Sigma, St Louis,
MO, USA) and anti-E-CADHERIN (BD Laboratories,
San Jose, CA, USA) and subsequently with horseradish
peroxidase-conjugated anti-mouse, anti-rabbit or anti-goat
secondary antibodies (1:10,000; (BIO-RAD, (Berkeley, CA,
USA), and visualized by enhanced chemiluminescence
(Thermo Scientific) or anti-mouse (DYLIGHT 680, cata-
log number 35518), anti-rabbit (DYLIGHT 800, catalog
number 35571) and visualized with an Odyssey scanner.
For ELISA assays, levels of phosphorylated and total

AKT2, AKT3, mTOR and total ERK were measured
using the Sandwich ELISA Kit (Pathscan Cell Signaling
Technology, Danvers, MA, USA) phospho-AKT2 (Ser474)
(catalog number 7932); total AKT2 (catalog number
7930); phospho-AKT3 (Ser472) (catalog number 7942);
total AKT3 (catalog number 7934); phospho-mTOR
(Ser2481) (catalog number 7978); phospho-mTOR
(Ser2448) (catalog number 7976); total mTOR (catalog
number 7974); total p44/42 MAPK (ERK1/2) (catalog
number 7050). The levels of phosphorylated and total
AKT1 and phosphorylated ERK were measured using
the Sandwich ELISA Antibody Pair, coating a Clear 96-
well Microtest Plate (BD Laboratories, 353077, San
Jose, CA, USA) with Capture Antibody according to
the manufacturer’s instructions (Pathscan Cell Signaling
Technology, phospho-Akt (Thr308) (catalog number
7144); phospho-AKT1 (Ser473) (catalog number 7143);
total AKT1 (catalog number 7142); phospho-P44/42
MAPK (Thr202/Tyr204) (catalog number 7246)).
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Absorbance was measured at 450 nm using a Synergy-4
Microplate Reader (Biotek, Winooski, VT, USA). All as-
says with proteins from tumors were done with 5 μg of
protein. In the case of proteins from liver, 5 μg was used
for phosphorylated and total AKT1 and 10 μg for the rest
of the assays. To monitor inter-assay variability, serial dilu-
tions (1:2) of protein extracts from a tumor sample were
assayed on each plate (3 to 50 μg).
Determination of clinical serum parameters
A serum sample was obtained from each mouse at
3 months of age, when the animals were free of the dis-
ease. We also collected serum samples from FVB and F1
parentals. Known blood biomarkers were determined on
a modular analyzer (cobas, Roche) at the University
Hospital of Salamanca. The levels of alpha1-antitrypsin,
albumin, alkaline phosphatase, complement components
3 and 4 (C3 and C4), creatinine, ferritin, urea, and im-
munoglobulin G (IgG), total proteins, glucose, total choles-
terol, cholinesterase, high density lipoproteins (HDL),
aspartate transaminase (AST), alanine transaminase (ALT),
lactate dehydrogenase (LDH), calcium (Ca), magnesium
(Mg), phosphorus (P), iron (Fe), and uric acid were deter-
mined, all with reagents from Roche.
Mass spectrometry
Metabolite extraction and derivatization
For extraction, frozen samples were thawed on ice and
15 μl of serum was extracted as described previously
[42] with 500 μl of a pre-cooled degassed methanol-
isopropanol-water (3:3:2) mixture using a water-sonic
bath (10 minutes at 4°C). The supernatant (450 μl) was
collected after centrifugation (5 minutes, 15,000 rpm)
and dried completely. Dried samples were stored at −80°C
until further use. Metabolite derivatization was performed
according to the methods developed by Fiehn and col-
leagues [43]. Briefly, a mixture of internal retention index
(RI) markers was prepared using fatty acid methyl esters
of C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26,
C28 and C30 linear chain length, dissolved in chloroform
at a concentration of 0.8 mg/ml (C8 to C16) and 0.4 mg/
ml (C18 to C30). One microliter of this RI mixture was
added to the dried extracts. Ten microliters of a solution
containing 40 mg/ml of 98% methoxyamine hydrochloride
(CAS number 593-56-6, Sigma) in pyridine (silylation
grade; Pierce, Rockford, IL, USA) was added and the mix-
ture was shaken at 30°C for 60 minutes. Ninety microliters
of N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)
containing 1% trimethylchlorosilane (TMCS) (1 ml bottles;
Pierce) was added and the mixture was shaken at 37°C for
30 minutes. After spinning the sample for 5 minutes at
15,000 rpm, the supernatant was transferred to a gas chro-
matography (GC) vial.
Gas chromatography-coupled mass spectrometry
Derivatized serum samples were handled using the Gerstel
automatic liner exchange system with a multipurpose
sampler, MPS 2 Dual Rail PrepStation, controlled by
Maestro software, to inject 0.5 μl of sample into a Gerstel
CIS cold injection system (Gerstel, Muehlheim, Germany).
The injector was operated in splitless mode; the split vent
was opened after 25 s. Samples were injected into the 50°C
injector port, which was ramped to 250°C at 12°C/minute
and held for 3 minutes. Volatilized metabolites were sepa-
rated using an Agilent (Santa Clara, CA, USA) 6890 gas
chromatograph controlled by Leco (St Joseph, MI, USA)
ChromaTOF software. The GC was equipped with a 30-m
long, 0.25-mm internal diameter Rtx5Sil-MS column
(Restek, Bellefonte, PA, USA), a 0.25 mm 5% diphenyl film
and an additional 10-m integrated guard column). The
gradient used for separation was held at 50°C for 1 minute,
after which ramps at 20°C per minute were applied up to
330°C, at which point temperature was held for 5 minutes.
Mass spectrometry was performed with a Leco Pegasus III
time-of-flight mass spectrometer with a 250°C transfer
line temperature, electron ionization at −70 eV and an ion
source temperature of 200°C. Mass spectra were acquired
from m/z 85 to 500 at 17 spectra per second and a de-
tector voltage of 1,800 V. Result files were preprocessed
immediately after data acquisition and stored as
ChromaTOF-specific *.peg files, as generic *.txt result
files and additionally as generic ANDI MS *.cdf files.
Metabolite identifications were made based on spectral
similarity and the retention time indices using BinBase
and were matched against the Fiehn mass spectral library
of approximately 1,200 authentic metabolite spectra, using
retention indices and mass spectrum information or the
NIST05 commercial library [44,45]. Identified metabolites
were reported if present in at least 50% of the samples per
study group [46] and data were normalized in Matlab
using unit vector normalization [47]. Analysis was focused
on metabolites of known biological origin in HMDB [48].
Metabolite data sets were imported into the Matlab soft-
ware (The MathWorks, Natick, MA, USA) for univariate
and multivariate statistical analyses.

Statistical analyses
Mammary tumor latency, disease duration and lifespan
were compared among FVB, F1 and F1BX ErbB2-posi-
tive mice by the Kaplan-Meier estimator, whereas the
number of tumors, lung metastases and metabolite de-
terminations were evaluated and compared by the
appropriate statistical tests specified above. Generally,
P-values ≤0.05 were considered significant. For correl-
ation studies, we included the Pearson or Spearman
correlation coefficient (r), depending on the distribu-
tion of the data. The procedures were performed using
the SPSS and JMP/SAS statistical packages. Simple
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correlations were visualized as networks using Cytoscape
Software [49].
HJ-biplot
We generated biplots associated with principal component
analysis [50-52]. In particular, we used HJ-biplot [52],
which is an extension of the classical biplots introduced
by Gabriel [51], and is an exploratory method of data ana-
lysis that looks for hidden patterns in the data matrix. The
HJ-biplot is a joint representation, in a low dimensional
vector space (usually a plane), of the rows and columns
of X, using markers (points/vectors) for its rows and for
its columns. The markers are obtained from the usual
singular-value decomposition (SVD) of the data matrix.
The HJ-biplot has the advantages of being a simultan-
eous representation and at the same time achieving an
optimum quality of representation for both rows and
columns, both represented on the same reference sys-
tem. The statistical analyses were run using freely avail-
able Classical Biplot Software [53].
The rules for the interpretation of HJ-biplots are: 1)

the distances among row markers are interpreted as an
inverse function of similarities in such a way that closer
markers (centers) are more similar. This property allows
the identification of clusters of mice with similar profiles. 2)
The lengths of the column markers (vectors) approximate
the standard deviation of the variables. 3) The cosines of
the angles among the column vectors approximate the
correlations among variables in such a way that small
acute angles are associated with variables with high posi-
tive correlations; obtuse angles close to a right angle are
associated with variables with high negative correlations,
and right angles are associated with non-correlated vari-
ables. In the same way, the cosines of the angles among
the variable markers and the axes (principal components)
approximate the correlations between them. 4) The order
of the orthogonal projections of the row markers (points)
onto a column marker (vector) approximates the order of
the row elements (values) in that column. The larger the
projection of an individual point onto a variable vector,
the more this center deviates from the mean of that
variable.
Several measurements are essential for a correct HJ-

biplot interpretation [51]. For example, the relative
contribution of the factor to the element is the relative
variability of the variable explained by a factor or di-
mension. Also, for a point (row or column) on a factor-
ial plan, the quality of representation can be defined by
adding the two relative contributions of these factors
to the element. Only points with a high quality of rep-
resentation can be interpreted properly. These indices
are indicated for the rows and for the columns of the
data matrix.
Prediction models
We used the Cox proportional hazards model to identify
independent prognostic factors in our cohort of mice. A
prognostic index was constructed with the variables that
predict tumor latency and survival with tumor (disease
duration), using the median as cutoff to categorize these
variables. To generate the coefficients of the prognostic
index, we used B coefficients derived from the Cox
model [54]. Mice were ranked according to their risk
score and divided into two groups using the median risk
score as cutoff.

Linkage analysis
Linkage analysis was carried out using the interval map-
ping with the expectation maximization algorithm [55]
and R/qtl software [56]. The criteria for significant and
suggestive linkages for single markers were taken from
Lander and Kruglyak [57]. Permutation tests were per-
formed (10,000 permutations per phenotype) to determine
suggestive and significant P-values for interaction.
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cluster of prognosis. Table S11. Comparison between signaling pathways in
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from F1BX mice. Table S18. Subphenotypes related to the levels of serum
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clinical biochemical markers associated with tumor pathophenotypes.
Table S20. Levels of serum metabolites among clusters of prognosis.
Table S21. Genomic regions associated with the levels of several metabolites
simultaneously. Table S22. Prediction models. Table S23. Genetic marker
peaks common to some tQTLs, tsQTLs, LsQTLs, and mQTLs.

Additional file 2: Figures S1 to S9. Figure S1. Localization of FVB and
F1 mice in the clusters of prognosis. Figure S2. Similarity between
human and mouse tumors at the gene expression level. Figure S3. RNA
expression analysis in tumors. Figure S4. Distribution of tumors from
other clusters along the seven unsupervised clusters formed with the
mouse gene expression signature (MCMS) shown in Figure 3A. Figure S5.
Evaluation of signaling pathways in tumors and livers from F1BX mice.
Figure S6. Analysis of pAKT pathway expression in the tumors. Figure S7.
Serum metabolites are associated with cancer progression before disease
onset. Figure S8. Signaling levels in tumor, liver, spleen and kidney from
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FVB and F1 mice. Figure S9. Hypothesis to identify part of the missing
heritability.

Additional file 3: Supplementary references for Tables S7 and S18.

Additional file 4: Cystoscape document with all the information
from Figure 8A. It includes network representation with tumor
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mass spectrometry and clinical biochemical markers.
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