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Abstract  

 

Building decay is a dynamic process in which time is a key factor, and moisture-induced 

decay is no exception to the rule. Mapping strategies may hinder time-based moisture damage 

assessment and control in historic buildings, however. The time factor has often been absent 

in the mapping methodologies deployed to date, either because the studies conducted were 

one-off exercises or no georeferencing was involved. This paper describes the generation of 

four-dimensional (4D) space from a three-dimensional geographic information system (GIS) 

and time series data and its use to assess the incidence of moisture, defined in terms of 

evaporation points, on a historic building. Taken together with the potential inherent in the 

application of map algebra to GIS, this approach constitutes a powerful tool for enhancing the 

interpretation of dynamic processes such as moisture flows and evaporation. 
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Introduction 

 

Building stone decays, i.e., slowly deteriorates by environmental factors. This is an inevitable 

consequence of placing a material in an environment substantially different to the one it was 

formed in. Whilst inevitable, such decay is obviously undesirable in historic buildings, for it 

detracts from the mechanical performance or aesthetics of the material, or both.  

Building stone decay is a dynamic process in which time may well be the key factor. Nireki 

(1980) identified the assessment of performance over time as crucial to determining 

durability. An in-depth understanding of stone behaviour over time (the factors that trigger 

and govern decay and the behaviour of different types of stone in varying environments) is 

requisite to retarding the initiation and progression of stone decay as well to conserving 

decaying stone (Smith et al., 2008). In this sense, monitoring decay and decay agents over 

time is crucial for preemptive conservation strategies. 

 

It is well know moisture is one of the major causes of building material and structural decay 

(e.g. Sandrolini and Franzoni, 2006; D’Agostino, 2013). Moisture alters building material’s 

structure and composition (e.g. Franzini et al, 2007; Benavente et al, 2008), as well as being a 

vehicle for soluble salts – a widely recognised decay factor – (e.g. Steiger and Siegesmund, 

2007 and subsequent papers of this special issue on salt decay of Environmental Geology). A 

spatial assessment of areas affected by damp and moisture (and their variations) is crucial to 

the effective monitoring and control of moisture in buildings. That entails assessing 

evaporation points that depend on the location of moist areas and the impacts of the indoor 

environment. Evaporation points are also areas particularly prone to decay factors , such as 

salt decay. 
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Graphically representing the findings of the hygrothermal, electric and gravimetric methods 

used to study moisture in historic buildings is hardly straightforward. The graphic outputs of 

each instrument’s software are normally overlaid on two-dimensional drawings of the 

building. Alternatively, the data obtained are simply positioned to the author’s criteria, more 

or less precisely, on a two-dimensional architectural or survey drawing. In neither approach 

are the data georeferenced. 

 

Moreover, moisture data are normally shown as a two-dimensional snapshot. Very few 

studies that map evaporation points over time, especially for periods of over 24 hours, are to 

be found in the literature. In one such study, authored by Hutton (1996), the fluctuations in 

indoor temperature and relative humidity were related to hygrothermal variations in the 

outdoor air using automatic thermo-hygrometer data loggers.  

 

Other examples are to be found in Camuffo’s (2014) two-dimensional RH (%) and 

temperature contour maps, and in D’Agostino’s (2013) likewise 2D contour maps of the 

theoretical distribution of evaporation found by interpolation and overlaid on plan drawings 

of buildings with ArcView software. As both studies were conducted on a single day, 

however, the respective maps depict that period of time only. That does not suffice to 

determine the pattern of moisture variations in historic buildings, a factor instrumental to 

establishing a correct diagnosis. Other studies (such as Martinez-Garrido et al., 2014) mapped 

walls only partially on the grounds of non-georeferenced moisture meter data or determined 

long-term variations with single-site sensors from which maps cannot be drawn. García 

Morales et al. (2012), in turn, defined a ‘maximum evaporation intensity factor (Fi max)’ 
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function for cartographic evaporation modelling. Although their survey covered a long period 

of time, only one two-dimensional map was ultimately generated, with the most 

representative points identified in the analysis. 

 

Digital multi-image photogrammetry encompasses the high accuracy needed when 

documenting measurements in any cultural heritage item. 3D dense “point clouds” can be 

generated through photogrammetry. These point clouds resemble those obtained with more 

expensive – and often leading to less detailed representations – laser scanner (e.g.  Columbu 

and Verdiani, 2014; Gomez-Heras et al., 2014). This, in turn, allows all stakeholders to 

access easily to a useful and powerful representation of the heritage item. 

 

López-González (2016) showed that by applying geographic information systems (GIS) to 

the built heritage, two-dimensional drawings can be replaced with three-dimensional 

georeferenced maps of both the element studied and the analytical data collected. A GIS is a 

combined hardware and software system that uses georeferenced geographic information in 

conjunction with layered databases which while separate, can be inter-related. These layers 

can generate new layers of information as the study and the problem addressed progress. In 

the present study, the georeferenced base map was the digital three-dimensional model of the 

wall of a sixteenth century chapel and the successive layers of information were the results of 

the tests conducted (data maps). The use of GIS in heritage studies follows the 

recommendation of promoting “the use of modern technologies, databanks, information 

system and virtual presentation techniques” given by the Charter of Cracow (2000) and 

subsequent Charters (such as London 2006, ICOMOS 2008 and Brussels 2009) for the 

conservation of built heritage.   
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Adding time to the three spatial dimensions X, Y and Z, a four-dimensional space (4D) is 

obtained. The term 4D, used to designate this long-standing mathematical and physical 

concept, has become increasingly popular in imaging and graphics parlance in recent years. It 

has been embraced in GIS technology, heritage and masonry studies and surveying, among 

others, to signify an approach to data acquisition in which information is logged at different 

points in time to visualise change in territorial or structural parameters (Van Ruymbeke et al., 

2008; Doulamis et al., 2013; Bertolla et al., 2014; Mezzino, 2014; Raimondi et al, 2014). 

 

GIS tools, in turn, can be used to formulate as many data layers over time as required, thereby 

converting 3D to 4D space. Moreover, as GIS is able to operate with the various layers of 

data, new information can be gleaned from a given time series. 

 

This paper aims to show that the inclusion of time series data in GIS improves its potential as 

a way of representing built heritage decay processes and as a tool for preemptive 

conservation. This is shown through an example of evaporation point-based assessments of 

the incidence of moisture by applying map algebra to GIS technology to add new layers of 

information to survey findings. 

 

Methods  

Case study 

The decay features detected on the ‘Ermita del Humilladero’ at Avila, Spain, along with its 

size and construction, determined its choice as the object of this case study.  
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This chapel (Figure 1), built between 1548 and 1550, has two wythes of granite ashlars. The 

space between the interior and exterior wythes is filled with an unknown material. The 

building has a square (approximately 106 m2) floor plan and granite buttresses on all four 

corners. As the street elevations along the north and west are lower than on the south façade, 

this wall lies partially underground. The unceilinged sacristy attached to the east façade was 

built in a subsequent phase of construction using irregular granite ashlars. When a basement 

was dug underneath its semi-interred ground storey in 1990, the existing foundations were 

strengthened with concrete (Morales Dos Ramos, 2014). 

 

The north and west façades have identically sized doors, whereas the sole opening on the 

south wall is a window. The indoor setback in this section of wall, which under and above the 

window consists of a single wythe approximately 20 cm thick, suggests that it may have once 

housed a door, subsequently converted into the present window.  

 

The study focused on the south façade where damp damage was observed (Figure 2). 

Although the adjacent walkway is suitably sloped to empty rainwater onto the carriageway, a 

few puddles near the wall were observed to take some time to dry, possibly due to water 

accumulating underneath the pavement. Moreover, on the days after it rains, some areas of 

the floor inside the building along the south wall remain visibly wet. 

 

Photogrammetry 

Single image photogrammetry was used to obtain a three-dimensional digital model of the 

wall. This technique consists in obtaining planes or point clouds of an object with rectified 

photographs of the object taken from different angles and processed with specific software. 

Today the method is widely used given its lower cost than techniques such as three-
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dimensional laser scanning (Almagro, 2010) and the development of software able to deliver 

nearly three-dimensional laser scan accuracy (Jordá et al., 2011). 

 

In this study eight sequence photographs were taken parallel to the wall at a constant height 

with a 10.2 MP (3872 x 2592 P) Pentax KD10 SLR camera with CCD sensor and an 18-55 

mm lens. Pictures were taken at a 2 m distance from the wall with the 18 mm lens and 

varying the shooting angle so there was enough overlap between consecutive pictures. 

Reference axes were determined using 17 eight- and twelve-bit coded targets positioned at 

the corners of the wall panels. In addition, 450 natural targets (i.e. singular points in the 

pictures, such as for example triple joints), were established for further referencing.  

 

Photogrammetry conducted with PhotoModeler Scanner (6.2.2.596) software generated a 

digital model of the wall, i.e., a three-dimensional georeferenced point cloud containing 

769 532 points (Figure 4). The existence of elements on the wall (such as curtains on adjacent 

windows or electrical wiring), however, left gaps in some sections of the cloud. The centre of 

the coordinates on one of the wall panels was determined for cloud scaling and orientation 

purposes. The X axis was defined as the horizontal axis parallel to the wall, Y as the vertical 

axis and Z as the horizontal axis perpendicular to the wall. These coordinates were the base 

for GIS georeferencing. 

 

Generating Digital Surface Models 

ArcGis 10.1 software with Spatial Analyst 10.1 module was used. The software-processed 

raster layers generated with the scaled and georeferenced point cloud yielded a Digital 

Surface Model (DSM). The data in the point cloud were converted to a shapefile (.shp) 

vectorial digital storage file in which the location of the surface elements and their associated 
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attributes are saved (see table 1). The output was a new GIS visual point cloud where each 

point was identified by its coordinates and assigned a feature ID (FID) number, i.e., an 

indexed spatial element identifier. With this software, the FID and coordinates of any point 

on the model could be determined with a single click. Inverse distance weighted interpolation 

(with interpolation settings of minimum 2 and maximum 4 neighbour cells) of the .shp file 

data generated a highly accurate raster surface or layer, which included the gaps on the point 

cloud. 769532 points were used for the interpolation and the cell size of the calculated raster 

was set to 0.2 mm. Once the first raster layer was in place, it was hillshaded to better 

visualise texture. This technique was used to determine the illumination value for each raster 

cell and hence hypothetical surface illumination. The position of a hypothetical light source 

was defined (light source default settings: azimuth = 315, declination = 45) and the 

illumination for each cell relative to the adjacent cells calculated. The new GRID raster layer 

created (Figure 5) displayed the fully textured object, in which the degree of texturing was 

determined by the value defined for forced interpolation. Raster layer contrast revealed 

surface textures not visible to the naked eye or in photographs. The raster layer is the base 

map on which the data maps are overlaid. 

 

Hygrothermal inspection 

Two hygrothermal inspections were conducted a fortnight apart in February and March, 

2015. In this precipitation-free interval the weather ranged from moderately cold (daily 

temperatures of 1 to 10 C) to freezing with widely ranging daily temperatures (-5 to 20 C), 

as measured 2 km away from the building by a urban meteorological station managed by the 

Spanish meteorological agency. These months were chosen to observe the variations in 

evaporation points in an environment with steep thermal contrast and no rainfall. Evaporation 

intensity was measured at the points with two TESTO instant display digital thermo-
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hygrometers, models 601 and 625.  Accuracy for both thermohygrometer models is ±0.5 °C 

and ±2.5 %HR, while precision is 0.1 °C and 0.1 %HR. Two operators used a thermo-

hygrometer each to speed up the measurement process, which took approximately 2 hours in 

total. Measurements were taken following the hygrothermal monitoring method proposed by 

García Morales et al. (2012). This method calculates the humidity ratio (g/kg) in the air in 

contact with the wall surface from the thermo-hygrometer measurements read at each point. 

The humidity ratio (W) is a table-based measure of the absolute moisture content in air. 

Surface humidity ratios were compared to the indoor environment (taken as the reference 

value) to classify the evaporation points on the grounds of their ‘evaporation intensity factor’. 

In this study, the evaporation intensity factor (F) is defined as the difference between the 

maximum and minimum humidity ratios recorded with the thermohygrometers during the 

survey on the day the readings were taken. The data are also compared to the outdoor 

humidity ratio (Wo). The maximum indoor humidity ratio (Wi max) is indicative of the general 

evaporation intensity measured in the building. The maximum indoor evaporation intensity 

factor (Fi max) is defined as the difference between the maximum humidity ratio measured and 

Wo [1]. A certain “absolute value” of humidity ratio in the air in contact with the wall may or 

may not indicate a humidity flux from the wall to the air depending on the specific 

environmental humidity of that building. Hence, points of intense evaporation are established 

by comparing the humidity ratio in the air in contact with the wall and indoor and outdoor 

environments. 

 

    Fi max = Wi max – Wo      [1] 

 

Humidity ratio readings were taken both on ashlars and at inter-ashlar joints on the two dates 

further to an irregular data point grid (Figure 6). Measurements were made at both types of 
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sites inasmuch as evaporation was expected to differ depending on whether the substrate was 

mortar or granite. Readings were taken by holding the thermo-hygrometer against the data 

point until the T and RH values stabilised (a few seconds). As, each measurement is made 

individually, the number of operator together with the instrumental response rate determined 

the number of readings that could be taken in a single day. 

 

Overlaying hygrothermal data on Digital Surface Models 

The readings were georeferenced on the GIS raster layer by identifying the data points on the 

layer to generate a new GIS vector layer specifying data point positions. The vector layer 

could then be used to group data points to different criteria, such as location on joints or stone 

surfaces, or the date of the reading. Further raster layers could be obtained from the 

georeferenced layer of points by applying IDW interpolation to the actual readings (with 

interpolation settings of minimum 2 and maximum 4 neighbour cells). IDW interpolations 

were made for each separate survey using all the thermohygrometer readings corresponding 

to that specific survey (79 points for the first survey campaign and 349 for the second). The 

cell size of the GRID raster was set to 3.6 mm. With this method, although readings were 

taken at different data points on different days, the maps were comparable and could be 

manipulated jointly. Overlaying the raster layers on the hillshade image yielded a new, highly 

accurate two-and three-dimensional data map. 

 

Nonetheless, the presence of widely varying W ranges may render the comparison of maps 

generated on different days impractical, inasmuch as using a common scale for the two maps 

might mask the relative prominence of evaporation points on each day. Consequently, in this 

study the relative difference between the highest and lowest values on the scale was 

maintained, although the range changed (Figure 7a and b).  
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For the purposes of map algebra, the daily W values were converted to percentages (defining 

the lowest daily value of W to be 0 and the highest 100) as observed in Figures 8a and 8b, 

and these percentages were then summed directly in the GIS. In other words, the sum of the 

two maps yielded a third in which the areas where evaporation was most intense on both days 

appear more prominently (Figure 8c). Similarly, map algebra was deployed to subtract first 

day Ws from the second day values to identify the points that were most active overall 

(Figure 8d). 

 

Results and discussion 

According to the maps of the W values for the joints only (Figure 7a and b), evaporation was 

much more intense on the second day than on the first. The first day was scarcely cloudy with 

gusty wind and the outdoor temperature was 4.3 C (as measured with a datalogger placed 

just outside the building). The second day was sunny and the outdoor temperature during 

readings was 14 C. In both cases evaporation was most intense in the centre (i.e., the most 

slender part) of the wall, primarily along a horizontal line approximately 2 m off the indoor 

floor, immediately underneath the window and at the same elevation as the outdoor walkway; 

as well as on the left end of the area where the wall thickness changes, with higher values in 

the area closest to the floor.  

 

The layout of the streets and buildings nearby the south wall together with the low winter sun 

angle prevents direct insolation during most part of the day. Nevertheless, insolation may still 

play a relevant role in terms of the more intense evaporation in the slender part of the wall, as 

even very localised differences in albedo and  in insolation both in space and time may lead 
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to relevant surface temperature differences (Gomez-Heras et al., 2008) that affect, after a lag 

time, to the inner core of walls (Martínez-Garrido et al., 2014). 

 

Evaporation was greater in the mortar joints (Figure 7b) than in the stone ashlars (Figure 7c). 

Since evaporation on the latter was governed by the physical properties (primarily porosity) 

of each ashlar, the evaporation patterns there differed from the general norm. Consequently, 

only the joint readings, which exhibited a pattern more representative of the wall as a whole, 

were used to generate the graphic in Figure 7a and b and perform the map algebra 

calculations. 

 

The areas with most intense evaporation on each day were more readily visible when the 

maps were re-scaled to convert each day’s maximum evaporation to 100 % (Figures 8a and 

8b). The sum of the two days’ readings (Figure 8c) highlighted the main evaporation points 

over time. This map exhibited two vertical strips along the entire left end of the wall where W 

values were lower, interrupted by areas with higher values. That would appear to indicate that 

evaporation behaved differently in there than in the rest of the wall as depicted on the maps 

for each day separately, perhaps denoting the presence of isolated water pockets behind the 

wall. 

 

The map resulting from subtracting the first from the second day values (Figure 8d) revealed 

the areas in which evaporation was most affected by the rise in outdoor temperature. This 

map shows that outdoor temperature affected the relative variations in evaporation along two 

vertical strips that concurred with the corners of the window located at the same elevation as 

the outdoor walkway. Moreover, relative evaporation rose in an area at the left end of the 

wall from which a series of arms radiated downward. At the interface between the wall and 
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the floor, however, relative evaporation intensity declined along a series of vertical strips, 

suggesting that whilst this may be an area of ongoing evaporation, it is impacted less by 

variations in outdoor temperature. 

 

With this technology, the digital model for the wall could be overlaid on GIS maps. The 

result, 3D maps (Figure 9), afforded a clearer spatial view of the areas where evaporation was 

most intense on each day and facilitated their interpretation as the outcome of percolation to 

the surface through the wall and the ground. 

 

Conclusions 

GIS can be used to georeference data gathered at any given point on a surface of an object at 

different times with no need to pre-establish fixed grids that may be difficult to reproduce 

from one day to the next. 

 

Overlaying test points on a GIS base map has proven to be a very useful and speedy mapping 

tool, which can be automatically generated with GIS software once the starting data are 

defined. This allows to different professionals working on heritage conservation to 

incorporate new information as studies progress and creat an information system complying 

with the recommendations established in conservation charters . 

 

Nonetheless, perhaps the most characteristic feature of GIS data mapping, particularly in the 

study of dynamic processes is that the resulting maps can be used to study the time factor. 

Different days’ findings can be readily compared either by changing the scales used or 

deploying map algebra to clearly define the areas where most significant changes are taking 
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place. Map algebra is also a tool to generate new information from data gathered by  different 

professionals involved in building conservation.  

 

In this study, as an example of application of this methodology, hygrothermal data were 

recorded and maps were generated for different types of materials, varying the scale over 

time. The data maps formulated identified the major evaporation points. The data for ashlars 

and joints were mapped in both absolute values and in percentage. 

  

This case study verifies the importance of monitoring an element over time, an essential 

factor in planning preemptive conservation and detecting structural and material decay. With 

GIS technology, the behaviour of an element can be visualised more readily, facilitating the 

understanding and interpretation of the resulting patterns for the implementation of more 

effective conservation measures. 
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Figure captions 

 

Figure 1: a) N-W view of the chapel. b) South wall.  

 

Figure 2: (a) Ground storey showing the partially interred wall where data were collected; 

(b) cross-section showing the partially interred wall (dashed line). 

 

Figure 3: Interior of the semi interred south wall where data were collected. 

 

Figure 4: Initial three-dimensional point cloud modelling. 

 

Figure 5:  Hillshade texturing of raster layer (generated from interpolation of Digital Surface 

Model) revealing the individual ashlars that comprise the wall.  

 

Figure 6:  Second day (12/03/2015) data points depicted on raster layer (hillshade map): red= 

readings on joints; blue = readings on stone; total readings: 210 in joints + 139 on stone = 

349. 

 

Figure 7:  7a and b show a comparison of thermo- hygrometer W (g/kg) readings on joints 

on different dates (scales with identical intervals). 7b and c show the second day W (g/kg) 

readings: b) map based on joint readings only; c) map based on stone surface readings only. 

Although evaporation was clearly less intense on the ashlars than on the joint surfaces, some 

decayed ashlars (such as the one identified with a red arrow in Figure 7c) exhibited greater 

evaporation than others. 

 

Figure 8: a): Day 1 W, in %; b): day 2 W in %; v) sum of W values for days 1 and 2; d) day 

2 W values minus day 1 values. 

 

Figure 9: 3D hillshade map showing an overlap of the result of subtracting the 24/02/2015 

IDW raster for the humidity ratio (W: g/kg, %) from the 12/03/2015 raster. 

 

 


