Introduction	$C^{+} + H_{2}(v,j)$	$O^{+} + H_{2}(v,j)$	$OH^+ + H$	Conclusions

Pompage chimique de CH⁺ et OH⁺

Octavio Roncero

Inst. Física Fundamental, CSIC

octavio.roncero@csic.es

Introduction •oooo	C ⁺ + H ₂ (v,j) 0000000	$\begin{array}{c} O^+ + H_2(v,j) \\ \circ \end{array}$	OH ⁺ + H 00000000	Conclusions
Outline				

1 Introduction

- 2 $C^+ + H_2(v,j)$
- 3 O⁺ + H₂(v,j)
- 4 OH+ + H
- 5 Conclusions

Introduction	C ⁺ + H ₂ (v,j)	0 ⁺ + H ₂ (v,j)	0H ⁺ + H	Conclusions
○●○○○	0000000	000000000	00000000	

Molecular Universe

Stellar atmosphere: atomic lines Atom+Atom collisions Magnetic fields Polarization of lines Hanle effect

 $\label{eq:pdf} \begin{array}{l} \underline{PDR} \\ \mbox{Formation of } H_2 \\ \mbox{act as shield for other} \\ \mbox{molecules} \\ M^+ + H_2 \rightarrow MH^+ + H \\ M + H_3^+ \rightarrow MH^+ + H_2 \end{array}$

Molecular clouds low temperatures varying densities formation of complex molecules

Molecule	e as probes			
Introduction	C ⁺ + H ₂ (v,j) 0000000	0 ⁺ + H ₂ (v,j) 00000000	OH ⁺ + H 00000000	Conclusions

- Hydrogen is > 70 % in mass
- The rest of elements detected in smaller fractions
- Detection of infrared-microwave individual transitions

CH, CH⁺, OH⁺, SH, SH⁺, ...

by Nagy, et al., A & A (2013)

Introduction	$\begin{array}{c} C^+ + H_2(v,j) \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	$\begin{array}{c} O^+ + H_2(v,j) \\ \circ $	0H ⁺ + H 00000000	Conclusions
Molecule	es as probes			

- Hydrogen is > 70 % in mass
- The rest of elements detected in smaller fractions
- Detection of infrared-microwave individual transitions
- Flux from different excitations

Beyond Maxwel-Boltzmann distributions for short-lived species

Need for final state formation rate

M. Agúndez, PDR model (Medon code)

Astrophysical conditions density, temperature, etc

• Exothermic reactions of H₂ with atoms and ions

 $H_2(v=0) + O^+ \to OH^+(v',j') + H$

Gómez-Carrasco, et al. ApJ,('14)

 $H_2(v > 1) + S^+ \to SH^+(v', j') + H$

Zanchet, et al. AJ,146,125 ('13)

• Chemistry of $H_2(v > 0)$ in ISM

Agúndez, et al. ApJ, 713,662 ('10) Initial state dependent chemistry

 $H_2(v = 1) + C^+ \to CH^+(v', j') + H$ $H_2(v > 1) + S^+ \to SH^+(v', j') + H$

Zanchet, et al. ApJ,766,80 ('13)

Zanchet, et al. AJ,146,125 ('13)

- The most abundant ion is H⁺₃
 - H_2^+ disappears in the exothermic $H_2 + H_2^+ \rightarrow H_3^+(v) + H$ reaction

6D PES, Sanz-Sanz, et al. JCP,139, 184302 ('13)

- However $H_2 + H_3^+
ightarrow H_3^+ + H_2$ (ortho/para conversion, deuteration)

9D PES, Aguado, et al. JCP,133, 024306('10)

QCT biased statisitcal model, Gomez-Carrasco, et al. JCP,137, 094303 ('12)

- H_3^+ is very reactive with other species: $H_3^+ + O \rightarrow H_2 + OH^+$

- Reactive collisions: A+BC → AB+C
 - Endothermic from excited vibrational states C⁺+H₂(v) A. Zanchet, B. Godard, N. Bulut, P. Halvick and J. Cernicharo
 - Exothermic from excited vibrational states O⁺+H₂(v)
 S. Gómez-Carrasco, B. Godard, F. Lique, N. Bulut
 J. Kloss, A. Aguado, F.J. Aoiz, J. F. Castillo
 J. R. Goicoechea, M. Etxaluze and J. Cernicharo
- Inelastic vs. exchange collisions:
 - $OH^+ + H \rightarrow H + OH^+(v'J')$ in two PES's *N. Bulut and F. Lique*

Outling				
	000000			
Introduction	$C^{+} + H_{2}(v,j)$	$O^{+} + H_2(v,j)$	OH ⁺ + H	Conclusions

Outline

- 1 Introduction
- 2 C⁺ + H₂(v,j)
- 3 $O^+ + H_2(v,j)$
- 4) OH+ + H
- 5 Conclusions

	DEO			
Introduction	$C^+ + H_2(v,j)$	O ⁺ + H ₂ (v,j)	OH ⁺ + H	Conclusions

$$C^+({}^2P) + H_2(v, j = 0) \to CH^+ + H$$

Ground state PES by Stoeklin & Halvick, PCCP('05)

- \bullet Deep well $\approx 4.5 \ eV$
- \bullet Endothermic by $\approx 0.38 \; eV$
- No Quantum dynamical calculation.

 $C^{+} + H_{2}: Total Reaction Probabilities for J=0$

$$C^+({}^2P) + H_2(v = 0, 1, j = 0) \to CH^+(v', j') + H$$

Full dim. Wave packet dynamics reactant Jacobi coor. with MADWAVE3

- Dense grids: about 105 Mpoints (including hecility $\Omega)$
- Many resonances: CH₂⁺ complex long propagation times
- For $H_2(v=0)$: threshold at $\approx 0.38 \text{ eV}$
- For H₂(v=1): no threshold

Statistical model does not work properly
Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

ANR hydrides, Grenoble, 4 de Février 2015

Introduction	$C^{+} + H_{2}(v,j)$	$O^{+} + H_{2}(v,j)$	OH ⁺ + H	Conclusions
	0000000			

C^+ + H_2 : State-to-state rate constants

$$C^+(^2P) + H_2(v = 1, j = 0) \to CH^+(v', j') + H$$

• No threshold for j' < 8

Langevin extrapolation 1e-09 v'=0 to avoid WP errors 1e-10 $K_{v'}$ (cm³ / s) 1e-11 v'=1 State-to-state coefficients 1e-12 v'=2 $= \sqrt{\frac{8}{\pi \mu (k_B T)^3}} \sigma_{vj \to v'j'}(E) e^{-E/k_B T}$ 1e-13 $K_{vj \to v'j'}(T) =$ 1e-14 v'=3 EdE× 0 1000 2000 3000 4000 T (K)

ANR hydrides, Grenoble, 4 de Février 2015

5000

Octavio Roncero

Introduction	C ⁺ + H ₂ (v,j) 0000€00	0 ⁺ + H ₂ (v,j) 000000000	OH ⁺ + H 00000000	Conclusions

C^+ + H₂: State-to-state rate constants

$$C^+(^2P) + H_2(v = 1, j = 0) \to CH^+(v', j') + H$$

• No threshold for j' < 8

Langevin extrapolation

to avoid WP errors

State-to-state coefficients

$$K_{vj \to v'j'}(T) = \sqrt{\frac{8}{\pi \mu (k_B T)^3}}$$

$$\times \int_0^\infty E dE \qquad \sigma_{vj \to v'j'}(E) e^{-E/k_B T}$$

ANR hydrides, Grenoble, 4 de Février 2015

Octavio Roncero

Astrophy	sical models			
Introduction	C ⁺ + H ₂ (v,j) ○○○○○●○	O ⁺ + H ₂ (v,j) 000000000	OH ⁺ + H 00000000	Conclusions

- PDR model of Orion bar (Madex code)
- Intensity of some lines of $\operatorname{CH}^+(j'>0)$
- Improves previous models
- Still discrepancies

Zanchet et al., ApJ ('13) 766:88

Chemical pumping increases flux from higher j's

Possible improvements

 Higher v > 1 contributions still need to be included in PDR models

• Only
$${}^2P_{1/2}$$
 reacts
$$Q_e(T) = \frac{2}{2 + 4e^{-91,2/T}}$$

 Non-adiabatic and spin-orbit transitions

0

Outling				
Introduction	C ⁺ + H ₂ (v,j) 0000000	O ⁺ + H ₂ (v,j) ●00000000	OH ⁺ + H 00000000	Conclusions

1 Introduction

- 2 $C^+ + H_2(v,j)$
- 3 $O^+ + H_2(v,j)$
 - 4 OH+ + H
 - 5 Conclusions

$$P^{J}(E) = \sum_{v'j'} |S_{v,j \to v'j'}|^2 \to$$

 $R_{HH} - R_{OH} [Å]^2$

10

$\begin{array}{l} \mbox{Good agreement with TI-ABC} \\ \mbox{E} \geq 0.1 \mbox{ meV } !! \end{array}$

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

$$P^{J}(E) = \sum_{v'j'} |S_{v,j \to v'j'}|^{2} \to$$

Introduction	C ⁺ + H ₂ (v,j)	O ⁺ + H ₂ (v,j)	OH ⁺ + H	Conclusions
00000	0000000	∞o●∞∞∞∞∞	00000000	
J-shifting a	pproach			

• J-shifting approach: Bowmann ('85)

 $P_J(E) = P_{J=0}(E^*)$ with $E^* = E - \frac{B}{B}J(J+1)$

ovestimates reaction probabilities for J >> 0

• J-shifting interpolation:

$$P_J(E) = \frac{J - J_1}{J_2 - J_1} P_{J_1}(E_1) + \frac{J_2 - J}{J_2 - J_1} P_{J_2}(E_2) \quad \text{with} \quad J_1 < J < J_2$$

Introduction	C ⁺ + H ₂ (v,j) 0000000	O ⁺ + H ₂ (v,j) ∞o●oooooo	OH ⁺ + H 00000000	Conclusions
J-shifting a	oproach			

• J-shifting approach: Bowmann ('85)

 $P_J(E) = P_{J=0}(E^*)$ with $E^* = E - \frac{B}{B}J(J+1)$

ovestimates reaction probabilities for J >> 0

• J-shifting interpolation:

Introduction	C ⁺ + H ₂ (v,j) 0000000	O ⁺ + H ₂ (v,j) ∞o●oooooo	OH ⁺ + H 00000000	Conclusions
J-shifting a	oproach			

• J-shifting approach: Bowmann ('85)

 $P_J(E) = P_{J=0}(E^*)$ with $E^* = E - \frac{B}{B}J(J+1)$

ovestimates reaction probabilities for J >> 0

• J-shifting interpolation:

Cross section:
$$H_2(v = 0, j = 0) + O^+$$

$$\sigma_{vj} = \frac{\pi}{k^2} \sum_J (2J+1) P^J(E)$$

Experiment: Burley, Ervin, Armentrout, ('87)

Langevin model works for total σ_{vj}

but not for individual $\sigma_{vj \rightarrow v'j'}!!$

Introduction C⁺ + H₂(v_j) O⁺ + H₂(v_j

Gomez-Carrasco et al., ApJ 794:33 ('14)

$$K(v, j, v', j')(T) = \begin{bmatrix} \frac{8}{\pi \mu (k_B T)^3} \end{bmatrix}^{1/2}$$

$$K(v, j, v', j')(T) = \begin{bmatrix} \frac{8}{\pi \mu (k_B T)^3} \end{bmatrix}^{1/2}$$

$$\int_{0}^{\infty} E \sigma_{vj \to v'j'}(E) e^{-E/k_B T} dE$$

$$\int_{0}^{\infty} E \sigma_{vj \to v'j'}(E) e^{-E/k_B T} dE$$

$$Ie \cdot 13$$

$$Ie \cdot 14$$

$$\int_{0}^{\sqrt{23}} \frac{v'=4}{\sqrt{23}}$$

$$Ie \cdot 14$$

$$Ie \cdot 13$$

$$Ie \cdot 14$$

$$Ie \cdot 1$$

 $\begin{array}{cccc} & & & & \mathsf{C}^+ + \mathsf{H}_2(\mathsf{v}_j) & & & \mathsf{O}^+ + \mathsf{H}_2(\mathsf{v}_j) & & & \mathsf{O}^+ + \mathsf{H}_2(\mathsf{v}_j) \\ \circ & \circ \\ & & & \mathsf{OH}^+(X^3\Sigma^-, A^3\Pi) \text{ radiative rates} \end{array}$

- $OH^+(X^3\Sigma^-)$: Hund's case b
- $OH^+(A^3\Pi)$: Hund's case a
- Reasonable agreement with experiment Merer *et al.* ('75)

 $\begin{array}{ccc} & & & & C^+ + H_2(v_i) & & O^+ + H_2(v_i) & & OH^+ + H & & Conclusions \\ \hline & & & & & & & & \\ OH^+(X^3\Sigma^-, A^3\Pi) \text{ radiative rates} \end{array}$

Radiative Lifetimes of A: τ_b

v	$ au_v$ (ns)	$ au_v^a$ (ns)	$ au_v^b$ (ns)
0	2524	2410	2400±300
1	2665	2560	
2	2820	2930	
3	3004		
4	3233		
5	3534		
6	3960		
7	4637		
8	5961		
9	9559		
10	16118		

^a Merchan et al. ('91)

^b Möhlman et al. ('78)

- New PES for He+ $OH^+(X^3\Sigma^-)$ F. Lique and J. Kloss
- TI-CC calculations of inelastic rates
 F. Lique and J. Kloss
- H + OH⁺ and H₂ + OH⁺ rates were scaled

Meudon PDR chemical model under 3 conditions:

- (a) only non-reactive collisions
- (b) chemical pumping, products according to Boltzmann distribution at 2000K
- (c) chemical pumping using WP state to state rates

Gomez-Carrasco et al., ApJ 794:33 ('14)

B. Godard

Introduction	C ⁺ + H ₂ (v,j) 0000000	$\begin{array}{c} O^+ + H_2(v,j) \\ \circ $	OH ⁺ + H ●0000000	Conclusions
Outline				

- 1 Introduction
- 2 $C^+ + H_2(v,j)$
- 3 $O^+ + H_2(v,j)$
- 4 OH+ + H
 - 5 Conclusions

 $\frac{\mathsf{OH}^{+} + \mathsf{H}_2(\mathsf{v}_i)}{\mathsf{OOOOOOO}} \xrightarrow{\mathsf{O}^{+} + \mathsf{H}_2(\mathsf{v}_i)}_{\mathsf{OOOOOOOO}} \xrightarrow{\mathsf{OH}^{+} + \mathsf{H}}_{\mathsf{OOOOOOOO}} \xrightarrow{\mathsf{OH}^{+} + \mathsf{H}}_{\mathsf{OOOOOOOO}} \xrightarrow{\mathsf{OOOOOOOO}}_{\mathsf{OOOOOOOO}}$

- Need of accurate description:
 - Beyond mass scaling
 - Validity of rigid rotor
- Exchange reaction: H + OH⁺ $(v, j) \rightarrow$ HO⁺(v', j') + H
- 2 Open shell systems: OH⁺(³Σ⁺) + H(²S) doublet and quadruplet states

Paniagua et al., PCCP,(2014),16, 23594

MEP's for exchange: two mechanisms

- Good agreement WP vs. TI-ABC - Rigid rotor of the same order

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

Good agreement WP vs. TI-ABC, even at rather low energies!!Rigid rotor of the same order

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

 Introduction
 C⁺ + H₂(v,j)
 O⁺ + H₂(v,j)
 OH⁺ + H
 Conclusions

 000000
 00000000
 00000000
 000
 00

Doublet: H + OH⁺ (v = 0, j = 0, J = 0)

- Many resonances
- Comparison difficult using different coordinates
- Even ABC has problems when $D_{H-OH^+} \leq D_{OH^+}$

Non statistical energy transfer inefficient

Non statistical energy transfer inefficient

Energy redistribution increases - as energy decreases

- and mass difference reduces

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

Introduction	$C^{+} + H_{2}(v,j)$	$O^{+} + H_{2}(v,j)$	OH ⁺ + H	Conclusions
			00000000	

Cross sections: inelastic and exchange for quadruplet

$$H+OH^+$$
 ($v=0, j_i=0, 1$) $\rightarrow HO^+$ ($v=0, j_f=0$) + H

```
For quadruplet:

8 10<sup>4</sup> iterations

J=0,5,10,15,20,25,30,40,..., 110

\Omega_{max}= 15

j_i = 0, 1
```

For doublet: 2.5 10^5 iterations and denser grids Calculations still in progress Ω_{max} = 19 $j_i = 0$

$$H+OH^+$$
 ($v=0, j_i=0, 1$) $\rightarrow HO^+$ ($v=0, j_f=0$) + H

$$H+OH^+$$
 ($v=0, j_i=0, 1$) $\rightarrow HO^+$ ($v=0, j_f=0$) + H

ANR hydrides, Grenoble, 4 de Février 2015

$$H+OH^+$$
 ($v=0, j_i=0, 1$) $\rightarrow HO^+$ ($v=0, j_f=0$) + H

Cross sections: inelastic and exchange for doublet

H+ OH⁺ (
$$v = 0, j_i = 0, 1$$
) \rightarrow HO⁺ ($v = 0, j_f = 0$) + H

$j_i = 0$: Preliminary

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

Cross sections: inelastic and exchange for doublet

H+ OH⁺ (
$$v = 0, j_i = 0, 1$$
) \rightarrow HO⁺ ($v = 0, j_f = 0$) + H

Octavio Roncero

ANR hydrides, Grenoble, 4 de Février 2015

Introduction	C ⁺ + H ₂ (v,j)	$\begin{array}{c} O^+ + H_2(v,j) \\ \circ \end{array}$	OH ⁺ + H	Conclusions
00000	0000000		00000000	●○
Outline				

- Introduction
- 2 $C^+ + H_2(v,j)$
- 3 O⁺ + H₂(v,j)
- 4 OH+ + H

 $\begin{array}{cccc} & & C^+ + H_2(v,j) & & O^+ + H_2(v,j) & &$

- Chemical pumping improves the description of the flux of relatively high rotational excitations of hydrides
- For low rotational excitations, inelastic scattering with H and H₂ becomes dominant
- Collisions with H(²S) imply several electronic states for open shell hydrides like OH⁺(³Σ⁻)
- Exchange reactions have a considerably lower cross section than inelastic collisions
- In the quadruplet case, with a relatively shallow well, the agreement between rigid rotor and exact (including inelastic+exhance) is very good. This has to be checked for the doublet state with a deep insertion well.
- A proper electronic partition function need to be included in open shell systems
- Also the recoupling with the electronic spin should be done to provide results comparable with the observations