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Abstract
Plant–animal interactions imply costs and benefits with net balance depending on interact-

ing species and ecological context. Ungulates, in particular, confer costs (e.g., plant leaf

consumption, flower bud predation) and benefits (e.g., plant overcompensation, seed dis-

persal) to plants. Magnitude of costs and benefits may be altered by habitat management or

ecological conditions favoring high density ungulate populations. Little is known however

on whether plant costs or benefits predominate over the years, or the long-term outcomes

of plant-animal interactions in habitat types sustaining high density ungulate populations.

We investigated how high density ungulate populations alter plant costs and benefits by

quantifying ungulate long-term effects on the shrub Cistus ladanifer (Cistaceae) individual
size, seed weight and number, seed bank, and population density, through a 12-year ungu-

late exclusion experiment in a Mediterranean scrubland. Wemonitored plant size and flower

buds in plants exposed or protected from ungulates and number of developed capsules and

seeds consumed (potential seed dispersal) by ungulates during three reproductive sea-

sons. We found that ungulates negatively affected shrub size and led to a dramatically

decline of shrub reproductive structures and seed production, affecting the plant reproduc-

tive cycle. Number of buds was 27 times higher and number of developed seed 5 times

higher in ungulate-excluded as compared to ungulate-exposed plots. After 9 years of ungu-

late exclusion, the C. ladanifer seed bank was 2.6 times higher in ungulate-excluded plots.

The population density of C. ladanifer was 4 times higher in ungulate-excluded plots. Our

long-term experiment showed that high density ungulate populations can alter plant-animal

interactions by reducing plant benefits and increasing plant costs.
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Introduction
Species interactions are often described as either antagonistic or mutualistic, even though most
of them correspond to a mixture of conflicting and overlapping interests, potentially being pos-
itive or negative for the participants depending on the ecological context [1–4]. Human
induced changes can alter the biotic and abiotic context and be a major driver of shifts in sign
and magnitude of species interactions [5]. Hunting, for example, is known to alter plant-mam-
mal and plant-insect interactions [6, 7]. Also, habitat management practices (e.g. limiting cull-
ing policies, food supplementation) may favor the increase of animal populations such as
ungulate herbivores which can affect the ecology of ecosystems and species interactions [8, 9].
Ungulate herbivores, in particular, confer costs (e.g. plant leaf consumption, flower bud preda-
tion) [10, 11] and benefits (e.g. plant overcompensation, seed dispersal) [12, 13, 14] to plants.
The magnitude of such costs and benefits however may be altered by the ecological conditions
namely ungulate population densities. For example, exclusion of large herbivores resulted in a
shift from mutualistic to antagonist interactions in African tree-defender ants and acacias [15].
Conversely, high density ungulate populations resulting from favorable land use changes (e.g.
increase of suitable woodland habitat following land abandonment) together with lack of pred-
ators and limited culling policies may affect the whole ecology of ecosystems and of species
interactions [8, 9, 16, 17]. We are far, however, from understanding how high density ungulate
populations may alter the patterns, mechanisms and outcomes of plant-animal interactions [5,
18]. One of the main obstacles to such an understanding is the lack of well-designed long-term
field experiments allowing rigorous estimates of the effects of vertebrate herbivores on plants,
both at the individual and the population levels. Because species interactions are critical for
ecosystem functioning and ecosystem services delivery [5, 9, 19] further research on how
human induced changes leading to high population densities of ungulates may alter plant-her-
bivore interactions, is clearly needed.

Ungulate herbivores consume plant leaves and often flower buds (herbivory costs) as well as
fully-developed fruits comprising viable seeds (seed dispersal benefits) [12, 20]. The nature of
such two-phase plant-ungulate interactions is expected to be mostly antagonistic if, in the
long-term, herbivore populations affect negatively fruit production or exert too strong bud pre-
dation leading to too few, if any, seeds completing their development and being dispersed. For
instance, deer herbivory (Odocoileus hemionus and Cervus elaphus) in a North American pon-
derosa pine forest reduced biomass and reproductive success of the shrub Ceanothus fendleri
by 92% and 85%, respectively [11]. Likewise, herbivory by a high population density of red
deer in the Greater Yellowstone ecosystem, USA, practically eliminated seed production of sev-
eral Rosaceae and Elaeagnaceae shrubs [10]. Conversely, different studies have shown that
ungulates can act as effective seed dispersers [12, 21, 22].

Furthermore, changes in fruit production due to leaf herbivory or direct bud or mature seed
predation and potential seed dispersal, are likely to alter soil seed banks [23, 24], which are cru-
cial determinants of the dynamics of many plant populations [25]. Long-term studies account-
ing for critical plant performance components (e.g. seed set, seed bank, seedling numbers) and
changes in plant population density are thus needed for comprehensively understanding the
long-term ecological effects of high density ungulate populations on the nature of plant-animal
interactions.

In this study, we experimentally investigate the long-term effects of high-density popula-
tions of ungulates (red deer Cervus elaphus and fallow deer Dama dama) on plant size and sev-
eral sequential reproductive components of Cistus ladanifer L. (Cistaceae), a seed-bank
forming Mediterranean shrub, through an ungulate exclusion experiment. To identify the
extent to which ungulate acted mostly as predators (antagonistic) or as potential seed
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dispersers (mutualistic), we estimated, separately, how long-term herbivory affected 1) plant
size and subsequent flower-bud and seed production and 2) numbers of developing flower-
buds and fully developed fruit capsules and 3) seed bank in ungulate-excluded (fenced) and
ungulate-exposed (unfenced) plots. We hypothesized strong deer effects on C. ladanifer size,
associated with effects on seed production, and direct predation of flower-buds and developed
fruits. Furthermore, we expected that in the long-term ungulate herbivory would limit C. lada-
nifer population density. To evaluate this prediction, we also compared 4) adult shrub densities
in ungulate-exposed and ungulate-excluded plots after 12-years of experimental exclusion.

Materials and Methods
“Study area is privately owned. We had authorization of the landowner, Fundação da Casa de
Bragança, for conducting research in the study area. Research activities did not involve endan-
gered or protected species and did not require any specific authorization to be conducted. "

Study site
The study area is located in Tapada Real de Vila Viçosa (Tapada de Baixo) in southeast Portu-
gal (38°48’N, 07°24’W). This is a 900 ha enclosed estate, dominantly covered by cork (Quercus
suber L.) and holm (Q. ilex ssp. rotundifolia Lam.) oak, exploited for cork and primarily man-
aged for deer hunting (e.g. food-supplementation, selective culling). The climate is typically
Mediterranean, characterized by hot and dry summers and cool and wet winters. Mean annual
precipitation is 585.3 mmmainly falling between October and May. The mean annual temper-
ature is 15.9°C with a maximum of 31.1°C (in July) and a minimum of 5.8°C (in January)
(Évora meteorological station, 1981–2010, http://www.ipma.pt, accessed in January 2013).

The evergreen cork and holm oak woodland is relatively open (30 to 50 trees per ha), with
an almost mono-specific understory of the shrub C. ladanifer L. interspersed with annual grass-
lands [26]. The site is browsed by herbivore ungulates, red deer (Cervus elaphus) and fallow
deer (Dama dama) which, due to a limited culling policy and supplementary feeding in years
of lower food availability, have been maintained in the study area at population densities of
0.35 and 0.1 deer per ha respectively. Although not uncommon in Iberian Peninsula hunting
estates, such population densities are generally considered as high [27, 28]. Few wild boars (Sus
scrofa, L.) occurred at the beginning of the experiment, although they have locally thrived in
recent years.

Cistus ladanifer, a woody perennial shrub, common to the western Mediterranean Basin,
including southern Europe and northern Africa, is an obligate seeder [29]. Fruits are globular
lignified capsules which may contain between 500 to 1000 hard seeds. Flowering occurs
between March and April followed by fruit maturation between May and July. Release of seeds
starts in mid-summer and extends until the end of summer to the beginning of autumn [30,
31]. Evergreen or summer semi-deciduous shrubs, such as C. ladanifer, can be an important
source of protein for herbivores during winter (January to April) and during the late Mediter-
ranean summer to beginning of autumn (July to October), when most grasses are senescent
and of low nutritive value [32, 33]. Thus, throughout the year, deer eats C. ladanifer young
shoots and leaves but also buds, flowers and developed capsules [32, 34] promoting dispersion
and germination of C. ladanifer seeds [12].

Experimental design
In July 2001, 5 blocks of paired fenced (ungulate-excluded) and unfenced (ungulate-exposed)
plots of 25 m × 25 m were randomly established in homogeneous areas of grassland, with no
presence of C. ladanifer adults or juveniles. C. ladanifer shrubs had been previously cleared
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from these areas as part of common management practices in the estate. In Mediterranean
cork and holm oak woodlands, shrubs are mechanically cleared each 4 to 7 years, rotationally
in different locations, to prevent wildfires. Fences were 2.20 m tall for ensuring ungulate exclu-
sion. Distance between paired (fence and unfenced) plots was approximately 25 m and between
adjacent pairs between 250 m to 400 m. One open plot was lost in July 2004 and, thus, we con-
sidered data from the remaining four pairs of plots

Long-term effects of ungulates on size of C. ladanifer
For estimating overall ungulate herbivory pressure (i.e. on both vegetative and reproductive
plant structures), we compared the volume of C. ladanifer shrubs in ungulate-excluded and
ungulate-exposed plots. To this end, we randomly selected 15 (in 2007) and 4 to 6 (in 2008 and
2013, respectively) C. ladanifer individuals in ungulated-exposed (open) and ungulate-
excluded plots (fenced). Height and diameter of canopy projection of each sampled individual
shrub was measured and shrub volume was estimated assuming the shape of an elliptical cone
given by:

V ¼ 1

3

� �
� p� D1

2
� D2

2
� H

in which V is the volume of the shrub, D1 is maximum diameter of shrub canopy projection,
D2 is diameter perpendicular to D1 and H is maximum shrub height.

To rule out the possibility that potential differences in plant individual size (shrub volume)
and flower bud production between ungulate exclusion treatments were related to shrub age
differences, we randomly selected and cut to ground level 4 shrubs in each plot in April 2008.
Age of each individual shrub was then estimated through annual growth rings count. Growth
rings were counted at the base of the trunk after buffing the surface with a high grade sand
paper [35]. We found no significant differences in age between C. ladanifer individuals in
ungulate excluded (6.06 ± 0.11 years; mean ± s.e.m.) vs. ungulate exposed plots (5.71 ± 0.14
years; MannWhitney U-test, U = 93, P = 0.127).

Effects of ungulates on buds and developed capsules. Wemonitored 60 and 60 (2007),
19 and 16 (2008), 40 and 12 (2013) C. ladanifer individuals in ungulate-exposed and ungulate-
excluded plots, respectively. We recorded and compared in April of each year the number of
buds (plus open flowers) remaining in ungulate-exposed and ungulate-excluded plots. To esti-
mate the potential of ungulates to act as seed dispersers, during July and October of 2007 (i.e.
when most capsules were ripe), we estimated the percentage of developed capsules removed by
ungulates relative to the number of available buds or capsules in April and July, respectively.
Although we did not directly confirm that ingestion of fully developed seeds leads to their dis-
persal, there is strong evidence that ungulates, and deer in particular, can act as seed dispersers
when ingesting mature plant fruits (e.g. [12]). Because of the lack of teeth in front upper jaw,
browsing marks left by deer (i.e. ragged edge on damaged stems) can be easily distinguished
from browsing damage left by other herbivores such as rabbits, hares or voles (i.e. leave sharp-
angled, knife-like cut on ends of stems) which sporadically occur in the area. Aborted fruits
remained on C. ladanifer branches and were easily distinguished from normally developed
fruits in ungulate-excluded and ungulate-exposed plots. Thus we only recorded differences
between treatments in normally developed flower-buds and developed capsules at each sam-
pling date.

Effects of ungulates on seed numbers, seed weight and germination. We randomly
selected 5 shrubs per plot and collected 6 and 3 fruit capsules from each of these shrubs in July
2007 and July 2008, respectively. We collected C. ladanifer capsules without any signs of
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predation in July when seeds are mature. Capsules were then conserved at 4°C in a freezer. We
estimated seed weight and number of seeds per capsule by weighing 100 seeds that were previ-
ously oven-dried at 60°C during 72 h. These seeds were randomly taken from 20 capsules col-
lected in ungulate-exposed and 20 capsules collected in ungulate-excluded plots. Overall, 120
and 60 capsules per treatment were collected in 2007 and 2008, respectively.

For estimating seed germination we made composite seed samples per shrub using seeds
from capsules collected in July 2008. Four replicates of 25 seeds each were then taken from
each composite sample (2000 seeds per treatment overall) and seeds were placed in an oven at
100°C during 5 minutes to break dormancy [36]. Seeds were then distributed on filter paper
disks (Whatman #1, n° 1001 125, GE Healthcare, Buckinghamshire, UK), randomly placed on
modified Jacobsen individual apparatus trays [37] in a germination incubator. The germination
incubator was kept at a constant temperature (20°C) and under a 16 h-light photoperiod. Pho-
tosynthetic Photon Flux Density of 140 micromolm-2.s-1 was provided and measured with a
Quantum Radiometer (Model LI-170, Li-Cor, Lincoln, N.E., USA). Every 3 days we counted
and removed germinated seeds and seeds damaged by fungi from trays to avoid contamination
of other seeds. Seeds were recorded as germinated as soon as the radicle emerged. The experi-
ment was conducted over 105 days after which period no further germination was observed.

Effect of ungulates on soil seed bank. Soil seed bank was estimated by the seedling emer-
gence method [38]. Soil samples were collected at the end of October 2010 (after 9 years of
ungulate exclusion) at the beginning of the germination period [30]. We randomly collected 18
soil cores per plot (0.05 m in diameter × 0.05 m in height) in each of the ungulate-excluded
and ungulate-exposed plots. Samples were kept in the dark at 10°C, for 5 days, until the begin-
ning of the emergence assay. We randomly placed homogenized soil samples in polyethylene
containers (17 cm x 12 cm x 3 cm) and over a 1.5 cm bed of sterilized sand to allow seed germi-
nation. Soil was maintained moist, near field capacity, by an automatic irrigation system. We
then identified, counted and removed emerged C. ladanifer seedlings from the containers,
immediately after germination. Germinated seedlings of herbaceous species were removed to
avoid competition with C. ladanifer seedlings. Germination trials lasted for 75 days until no
more seed germination was observed.

Long-term ungulate induced changes in the population density of C. ladanifer. To esti-
mate the long-term effect of ungulate activity on the population density of plants of C. ladani-
fer, we compared changes in shrub density in ungulate-exposed and ungulate-excluded plots
after 12-years of experimental exclusion of ungulates. To this end, we randomly selected 18 (2
x 4 m) sub-plots within each plot (25 x 25 m) and recorded all individual adults of C. ladanifer
during spring of 2007 and 2013. No C. ladanifer individuals occurred in any plot at the begin-
ning of the experiment in 2001 (thus initial plot conditions could not affect our results). In
2007 all C. ladanifer individuals were alive both in ungulate-exposed and ungulate-excluded
plots. In 2013, however, dead individuals occurred in the plots and their numbers were also
recorded.

Statistical analysis
Data on C. ladanifer bud and capsule numbers, shrub volume, seed weight and number, per-
centage of germination, number of emerged seedlings, and adult density were analyzed fitting
generalized linear mixed models using Proc Glimmix in SAS [39]. The effects of ungulate
exclusion and year, as well as their interaction, were specified in the models as fixed effects,
whereas the experimental plot and replicate (nested within plot) were included as random fac-
tors. A significant interaction between ungulate exclusion and year would indicate temporal
inconsistency in the effect of herbivores on C. ladanifer performance. For proportions of seed
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germination, we specified in the corresponding models binomial error and logit-link function
(see [39]). Because of high number of zero values in count response variables such as the num-
ber of emerged seedlings from soil samples and the number of adult C. ladanifer, we specified
negative binomial (instead of Poisson) error and log-link function. For shrub volume we speci-
fied normal error and identity-link function. When the interaction between ungulate exclusion
and year was significant, we performed tests for the effect of a given factor at the different levels
of the other factor (“tests of simple main effects”), using the SLICE option in the LSMEANS
statement of the MIXED procedure [39]. For comparing number of dead individual C. ladani-
fer shrubs between treatments in 2013 we used Mann-Whitney tests [40].

Results

Effects of ungulates on C. ladanifer size and number of flower buds
Cistus ladanifer volume in ungulate-excluded plots was on average 33.6 times larger as com-
pared with shrubs within ungulate-exposed plots (F1,198 = 197.09, P< 0.0001; Fig 1A). The dif-
ferences were consistent among the three years, as indicated by the non-significant interaction
between ungulate exclusion and year (F2,198 = 0.61, P = 0.542). We did not find significant dif-
ferences in C. ladanifer volume among years (F2,198 = 0.98, P = 0.378; Fig 1A).

Our generalized linear mixed model indicated that, once the effect of the random factor (i.e.
plot) was controlled for, year had a significant effect as main factor on the number of C. ladani-
fer flower-buds (F1,148 = 32.85, P< 0.0001) being, on average, over 3-fold higher in 2008 than
in 2007 (Fig 1B). As expected, ungulate exclusion also had a strong significant effect on number
of flower buds (F1,148 = 269.51, P< 0.0001) being, on average, 27.3-fold higher in ungulate-
excluded as compared to ungulate-exposed plots (Fig 1B). There was also a significant interac-
tion between ungulate exclusion and year (F1,148 = 22.31, P< 0.0001), indicating that the effect
of ungulate exclusion on C. ladanifer flower bud number was stronger during 2007 than during
2008 (Fig 1B). Given that during 2013 no individuals in ungulate-exposed plots (n = 40) pro-
duced buds, 2013 data was analyzed separately. Whereas all 12 individuals within ungulate-
excluded plots produced abundant buds (Fig 1B), none individual in the ungulate-exposed
plots produce any bud (χ2 = 52.0, df = 1, P< 0.0001). Thus, 2013 data confirmed the trend
revealed in the previous two years, i.e. strong negative ungulate effects on number of C. ladani-
fer flower-buds.

Effects of ungulates on developed capsules
Our monitoring of bud fate during 2007 revealed that, as expected, the percentage of buds
counted in April and remaining in July as developed capsules was 5.3-fold higher in ungulate-
excluded plots as compared to ungulate-exposed plots (F1,82 = 347.75, P< 0.0001; Fig 1C).
Similarly, the percentage of capsules counted in July that remained in October was 7.7-fold
higher in ungulate-excluded plots as compared to ungulate-exposed plots (F1,68 = 130.87,
P< 0.0001; Fig 1C). Overall, these results show sizable levels of ungulate consumption of
developed capsules, indicating that they may act as potential seed dispersers.

Effects of ungulates on seed weight and number, soil seed bank and
germination
Our mixed model indicated that, once the effect of plot was corrected for, seedling emergence
in soil samples from ungulate-excluded plots was 2.6 times higher than in ungulate-exposed
plots (F1,75 = 8.15, P< 0.01; Fig 2A). Our chamber experiment revealed that, seed germination
did not vary between ungulate-excluded and ungulate-exposed plots (F1,143 = 0.45, P = 0.502;
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Fig 2B) in spite of seed weight being significantly higher in both years in ungulate excluded
plots (seed weight in ungulate-excluded and ungulate-exposed plots, respectively:

Fig 1. Model-adjustedmeans (± 1 SE) of A)Cistus ladanifer volume per individual in 2007, 2008 and
2013 B) Numbers of flower buds (plus open flowers) produced during 2007, 2008, and 2013 seasons in
ungulate-excluded and ungulate-exposed (open) plots and C) Percentages of remaining capsules in
July (regarding flower bud number in April) and October 2007 (regarding capsule number in July).
(***, P < 0.001)

doi:10.1371/journal.pone.0158139.g001
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0.245 ± 0.007 vs. 0.198 ± 0.008 mg in 2007 and 0.231 ±0.004 vs. 0.197 ± 0.009 mg in 2008,
F1,119 = 11.19, P< 0.001) (Fig 2C). Overall, these results showed a higher seedling emergence
in ungulate-excluded soil samples, in spite of no differences in seed germination between

Fig 2. Model-adjustedmeans (± 1 SE) of A) Number of C. ladanifer seedlings emerged from soil seed
bank samples B) Seed weight and C) Seed numbers from capsules collected in ungulate-excluded
and ungulate-exposed (open) plots (**, P < 0.01; ***, P < 0.001; and ns, not significant [P > 0.05]).

doi:10.1371/journal.pone.0158139.g002
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treatments. These results are also consistent with a higher number of seeds per capsule found
in ungulate-excluded plots (seed numbers per capsule in ungulate-excluded and ungulate-
exposed plots, respectively: 1006.20 ± 36.63 vs. 701.88 ± 29.85 seeds per plot in 2007 and
1100.07 ± 33.32 vs. 798.45 ± 57.61 seeds per plot in 2008, F1,307 = 30.41, P< 0.001) (Fig 2C).

Effects of ungulates on the population density of C. ladanifer
Although no C. ladanifer individual occurred in our experimental plots in 2001, colonization
started soon after the field experiment was initiated (Authors personal observation). Ungulate
exclusion had a strong significant effect as main factor on C. ladanifer density (F1,281 = 51.86,
P< 0.0001)which was, on average, over 3.8-fold higher in ungulate-excluded as compared
with ungulate-exposed plots (Fig 3). Year (2007 and 2013) did not have an effect as main factor
(P = 0.109), but it showed a significant interaction with ungulate exclusion (F1,281 = 22.89,
P< 0.0001) indicating that the sign and/or strength of its effect on the population density of C.
ladanifer varied between ungulate-exposed and ungulate-excluded plots (Fig 3). Specifically,
tests of slices revealed that whereas C. ladanifer population density in ungulate-excluded plots
increased during the five experimental years (F1,281 = 5.69, P< 0.05), it clearly shrank in ungu-
late-exposed plots during such time period (F1,148 = 18.37, P< 0.0001; Fig 3). Furthermore,
whereas no C. ladanifer individuals occurred in any of the plots in 2001, and whereas C.

Fig 3. Changes inC. ladanifer population density (shrubs per 8 m2) in 2007 and 2013 in the ungulate-excluded
and ungulate-exposed plots. Because the interaction between ungulate exclusion and year was significant, we
report the P-values of the tests for the four simple main effects involved in the interaction.

doi:10.1371/journal.pone.0158139.g003
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ladanifer population density did not significantly differ between ungulate-exposed and ungu-
late-excluded in 2007 (F1,281 = 3.14, P = 0.077), at the end of the experiment C. ladanifer popu-
lation density was significantly lower in ungulate-exposed plots (F1,281 = 67.40, P = 0.0001; Fig
3). Additionally a higher number of dead individuals was recorded in ungulate exposed plots in
2013 (4.57 ± 0.55 vs. 7.38 ± 0.79 dead individuals/plot, in ungulate-exposed vs. ungulate-
excluded plots, respectively, P< 0.0001, Mann-Whitney U test, U = 58.5).

Discussion
Plant-animal interactions imply both costs and benefits for the participants [2, 3] that may ulti-
mately affect their population densities [41, 42]. Our study showed that high density popula-
tions of ungulate herbivores can have a drastic negative effect on plant size and number of C.
ladanifer flower-buds produced thus, limiting the availability of ripe fruits holding fully devel-
oped seeds that could be disseminated into the soil seed bank. The effects of such dramatic
decline of shrub reproductive structures, translated along the plant reproductive cycle and led
to reduced fruit set, limited soil seed bank, ultimatelyaffecting the population density of C.
ladanifer. The long-term net balance between ungulate herbivory and its effects on number of
flower buds and potential seed dispersal was thus highly negative for the plant, as illustrated by
the strong decrease of C. ladanifer density after 12 years. These results highlight the potential
of high density ungulate populations, favored by habitat management practices such as limited
culling policies and food supplementing, to alter the nature of species interactions [5, 19, 43].

Individual and long-term population effects of C. ladanifer—ungulate
interactions
Although strong negative effects of ungulates on plant reproductive success [44–47] or on
growth and survival [48–51] have been often documented, few studies have assessed the popu-
lation consequences of these interactions (but see [51]). Our long-term ungulate-exclusion
revealed that cumulative effects of ungulates ultimately led to a decline of C. ladanifer popula-
tion density, possibly by decreasing the seed bank. Although depletion of seed banks, as
affected by heavy grazing, has been shown in grasslands [52, 53] less is known for woody plant
communities, for which browsing and grazing have been mainly shown to alter plant succes-
sion [53, 54]. In our study, we have shown that ungulate herbivory on C. ladanifer led to a
noticeable soil seed bank depression after 9 years. Given that persistent soil seed banks are
especially critical in highly climatic variable ecosystems [25], such as Mediterranean ecosys-
tems [55], this is likely to negatively affect C. ladanifer dynamics and resilience, which seeds
can persist viable in the soil seed bank for 6 to 7 years [56, 57]. Furthermore, although herbi-
vores can confer plants with benefits such as over-growth [47, 58] or seed dissemination [12,
51], very few studies have assessed separately negative and positive effects of herbivores on
plants. Here, we have shown strong negative effects of ungulate herbivores on C. ladanifer
plant size and reproductive structures, but also considerable ungulate ingestion of ripe capsules
comprising fully developed seeds, which were likely to being dispersed [12]. Our results, sug-
gest that ungulate herbivory seems to have overridden potential positive effects of ungulates on
C. ladanifer seed dissemination. Moreover, our conclusions are probably conservative as our
experimental setting prevented any arrival of dispersed seeds in the ungulate-excluded plots
but not in the ungulate-exposed plots.

The strong net negative cumulative effect of ungulates on the population density of C. lada-
nifer, may have been exacerbated by synergistic effects of ungulate herbivory and drought [59].
Indeed, 2012 was an extremely dry year [60] and the higher mortality of C. ladanifer observed
in ungulate-exposed plots in subsequent year may have resulted from herbivory and drought
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interactions. Interestingly, our results also suggest a considerable lag effect of herbivory on C.
ladanifer population density. These results highlight the importance of long-term field experi-
ments when investigating the population outcomes of plant-animal interactions (e.g. [44]).
Results also emphasize that only long term studies, such as ours, can properly capture the
effects of high inter-annual climatic variability, such as that typical of Mediterranean environ-
ments, when investigating species interactions.

Context-dependency of plant-ungulate interactions and community-level
effects
Variation in the strength and sign of plant-herbivore interactions are likely to occur as a result
of changes in the ecological context (e.g. [1–3]). The intensive ungulate consumption of C.
ladanifer, a species often considered as unpalatable [61], during this and previous studies [32,
62] is likely to be related to the generalist feeding habits of target consumers, which tend to
feed on woody and grass species according to plant food availability [63]. The high ungulate
population densities during the period of our study probably enhanced food competition and
forced animals to become less selective, leading to a higher consumption of C. ladanifer [61].
Also, when availability and quality of grasses is low, browsing pressure on C. ladanifer is likely
to increase and to occur early in the season, as compared with years of higher availability of
grasses [32, 64]. This will exacerbate negative effects on shrub plant size and number of flower
buds produced. Further long-term research to unravel the extent to which variation in the
strength and sign of C. ladanifer-ungulate interactions relate to bud production or to third-
party factors such as availability of alternative plant food, such as grasses, is certainly needed.

The intensive interaction between high-density ungulate populations and C. ladanifer can,
in addition, cascade through the whole ecosystem [15, 65] affecting biodiversity and ecosystem
services delivery. For example, because ungulates can dramatically reduce C. ladanifer popula-
tion densities, which is a shrub species that strongly competes with herbs and grasses in ever-
green oak woodlands, in areas where ungulates are limiting the expansion of C. ladanifer
populations, they may be indirectly favoring grass abundance and diversity [66]. Also, by
decreasing shrub population densities, as well as individual shrub volume and thus biomass
(Fig 1A), high density ungulate populations are likely to lessen the risk and severity of wildfires,
an important ecosystem service in several human-shaped Mediterranean ecosystems [67].

Our long-term experimental study illustrates how high population densities of ungulates,
favored either by habitat management (e.g. food-supplementation, under-harvesting) or land
use changes that increase the availability of suitable habitat [68], may alter the balance between
costs and benefits in plant-animal interactions. Further research on the community and whole
ecosystem-level effects of over-abundant ungulate populations are certainly needed to forecast
the outcomes of global change in species interactions and ecosystem ecology.
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