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Abstract 

Four groups of college students were each given two base-rate 

problems. Three of the groups were given an aid with the first 

problem: (a) An instruction to list factors or aspects that were 

relevant to solving the problem, (b) a fill-in-the-blank algorithm 

that provided the correct solution, or (c) a seven-page tutorial 

that explained base-rate problems and showed how to solve them 

using a 2 x 2 table. No aid was provided for the second problem. 

The control group replicated previous findings in disregarding the 

base-rate information. The "list factors" group showed no 

improvement over the control group. The algorithm group showed 

distinctly better performance for the first problem but were the 

same as the control group for the second problem. The tutorial 

group did best: 42% of answers to the first problem and 31% of 

answers to the second problem were within+ .10 of the correct 

answer. An error analysis identified a conceptual weakness in the 

tutorial; a high rate of arithmetic errors was also found. College 

students appear to lack the knowledge needed to solve base-rate 

problems but they can be taught this knowledge relatively easily. 



Structuring Base Rates 

3 

Structuring as an Aid to Performance in Base-Rate Problems 

A frequently-studied class of inference problems requires the 

combination of two kinds of probabilistic information, base-rate 

information, that is, information about the population of events, 

and diagnostic information, that is, information about the specific 

event being considered. The base-rate fallacy is the tendency for 

people to disregard base rates when given these inference problems. 

For example, consider the following story problem: 

Two companies operate in a given city, the Blue and 

the Green (according to the color of cab they run). 

Eighty-five percent of the cabs in the city are Blue and 

the remaining 15% are Green. A cab was involved in a 

hit-and-run accident at night. A witness later 

identified the cab as a Green cab. The court tested the 

witness' ability to distinguish between Blue and Green 

cabs under nighttime visibility conditions. It found 

that the witness was able to identify each color 

correctly about 80% of the time, but confused it with the 

other color about 20% of the time. 

What do you think are the chances that the errant 

cab was indeed Green, as the witness claimed? 

(Bar-Hillel, 1980, PP• 211-212). 

In response to this problem, which is becoming something of a 

classic, most subjects answer 80%. Similar responses have been 

found for story problems that are structurally similar but have 
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different cover stories (e.g., Lyon & Slovic, 1976). The 

normatively correct answer, derivable by Bayes' Theorem, is a 

probabilistic merging of both pieces of information provided in the 

story, resulting in a probability of .41. The subjects' response 

of .80 indicates a reliance on the diagnostic information given in 

the story (here, the witness' testimony) and a disregard for the 

base-rate information (here, the relative number of each color of 

cab in the city). 

Subjects do not always disregard base rates. Research has 

suggested that they do so only when they believe that the base-rate 

information is not relevant (Bar-Hillel, 1980). Such information 

can be made to seem more relevant, for example, by changing, in the 

above story, the information "85% of the cabs in the city are Blue" 

to "85% of the cab accidents in the city involve Blue cabs" 

(Tversky & Kahneman, 1980). This wording apparently evoked a 

causal link between the population of cabs and the accident being 

considered. This causal connection heightened the apparent 

relevance of the base rate (see also Ajzen, 1977). 

Most of the research on the base-rate fallacy has focused on 

variations in the stories, rather than on changing the subjects 

(Bar-Hillel, 1983; Tversky & Kahneman, 1982). In contrast, the 

focus of the present study was to explore the effect of different 

kinds of aids that might help the subjects overcome the base-rate 

fallacy. One approach that has been tried is to present the 

subjects with experience, via slides sequentially presenting the 
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population of cases to the subjects (Christensen-Szalanski & Beach, 

1982). That approach was found to be effective, but has been 

criticized on the grounds that the subjects did not have to 

integrate the two pieces of information in such a procedure; they 

could simply count the relative frequency of the desired 

co-occurence (Beyth-Marom & Arkes, 1983). Moreover, generalization 

of the improvement to other problems was not tested. 

A class of aids called "focusing techniques" has been explored 

by Fischhoff and his colleagues (Fischhoff, Slovic & Lichtenstein, 

1979; Fischhoff & Bar-Hillel, 1984). This approach uses 

instructions (e.g., "If you only knew the proportion of Green cabs 

in the city, what would you think is the probability that the cab 

was Green?") or problem variations (e.g., presenting the same 

subject with three cab problems, in which the proportion of Green 

cabs was first 2%, then 98%, then 15%) to focus the subject's 

attention on the base-rate information. These aids did improve 

performance, in the sense that the median response was closer to 

the optimal answer. Unfortunately, they were equally effective in 

changing subjects' responses to two other problems which were 

superficially like the cab problem but for which it is optimal to 

disregard the "base-rate" information. For these problems, 

performance was worse using the aid. This result suggests that the 

focusing techniques used in that research did not improve the 

quality of subjects' thinking about the problems; rather, they 

created demand characteristics that led the subjects to different 

responses. 
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The present paper explores the effectiveness of three aids. 

The first is a simple instruction to list factors that might be 

relevant in answering the question. The second is an algorithm; 

subjects were given the correct process to follo~ to solve the 

problem, in the form of a fill-in-the-blanks algorithm; they were 

not told, however, why this set of calculations was correct. Both 

these aids have been shown to be effective in a task of estimating 

unstructured uncertain quantities such as "How many cigarettes were 

sold in the U.S. last year?" (MacGregor, Lichtenstein & Slovic, 

1984). In that study, the performance of subjects given the 

algorithm was greatly superior to that. of a control group; even the 

"List Factors" group showed some improvement. Presumably, the 

algorithm, and, to a lesser extent, the "List Factors" instruction, 

helped the subjects to access and organize their knowledge. 

The algorithms previously used required the subjects to 

estimate some quantities; for example, in the Cigarette algorithm 

subjects had to estimate the population of the U.S., the proportion 

who smoke, and the average number of cigarettes a smoker smokes in 

one day. In contrast, the algorithm for a base-rate problem 

requires no estimation. To use it, one need only extract from the 

problem the necessary information, put it in the appropriate 

spaces, and correctly follow the instructions for arithmetic 

manipulations on the numbers. Thus, we would expect radical 

improvement in performance when the algorithm is available. 
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One difficulty with the correct solution of base-rate problems 

is that it requires understanding of a moderately complex 

integration rule. Even an approximation to the correct answer 

requires an understanding that the two pieces of information need 

to be played off against each other, one indicating that the 

desired probability is high, the other that it is low. The 

algorithm here used, although it does lead to the correct answer, 

may not illuminate any understanding of the integration process 

involved. Without such understanding, subsequent performance would 

be expected to return to unaided levels. To test this conjecture, 

we presented each subject a second, similar base-rate problem 

without an algorithm. 

For our final aid, we wrote a lengthy tutorial in which we 

tried to explain both how to do base-rate problems and why our 

approach was correct. Our goal was to teach the solution to 

base-rate problems so that subjects would understand the process 

involved. 

Method 

Subjects. The subjects were 305 paid volunteers who responded 

to ads in the University of Oregon student newspaper. The present 

tasks were completed along with several other unrelated paper-and­

pencil tasks in a one- to two-hour period. Except as noted below, 

all subjects were run in groups of 30 to 60 people in a large 

university classroom. 
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Design. All subjects were given two base-rate problems, here 

called the Lightbulb problem (adapted from Lyon & Slovic, 1976) and 

the Dyslexia problem; both are shown in Table 1. Approximately 

half the subjects received the Lightbulb problem first; the others 

received the Dyslexia problem first. The two administrations were 

separated by two unrelated tasks. For all subjects, the second 

problem was presented in its Control form, the form shown in Table 

1. The first problem was presented in four different forms: 

1. Control. The Control form was given to 41 subjects. 

2. List. The List form was given to 86 subjects. In the 

List form, after the problem was presented, the instructions read: 

Before answering the question, we would like you to list 

the things one should consider in answering this 

question. These things could be a list of factors or 

components that would be useful in arriving at an answer 

or they could be ways for going about arriving at an 

answer. Make your list here: 

[seven blank lines] 

Now, answer the question: 

"What is the probability that this bulb is really 

defective? [the child really has dyslexia]? 

You can probably give a good estimate if you think 

hard and carefully. 

Answer ----
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Insert Table 1 about here 

3. Algorithm. The Algorithm form, given to 76 subjects, started 

with this instruction: 

In this task we would like you to work through a 

problem by carefully following a number of detailed 

steps. First, you will read through the problem. Then, 

you will follow a series of steps, some that ask you to 

pull information directly from the problem itself, and 

others that ask you to carry out basic arithmetic. 

Please follow all the directions carefully. Pay special 

attention to the accuracy of your arithmetic. This is 

not a test of your ability to do arithmetic, but accuracy 

of computation is essential to what we are asking you to 

do. 

[The problem followed. J 

After the problem was an algorithm composed of thirteen steps, as 

shown for the Lightbulb problem in Table 2. On the page following 

the algorithm, two additional questions were asked: 

Do you think the answer in (M) is a sensible answer to 

the question, "What is the probability that this 

lightbulb is really defective [the child really has 

dyslexia]? Yes No 

If you answered No, what do you think is a sensible 

answer? 

9 
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Insert Table 2 about here 

4. Tutorial. The Tutorial form, given to 102 subjects, was a 

six page, single spaced essay. The seventh page presented the 

problem with space to work it and a summary of the seven steps to 

solution discussed in the essay. The last page asked, "Does your 

answer seem sensible to you? Yes No " • However, unlike the 

Algorithm instructions, a more sensible answer was not requested. 

Instead, subjects responding "No" were urged to: 

••• review the steps above. You may have made an 

error in following the procedure or in doing the 

arithmetic. Check for errors and correct any you find. 

OR it may be that your intuitions are wrong and the 

procedure is correct. Think again about the importance 

of taking into account both the population information 

and the specific information. 

The tutorial, shown in the Appendi~, was based on an approach 

using 2 x 2 tables rather than Bayes' Theorem, in accordance with 

Shaughnessy's (1983) view that 2 x 2 tables "help people focus on 

the restricted sample space which plays so vital a role in 

conditional probability problems" (p. 344; emphasis in original). 

It was an expansion of the explanation of base-rate problems given 

by Beyth-Marom, Dekel, Gombo, and Shaked (in press). 
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The tutorial was given to 35 subjects in the usual large 

classroom groups and to 67 subjects who were run in small groups 

(4-7 people), with fewer other tasks and with small battery-powered 

calculators available for use. 

For all four groups, none of the subjects knew when they 

completed the first form that they would later be given the second, 

Control form (one Tutorial subject asked the experimenter whether 

she was supposed to remember it all and was told no). 

Results 

Lightbulb ~ Dyslexia. In order to compare the answers given 

to the two different problems, we counted the number of correct 

answers (for this count we required two-digit accuracy) and also 

tallied the number of answers for each problem in seven categories: 

1. Too Low: Answers falling more than ,10 below the correct 

answer. For the Lightbulb problem, this range was .00-.30; for 

Dyslexia, .00-.17. 

2. About Right: Answers that were within .10 of the correct 

answer, including all correct answers. For the lightbulb problem, 

this range was .31-.51; for Dyslexia, .18-.38. 

3. Middling: Answers greater than .10 above the correct 

answer but below the diagnosticity (Lightbulb, .39-.94; Dyslexia, 

.52-.79). 

4. Diagnostic: Answers that were equal to the diagnosticity 

value stated in the problem (Lightbulb, .80; Dyslexia, .95). 

5. Way High: Answers greater than the diagnosticity but not 

exceeding 1.00. 
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6. Outside: Negative answers and answers greater than 1.00. 

7. None: No numerical answer given. 

A comparison of the distributions of responses between the two 

problems showed that the problem with the larger range for a given 

category had more reponses in that category. For example, across 

all groups, 34% of the responses fell Too Low for the Lightbulb 

problem but only 20% were Too Low for Dyslexia. For the Dyslexia 

problem, 19% of all responses were Middling whereas only 6% were 

Middling for Lightbulb. However, the response categories of 

special interest had equal ranges across the two problems, and for 

these, About Right, Diagnostic, Outside, and None, the 

distributions for the two problems were remarkably similar. Thus 

we collapsed the data across the two problems. 

Large_!!!. small groups. The tutorial condition was given in 

both large group and small group administration. The distributions 

of responses in the seven categories, collapsed across problems, 

did not differ for the two administrations. Indeed, exactly 'the 

same percentage of subjects gave the right answer. We thus 

collapsed the data across this variable, except for the error 

analyses to be discussed later. 

Main results. The primary results of the experiment, the 

proportion of subjects giving answers in each category for each 

group, are shQwn in Table 3. The percentage of exactly correct 

responses are shown in parentheses because these percentages are 

included in the About Right category. The first column gives 
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results for the Control group for both administrations; thus it is 

based on two responses from each of 41 subjects. The colunns 

labeled "2nd" show the responses to the second adninistration for 

the other three conditions; this was always the Control form. 

Insert Table 3 about here 

The results show that the List condition had no effect. Both 

the first (List) and second (Control) administrations showed 

results highly similar to the Control group, which, in turn, had 

results similar to previous experiments (e.g., Bar-Hillel, 1980). 

In contrast, the Algorithm and Tutorial conditions showed striking 

effects; no subjects gave a reponse equal to. the diagnosticity 

value and about 40% gave responses close to the correct response. 

For the Algorithm group, this improvement did not generalize to the 

second, Control, problem; that distribution looks like the Control 

distribution. One might suppose that if the algorithm would have 

any generalizable effect, that effect might be limited to the 29 

subjects who arrived at about the right answer when using it. 

However, when presented with the second, control problem, 16 of 

these 29 subjects (55%) responded with the diagnosticity and only 

one gave about the right answer. 

The Tutorial group did appear to learn something. When they 

were given the Control problem, 31% gave about the right answer 

whereas only 9% gave the diagnosticitity value. On this second 
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problem 23% were able to come up with the correct answer accurate 

to two decimal places, although they had no guidance in front of 

them for doing so. 
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_!!! your answer sensible? After completing the first problem, 

the subjects in the Algorithm and Tutorial groups were asked 

whether the answer arrived at seemed sensible to them. The answers 

to this question are shown in Table 4. For both groups, the 

majority of subjects who answered the question said yes. For 

neither group was the proportion of Yes answers significantly 

different for those whose answer was about right than for the other 

subjects. 

Insert Table 4 about here 

The Algorithm group were then asked, "If you answered No, what 

do you think is a sensible answer?" Only 20 of the 26 "No" 

subjects gave a revised answer. Of these revised answers, only one 

was close to correct; this subject had perfectly performed the 

algorithm, arriving at an answer of .41 to the Lightbulb problem, 

but said that a sensible answer was .35. Eight subjects gave the 

base rate, six subjects gave the diagnosticity, and there were five 

other responses. In all, 12 of the 20 revised responses were in 

the Too Low range, supporting the finding shown in Table 4 that 

most of the Algorithm subjects who had originally calculated a low 

number found it sensible. 



Structuring Base Rates 

15 

Errors. The subjects in the Algorithm and Tutorial tasks made 

numerous errors. We categorized and tallied all errors. Table S 

shows the errors of the Algorithm group. The results are shown 

separately for those who received the Lightbulb problem and those 

who received the Dyslexia problem because we found significant 

differences between the two groups. The Dyslexia group were 

particularly prone to the error of taking the wrong information 

from the story. The Dyslexia story differs from the Lightbulb 

story (and from stories used in previous research) by expressing 

the two pieces of diagnostic information in two different ways: 

••• For children who really have dyslexia, the 

screening test is positive (indicating dyslexia) 95% of 

the time. But it also gives a positive (dyslexia) result 

for 5% of the normal children, the ones who do not have 

dyslexia. 

Many subjects were apparently confused by this wording, so that 

when the algorithm asked, "What percentage of the time is the 

screening test able to correctly identify children that actually do 

not have dyslexia?", 45% of the subjects filled in 5%. One subject 

went so far as to write us a note in the margin saying that this 

question was incorrectly worded. 

Insert Table 5 about here 
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The algorithm several times required subjects to copy a 

previous calculation into a new spot. About a third of the 

subjects made errors in following these simple directions. 

We categorized arithmetic errors as (a) errors in sign, (b) 

addition or subtraction, and (c) multiplication or division. 

16 

Within the multiplication or division errors we futher distiguished 

decimal errors, upside-down division, and other errors. Upside­

down division is the calculation of the inverse of the indicated 

division; for example: 

50 + 2 = • 04 or 2 + 50 = 25 • 

The Dyslexia subjects showed a significantly greater frequency of 

2 one or more arithmetic errors, 'X; = 7.03, p < .Ol, a finding we 

cannot explain. 

An incomplete algorithm received only one tally for that 

reason, regardless of how many steps were omitted. 

The errors made by the Algorithm subjects socetimes led to 

absurd answers; as shown in Table 3, 22% of the answers were· 

outside the range of permissible probabilities, either negative or 

greater than 1.00. The largest answer was 4934.4; this subject 

made three decimal errors, one copying error, one multiplication 

error, one sign error, and ended with an upside-down division. The 

answer was judged not to be sensible; the sensible answer given was 

2i.. 

Overall, Table 5 shows a discouraging inability of our 

subjects, the vast majority of whom are college students, to follow 
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simple instructions and perform simple arithmetic operations. 

Table 6 tells a similar story about the Tutorial group. 

Insert Table 6 about here 

The coding of errors in Table 6 is different from that used in 

Table 5 because we were interested primarily in conceptual errors. 

Thus the errors are organized according to the steps we taught the 

subjects to use to solve the problem. 

Labeling the rows and columns was difficult for many subjects. 

Our code of "Confusing" means that the labeling confused the coder 

(the first author); it may not have confused the subject. "Wrong" 

labels included, for example, labeling one of the rows "Don't have 

dyslexia but test shows they do" or labeling the columns "Dyslexia 

children: test used/test not used" and the rows "Non-dyslexia 

children: screening test used/test not used." 

In Table 6 the subcategory ''.Bollixed" means that the coder was 

unable to determine (or imagine) where the numbers came from. 

Most Tutorial subjects were able to start with 1000 as a total 

and correctly allocate that according to the base-rate information 

given in the problem. Previous attempts to write a tutorial led to 

many errors in identifying the base rate; the present tutorial 

strongly emphasized this aspect, apparently with reasonable 

success. In contrast, our subjects had great difficulty in 

allocating numbers to the four cells. The most common error was to 
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put the numbers in the wrong cells, specifically (as exemplified by 

the Dyslexia problem): 

First Graders 

Have Dys. No Dys. 

Have Dys. 19 931 

Test says: 

No Dys. 1 49 

20 980 1000 

The tutorial did not warn about this particular error. When no 

other errors are made, this error yields an answer equal to the 

base rate. Base-rate answers were given by 17% of the Tutorial 

subjects. 

Although both the subjects given the Tutorial in a large-group 

setting and those given it in a small-group settinb produced the 

same percentage of correct answers (31%), there was a significant 

difference,~= 7.37, p < .01, in the proportion of subjects who 

made one or more arithmetic errors, 43% for the large groups but 

only 18% for the small groups, for whom hand-held calculators were 

available. Otherwise, the distributions of errors did not differ 

for the two types of administration. 

Discussion 

Base-rate problems are difficult problems.· Most college 

students cannot do them correctly without substantial help. 

Indeed, Eddy (1982) has shown that the authors of authoritative 

medical texts, who presucably have much more education and 
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understanding the significance of base rates in interpreting 

mammograms (tests for breast cancer). 
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Our least potent aid, asking subjects to list relevant 

factors, was entirely ineffective. Tilis result is consistent with 

the view that subjects do not have the knowledge necessary to solve 

base-rate problems. Thus, thinking harder about the problem 

doesn't help. 

The algorithm improved performance only when it was in front 

of the subjects; it had no effect on the second, unaided problem. 

Our instructions did not suggest that the subjects should study the 

algorithm or try to see what process it represented. Apparently, 

the subjects got caught up in putting the right numbers in the 

right places without gaining any insight into the problem or its 

solution. 

The effective aid was a specially-written tutorial on how to 

solve base-rate problems. When the tutorial was in front of them, 

42% of these subjects arrived at about the right answer. Moreover, 

when presented with the second, control problem, 31% gave about the 

right answer and only 9% gave the diagnosticity. 

There were two main barriers to success in the tutorial 

condition. First, the tutorial appears, in retrospect, to have 

given insufficient attention to the task of allocating numbers to 

cells. This conceptual problem might be rectified by re-writing 

and expanding the tutorial. 
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Second, the subjects' elementary arithmetic skills were weak. 

When no calculator was made available, 43% of our Tutorial subjects 

made one or more arithmetic errors. For the Algorithm subjects, 

who were not given the minimal arithmetic examples contained in the 

tutorial, the arithmetic error rate was 51%. One would not expect 

to overcome this difficulty easily. We wonder how those people 

balance their check books or assess bargain prices. Presumably, 

they just don't. 

Nonetheless, the tutorial approach holds great promise. 

Although it appears that most college students do not start with 

the knowledge required to solve base-rate problems, they can be 

taught it successfully in a relatively short period of time (about 

half an hour) without individual tutoring, practise, or feedback. 

Two further problems remain. First, people who are taught to 

perform well on base-rate problems may not be able to discriminate 

between base-rate problems, in which their new training is 

relevant, and other, somewhat similar problems that cannot be 

solved using this approach, as the results of Fischhoff and Bar­

Hillel (1984) suggest. Second, those trained in the laboratory on 

story problems may not be able to recognize base-rate problems that 

arise elsewhere. 

If a tutorial could be written that solved the first problem-­

when not to use the technique--it might form the basis for a larger 

educational program to address the second problem--recognizing base 

rates in daily life. We share the optimism of Nisbett, Kranz, 
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Jepson, and Kunda (1983), who suggested that "training in 

statistics should promote statistical reasoning even about mundane 

events of everyday life ••• " (p. 347). 
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Table 1 

The Base Rate Problems 

Light Bulb 

Consider the following problem: 

A light bulb factory uses a scanning device which is supposed 

to put a mark on each defective bulb it spots in the assembly line. 

Eighty-five percent (85%) of the light bulbs on the line are OK; 

the remaining 15% are defective. 

The scanning device is known to be accurate in 80% of the 

decisions, regardless of whether the bulb is actually OK or 

actually defective. That is, when a bulb is good, the scanner 

correctly identifies it as good 80% of the time. When a bulb is 

defective, the scanner correctly marks it as defective 80% of the 

time. 

Suppose someone selects one of the light bulbs from the line 

at random and gives it to the scanner. The scanner marks this bulb 

as defective. 

What is the probability that this bulb is really defective? 

(table continues) 
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Table 1 (continued) 

Dyslexia 

Dyslexia is a disorder characterized by an impaired ability to 

read. Two percent (2%) of all first graders have dyslexia. A 

screening test for dyslexia has recently been devised that can be 

used with first graders. The screening test is cheap and easy to 

administer; it identifies those children who will later be given a 

more extensive test to determine for sure whether the child has 

dyslexia. The screening test is not completely accurate. For 

children who really have dyslexia, the screening test is positive 

(indicating dyslexia) 95% of the time. But it also gives a 

positive (dyslexia) result for 5% of the normal children, the ones 

who do not have dyslexia. 

A first grader is given the screening test and the result is 

positive, indicating dyslexia. 

What is the probability that the child really has dyslexia? 
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Table 2 

Algorithm for the Lightbulb Problem 

(A) Out of 1,000 light bulbs produced by the factory, how many are 

defective? Multiply the percentage of defective bulbs by 

1,000. (First convert the percentage value to a decimal value 

before multiplying.) 

1,000 x ---------= _____ (A) 

Proportion of 

Defective Bulbs 

(B) Subtract your estimate in (A) from 1,000 to get the number of 

bulbs out of 1,000 that are NOT defective. 

1,000 - (A) ___ -'----= ____ (B) 

(C) What percentage of the time is the scanner 

able to correctly identify light bulbs that 

are actually defective? (from the problem) 

(D) What percentage of the time.is the scanner 

---'---(C) 

able to correctly identify light bulbs that are 

actually not defective? (from the problem) ____ (D) 

(table continues) 
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Table 2 (continued) 

(E) Look over the following table: 

LIGHT BULBS ARE: 

Scanner 

Says IS 

Defective 

Scanner 

Says IS NOT 

Defective 

Actually Defective 

Box # 1 

Box# 2 

(A) 

Not defective 

Box II 4 

Box II 3 

+ 

(B) 

28 

(L) 

(F) Write the number of defective light bulbs from (A) on the line 

labeled (A) in the table above, just below Box #2. 

(G) Write the number of non-defective light bulbs from (B) on the 

line labeled (B) in the table above, just below Box #3. 

(H) Multiply the percentage value in (C) by your estimate from 

(A). (First convert the percentage value to a decimal value 

before multiplying.) 

(A) --- x (C) 

Write your value for (H) in Box #1. 

(table continues) 
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Table 2 (continued) 

(I) Subtract your value in (H) from your value in (A). 

(A ) - (H) == (I) 

Write your value for (I) in Box 1!2. 

(J) Multiply the percentage value in (D) by your estimate from 

(B). (First convert the percentage value to a decimal value 

before multiplying.) 

(B) X (D) = (J) 

Write your value for (J) in Box tl3. 

(K) Subtract your value in (J) from your value in (B). 

(B) - (J) = (K) 

Write your value for (K) in Box #4. 

(L) Add the numbers in Boxes #1 and #4. 

Box #1 + Box #4 = (L) --- --- ----
Write your value for (L) on the line labeled (L), to the right 

of the boxes. 

(M) To get the final answer, divide your value in Box #1 by your 

value for (L). 

Box #1 -:- (L) = (M) --- ---- ----
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Table 3 

Distributions of Answers, in Percentages, for All Groups 

Control List Algorithm Tutorial 

Both 

Too Low 21 27 20 24 30 30 35 

About Right 9 7 5 38 3 42 31 

{Exact) {4) {1) (0) (22) {O) (31) (23) 

Middling 15 14 23 7 11 6 12 

Diagnostic 48 43 45 0 51 0 9 

Way High 2 5 6 5 3 7 4 

Outside 0 0 0 22 1 4 4· 

None 5 5 1 4 1 11 5 

No. of Ss 86 76 102 

aEach of 41 subjects contributed two responses to this distribution. 



Structuring Base Rates 

31 

Table 4 

Frequencies of Answers~ the Sensibleness Question 

Too Low 

About Right 

Too High 

Outside 

Total 

Not answered 

Yes 

14 

16 

6 

10 

46 

Algorithm 

4 

No 

3 

13 

3 

7 

26 

% Yes 

82 

55 

67 

59 

64 

Yes 

20 

36 

9 

3 

68 

Tutorial 

No % Yes 

13 

11 

6 

4 

0 

21 

61 

86 

69 

100 

76 
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Table 5 

Error Analysis for the Algorithm Group, in Percentages 

Wrong Info from Story 

One or More Copying Error 

One or More Arithmetic Error 

Sign Error 

Addition or Subtraction 

Multiplication or Division 

Decimal Error 

Upside-down Division 

Other 

Incomplete Algorithm 

No Errors 

Mean No. Errors per Subject 

Most Errors by One Subject 

All 

(n=76) 

47 

32 

54 

8 

13 

51 

22 

13 

30 

4 

22 

Light bulb 

( n=29) 

28 

28 

34 

7 

14 

31 

3 

41 

2.21 

14 

17 

3 

21 

Dyslexia 

(n=47) 

60 

34 

66 

9 

13 

64 

26 

19 

36 

4 

11 

2.89 

12 
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Table 6 

Error Analysis for the Tutorial Group, in Percentages 

Labeling: 

No error 

Confusing 

Wrong 

Allocating the base ratea: 

No error 

Used wrong rate 

Arithmetic error 

Bollixed 

Incomplete 

Allocation to cellsa: 

No error 

Used wrong rate 

Put in wrong cells 

Arithmetic error 

Bollixed 

Incomplete 

Crossing out irrelevant: 

No error 

Wrong 

Incomplete 

63 

22 

15 

84 

10 

3 

5 

2 

37 

8 

38 

11 

12 

5 

73 

15 

12 

(table continues) 
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Table 6 (continued) 

Final computation a: 

No error 67 

Used wrong numbers 4 

Arithmetic errorb 9 

Upside-down division 7 

Bollixed 7 

Incomplete 11 

Overall, one or more arithmetic error 26 

Overall, perfect or nearly perfectc 31 

aMore than one error can occur in this category; 

%'s total more than 100. bExcluding upside-down 

division. cErrors only in labeling. 

34 
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Appendix 

Tutorial (Lightbulb version) 

Consider the following problem: 

A cab was involved in a hit and run accident at night. Two cab 
companies, the Green and the Blue, operate in the city. You are given 
the following data: 

(a) 90% of the cabs in the city are Green and 10% are Blue. 
(b) a witness identified the cab as Blue. 

The court tested the reliability of the witness under the same 
circumstances that existed on the night of the accident and concluded 
that the witness correctly identified each one of the two colors 70% of 
the time and failed 30% of the time. 

What is the probability that the cab involved in the accident was 
Blue rather than Green? 

Research has shown that people often·have trouble answering problems 
like this. In this portion of today's experiment, we are presenting you 
with a mini-tutorial to see if instruction will help you solve such 
problems. Please read through the tutorial carefully. We have allowed 
time in the experiment for you to do that. 

Tutorial ,.. 

The class of problems here addressed are problems for which two 
kinds of information are given and a probability is requested. One kind 
of information is about the population or populations in question. The 
other kind of information is specific to the case at hand. 

In the problem given above, the population is the population of cabs 
in the city. The population information is that 90% of the cabs are 
Green and 10% are Blue. The specific information concerns the specific 
cab that was involved in a hit and run accident. The witness said that 
that specific cab was Blue. But we also know about this testimony that 
the witness is not perfectly accurate. The witness is able to correctly 
identify the color of the cab 70% of the time. 

The way most people usually go wrong in solving these problems is 
that they concentrate too much on the specific information and tend to 
neglect the population information. Maybe the specific information 
seems more immediately relevant to them. Or perhaps they just don't 
know how to go about combining the information to produce a single 
answer. Here is a way of doing just that: 



. Step 1. Draw a table.. Begin by drawing a "two-by-two" table, that 
is, a diagram with two rows and two columns. like this: 

Step 2. Label the table. We'll label the columns for the 
population information. The population is cabs in the city, which are 
either Blue or Green. The rows get the specific information, that is, 
the witness testimony, which was Blue--but for completeness, we'll also 
label the other row Green, because the witness could have said Green. 
So now our table looks like this: 

Cabs in the City 

Blue Green 

Blue 

Witness said: 

Green 

Labeling the table is not quite as simple as it may first appear. 
Notice that the sub-labels, "Blue" and "Green", are the same for the 
rows and the columns. This should generally be true in such problems. 
It would be a mistake to label the rows according to whether the witness 
was accurate or inaccurate: 

Right 
Witness was: 

Wrong 

The problem could be solved with such labeling, but not using the method 
we are teaching you here. In general, the sub-labels are the two 
possible states of the world. The main labels (e.g., "Cabs in the City" 
and "Witness said:") indicate the source of information. One source is 
always population information (here, the relative number of cabs in the 
city); the other source is always specific information (here, what the 
witness said). 



Notice that if there were numbers in the four cells of the table, we 
could calculate row totals and column totals and a grand total for the 
whole table. The places for these totals are shown below with dashed 
lines. 

Cabs in the City 

Blue Green Row 
,--~~~~~..-~~~~--Totals: 

Blue 

Witness said: 

Green 

Column Totals: ------ Grand Total 

Step 3. Assign an arbitrary grand total. To get started, we'll 
fill in the grand total. That should be the total number of cabs in the 
city. But we don't know how many cabs there are in the city. So we 
pick an arbitrary total of 1,000. We could use 10 or 100 (or any other 
number), but using 1,000 will make later calculations easier. 

Cabs in the City 

Blue Green 

Blue 

Witness said: 

Green 

/000 

Step 4. Estimate the population totals. If there were 1,000 cabs 
in the city, how many of them would be Blue? According to the story, 
10% are Blue. That means 10 out of every 100 or 100 out of every 1,000 
are Blue. That number, 100, is the left column total. The rest are 
Green. So 1,000 - 100 • 900 is the right column total. We put these 
column totals into the table: 

Cabs in the City 

Blue Green 

Blue 

Witness said: 
Green 

JOO '100 /000 



WARNING. The method we're teaching you for solving these problems 
won't work if you start out estimating the wrong totals. It's important 
in this step to correctly identify which part of the problem gives 
population information and which gives specific information. The 
population information is general, background information that does not 
indicate any specific case. The specific information fingers a 
particular case. 

Step 5. Fill in the cells. Working with each total, divide it 
among its two cells. First, for the 100 Blue cabs, how many would the 
witness correctly see as Blue, and how many would the witness 
incorrectly see as Green? The story states that the witness is correct 
70% of the time. So: 

100 
X .70 
---ro is the number of Blue cabs the witness would correctly 

call Blue, and the remaining, 100 - 70 • 30, are the number of Blue cabs 
the witness would incorrectly call Green. 

Now consider the 900 Green cabs. Again the witness' accuracy is 
70%: 

900 
X .70 

630 is the number of Green cabs the witness would have 
correctly called Green. This number, 630, goes in the Green-Green cell. 
The rest of the Green cabs, 900 - 630 • 270, is the number of Green cabs 
the witness would have incorrectly called Blue. 

Our table now looks like this: Cabs in the City 

Blue Green 

Blue 10 ·270 
Witness said: 

Green 30 l,30 

/00 C/00 /000 

Comment. Notice that we now could, if we wished, find the last two 
totals, the total number of times the witness would have said "Blue," 
rightly or wrongly: 

70 + 270 • 340 
and the total number of times the witness would have said "Green," 
rightly or ~rongly: 

30 + 630 • 660. 
These totals are not intuitively obvious. The reason is that these 

totals are the total number of times the witness says "Green" and 
.. Blue ... What the witness says depends not only on the witness' accuracy 
but also on the relative proportions of Blue and Green cabs the subject 



might have seen. You have to take both these facts into consideration 
to calculate the totals. In contrast, the population totals make a lot 
of sense, because they depend on only one kind of information. not two 
kinds. The total number of Blue cabs in the city is directly calculated 
as a percentage of the total number of cabs, regardless of what the 
witness might testify. This distinction is important because it shows 
you another way of telling, in any problem, which is the population 
information (that you start with in Step #4) and which is the specific 
information. The population information is information that directly 
translates into number totals. The specific information is information 
that does not translate into number totals because those number totals 
depend not only on the specific information but also on the population 
information. 

In summary, here are two criteria (one discussed earlier) for 
telling which is which: 

The population information: 
(a) is general, background information and 
(b) can be translated directly into number totals. 
The specific information: 
(a) specifies or identifies one case and 
(b) cannot be directly translated into number totals because those 

totals also depend on the population information. 

Step 6. Cross out the false. The witness in the story in fact 
testified that the cab was Blue. So the number of times the witness 
might have said "'Green" is irrelevant to the problem. We cross out 
these false cells so we won't be tempted to use them in the next step: 

Cabs in the City 

Blue Green 

Blue 70 270 
Witness said: 

Green 

JOO '100 /000 

Step 7. Find the needed probability. The two remaining cells are 
what we need to answer the question. They show that the witness would 
have said "Blue" correctly 70 times and would have said "Blue" 
incorrectly 270 times. From these two numbers we can get our 
probability. 

If you're not used to thinking about probabilities, a nice way to 
think about them is to imagine that you fill an urn with 70 balls 
labeled "cab is really Blue" and 270 balls labeled "cab is really 
Green," for a total of 340 balls. Now sample one ball at random from 



the urn. What is the probability that the ball will be labeled "cab is 
really Blue?"' The answer is the number of "cab is really Blue" balls 
divided by·the total number of balls in the urn: 

d 10 
70+270 

= 10 = .2/ (well, it's really .2058 ••• but we rounded it) 
3~0 

In other words, we divide the number in the TARGET cell by the sum of 
the two numbers left in our table. The TARGET cell is the one cell 
identified by both the specific information given in the problem ("a 
witness identified the cab as Blue") and the question asked at the end 
of the problem ( .. What is the probability that the cab involved in the 

· accident was Blue?"). So the target cell is the "Cab is Blue/Witness 
sald Blue".cell. 

That's it. The answer, .21, is the probability that the hit-and-run 
cab was a Blue cab. 

Are you surprised by the answer? Most people think that the correct 
answer should be .70, the same as the witness' accuracy. They tend to 
forget the population information, that is, they fail to notice that 
because there are so many more Green cabs than Blue cabs, there are also 
many more opportunities for the witness to be wrong when saying Blue. 

Comment.· While it's not necessary to solve the problem, it might 
help you to understand what's going on by thinking about this: Yhat if 
the witness had testified that the cab was Green? Look back at the last 
table, the one with two crossed-out cells. Those crossed-out cells show 
30 really Blue cabs and 630 really Green cabs. So the probability that 
the cab is really Green, if the witness said it was Green, is: 

,30 
-------- -= t,30 + '$0 

This probability is higher than either the proportion of Green cabs in 
the city (90%) or the accuracy of the witness (70%). That's because in 
this case both pieces of information--the population proportion and the 
witness' testimony, point in the~ direction, towards Green. 

Intermediate probabilities like .21 are found only when the two 
pieces of information point in opposite directions: the witness said 
Blue but most cabs are Green. 

That's the end of the tutorial. On the next page is a problem for 
you to do. Before doing the problem: 

1. Review the tutorial to make sure you understand it. 
2. Ask any questions you have. 

When you are ready, proceed to the problem on the next page. We are 
interested in how effective the tutorial is in teaching you how to do 
such problems." So vhile you are doing the problem, feel free to: 

1. Review the tutorial again. 
2. Use a hand calculator. 
3. Ask questions. 



~lease work the following problem using the method just described. 
We've drawn you a table to work with. 

A light bulb factory uses a scanning device which is supposed to put 
a mark on each defective bulb it spots in the assembly line. Eighty­
five percent (85%) of the light bulbs on the line are OK; the remaining 
15% are defective. 

The scanning device is known to be accurate in 80% of the decisions, 
regardless of whether the bulb is actually OK or actually defective. 
That is, when a bulb is good, the scanner correctly indentifies it as 
good 80% of the time. When a bulb is defective, the scanner correctly 
marks it as defective 80% of the time. 

Suppose someone selects one of the light.bulbs from the line at 
random and gives it to the scanner. The scanner marks this bulb as 
defective. 

What is the probability that this bulb is really defective? 

------------ --------
-------------- ------

------------- -------· 

Step 1. Draw a table. Done. 

Step 2. Label the table. 

---------------------
----------- ----------

-----

Step 3. Assign an arbitrary grand total. Use 1,000. 

Step 4. Estimate the population totals. First decide which set of 
information is population information. Then divide the 1,000 into two 
parts, using information from the problem. 

Step 5. Fill in the cells. Divide each of your estimated totals among 
its two cells, according to the information in the problem. 

Step 6. Cross out the false. Cross out the two cells that are 
contradicted by the information given in the problem. 

Step 7. Find the needed probability. Write the relevant numbers in the 
top and bottom of the fraction and convert the fraction to a decimal 
answer. 

# in target cell 
Sum of U's in both cells = - - • , answer. 


