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Background: Immune modulation may improve outcome in
HIV-associated cryptococcal meningitis. Animal studies suggest
alternatively activated macrophages are detrimental but human
studies are limited. We performed a detailed assessment of the
cerebrospinal fluid (CSF) immune response and examined immune

correlates of disease severity and poor outcome, and the effects of
antiretroviral therapy (ART).

Methodology: We enrolled persons $18 years with first episode
of HIV-associated cryptococcal meningitis. CSF immune response
was assessed using flow cytometry and multiplex cytokine analysis.
Principal component analysis was used to examine relationships
between immune response, fungal burden, intracranial pressure and
mortality, and the effects of recent ART initiation (,12 weeks).

Findings: CSF was available from 57 persons (median CD4 34/mL).
CD206 (alternatively activated macrophage marker) was expressed on
54% CD14+ and 35% CD142 monocyte-macrophages. High fungal
burden was not associated with CD206 expression but with a paucity of
CD4+, CD8+, and CD42CD82 T cells and lower interleukin-6, G-CSF,
and interleukin-5 concentrations. High intracranial pressure ($30 cm
H2O) was associated with fewer T cells, a higher fungal burden, and
larger Cryptococcus organisms. Mortality was associated with reduced
interferon-gamma concentrations and CD42CD82 T cells but lost
statistical significance when adjusted for multiple comparisons. Recent
ART was associated with increased CSF CD4/CD8 ratio and
a significantly increased macrophage expression of CD206.

Conclusions: Paucity of CSF T cell infiltrate rather than alternative
macrophage activation was associated with severe disease in HIV-
associated cryptococcosis. ART had a pronounced effect on the
immune response at the site of disease.
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INTRODUCTION
Host immunity is central to the pathogenesis of

cryptococcosis. Cryptococcus neoformans is found widely
in the environment and serological studies suggest exposure
is common.1,2 Most infections are asymptomatic with the
infecting organism contained within pulmonary granulomas.3

However, when cell-mediated immunity is impaired, C. neo-
formans can disseminate throughout the body resulting in
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meningoencephalitis frequently complicated by high intracra-
nial pressure (ICP).4 Most cases worldwide are associated with
HIV-1 infection and cryptococcosis remains a leading cause of
death in sub-Saharan Africa.5–7

Impaired immunity also influences disease presentation
and response to treatment. Previous studies have shown that
low cerebrospinal fluid (CSF) levels of proinflammatory
cytokines [interferon-g, interleukin (IL)-6, and IL-8] are
associated with a higher fungal burden, slower clearance of
infection and increased mortality.8,9 However, cryptococcosis
may also be complicated by an over exuberant inflammatory
response after the initiation of antiretroviral therapy (ART).
This is known as immune reconstitution inflammatory syn-
drome (IRIS) and either develops during the first manifestation
of cryptococcosis (unmasking IRIS) or as a recurrence of
meningitis symptoms after successful antifungal treatment
(paradoxical IRIS).10 There are increasing reports from sub-
Saharan Africa of patients developing cryptococcal meningitis
after recently starting ART,11,12 whether these cases represent
unmasking IRIS or a state of immune deficiency not yet
reversed by ART, has not been fully elucidated.

Central to host immunity is the interaction between
macrophages and Cryptococcus. The yeast is easily phagocy-
tosed by macrophages but can resist intracellular killing through
permeabilization of the phagosome membrane.13 This enables
Cryptococcus to avoid immune surveillance and replicate within
the cell and may facilitate migration to the central nervous
system.14 Infection is controlled after the recruitment of
interferon (IFN)-g producing CD4 T cells, stimulating macro-
phages to become classically (M1) activated.15 However,
macrophages may also become alternatively activated (M2)
because of the stimulation by IL-4 or IL-13, a state better suited
to tissue repair.16 In animal models of cryptococcosis, alterna-
tively activated macrophages (identified by expression of
CD206) along with a Th2 T-cell response were detrimental,
resulting in uncontrolled fungal infection and death. By contrast,
classically activated macrophages and a Th1 response were
beneficial.17 The role of macrophage activation in determining
outcome in human disease has not been studied.

This study aimed to better understand the host-immune
response at the site of disease in HIV-1–associated crypto-
coccal meningitis. We performed a detailed examination of
the CSF immune response using flow cytometry and bio-
marker analysis and concentrated particularly on the cellular
immune response and the activation state of monocyte/mac-
rophages. We examined how this immune phenotype related
to markers of disease severity and clinical outcome. To better
understand the pathophysiology of ART-associated crypto-
coccal meningitis, we also examined the effects of recent
ART initiation (#12 weeks) on the CSF immune response.
We hypothesized that macrophages in the CSF of persons
with cryptococcal meningitis would express CD206, a marker
of alternative activation, and that the degree of CD206
expression would be correlated with outcome, such that
individuals with the highest expression of CD206 would
have the highest fungal burden and be more likely to die. We
also hypothesized that persons recently started on ART would
have a more inflammatory CSF with lower macrophage
CD206 expression compared with persons not taking ART.

METHODS

Participant Recruitment and Clinical Care
A prospective cohort study was conducted in Cape

Town, South Africa between April 2012 and July 2013.
Ethical approval was obtained from the University of Cape
Town Human Research Ethical Committee (reference 408/
2010, 371/2013) and Liverpool School of Tropical Medicine
Research Ethics Committee (reference 11.92). All participants
provided written informed consent; family members provided
surrogate consent for patients with impaired consciousness.
Consecutive persons$18 years with a first episode of HIV-1-
associated cryptococcal meningitis (positive CSF culture or
cryptococcal antigen test) were enrolled within 48 hours of
presentation. After enrollment, clinical details were recorded
and lumbar puncture (LP) performed for management of CSF
opening pressure and CSF sampling. Additional LPs were
performed at attending physicians’ discretion to manage
raised ICP. Antifungal therapy comprised amphotericin B
deoxycholate 1 mg/kg and fluconazole 800 mg daily for 14
days, then fluconazole 400 mg daily for 10 weeks, and 200 mg
daily thereafter. Participants were followed for 6 months. ART
was started at 4 weeks if participants were not taking ART
at enrollment.

CSF Processing and Analysis of
Immune Response

CSF was transferred to the laboratory on ice and
processed in real-time. Fungal burden was measured using
quantitative culture as previously described and recorded as
colony forming units per milliliter of CSF (colony-forming
units/mL).18 The remaining CSF was centrifuged, the super-
natant frozen at280°C for batched biomarker analysis, and the
cell pellet stained immediately for flow cytometry analysis.

Flow Cytometry Staining of CSF Cells
CSF cells were incubated at 4°C for 30 minutes with an

amine viability dye (AQUA; Invitrogen, Carlsbad, CA); anti-
CD45-PECy5.5, anti-CD4-PECy7, anti-CD66b-PE, anti-CD206-
AF488, anti-HLADR-AF700, anti-CD163-APC (Biolegend, San
Diego, CA); anti-CD8-Qdot655, anti-CD14-Qdot605 (Invitro-
gen); and anti-CD16-APCH7 and anti-CD3-PacBlue (BD Bio-
sciences, San Jose, CA). During optimization experiments,
additional cells were permeabilized with 1 mL of PermWash
(BD Biosciences) and stained with anti-CD68-PE (Biolegend)
to better characterize macrophages. FACS lysing solution
(BD Biosciences) was used to remove any erythrocytes and
the sample fixed using 2% paraformaldehyde in flow buffer.
Cells were protected from light at all times and analyzed
within 24 hours on a BD LSR Fortessa Flow Cytometer using
FACS-Diva software (BD Biosciences). Note was made of
the total CSF volume and the sample was acquired in its
entirety with forward scatter (FSC) threshold set at 5000 to
exclude debris. Species appropriate positive and negative
compensation beads were used along with ArC Amine
Reactive Compensation Bead Kit to ensure accurate com-
pensation (BD Biosciences; Invitrogen). Fluorescence minus
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one experiments were used during optimization steps to
ensure accurate gating as previously described.19 Flow
cytometry data were analyzed using FlowJo version 9.5.3
(Tree Star software, OR); gating strategy is detailed in Figure 1.
Flow cytometry allowed accurate identification and quantita-
tion of neutrophils, T cells (CD8+, CD4+, CD4+CD8+, and
CD42CD82), and monocyte-macrophages. Monocyte-
macrophages were initially identified as CD14+ cells after
the exclusion of neutrophils and T cells (CD14+MM) (Fig.
1D). A second population of CD142 monocyte-
macrophages (CD142MM) was also identified with similar
physical characteristics and CD68 expression to CD14+MM

(CD32CD4+CD142HLADR+) (Figs. 1D, E1, E2). Expres-
sion of CD206, CD163, CD16, and HLA-DR were measured
on both CD14+ and CD142 monocyte-macrophages using
median fluorescence intensity and cell percentage expressing
the marker (Figs. 1E3–E6). HLA-DR expression was
measured on all T-cell subsets. Some participants were
noted to have CD8 T cells with significantly increased size
(FSC); these were termed “large T cells” (Figs. 1C2, C5).
Natural killer (NK) cells were defined as CD16+ cells after
exclusion of neutrophils and monocyte-macrophages (Fig.
1F). Cryptococci were defined as CD452 cells as demon-
strated elsewhere20; Cryptococcus size was measured using

FIGURE 1. CSF flow cytometry gating. A1, FSC-SSC plot of CSF cells after exclusion of singlets, aggregates, Cryptococcus yeasts,
and dead cells. Cells with high FSC noted (circled and marked *); (A2) neutrophils defined as CD66+ and high SSC; (B) CD3 used
to identify T cells; (C1) T-cell subsets analyzed using CD4 and CD8; (C2) FSC-SCC view of T cells, “Large” T cells circled and
marked *; (C3) HLA-DR expression on CD4+ T cells; (C4) HLA-DR expression on CD8+ T cells; (C5) analysis of “large T cells”—
majority comprise CD8+ T cells; (D) further gating on non-T cells using CD14 and CD4 identifies monocyte-macrophages.
Population of CD142 monocyte-macrophages are circled and marked †; (E1 and E2) CD14+ and CD142 monocyte-macrophages
have similar physical characteristics (FSC-SSC) and similar expression of CD68; (E3–E6) expression of CD206, CD163, HLA-DR,
and CD16 (respectively) on CD14+ and CD142 MM; (F) CD32CD42CD142CD16+ cells identified—likely NK cells.
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FSC, as an absolute measurement and in relation to CD4+ T
cells (FSC crypto/CD4).

Biomarker Analysis
Commercial multiplex assays were used to measure the

concentrations of 23 cytokines/chemokines: IL-1RA, IL-1b,
IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-
13, IL-17, granulocyte and granulocyte-macrophage colony
stimulating factors (G-CSF and GM-CSF), tumor necrosis
factor-a, IFN-a, IFN-g, vascular endothelial growth factor,
chemokine ligand 2 (CCL2), CCL3, CCL4, and C-X-C
chemokine ligand 9 (Bio-Rad, Hercules, CA; Invitrogen).
The concentrations of 2 soluble markers of macrophage
activation (sCD163 and sCD14) were measured using
commercial ELISA (R&D, Minneapolis, MN).

Data Analysis
Baseline characteristics were summarized and analyzed

using descriptive statistics as appropriate. Data from flow
cytometry and biomarker analysis were combined [resulting
in a dataset of 89 variables (Supplemental Digital Content 1,
http://links.lww.com/QAI/A1000)] and analyzed using prin-
cipal component analysis (PCA), a mathematical technique
used to simplify complex datasets by examining them in
terms of a series of principal components rather than
individual variables.21 Before PCA, variables were log-
transformed and scaled such that the geometric mean equaled
zero and variance equaled one. Missing values were imputed
by K-nearest neighbors technique.22 Heatmap analysis with
nonhierarchical clustering was performed as described else-
where.23 Variables were filtered using statistical tests before
incorporation into PCA and cluster analysis such that, only
variables with a statistically significant association with the
dependent variable were used. Four main dependent variables
were examined: fungal burden (log10 colony-forming units/
mL CSF), high ICP (CSF opening pressure .30 cm H20),
mortality (death within 12 weeks), and recent ART initiation
(,12 weeks). Statistical significance was defined as a P-value
of,0.05 and q-value of less than 0.1 (q, 0.1 is equivalent to
a 10% false discovery rate using the Benjamini–Hochberg
procedure for multiple-testing correction24). Analysis was
performed using Stata version 12. (Stata Corp., College
Station, TX,) and Qlucore Omics Explorer version 3.0
(Qlucore AB, Lund, Sweden).

RESULTS

Participants
Sixty participants were enrolled, CSF flow cytometry

was performed on 57 (3 had insufficient CSF available for
analysis). The median age was 36 years [interquartile range
(IQR) 30–43] and median CD4 count was 34 cells per
microliter (IQR 13–76). The cumulative case fatality rate
was 23% at 2 weeks (13/57) and 38% at 12 weeks (21/56);
one participant was lost to follow-up after hospital
discharge. Fifteen participants were taking ART at enroll-
ment (26%); 6 of these had clear evidence of virological

failure (detectable viral load after $6 months ART), and
one later reported nonadherence; 8 participants were
defined as “Recent ART” having either initiated ART
(n = 6), or switched to second line ART after virological
failure (n = 2) in the 12 weeks before presentation (median
6 weeks); one had clinical features consistent with unmasking
IRIS.10

CSF Flow Cytometry
A median of 7 mL (IQR 4.5–8) of CSF was available per

participant for flow cytometry resulting in a median of 108,000
cells (IQR 30,877–294,500) per sample; cell viability remained
high (median 100%, range 92%–100%). CD8+ T cells were the
most abundant cell type [median 49.7% (IQR 30.2%–63.7%)],
followed by neutrophils [11.9% (IQR 2.3%–29.4%)], monocyte-
macrophages [6.74% (IQR 3.1%–14.1%)], and CD4+ T cells
[6.2% (IQR 3.7%–9.6%)] (Supplemental Digital Content,
Fig. 1A, http://links.lww.com/QAI/A1000). Large T cells com-
prised a median of 2.7% (IQR 0.93–4.55) of the total CD8 T-cell
population. HLA-DR expression did not differ between large
and normal CD8 T cells (not shown). Both CD14+ and
CD142 monocyte-macrophages expressed a range of activa-
tion markers including HLA-DR, CD206, CD16, and CD163.
A median of 54% (IQR 37%–70%) CD14+ monocyte-
macrophages and 35% (IQR 20%–52%) CD142 monocyte-
macrophages expressed the surface marker CD206 (consistent
with alternative activation25) (Supplemental Digital Content,
Fig. 1B, http://links.lww.com/QAI/A1000).

Immune Factors Significantly Associated With
High Fungal Culture Burden

We first explored the correlation between CSF immune
and baseline fungal burden. Twelve variables that were
significantly correlated with CSF fungal burden (Pearson
correlation, P , 0.05 and q , 0.1) were entered into
a PCA. To avoid the confounding effect of antifungal therapy,
analysis was restricted to 36 persons who had not received
amphotericin B at enrollment. Flow cytometry Cryptococcus
counts were also removed because of the strong correlation
with quantitative fungal culture previously reported (R = 0.93,
P , 0.0001).20 Participants with higher fungal burdens clearly
clustered together on a PCA plot with particularly low scores
for principal component 1 (PC1) (Fig. 2A). Analysis of the
variables contributing to PC1 showed that the CSF of persons
with high fungal burden was characterized by significantly
lower numbers of CSF T cells (CD4, CD8, and CD42CD82)
and NK cells, lower CSF concentrations of IL-5, IL-6 and G-
CSF, and lower expression of the neutrophil activation marker
CD66b26 (Fig. 2B). CSF and blood CD4 counts were closely
correlated (Pearson R = 0.66 P , 0.001). Adjusting for blood
CD4 count reduced the number of variables that were
significantly negatively correlated with fungal burden to only
CSF CD42CD82 T cell numbers and IL-5 concentration (R =
20.51, P = 0.002, Q = 0.09 and R = 20.56, P = 0.001, Q =
0.05, respectively). There was no significant correlation
between fungal burden and CD206 expression (median
fluorescence intensity) on CSF macrophages (P = 0.89).
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Immune Factors Significantly Associated With
High ICP

We next aimed to determine whether the raised ICP
observed in cryptococcal meningitis might be associated with
a particular CSF immune response. To do this we compared
participants who had evidence of high ICP at study enrollment
or at any time during their hospitalization (ICP $ 30 cm H2O,
n = 35), with those who did not develop high ICP (n = 22).
Participants who experienced high ICP clearly grouped
together on PCA and cluster analysis according to their CSF
characteristics (Figs. 3A, C). This difference was primarily
because of significantly higher Cryptococcus counts in the CSF
of subjects who developed high ICP along with increased size
of the Cryptococcus measured by flow cytometry. In addition,
participants who developed high ICP had significantly lower
CSF counts of CD4 T cells, NK cells and CD42CD82 T cells,
and higher proportion of “large T cells” (Fig. 3B).

Associations Between CSF Immune Response
and Mortality

We then examined immune correlates of mortality.
Participants who died by week 12 (n = 22) had lower baseline
CSF IFN-g concentrations compared with participants who
survived (n = 34) (geometric mean 52 pg/mL [95% confi-
dence interval (CI): 19 to 139] vs. 131 pg/mL (95% CI: 97 to
176), respectively, P = 0.032), and a decreased frequency of
CD42CD82 T cells as a proportion of CSF T cells and as
a proportion of CSF CD45 cells (geometric means 4.9% (95%

CI: 3.3 to 7.2) vs. 8.7% (95% CI: 7.4 to 10.4), P = 0.002 and
3.1% (95% CI: 2.2 to 4.4) vs. 4.8% (95% CI: 4.0 to 5.9), P =
0.018, respectively) (Supplemental Digital Content, Fig. 2,
http://links.lww.com/QAI/A1000). These findings lost statis-
tical significance (q $ 0.1) when adjusted for multiple
comparisons. IFN-g was significantly correlated with the
numbers of CD42CD82 T cells (Pearson R = 0.31 P =
0.022), CD8 T cells (R = 0.26, P = 0.047), and NK cells (R =
0.35 P = 0.001) but not CD4 T cells (R = 0.23, P = 0.092).
There was no association between macrophage CD206
expression and mortality (P = 0.26).

Effect of ART on CSF Immune Response
During Cryptococcal Meningitis

Finally, to characterize the CSF immune phenotype of
ART-associated cryptococcal meningitis and understand the
effects of recent ART initiation on the immune response at
the site of disease, we compared participants not taking
ART (n = 43) against those taking “Recent ART” (started
first line ART or switched to second line ART in the 12
weeks before presentation, n = 8). “Recent ART” was
associated with a significantly lower plasma HIV-1 viral
load and significantly higher blood CD4 counts but no
significant difference in CSF fungal burden, opening
pressure, white cell count, or mortality (Table 1). Partic-
ipants who had recently started/switched ART clustered
together on PCA and nonhierarchal cluster analysis accord-
ing to their CSF immune response (Figs. 4A, C). In this

FIGURE 2. Relationship between CSF immune response and fungal burden. A, PCA plot detailing distribution of participants
according to CSF immune response after filtering for variables significantly correlated with CSF fungal burden (P, 0.05, q, 0.1).
Axes represent the first three principal components; % displays the degree of total sample variability accounted for by compo-
nent. Fungal burden is indicated by color (scale at left of plot displays log10 CFU/mL CSF). Participants with a high fungal burden
(red, ;106 CFU/mL) cluster together at the bottom of the plot while participants with low fungal burden (green ;101 CFU/mL)
group together at the top. B, PCA plot of variables significantly correlated with fungal burden that contributed to the PCA.
Position in PCA plot indicates the weighting toward the first 3 principal components; variables located in close proximity con-
tribute similarly. Color indicates direction of correlation with fungal load (red—positive correlation, green—negative correlation).
Absolute cell counts are expressed in cells per milliliter CSF while relative counts are expressed as a percentage of all CSF leu-
kocytes (%CD45 cells). CD45, leukocytes; DNT, double negative T cells, ie, CD42CD82; WCC, white cell count/mL by micros-
copy; Lymph, lymphocytes/mL by microscopy; MFI, median fluorescence intensity.
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analysis recent ART initiation was associated with significantly
higher proportions of CSF CD4+ T cells and lower proportions
of CSF CD8+ T cells, along with significantly increased
expression of CD206 on CD14+ monocyte-macrophages and
increased expression of CD206 and CD16 on CD142mono-
cyte-macrophages suggesting increased alternative activation
of macrophages (Fig. 4B). The increase in CD4 T cells at the
site of disease was noticeably greater than that observed in the
blood (Supplemental Digital Content, Fig. 3, http://links.lww.
com/QAI/A1000).

We hypothesized that the effects of ART on macro-
phage activation were mediated via alterations in the HIV-1
viral load. This was supported by the observation of
a significant inverse correlation between HIV-1 viral load
in the blood and CD206 expression on CSF CD14+

monocyte-macrophages both in the whole cohort (Pearson
R = 20.59, P , 0.001) and in an analysis restricted to
participants who were not taking ART (Pearson R = 20.57,
P , 0.001) (Supplemental Digital Content, Fig. 4, http://
links.lww.com/QAI/A1000).

FIGURE 3. Differences in CSF immune response between participants who developed high intracranial pressure (ICP) during
admission and those who did not. A, PCA plot showing distribution of participants according to CSF immune response after
filtering for variables significantly associated with raised ICP. Axes indicate the first three principal components. Participants
who developed high ICP during admission ($30 cm H2O—blue) cluster together and broadly separate from those who do not
develop high ICP (,30 cm H2O—yellow) according to CSF characteristics. B, PCA plot illustrating the 12 variables that
significantly differed between the 2 groups and hence contributed to the PCA [red—significantly greater in subjects with high
ICP, green—significantly lower in subjects with high ICP (P , 0.05 and q , 0.1)]. Absolute cell counts are expressed as cells
per milliliter CSF; relative counts are expressed either as a percentage of CD45 cells (%CD45) or a percentage of all flow
cytometry events (%total). C, Heat map illustrating nonhierarchal cluster analysis of participants according to the same 12
variables detailed in (B). Participants who develop high ICP during admission tend to cluster at the right end of the plot.
Crypto, Cryptococcus; FAC, flow cytometry measurement of cell size; Crypto/CD4 FSC, relative size of Cryptococcus in
relation to CD4 T cells; Large T, large T cells as detailed in Fig. 1; DNT, double negative T cells, CD42CD82; WCC, white cell
count; Lymph, lymphocyte count.
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DISCUSSION
This study provides a comprehensive examination of

the CSF cellular immune response in HIV-1–associated
cryptococcal meningitis, with particular reference to CSF
macrophage polarization. CD8 T cells were the predominant
cell type followed by neutrophils and CD4 T cells. These
contrasts with the CD4 T cell predominance observed in
healthy persons, but is consistent with other studies of HIV-
1–infected persons.27–29 A number of cell populations were
identified in the CSF that are not commonly seen in blood and
warrant further study. These included “large” CD8 T cells
(which may represent activated CD8 T cells30), CD42CD82

T cells (possibly a mixture of gd T cells and invariant natural
killer T cells as observed in other neurological con-
ditions31,32), and CD142 monocyte-macrophages. CD206
expression was commonly observed on both CD14+ and
CD142 monocyte-macrophages in keeping with previous
work suggesting macrophages adopt an alternatively activated
phenotype as HIV-1 disease progresses.33

In contrast to animal studies, there was no association
between alternative activation of CSF macrophages and
fungal burden.17 Instead, high CSF fungal burden was clearly
associated with a paucicellular CSF immune response
characterized by low numbers of T lymphocytes (CD4,
CD8, and CD42CD82) and NK cells, along with decreased
CSF concentrations of IL-5, IL-6, and G-CSF. This is
consistent with Thai studies that also observed significantly
lower concentrations of proinflammatory cytokines (IL-6,
IFNg, and tumor necrosis factor-a) in subjects with higher

CSF fungal burden.8 Our finding that CD4+ T-cell counts in
the CSF and blood are closely correlated suggests that the
major factor determining fungal burden may simply be HIV-
1–associated CD4 cell depletion. However, an alternative
explanation for these findings is that infiltration of immune
cells into the CSF may be inhibited by the immunomodula-
tory actions of the cell wall polysaccharide glucuronox-
ylomannan shed by the large numbers of C. neoformans
within the central nervous system.34–36

Raised ICP within the first 14 days was significantly
associated with a higher baseline fungal burden, significantly
larger cryptococci in the CSF (increased FSC on flow
cytometry), and decreased CSF CD4+ and CD42CD82 T
cell infiltrates. Although the role of large CD8 T cells needs to
be further explored, our study did not convincingly suggest
that high ICP occurs as a result of a pathological inflamma-
tory response. These findings are similar to others demon-
strating an association between raised CSF opening pressure
and greater CSF fungal quantitative culture and increased
Cryptococcus capsule size (measured ex vivo using micros-
copy).37,38 Our findings are therefore consistent with the
concept that raised ICP in cryptococcal meningitis occurs
predominantly because of obstruction of CSF drainage by
huge numbers of encapsulated yeast rather than pathological
inflammation.39

Fatal outcome was associated with reduced CSF
CD42CD82 T cells and IFN-g concentration. Although these
associations lost significance when adjusted for multiple
comparisons, the findings are compatible with previous studies
showing significantly slower fungal clearance and reduced
survival in persons with lower CSF IFN-g concentrations.8 The
significant correlation between CSF IFN-g and CD42CD82 T
cells (but not CD4 T cells) suggest CD42CD8 T cells could be
an additional source of IFN-g. Given their presence was also
associated with lower fungal burden, further study is warranted
to determine their nature and function.

Finally, to better understand the pathology of ART-
associated cryptococcal meningitis (including unmasking
IRIS), we performed an exploratory analysis examining the
effects of recent ART initiation on the CSF immune response.
Recent ART initiation did not appear to influence the overall
numbers of cells in the CSF but was associated with
a noticeable increase in the CSF CD4/CD8 ratio, far more
prominent than the changes observed in the blood. This is
consistent with other studies in asymptomatic persons with
HIV-1 infection and patients with paradoxical cryptococcal
IRIS.28,29 Recent ART was also associated with significantly
reduced activation of CD4 T cells (lower HLA-DR expres-
sion), fewer large T cells, and contrary to our hypothesis,
a switch toward an alternatively activated macrophage
phenotype (significantly higher expression of CD206 on both
CD14+ and CD142 monocyte-macrophages25). The strong
negative correlation between plasma HIV-1 viral load and
CD206 expression on CSF CD14+ MM even in participants
not taking ART caused us to hypothesize that ART-associated
alterations in macrophage polarity may occur as a direct effect
of HIV-1, with a proinflammatory classically activated
phenotype predominating in untreated HIV-1 infection,
shifting toward an alternatively activated state (with increased

TABLE 1. Comparison of Clinical and Laboratory Features at
Enrollment Between Participants Taking Effective ART and No
ART (n = 53)

Baseline Parameters
Recent ART*

(n = 10)
No ART
(n = 43) P

Age, yrs 32 (27–40) 37 (29–43) 0.369

Male 3 (30%) 25 (58%) 0.162

Blood CD4 count/mL 60 (45–85) 29 (12–67) 0.024

HIV-1 viral load log10
copies/mL

2.4 (1.3–3.3) 5.3 (5.1–5.6) ,0.001

HIV-1 viral load,40 copies/mL 3 (30%) 0 (0%) 0.005

Altered consciousness 1 (10%) 9 (21%) 0.665

CSF opening pressure at
day 0 cm H2O

25 (12–31) 25 (16–40) 0.465

Max CSF opening pressure,†
cm H2O

27 (24–33) 38 (22–50) 0.255

OP .30 cm H2O 3 (38%) 26 (60%) 0.268

CSF white cells, /mL 8 (0–45) 21 (3–115) 0.227

CSF protein, g/L 0.73 (0.57–1.3) 0.97 (0.56–1.7) 0.502

CSF glucose, mmol/L 1.9 (1.5–2.7) 2.5 (1.7–3) 0.175

Fungal burden, log10 CFU/mL
CSF

4.1 (3.1–6.1) 4.7 (3.5–5.5) 0.838

Death by day 14 2 (20%) 11 (26%) 0.601

Data are numbers with percentages or median with IQR. P-values derived from
Wilcoxon rank-sum or Fisher exact test as appropriate.

*Recent ART defined as starting first line ART or switching to second line ART in
the 12 weeks before presentation.

†Maximum CSF opening pressure during first 14 days of admission.
CFU, colony-forming units.
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CD206 expression) when ART is started. This theory is
supported by both in vitro and ex vivo studies that have
shown HIV-1 replication to be associated with significant
decreases in CD206 expression.40,41 Larger studies are now
required to determine the clinical implications of recent ART
initiation in cryptococcal meningitis.

There are a number of limitations to this work. This was
an exploratory study of a relatively small, heterogeneous,
cohort and the findings will need to be confirmed in larger
studies. Comparisons with healthy controls and HIV-1-
infected persons with no CNS pathology would have been
helpful but ethical considerations limit access to CSF without

a clinical indication for LP. Real-time flow cytometry
removed the potential adverse effects of freezing on cell
activation, but did preclude any ability to repeat assays. We
only used one marker of alternative activation (CD206) in our
antibody panel and the absence of CD56 means that findings
regarding NK cells counts must be verified in other cohorts.
Finally, we were unable to assess the contribution of resident
microglial cells.

Despite these caveats, this exploratory study provides
novel findings regarding the human immune response in
cryptococcal meningitis at the site of disease. We have
provided a detailed characterization of the CSF infiltrate,

FIGURE 4. PCA and nonhierarchical cluster analysis examining effect of recent ART initiation on CSF immune response. A, PCA plot
showing distribution of subjects according to CSF immune response. Subjects who started taking ART in the previous 12 weeks (blue
dots) group together and separate from subjects not taking ART (yellow dots). The participant with unmasking IRIS is marked. B, PCA
plot displaying 12 variables that contributed to the PCA. Plot position reflects variable weightings toward the three principal
components: red dot (variable significantly increased among participants taking ART); green dot (variable significantly decreased
among participants taking ART). Variables with similar contributions are positioned in close proximity; those correlated $80%
are connected with lines. Statistical significance defined as P , 0.05 and q , 0.1. C, Heat map demonstrating nonhierarchical
cluster analysis according to CSF immune response. Subjects who started ART in the previous 12 weeks (blue squares) group
together due to similar expression of the 12 variables (rows) detailed in (B). Expression of variable in relation to geometric mean
is indicated by color of square (red—increased; green—decreased). %T, relative frequency as a percentage of all CSF T cells; %
CD45, relative frequency as a percentage of all CSF leukocytes; MFI, median fluorescence intensity; CD14+, CD14+ monocyte-
macrophages; CD142, CD142 monocyte-macrophages; CD206+ %CD142, proportion of CD142 monocyte-macrophages
expressing CD206; HLADR %CD4, proportion of CD4 T cells expressing HLA-DR.
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identified cell types not commonly found in the blood and
assessed the activation state of CSF macrophages ex vivo.
Although recent ART was associated with a shift toward an
alternatively activated macrophage phenotype, contrary to
animal studies this did not appear to be associated with severe
disease or poor outcome. Instead, a T cell infiltrate appears
central to the protective response. We conclude that efforts to
augment this immune response with proinflammatory agents
warrant further study.
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