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Strong evidence supports that for older adults, hearing loss and difficulty with 

speech comprehension in noisy environments is the result of temporal processing 

deficits in central auditory structures such as the auditory cortex. There is a general 

canonical circuit model of layer by layer serial information flow through the auditory 

cortex from the thalamus, before information is projected back into inferior colliculus 

neurons. However the specific cortical circuits and cell types which regulate temporal 

processing through the auditory cortex are still unknown and not linked to behavior. 

The auditory cortex contributes to temporal acuity in receiving auditory stimuli. 

Temporal acuity is used, for example, for brief noise gap detection and discriminating 

between similar phonemes. Impairments to temporal activity can cause speech 

perception deficits. In this study, I tested gap detection behavior in mice. To do this, I 

measured how their startle responses were modulated by gaps in continuous background 

noise. The presence of the gap attenuates the startle response to the stimulus, so that 

measuring the startle response gives a measure of temporal acuity by assessing gap 

detection behavior. I used a technology called optogenetics to manipulate brain activity 

during this behavior. Optogenetics allows for the gaps to be paired with a laser pulse 
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that silences auditory cortex neurons and allowed me to see how gap detection is 

impaired by temporally precise suppression of auditory cortex. By probing cortex 

circuit mechanisms through layer-specific optogenetic silencing before and after gap, I 

found that layer-specific silencing of auditory cortex neuron populations in layers four 

and five suggests behavior in accordance with the canonical model.  
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Introduction 

Distinguishing speech in noisy environments can become increasingly difficult 

for older adults, as age-related hearing loss presents a communication challenge [1, 2]. 

This age-related loss of speech comprehension is the result of progressive central 

auditory processing disorders, which are common in people aged 65 and older. Cochlear 

implants are a form of surgical treatment which replace the input of lost or damaged 

hair cells with electrical signals to the cochleae. However, unlike deficits in peripheral 

auditory systems and the outer ear, as is the case with sensorineural hearing loss 

(cochlear damage) [3], central auditory processing disorders are caused by degeneration 

of central auditory structures so they cannot be treated with conventional hearing aids or 

cochlear implants [4-6]. Central auditory processing disorders are also caused by the 

degeneration of other auditory structures, including the auditory cortex of the temporal 

lobe and in some cases can occur without any outright measurable hearing loss 

(audiometric hearing loss) [7-9]. 

Lesion studies suggest that the auditory cortex contributes to temporal 

processing [10-12], which is the rate and accuracy with which we process auditory 

information. Loss of temporal processing acuity results in distortions and a larger 

window of time required for speech comprehension. A limitation of lesion studies is 

that the effects of specific cortical circuits, active cell types, or the dynamic processes of 

such circuits cannot be identified because the lesion destroys these processes. 

Additionally, most physiological studies of temporal processing mechanics are 

performed in anesthetized animals so that behavior is not accounted for [6, 13-19]. 
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Because of this, an understanding of temporal processing mechanisms in the auditory 

cortex has remained unclear. 

Gap detection is a well-established measure of temporal processing acuity and 

allows for phoneme discrimination [10-12, 20, 21]. The duration between the release of 

a stop consonant and the onset of vocalization, called voice-onset time, is one example 

of a brief noise gap which is integral to speech comprehension. Discriminating voice-

onset times allow listeners to distinguish between similar consonants such as "b-" and 

"p-" [22]. Impaired gap detection is linked to speech perception deficits and can often 

occur in elderly listeners, even those with normal audiometric hearing [23-26]. Gap 

detection is responsible for a pre-pulse inhibition (PPI) effect, when a silent gap is 

inserted into continuous background noise. PPI is a sensorimotor phenomenon in which 

a weak pre-stimulus cue inhibits the reaction to a subsequent strong startling stimulus. 

In this case, gaps as brief as 2–4ms will noticeably attenuate the startle response 

triggered by a subsequent loud noise burst [27-29]. PPI occurs a very wide array of 

species ranging from mice [10], to zebra finches [30], to humans [20]. The duration of 

the briefest detectable gap is called the minimum gap threshold (MGT). Auditory cortex 

neurons respond with a burst of spiking of activity at the end of gaps, which is called 

the gap termination response (GTR). The GTR activity and noticeable startle 

attenuation share the same MGT, and both increase as gap duration increases (Figure 1). 

This suggests that the startle attenuation caused by the PPI phenomenon and spike of 

GTR activity are linked and only occur in response to perceivable gaps [10, 12, 18]. 

Recent studies in our lab have shown that perceptual gap detection is in fact mediated 
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by the GTR in auditory cortex neurons [28]. This allows startle attenuation to act as a 

measure of gap detection, and also as a measure of auditory cortex activity.  

 
Figure 1. Gap termination response (GTR) with increasing gap duration. 

The GTR activity typically appears following the gap (indicated by the purple lines) 

and peaks between gaps of 2-32ms. Cortical activity (black bars) is also seen following 

gap onset as gap duration increases. Unpublished data from single cell recordings 

collected by Ira Yavorska in the Wehr lab. 

Interestingly, the primary auditory cortex is not necessary for many auditory 

tasks which govern temporal processing, including PPI of startle responses, frequency 

discrimination, and fear conditioning [11, 28, 31-33]. Inferior colliculus (IC) neurons 

can precisely encode gap stimuli and regulate PPI, yet they are not sufficient to mediate 

gap detection in the presence of auditory cortex lesions. Previous studies from our lab 

have shown that gap detection can be enhanced with fear conditioning, demonstrating 
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that the auditory cortex is involved with associative learning, a phenomenon termed 

“fear potentiation of gap detection” [27, 34]. Our broad hypothesis is that the auditory 

cortex’s involvement with temporal processing is to assign meaning to temporally 

structured sounds such as phonemes in the form of associative learning. A novel aim of 

this study is to use optogenetics and electrophysiology in conjunction with behavioral 

gap detection tasks to directly test the roles of specific neurons and circuits necessary 

for gap detection in mice.  

 
Figure 2. Candidate serial circuit model. 

The current canonical model of information processing circuitry from the PPI pathway 

through the auditory cortex depicted as a candidate circuit model [35]. PPTg: 

pedunculopontine tegmental nucleus. PnC: caudal pontine reticular nucleus. 

The canonical model of auditory cortex circuit signaling is that information flow 

is serial (i.e., following a linear sequence) (Figure 2). In this model, auditory sensory 
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information received from thalamic input is processed though layered auditory cortex 

pyramidal neurons (PNs) L4→L2/3→L5/6 before projecting subcortically back to the 

PPI pathway though the IC [32, 36, 37]. PV and SOM are inhibitory interneurons (INs) 

that are proposed to suppress L2/3 and L5 respectively [38]. An aim of this study is to 

determine which layered sub-populations of auditory cortex PNs are necessary for gap 

detection. Specifically, I am measuring the effects of optogenetically suppressing layer 

four and layer five neurons on gap detection performance. The canonical circuit model 

predicts that suppression of L2/3, L4, or L5/6 PNs should block gap detection, with 

equivalent effect sizes for individual suppression of each layer. This result would 

support the serial circuit hypothesis. Different sets of results would suggest alternate 

circuit pathways which could require the model to be revised (Table 1). An example 

would be if suppression of L4 neurons had no effect on gap detection, a result which 

could mean there is a pathway which bypasses L4 that is unaccounted for in the 

canonical model. 

X  Blocks gap detection 
/  No effect on gap detection Predicted outcome of suppressing layer 

Alternative circuit hypothesis L4 L2/3 L5/6IC L5 L6 

Thal L4L2/3L5/6IC X X X / / 

Thal L6L5IC / / X X X 

Thal L4L2/3L5IC X X X X / 

Thal L4L2/3L6IC X X X / X 

Thal L6IC / / X / X 

Thal L4L5IC X / X X / 

Table 1. Alternative circuit hypothesis. 

Table of alternatives to the canonical circuit model of auditory cortex signaling  

(column 1) depending on the results of individual layer suppression (columns 2-6). 
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Previous studies by our lab found that with suppression of broadly non-layer-

specific CaMKII-expressing excitatory PNs in all layers of cortex, startle response was 

increased with suppression after gap termination (post-gap), and startle response was 

attenuated with suppression before-gap onset (pre-gap) [27, 28]. Gap detection reduced 

and enhanced respectively for post-gap and pre-gap suppression. Suppression of PV and 

SOM inhibitory interneurons showed the opposite results for post-gap and pre-gap 

suppression [28]. The suppression and analysis of these neuron populations was carried 

out using optogenetic techniques and behavioral trials similar to those preformed in my 

study. 

Optogenetics is a technique that modifies neurons to express light-sensitive 

membrane proteins called opsins. The opsin used in this study is archaerhodopsin 

(Arch;[39]), a fast light-activated proton pump that suppress neuron activity when 

excited by a specific light wavelength. An optogenetic approach provides unparalleled 

spatial and temporal precision in the manipulation of mouse auditory cortex neurons by 

using implanted optical fibers [28]. This allows us to directly test the roles of layer-

specific neurons during gap detection behavioral trials. Starting with this candidate 

serial circuit model hypothesis, experimental manipulations can refine this model and 

lead to a deeper understanding of how auditory cortex is involved in gap detection. 
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Experimental Design 

Behavioral 

Behavioral data is collected from mice performing a gap detection task in a 

sound-attenuating chamber in which a brief gap in continuous background noise acts as 

a cue for a subsequent startle noise burst. If the gap is detected, the mouse exhibits a 

PPI phenomenon and its following acoustic startle reflex is reduced. The mice are 

loosely restrained in a small perforated plastic tube which rests flat against a piezo 

transducer to record startle amplitude which is then amplified 200x and digitized at 

10kHz (Figure 3). The mouse’s head is held in a fixed position by an adjustable clamp 

on the mouse’s cranial fiber implants. A free-field speaker directly facing the animal 

delivers continuous 80 dB white noise followed by the startle stimulus, a 100 dB white 

noise burst with duration 25ms that begins 50ms after gap termination. Each gap 

detection session has 20 trials for each gap duration (0-32ms) which are randomly 

interleaved and separated by random 15 ± 5 s intervals. The optogenetic suppression on 

auditory cortex activity is supplied on alternating trials. The mice show no habituation 

within sessions and sessions are typically separated by 24-hour periods for each mouse 

[27, 28].  
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Figure 3. Behavioral trial setup. 

The mouse is restrained in the plastic tube resting on the piezo transducer which records 

the startle response that occurs after the startle stimulus following the noise gap. The 

startle response decreases with gap duration [28]. 

Before behavioral trials, all mice to be assessed for gap detection are implanted 

with a pair of 200μm optic fibers bilaterally targeting primary auditory cortex, using 

coordinates derived from cortical mapping experiments (implantation surgery 

performed by Aldis Weible in the Wehr lab) [28]. These fibers allow for suppression of 

layer-specific neuron activity during sessions with millisecond precision. Two different 

optogenetic suppression protocols are used, either post-gap suppression, which targets 

the interval between gap offset and startle stimulus onset, or pre-gap suppression, which 

begins 1000ms prior to startle onset and is terminated with gap onset. Optogenetic 

suppression uses a 532 nm wavelength “green” laser set to an output power of 9.7 mW. 

Measured from the tip of the 200 µm diameter fiber, the light intensity of 300 mW/mm2 

results in suppression of excitatory activity limited to just auditory cortex (Figure 4). 
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Figure 4. Effect of light intensity on optogenetic suppression. 

Ideal suppression of just auditory cortex activity is reached with light intensity of 300 

mW/mm2 [28]. 

Analysis  

Startle amplitudes are measured by integrating the rectified piezo signal within 

the 100ms window following startle onset. Startle amplitudes are normalized within 

sessions based on the mean “laser off” 0ms gap startle amplitude. To ensure that each 

behavior trial shows if the suppression of neural activity altered gap-attenuation of 

startle, only data from sessions with a significant (paired t-test, p<0.05) attenuation of 

startle responses between the 0ms and the longest “laser off” gap are included in the 

group analyses. Data are collected from multiple sessions across multiple days for each 

mouse until a mouse has three trials with significance for both pre-gap and post-gap 

optogenetic suppression protocols.  
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After the final session of behavioral measurements, each mouse is then 

anesthetized with 30 mg/kg ketamine, 0.24 mg/kg medetomidine. Brains are fixed in 

4% paraformaldehyde by perfusion and then sectioned at 100μm slices on a vibratome 

for histological verification. All procedures were performed in strict accordance with 

National Institutes of Health guidelines, as approved by the University of Oregon 

Institutional Animal Care and Use Committee. 

Physiological 

Neurons are optogenetically silenced by expressing Arch to directly suppress 

cortex neurons. Arch is targeted to these specific neuron populations using an 

established Cre-lox transgenic expression systems [27, 28, 40, 41]. This is a site-

specific recombination systems that inserts targeted DNA modifications to specific cell 

types so that the cells are Cre dependent to express the desired sequence, which in this 

case encodes the Arch opsin that is then light activated to trigger silencing of the target 

auditory cortex neuron populations. This study uses two validated layer-specific Cre-lox 

lines; NR5A which targets L4 PNs and GPR26 which targets L5/6 PNs (Figure 5) [36, 

37, 41]. 
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Figure 5. Histological verification of layer-specific Cre-lox lines. 

Co-localization of tdTomato florescence in auditory cortex PNs for NR5A to layer 4 

(A) and GPR26 to layer 5 (B). A is a Cre-reporter tdTomato cross stain [40], and B is a 

HA antibody tag stain [42]. WM: white matter. Laminar boundaries established from 

[43]. 

Histological 

Fiber placements and genotype are verified though histological analysis on each 

mouse’s brain sections. GFP fluorescence expression at the appropriate location of the 

optic fiber tracks is confirmed using secondary antibody staining. The specificity of 

Arch expression along the correct layer of the auditory cortex is observed using the co-

localization of native GFP. This also confirms mice as double positive for their reported 

genetic line. Mice which are not double positive through this analysis are analyzed as 

controls. 
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Results 

Gpr26 (layer 5 PNs) 

In the behavioral trials, Arch x Gpr26 mice showed significant differences in 

startle amplitude for post-gap and pre-gap optogenetic suppression compared to control 

trials (without suppression). Suppressing layer five PNs during the post-gap interval 

significantly increased the startle responses following gaps, indicating reduced gap 

detection (Figure 6A). 
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Figure 6. Arch x Gpr26 L5 post-gap suppression. 

A) Behavioral trials with post-gap optogenetic suppression active (green) show 

significantly greater startle (reduced gap detection) then trials without optogenetic 

suppression (black) with mice double positive for Arch x Gpr26. Significance was 

derived from a factorial ANOVA [p=0.0405; 4 mice, 14 sessions]. B) Control mice (no 

Arch x Gpr26 expression) showed no effect [p=0.6283, 5 mice, 23 sessions]. 
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Suppressing layer five PNs during the pre-gap interval significantly attenuated 

the startle responses following gaps, indicating enhanced gap detection (Figure 7A). 

Alarm over the surprising difference in startle response at 0ms gap duration for 

suppression on/off was discounted by observing similar raw voltage for 0ms gap 

(Figure 7C-D).

Figure 7. Arch x Gpr26 L5 pre-gap suppression with raw voltage data. 

A) Behavioral trials with post-gap optogenetic suppression active (green) show significantly attenuated 

startle (enhanced gap detection) compared with trials without optogenetic suppression (black) with mice 

double positive for Arch x Gpr26. Significance was derived from a factorial ANOVA [p=0.0456; 5 mice, 

10 sessions]. B) Control (no Arch x Gpr26 expression) mice showed no effect [p=0.2690, 4 mice, 13 

sessions]. C-D) Similar raw voltage data of 0ms gap duration startle for suppression on/off explain the 

unexpected difference in % startle at 0ms gap duration for figures 7A-B 
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Gap detection in the control mice was unaffected by suppression during the 

post-gap or pre-gap interval as expected (Figures 6B, 7B). 

NR5A (layer 4 PNs) 

In the behavioral trials, Arch x NR5A mice showed significant differences in 

startle amplitude for pre-gap optogenetic suppression compared to absence of 

suppression. Suppressing layer four PNs during the post-gap interval had no significant 

effect on the startle response (Figure 8A).  
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Figure 8. Arch x NR5A L4 post-gap suppression. 

A) Behavioral trials with post-gap optogenetic suppression active (green) showed no 

effect on startle compared to trials without optogenetic suppression (black) with mice 

double positive for Arch x NR5A [p= 0.6987; 7 mice, 22 sessions]. B) Control mice (no 

Arch x NR5A expression)  also showed no effect [p=0.9428, 4 mice, 14 sessions]. 
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Suppressing layer four PNs during the pre-gap interval significantly attenuated 

the startle responses following gaps, most notably for gap durations 2ms and 32ms, 

indicating enhanced gap detection (Figure 9A). Gap detection in the control mice was 

unaffected by suppression during the post-gap or pre-gap interval as expected (Figure 

8B, 9B). 
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Figure 9. Arch x NR5A L4 pre-gap suppression. 

A) Behavioral trials with post-gap optogenetic suppression active (green) show significantly attenuated 

startle (enhanced gap detection) compared with trials without optogenetic suppression (black) with mice 

double positive for Arch x NR5A. Significance was derived from a repeated measures ANOVA. 

[p=0.0266; 7 mice, 29 sessions]. B) Control mice (no Arch x NR5A expression) showed no effect 

[p=0.5955, 4 mice, 10 sessions].  
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Discussion  

Gap detection acts as a model of speech perception in that the detection of brief 

noise gaps is analogous to the discrimination of phoneme peaks in speech. Perceptual 

gap detection is mediated by the auditory cortex GTR, so knowledge of the cortical 

circuit is necessary to understand exactly how the auditory cortex is involved in 

mediating temporal processing. Here, I built upon previous studies that looked at the 

influence of optogenetic suppression of CaMKII-expressing PNs in all layers of 

auditory cortex on gap detection [28]. For this study, I used layer-specific optogenetic 

suppression of cortical PNs to further elucidate the influence of individual neuron layers 

on gap detection.  

My data for optogenetic suppression with Arch of Gpr26-expressing layer five 

PNs in mice gave similar results as those in previous studies of the suppression of 

widespread CaMKII-expressing PNs [28]. Startle response was increased by 

suppression during the post-gap interval, and startle response was attenuated by 

suppression during the pre-gap interval. For optogenetic suppression with Arch of 

NR5A-expressing layer four PNs in mice, startle response was unaffected by 

suppression during the post-gap interval. Similar to layer five suppression, startle 

response was attenuated by suppression during the pre-gap interval for layer four, but 

the attenuation was less significant except for on gap durations 2ms and 32ms (Table 2). 

This does not support the serial canonical circuit model, which predicts that both layer 

neuron populations are equally necessary for gap detection.  

 

 



 
 

20 
 

 

 

 Post-gap Suppression Pre-gap Suppression 

 
  

Gpr26 (Layer 5) Increases Startle Decreases Startle 

NR5A (Layer 4) No Observed Effect Decreases Startle 

Effect on Gap Detection Reduced Gap Detection Enhanced Gap Detection 

Table 2. Behavioral summary by suppression protocol. 

Increased startle means an absence of PPI behavior indicating that mice are not 

perceiving the gaps. Startle attenuation indicates typical PPI behavior that is associated 

with active gap detection. 

These results further evidence that gap detection involves a comparison between 

post-gap and pre-gap neuronal activity due to the opposing effects on startle response 

post-gap and pre-gap suppression of layer five neurons. This is seen in the increase of 

the startle response caused by suppression during the pre-gap interval of layer five 

neurons. Suppression of the neurons at any interval would be expected to attenuate 

startle instead and reduce gap detection, if not for this temporal comparison process. An 

explanation is that an absence of recent cortical activity during the pre-gap interval 

strengthens the following GTR, thus increasing startle response. This “rebound effect” 

seen in pre-gap suppression is the result of cortex increasing post-gap activity to adjust 

for a lack of pre-gap activity. 

For layer four neurons, the weak significance of startle enhancement for pre-gap 

suppression and lack of effect for post-gap suppression is unexpected. It does not fully 

suggest an alternative circuit pathway (Table 1), which would require no effect on gap 

detection with suppression for either suppression protocol, nor does it fit with the serial 
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conical model which would suggest that layer four and layer five neuron suppression 

share identical results. A likely explanation for this is that NR5A-expressing neurons do 

not account for the entirety of the layer four neuron population. It is possible that 

NR5A-expressing neurons play a specific role in the aforementioned post-gap and pre-

gap neuronal activity comparisons, which might explain why only pre-gap interval 

suppression of NR5A-expressing neurons shows an effect. It is also possible that 

optogenetic suppression of more encompassing neuron populations of layer four would 

show results similar to layer five and support the serial canonical model of the auditory 

cortex circuit.  

Future Directions 

 The next step of this study would be to repeat this experiment with other neuron 

populations for both layers four and five, as well as eventually layers two, three, and 

six. This will continue to test the canonical circuit model and paint a fuller picture of the 

dynamic process in auditory cortex circuit signaling. Future studies could benefit from 

additional suppression protocols, such as suppressing neurons across both pre-gap and 

post-gap intervals, and suppression only during the gap duration itself. Increasing laser 

intensity can also ensure greater penetrance of suppression for layer-specific neuron 

populations, at the risk of light leakage into other cortex layers (Figure 4). Another 

avenue for future studies is excitation of layer-specific neuron populations using 

channelrhodopsin2 to test if layered neuron populations are sufficient for gap detection. 

The end goal is to repeat this experiment with mice successfully trained in phoneme 

discrimination in order to see if optogenetic shutdown affects more nuanced forms of 

learning and other aspects of temporal processing.  
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As a preliminary foray into layer-specific optogenetic suppression of auditory 

cortex PNs, this study found that the results of layer four and layer five suppression 

were for the most part in line with the canonical circuit model and similar to previous 

non-layer-specific studies. However, these results are still limited in the scope of 

auditory cortex signaling and overlook many other possible alternative pathways to the 

canonical model. Further testing of other layer-specific neuron populations are 

necessary to determine with greater certainly if the auditory cortex follows the 

canonical circuit model or if alternative circuit pathways exist. 
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