ROAD TO THE MULTIVERSE PAVED BY QUANTUM INTERACTIONS

Ana Alonso-Serrano (IFF, CSIC)

brought to you by T CORE

JARRAMPLAS'15

INTRODUCTION

- > Why multiverse?
 - Emerges naturally in some physical theories
 - It could solve some open cosmological questions (i. e. cosmological constant problem)
 - Depends on the definition of a universe
- Physical multiverse
 - Appropriate multiverse scenario to make observational predictions
 - It need some kind of non standard interaction between universes (classical or quantum)
 - It is not related with a particular multiverse theory

- > Quantum correlations between universes
 - Classically disconnected universes
 - Quantum entanglement → effects of other universes on our own
 - Consideration of the multiverse as a whole

 \succ We need to make a simple model for the multiverse: the universes and the interactions between them

- Third quantization scheme
- Different models
 - Decoherence due to the environment made of other universes → Master equation
 - 2) Curvature Principle \rightarrow Curvature invariant for each universe
 - 3) Multiverse of interacting harmonic oscillators \rightarrow Wigner quantization

THIRD QUANTIZATION FORMALISM

- > Analogy with quantum field theory
 - WDW as K-G in superspace → Wavefunction as the field to quantize
 - Creation and annihilation of universes → baby universes
- ➢ Minisuperspace: Homogeneous and isotropic models → FLRW metric
 - Scale factor as a time variable

harmonic oscillator (time dependent frequency) > Wavefunction of the multiverse $H|\Psi\rangle = i\hbar\partial_a |\Psi\rangle$

where
$$H = \frac{1}{2}\hat{P}_{\phi}^{2} + \frac{\Omega^{2}(a)}{2}\hat{\phi}^{2}$$

Creation and annihilation operators

$$\begin{pmatrix} b = \sqrt{\frac{\Omega(a)}{2\hbar}} \left(\hat{\phi} + \frac{i}{\Omega(a)} \hat{P}_{\phi} \right) \\ b^{+} = \sqrt{\frac{\Omega(a)}{2\hbar}} \left(\hat{\phi} - \frac{i}{\Omega(a)} \hat{P}_{\phi} \right)$$

So, the Hamiltonian
$$H = \beta_{-}b^{2} + \beta_{+}b^{\dagger^{2}} + \beta_{0}\left(b^{\dagger}b + \frac{1}{2}\right)$$

DECOHERENCE IN THE MULTIVERSE

> The interaction can be represented by a total Hamiltonian

$$H = H_P + H_\varepsilon + H_{int}$$

where

•
$$H_P = \frac{1}{2}P_{\Phi}^2 + \frac{\Omega^2(a)}{2}\Phi^2$$

• $H_{\varepsilon} = \sum_{i=1}^N \frac{1}{2}p_{\phi_i}^2 + \frac{\omega_i^2}{2}\phi_i^2$
• $H_{int} = \sum_i \lambda_i \Phi_P \otimes f(\phi_i) \longrightarrow \begin{cases} f(\phi_i) \equiv \phi_i & \text{Linear interaction} \\ f(\phi_i) \equiv \phi_i^2 & \text{Quadratic interaction} \end{cases}$

Master equation

 $\partial_a \rho_P = -i[\tilde{H}_P, \rho_P] - i\gamma[\Phi, \{P_\Phi, \rho_P\}] - (D[\Phi, [\Phi, \rho_P]] - f[\Phi, [P_\Phi, \rho_P]])$ with $\tilde{H}_P \equiv H_P + \frac{\hat{\Omega}^2}{2} \Phi^2$ noise kernel dissipation kernel • Correlation function $\langle \phi^k(a)\phi^k(a')\rangle_b = \nu(a,a') - i\eta(a,a')$

- Solution to WDW + dissipation kernel Lamb shift
- Solution to WDW + dissipation kernel Normal-diffusion coeficient

> Calculating...
$$\begin{cases} \Omega^2(a) = c_1 f(a,q) \\ D(a) = c_2 g(a,q) \end{cases}$$

 $\boldsymbol{\mathcal{C}}$

INTERACTION OF A UNIVERSE WITH ITS QUANTUM FLUCTUATIONS

Creation and annihilation operators
Greation and annihilation operators
squeezed state

 \succ The expressions for the noise and dissipation kernel involves the spectral density \rightarrow encapsulates the physical properties of baby universes

$$J(\omega) = J_0^2 \omega^3 e^{-\omega/\Lambda}$$

 \succ Results • Linear interaction $\begin{cases} c_1 \sim \text{cte} \\ c_2 \sim N \end{cases}$ • Quadratic interaction $\begin{cases} c_2 \sim c_2 \\ c_2 \sim N \end{cases}$

$$c_1 \sim N$$
$$c_2 \sim N^2$$

Scale for the decoherence

$$a_D = \frac{1}{\sqrt{c_2}}$$

 \rightarrow Decoherence scale: very small, more in quadratic interaction

 \rightarrow Lamb shift: constant or dependent on the strenght of fluctuations

INTERACTION OF A UNIVERSE WITH OTHER UNIVERSES

- > The squeezing effect asymptotically dissappears
- > We choose the spectral density as $J(\Omega) \sim \delta(\Omega' \Omega_0)$
- > So, we obtain $\begin{cases} c_1^p \approx \Omega_0 \\ c_2^p \approx 2N \end{cases}$
 - ➔ Decoherence is very effective for a large number of universes

→ Lamb shift: same order energy density of the Universe (without interactions)

effective energy of the Universe turns out to be approximately zero

THERMODYNAMICAL QUANTITIES

> Interaction with environment \rightarrow effectively non unitary evolution

> The previous master equation can be solved with the Gaussian ansatz \rightarrow the solution depens on cofficient c₂

> Considering an initial pure state

> This coefficient allow us to obtain thermodynamical properties of the parent universe

> Entropy of a parent universe interacting with the environment

$$S_{lin} = 1 - \zeta$$

$$S = -\frac{1}{p_0} (p_0 \ln p_0 + q_0 \ln q_0)$$

 \clubsuit Interaction with the environment \rightarrow evolution to a mixed state \rightarrow loss of information

Decoherence process \rightarrow Universe described in terms of the semiclassical branch which we live in

→ Total system retains all information

CURVATURE PRINCIPLE

 \succ Each universe described in terms of a curvature invariant \rightarrow sensitive to the vacuum energy

Hamiltonian evolution that reflects the interaction between universes

> We consider the third quantization formalism for homogeneous and isotropic universes \rightarrow WDW as a harmonic oscillator

$$\ddot{\phi} + \frac{\dot{M}}{M}\dot{\phi} + \omega\phi = 0$$
 with $M(a) = a$ and $\omega(a) = \frac{a}{\hbar}\sqrt{a^2\Lambda - 1}$

> The total Hamiltonian is given by

$$H_T = H_1 + H_2 + H_I \quad \text{where} \quad \left\{ \begin{array}{c} \\ \end{array} \right.$$

$$H = \frac{1}{2M}p_{\phi}^{2} + \frac{M\omega^{2}}{2}\phi^{2}$$
$$H_{I} = \frac{Ma^{4}k}{2}(\phi_{2} - \phi_{1})^{2}$$

> A non-trivial choice of canonical transformation to $(\Phi_1, \Phi_2, P_1, P_2)$

$$H_N = \frac{1}{2M} P_1^2 + \frac{M\Omega_1^2}{2} \Phi_1^2 + \frac{1}{2M} P_2^2 + \frac{M\Omega_1^2}{2} \Phi_1^2$$
$$\left(\Omega_1^2 = a^4 f(\Lambda_1, \Lambda_2, k) \right)$$

where
$$\begin{cases} \Omega_1^2 = a^4 f(\Lambda_1, \Lambda_2, k) \\ \Omega_2^2 = a^4 g(\Lambda_1, \Lambda_2, k) \end{cases}$$

- H_N represents dynamical evolution of non-interacting universes
- Normal modes of oscillation
- Vacuum energy associated with new frecuencies

Considering two "nearby" universes

$$\begin{split} \Lambda_1 &= \Lambda + \varepsilon \\ \Lambda_2 &= \Lambda - \varepsilon \end{split} \\ \mathbf{So} \quad \left\{ \begin{array}{l} \Omega_1^2 &\approx a^4 \Lambda_1^{\mathrm{ef}} \\ \Omega_2^2 &\approx a^4 \Lambda_2^{\mathrm{ef}} \end{array} \right. & \left\{ \begin{array}{l} \Lambda_1^{\mathrm{ef}} &\approx \frac{2\varepsilon^2}{\Lambda} &\approx 0 \\ \Lambda_2^{\mathrm{ef}} &\approx \Lambda - \frac{2\varepsilon^2}{\Lambda} &\approx \Lambda \end{array} \right. \\ k &= -\frac{\Lambda}{2} \end{split}$$

• Point of view of an internal observer that perceives its universe as isolated \rightarrow value of the cosmological constant as proper of the universe

 \blacksquare Observer in universe 1: see a nearly zero value of the cosmological constant \rightarrow cannot identify to any effect of its universe

 Mechanism for reducing the cosmological constant of a universe by means of the interaction of different universes

> We also extend this study to a general quadratic potential

MULTIVERSE OF INTERACTING HARMONIC OSCILLATORS

> Multiverse can exhibit collective phenomena \rightarrow new perspective

> Considering N de Sitter universes interacting \rightarrow represented in third quantization as harmonic oscillators

> Asuming "nearest interaction" and the interaction governed by Hooke's law

AT

$$\hat{H} = \sum_{r=1}^{N} \left(\frac{\hat{p}_r^2}{2M} + \frac{M\omega^2}{2} \hat{\phi}_r^2 + \frac{Mc}{2} (\hat{\phi}_r - \hat{\phi}_{r+1})^2 \right)$$
$$\hat{H} = \sum_{r=1}^{N} \left(\frac{1}{2M} \hat{P}_r \hat{P}_r^{\dagger} + \frac{M\omega_r^2}{2} \hat{\Phi}_r \hat{\Phi}_r^{\dagger} \right) \quad \text{with} \quad \omega_r^2 = \omega^2 + 4c \sin^2 \left(\frac{\pi r}{N} \right)$$

→ We can follow a more general quantization procedure

> Canonical commutation relations replaced by compatibility conditions

> In addition to the standard solution, it allow us to obtained more solutions \rightarrow be described by means of representations of Lie superalgebras

> Defining the operators

$$\begin{cases} a_r^- \equiv \sqrt{\frac{M\omega_r}{2}} \hat{\Phi}_r + \frac{i}{\sqrt{2M\omega_r}} \hat{P}_r^{\dagger} \\ a_r^+ \equiv \sqrt{\frac{M\omega_r}{2}} \hat{\Phi}_r^{\dagger} - \frac{i}{\sqrt{2M\omega_r}} \hat{P}_r \end{cases}$$

the Hamiltonian takes the form $\hat{H} = \sum_{r=1}^{N} \frac{\omega_r}{2} \{a_r^-, a_r^+\}$

> Compatibility condition $[\hat{H}, a_r^{\pm}] = \pm \omega_r a_r^{\pm}$

> These relations have solutions in a particular Lie superalgebra \rightarrow We can diagonalize the Hamiltonian and obtain the energy spectrum

> We consider a multiverse with explicit interaction or without it

 \succ For the given representation the spectrum of the Hamiltonian splits into a large number of different levels for both cases (different each other)

Even in the case without explicit interaction \rightarrow there are quantum interactions with no classical analogue

> The energy levels depends strongly on the interaction between universes

➢ Given some conditions, the ground state of the new spectrum approaches to zero

> The collective phenomena of the multiverse provide a mechanism to fix the cosmological constant to a value arbitrarly close to zero

CONCLUSIONS

> The interaction of a parent universe with a multiverse environment \rightarrow parallel development to quantum optics

Decoherence effect permit the emergence of a classical Universe

 An analogue effect to Lamb shift, provide a mechanism that allows to reduce the value of the cosmological constant, due to the interaction of the Universe with a multiverse environment

• We also show the entropy increase of the state of the Universe \rightarrow loss of information that is mantained in the whole multiverse

 \geq By means of the Curvature Principle we obtain a reduction of the value of the cosmological constant in the Universe, due to the interaction with other universe

> We can consider collective phenomena in the multiverse \rightarrow give us new tools to understand cosmological issues

• Take N universes in the multiverse as harmonic oscillators, and use the Wigner Quantum System \rightarrow quantum interaction in the multiverse without classical analogue

• The interactions between universes produce new energy levels for the Hamiltonian \rightarrow In any case we can fix the vacuum energy to a value arbitrary close to zero

 So, the vacuum energy of a universe depends not only on the interaction between universes but also on the structure of the multiverse as a whole

These simple models show that an interacting multiverse could solve some cosmological problems and open the door to a new range of effects that could give physical predictions of the multiverse

Thank you for your atention!

