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Stability of cloud orbits in the broad-line region of active galactic nuclei
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ABSTRACT
We investigate the global dynamic stability of spherical clouds in the broad-line region (BLR)
of active galactic nuclei (AGN), exposed to radial radiation pressure, gravity of the central
black hole (BH) and centrifugal forces assuming the clouds adapt their size according to the
local pressure. We consider both isotropic and anisotropic light sources. In both cases, stable
orbits exist also for very sub-Keplerian rotation for which the radiation pressure contributes
substantially to the force budget. We demonstrate that highly eccentric, very sub-Keplerian
stable orbits may be found. This gives further support for the model of Marconi et al., who
pointed out that BH masses might be significantly underestimated if radiation pressure is
neglected. That model improved the agreement between BH masses derived in certain active
galaxies based on BLR dynamics, and BH masses derived by other means in other galaxies by
inclusion of a luminosity-dependent term. For anisotropic illumination, energy is conserved for
averages over long time intervals only, but not for individual orbits. This leads to Rosetta orbits
that are systematically less extended in the direction of maximum radiation force. Initially
isotropic relatively low column density systems would therefore turn into a disc when an
anisotropic AGN is switched on.
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1 IN T RO D U C T I O N

Recently, the broad-line region (BLR) has received much attention,
because the linewidths, in combination with the size of the region,
measured for example by reverberation mapping, allows a determi-
nation of the mass of the central supermassive black hole (e.g. Bentz
et al. 2009; Netzer 2009), which is essential if one wants to place
active galactic nuclei (AGN) in the context of general galaxy evolu-
tion. From such studies, one finds that AGN generally have normal
sized black holes, as expected for the size of their host galaxy, and
that most galaxies must have been active for one or more times in
their life. The measurement of the black hole mass is affected by the
relative importance of radiation pressure and gravity, which should
dominate the force budget. This is connected to the properties of in-
dividual BLR clouds and the dynamical configuration of the system
(Marconi et al. 2008).

The BLR is a standard AGN ingredient (e.g. Osterbrock 1988;
Peterson 1997; Netzer 2008): it is located inside the obscuring torus,
above and below the accretion disc, and at a distance of fractions
of a parsec from the supermassive black hole. The line emission is
powered by photoionization by a broad-band continuum due to the
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innermost parts of the accretion disc. Photoionization also governs
the thermodynamics of these clouds: they have a stable equilibrium
temperature of order 104 K, independent of their locations. The criti-
cal densities of observed and suppressed emission lines and pressure
equilibrium considerations (Ferland & Elitzur 1984) constrain the
number densities in the clouds to ncl = 1010±1 cm−3. Signatures
from partially ionized zones are typically observed. Therefore, the
Strömgren depth is a lower limit of the cloud size. An upper limit
may be found by requiring the lines to be smooth, which demands
a certain minimum on the number of individual entities. This re-
sults in cloud sizes of about rcl = 1012±1 cm (Laor et al. 2006, and
references therein). In agreement with this, detailed photoioniza-
tion models (Kwan & Krolik 1981) constrain the column densities
to Ncl > 1022 cm−2. Because BLR clouds are optically thick, high
ionization lines are produced only by the illuminated surface of
the clouds. In such lines, one observes generally the far side of the
BLR, wherefore outflows manifest themselves as redshifts, inflows
as blueshifts.

Much information has also been gathered on the dynamical state
of the BLR. Inclination matters: the statistics of linewidths excludes
Keplerian rotation in a flat disc, but is instead consistent with a thick
disc configuration with v/σ ≈ 2.5, where v is the rotational velocity
and σ the turbulent one (Osterbrock 1978). For radio-loud AGN,
the ratio of core to lobe power correlates with the width of the
broad lines in the sense that the systems observed at a line of sight
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close to the jet axis have the narrower lines (Wills & Browne 1986).
This finding was confirmed by Jarvis & McLure (2006). They find
that the average linewidth of flat spectrum radio sources, which are
seen more face on, have narrower emission lines by about 30 per
cent than steep spectrum radio sources. Spectropolarimetry of type
2 objects, where the BLR is hidden by a dusty torus, has revealed
hidden BLRs in polarized light, which established the orientation
unification scenario (Antonucci 1993). In these objects, the BLR
emission is scattered by a polar region above the BLR. The po-
larization angle is perpendicular to the system axis, defined by the
radio (Smith et al. 2004) or ultraviolet/blue (Borguet et al. 2008)
emission. The same authors find a preferentially parallel orientation
for type 1 objects, which provide an unobscured view towards the
BLR. This finding is explained by an equatorial scattering region,
much closer to the BLR. Where observed (type 1 objects), the latter
dominates the polarized emission. The equatorial scatterer is in fact
very close to the BLR and provides unambiguous evidence for a
disc-like configuration of the BLR (Smith et al. 2005): approaching
and receding parts of the BLR–disc are seen at slightly different
angles by the equatorial scatterer. This produces a noticeable dif-
ference in polarization angle for the blue and red parts of the line.
This, and other characteristics, has been observed by Smith et al.
(2004, 2005) for a sample of Seyfert galaxies. They find a contin-
uum of polarization properties: zero polarization for near pole on
objects, where the different contributions by equatorial scatterers in
various directions cancel each other; wavelength-dependent paral-
lel polarization for intermediate-inclination type 1 objects, where
parts of the BLR and the equatorial scattering region are attenuated
by the obscuring torus; and perpendicular polarization for type 2
objects. Other evidence pointing to a disc-like nature of the BLR
comes from the existence of objects with double peaked broad lines
indicative of Keplerian motion (Eracleous & Halpern 2003, 12 per
cent in their sample), while the majority of single peaked objects
allows for a hidden disc component, if the inclination is small, and
the contribution of the flattened part is not too strong (Bon et al.
2009). These findings suggest that the dominant contribution to the
BLR kinematics is Keplerian rotation, followed by a turbulent com-
ponent. There is also evidence for radial motion: there are examples
in the literature for bulk outflows, as measured by spectropolarime-
try (Young et al. 2007, and references therein). Velocity resolved
reverberation mapping confirms the dominant Keplerian motions,
but additionally finds evidence for bulk inflow and outflow in in-
dividual objects (e.g. Done & Krolik 1996; Ulrich & Horne 1996;
Kollatschny 2003; Bentz et al. 2008, 2009; Denney et al. 2009).
Gaskell (2009) interprets the combined evidence of velocity re-
solved reverberation mapping as strong evidence that the radial part
of the kinematics is dominated by inflow.

Radiation pressure due to the central parts of the accretion disc is
generally assumed to be significant in the BLR (e.g. Blumenthal &
Mathews 1975; Mathews 1986; Marconi et al. 2008; Netzer 2009).
Since the dependence on distance to the light emitter is an inverse
square law, like for gravity, the effect of radiation pressure support
is to reduce the apparently measured mass of the black hole, based
on BLR kinematics. Recently, it has been under debate, how strong
this effect was (Marconi et al. 2008, 2009; Netzer 2009; Netzer
& Marziani 2010), especially in the case of NLS1 galaxies. It is
interesting to ask in this context, which cloud orbits would be stable
against small perturbations, and also, which ones are compatible
with the spectropolarimetric results. In the following we perform
such an analysis.

We present the cloud orbit analysis in Section 2, discuss our
finding in Section 3 and summarize our conclusions in Section 4.

Figure 1. Dynamical equilibrium column density over luminosity in Ed-
dington units against rotation velocity in Kepler units for an isotropic light
source. The red, dashed part of the line corresponds to a maximum of the
effective potential for reasonable choices of the parameter s (s > 1) that
characterizes the pressure profile. Stable orbits are still found in this case,
but are highly eccentric, and are found above the red line. The yellow, dotted
part corresponds to a stable minimum for certain values of s. The solid, black
region is always a minimum of the effective potential, provided s < 3, and
therefore allows for orbits with low eccentricity, which scatter around the
line. See text for more details.

2 DYNAMI CAL STABI LI TY ANALYSI S

We carry out the analysis for both an isotropic light source and a
light source with a cos θ dependence for the luminosity, where θ is
the polar angle. The latter case should be more realistic, as it is the
expected angular distribution for the luminosity of a thin accretion
disc.

2.1 Isotropic light source

For optically thick, spherical clouds of constant mass m and central
column density N, without internal structure, the force equation in
spherical polar coordinates reads

F = GMBHm

R2

(
3l

2σTN
+ V 2 − 1

)
, (1)

where σ T is the Thomson cross-section, l the luminosity in Edding-
ton units, V the rotational velocity in Kepler units and MBH the mass
of the black hole.

Dynamical equilibrium, corresponding to circular orbits, is
reached for a column density of

N = 3l

2σT(1 − V 2)
. (2)

For a large range of rotational velocities V , this is of order 1024

l cm−2 (compare Fig. 1).
To assess dynamical stability, we now consider perturbations

to circular orbits. Following Netzer (2008), we assume a confining
intercloud medium with a pressure profile of p(R) ∝ R−s. The sound
crossing time through a BLR cloud is of order weeks, whereas the
orbiting period is many years. We therefore assume the clouds
to adjust their radius instantaneously to any change in external
pressure. A change in the clouds’ cross-section alters the amount of
radiation received and hence the radiation pressure support. Clouds
will be dynamically stable, if an increase (decrease) in orbital radius
R leads to a net inward (outward) force, i.e. a position above (below)
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the equilibrium line in Fig. 1. We proceed to calculate the perturbed
locations in the N/l – V diagram.

We first consider a spherically symmetric cloud initially in a
circular orbit at distance R to the black hole. Since the temperature
is kept constant by photoionization, a change in distance by �R > 0
will result in a change of the particle density by n(R + �R) = n(R)
[(R + �R)/R]−s. This results in a change of the column density:

N (R + �R) = N (R)(1 + �R/R)−2s/3. (3)

The corresponding change in orbital velocity for angular momentum
conserving perturbations is

V (R + �R) = V (R)(1 + �R/R)−1/2. (4)

The perturbed cloud will receive a restoring force, if

N (R + �R) >
3l

2σT(1 − V (R + �R)2)
. (5)

It may be shown by a few lines of algebra that this condition may
be fulfilled only if

V 2 > V 2
c = 1

1 + (3/4s)
. (6)

The analogous derivation for �R < 0 leads to the same result. If
the rotational velocity is below this value, positive perturbations to
R lead to ejection. Negative ones lead to highly eccentric orbits.
We show this by considering the effective potential Veff . Inserting
equations (3) and (4) into equation (1), and defining R0 to be a
fiducial distance to the black hole where equation (2) holds, with
N(R0) = N0, V(R0) = V0 and x = R/R0, we derive

Veff (x) = GMBHm

R0

[
−(1 − V 2

0 )R(x) + V 2
0

2x2
− 1

x

]
,

R(x) =
{

log(x) s = 3/2,
3

2s−3 x2s/3−1 s �= 3/2.
(7)

The effective potential is displayed in Fig. 2. In agreement with
the preceding discussion, there is an extremum at x = 1, whose
character depends on V0: for V0 > Vc (compare equation 6), it is
a minimum. Stable bound orbits with small radial motions may
be found in this case. For V0 < Vc, the extremum at x = 1 is
a maximum. In this case, their exists a minimum further in. The
equations can be solved easily analytically for s = 0, 3/2 and 3. For
s = 3/2, the second extremum is at

xe2 = V 2
0

1 − V 2
0

. (8)

This extremum is a minimum for V0 < Vc. We have verified nu-
merically that for all 1 < s < 3, xe2 is very close to the value of the
s = 3/2 case, for V0 < Vc. Again, stable bound solutions may be
found. If a cloud is very deep in that potential well, the orbits are
close to circular, and dominated by rotation. The average column
density and rotation velocity for such an orbit are much higher than
the values at R0. Such orbits are therefore effectively on the stable,
solid black part of the equilibrium curve in Fig. 1. Orbits with total
energy close to the potential energy at the maximum will follow
highly eccentric orbits, with predominantly radial kinematics. For a
significant fraction of their orbital period, they have indeed low col-
umn densities and rotational velocities, corresponding to the region
above the red dashed part of the line in Fig. 1.

2.2 Anisotropic light source

The luminosity in Eddington units for a geometrically thin accre-
tion disc is a function of the polar angle and is given by 2l | cos θ |,

Figure 2. Normalized effective potential against normalized distance be-
tween cloud and black hole for a rotation velocity of V0 = 0.1 (top) and V0

= 0.9 (bottom) normalized to the Kepler value at R = R0(x = 1) for the case
of isotropic illumination. In each case, the solid green (dotted red, dashed
yellow) line is for s = 1 (2,3).

where l is the total luminosity of the source in Eddington units. The
force is still central and therefore angular momentum is conserved.
The orbits are planar. Any particular orbital plane may be charac-
terized by a polar angle θ o. We define the direction of the maximum
elevation above the equatorial plane to have an azimuth of φ = 0. A
cloud will then have maximum radiation pressure support at φ = 0
and φ = π, and no radiation pressure support at φ = π/2 and 3π/2,
when passing the equatorial plane. Geometrical considerations re-
sult in cos θ = cos φ cos θ o. Using this, and equations (1), (3) and
(4), results in the following total force equation:

F = GMBHm

R2

(
3l| cos φ cos θo|

σTN0x−2s/3
+ V 2

0 x−1 − 1

)
, (9)

where x = R/R0, R(φ = π/2) = R0 and N(φ = π/2) = N0. The
azimuthal velocity at φ = π/2 in Kepler units is denoted by V0.
Because of the φ dependence, the force is no longer conservative.
We therefore expect the total energy and hence also the major axis
of the orbits to grow or diminish, depending on whether the cloud
moves predominantly with or against the radiation flux.

First, we consider the force-free locations, which are useful to
understand the general structure of the allowed orbits. In the stan-
dard treatment of the Kepler problem, bound orbits require the
existence of a local minimum of the effective potential. The elliptic
orbits are then oscillating around this minimum. The forces in this
case vanish, of course, at the minimum. Away from the minimum,
there is an effective restoring force. If the total energy is too large,
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Figure 3. Force-free lines for the case of the anisotropic light source: nor-
malized distance between cloud and black hole versus a | cos φ| for different
values of the pressure distribution index s. The force is outward to the right
of each curve, and inward on the left-hand side. Around the lower branch of
each line, the force is always restoring. Stable orbits are therefore expected
in this region of the parameter space. If the cloud has low enough column
density, a too large part of the orbit will be right of the force-free line, where
the force is always outward, leading to ejection of the cloud.

the object can reach a region where the effective force is away from
the equilibrium point, and may escape. A similar analysis may be
done for the present problem: making the definition:

a = 3l cos θo

σTN0
, (10)

we find the condition for force-free lines:

a| cos φ| = x2s/3(1 − V0x
−1). (11)

A force-free line in the orbit plane is defined by specifying the pa-
rameters a and s. Since there is no radiation force in the equatorial
plane, force-free lines require V0 = 1. We show x as a function of
a | cos φ| for different values of s in Fig. 3. Each curve is char-
acterized by a rightmost value, a | cos φ| = amax, where the upper
branches with negative slopes and the lower branches with posi-
tive slopes meet. The force is restoring in the vicinity of the lower
branches with positive slope. Therefore, if a cos φ < amax ∀ φ , we
expect bound orbits to exist. We do not necessarily expect bound
orbits if a cos φ exceeds this value for some fraction of the orbit.
From equation (12), we find

amax = 3

2s

(
1

1 + (3/2s)

)(2s/3)+1

. (12)

For s = 2 (1, 3), amax evaluates to 0.20 (0.33, 0.15). Consequently,
there is a θ o- and l-dependent critical column density, above which
bound orbits should be found:

N0 � 7 × 1023 cm−2 l

0.1

cos θo

0.5

0.33

amax
. (13)

Similarly as in the isotropic case, we also find bound, but highly
eccentric orbits for low column densities and rotation velocities: we
show this by numerical integration of some example orbits (Fig. 4).
Our reference in the following is a Cartesian coordinate system with
coordinates X and Y defined in the orbital plane. The Y-axis is taken
to be the intersection between the orbital and the equatorial plane.
We use s = 2 and start the clouds at φ = π/2, i.e. where the orbital
plane meets the equatorial plane (positive Y-axis in Fig. 4), with
certain values for a and V0. For (a, V0) = (0.1, 1.1), we expect a
stable bound orbit despite the super-Keplerian initial velocity, since

a is in the stable regime. This is indeed the case (Fig. 4, top left).
For (a, V0) = (1, 1), we expect ejection, since a is in the unstable
regime and the comparatively high velocity corresponds to a positive
radial perturbation. Again, this is what we find (Fig. 4, top middle).
For (a, V0) = (1, 0.2), we expect highly eccentric orbits. This is
confirmed by the numerical integration (Fig. 4, top right). Here, the
non-conservative nature of the potential is most apparent: The cloud
gains energy, when moving outwards. However, since it advances in
azimuth, it does not get back the same amount on the way inwards.
However, on average over many orbits, the contributions cancel
each other.

In order to obtain kinematic information, we also recorded the
emission measure, e, of the cloud into a certain direction during the
integration, together with the current position and velocity. At each
time t, it is calculated as

e(t) = A(φ) dt R2s/3−2,

where A(φ) is the fraction of the illuminated cloud surface seen
by the observer. We take only the side facing the AGN as line-
emitting region, as appropriate for an optically thick line. The cur-
rent time-step interval is denoted by dt, and the radial dependence
is due to the change of the cloud size and radiation flux with dis-
tance to the centre. We place two observers at large negative X
and Y values, respectively. At each time-step, we project the clouds
velocity along the respective lines of sight. e(t) dt is then added
to the corresponding bins of line-of-sight velocity and transverse
position in order to create a two-dimensional emission-weighted
histogram.

For the bound orbits, these velocity-resolved emission-weighted
histograms are shown in Fig. 4. A priori, one might expect a broader
signal for the low a (high column density) case with well separated
emission peaks near the positive and negative Kepler velocity, and
a narrower signal for the high a (low column density) case. This
is indeed what we find. For (a, V0) = (0.1, 1.1), the peak of the
emission is at ± ≈ 50 per cent of the Keplerian velocity at R0. For
(a, V0) = (1, 0.2), the orbits get very anisotropic in real space as
well as in velocity space. An observer in the −X direction would
see two peaks at around ±0.15 times the Kepler velocity at R0,
close to the initially imposed one. Here, the outermost locations
of the orbit dominate the emission due to the longer time spent
there. An observer in the −Y direction would see the two peaks
at around 1.2 times the Kepler value, because from this point of
view, the orbits are much narrower. If there was an ensemble of
such clouds with the angular momentum vector randomly rotated
around the symmetry axis of the system, but otherwise identical,
the signal at low velocity would dominate, as the emissivity at the
slower peak is about three times higher. For an observer who would
see the orbital plane at some inclination, the apparent velocities
would be somewhat below these values. Since spectropolarimetric
observations are able to resolve the BLR in many objects, we have
also separated the emission that comes from the positive part of
the transverse axis from the one of the opposite side. As one might
have expected, the emission from the two sides is well separated in
velocity space, in both cases. Remarkably, for the emission from a
given side, the (a, V0) = (1, 0.2) cloud shows about 10 per cent of
the peak emission of the opposite side at the location of the peak
of the opposite side. In contrast, for the cloud with (a, V0) = (0.1,
1.1), the emission of a given side drops to zero at the peak of the
other side.
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Figure 4. Position and kinematic data for three example orbits for the anisotropic case. Radiation pressure support is maximal on the X-axis, and zero on the
Y-axis. We have integrated for 100 orbits, for the bound cases. The simulations are converged with regard to the time-step. Top row: orbit shapes in orbit plane.
The orbits are similar to precessing Kepler ellipses. Because of the non-conservative nature of the potential, they grow and shrink periodically, with a period of
π . This leads to Rosetta shapes, which are compressed in the direction of maximum radiation support. The set of four plots on the lower left shows kinematic
information for the (a, V0) = (0.1, 1.1) simulation. Here we assume that a cloud emits radiation on the illuminated side facing the centre. We calculate the
fraction of that surface seen by respective observers. The emission is further proportional to the current cloud surface and the time interval. The top row
relates to an observer in −X direction (X observer), the bottom one to an observer in −Y-direction (Y-observer). The left column shows position–velocity
diagrams, the right one the emission at a given velocity (black) and separately for negative (red) and positive (blue) values of the respective complementary
coordinate. The emission of the two peaks at about half the Kepler velocity is easily discerned. The lower right set of four plots shows the same for the run with
(a, V0) = (1, 0.2). The emission occurs predominantly at smaller velocities. In velocity space, emission from the sides with positive coordinates still has little
overlap with the emission from the other sides. Colour scales are cut at reasonable values, as indicated at the individual colour bars. Velocity is given in units
of the local Kepler velocity at the initial cloud position R0.

3 D ISCUSSION

We have shown that pressure confined clouds at any sub-Keplerian
rotational velocity may exist in stable dynamical equilibrium in the
BLR. Given the significant evidence for a gravitationally bound,
flattened, but still of considerable thickness, and disc-like geometry
for the BLR (compare Section 1), it is reasonable to require a stable
dynamical equilibrium for the line-emitting clouds.

An essential ingredient for the model is the behaviour of the pres-
sure of the intercloud material with radius: a reasonable assumption
for the intercloud component is an advection-dominated accretion
flow (ADAF; e.g. Narayan & Yi 1994; Yuan, Ma & Narayan 2008).
A nearly hydrostatic solution is included in the ADAF models for
the limit of low accretion rates. For this type of solutions, the power-
law index for the pressure s is between 2 and 3. Outflow solutions
have also been considered in the literature. Königl & Kartje (1994)
find 1 < s < 1.5. Therefore, s should be between 1 and 3 (similar
results are obtained by Rees, Netzer & Ferland 1989).

We have considered an isotropic and an anisotropic light source
as appropriate for an accretion disc. The former is usually implied
in the literature. For the isotropic case, the force is central (i.e.
conserves angular momentum) and conservative. We find an equi-

librium relation between column density, luminosity of the AGN
and rotational velocity. We show by direct stability analysis that
only for the part of that relation with high rotational velocities a
cloud would encounter a restoring force for small radial pertur-
bations. However, by analysis of the effective potential, we show
that stable orbits may be found also for low rotational velocities
and column densities slightly above the equilibrium curve given
by equation (2). However, the character of these orbits changes:
while high column densities (corresponding to close to Keplerian
rotation) allow for even circular orbits, low column density clouds
require highly eccentric ones.

For anisotropic illumination, the force is still central, and there-
fore angular momentum conserving, but it is no longer conservative.
Therefore, as the orbits precess, there is now the additional feature
that they gain and loose total energy, which is exchanged with the
radiation field. This is evident from the periodic change of the ma-
jor axis of the orbits. We show that the time-averaged signal of
such a cloud would also be very anisotropic. If one would consider
many such clouds with randomly rotated angular momentum vector
around the axis of symmetry, the stronger emission from further out
would dominate. In our example, this produces a peak in emission
at a small fraction of the Keplerian velocity with a similar full width
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at half-maximum (FWHM). More important, the emission contri-
butions from the two sides of the accretion disc are kinematically
clearly distinct. This would therefore probably still be compatible
with the spectropolarimetric results. More detailed comparisons us-
ing realistic cloud samples have to be done in order to decide if the
dispersion would be low enough to fit with all the available data.
This is however beyond the scope of this paper.

Cloud column density and rotation velocity in the anisotropic case
are still related by equation (2) (also Fig. 1), when orbit averaged
values are used. Therefore, it is well possible to observe arbitrarily
low rotation velocities for cloud column densities of order 1023

(l/0.1) cm−2, confirming the results of Marconi et al. (2008).
Interestingly, it has turned out that for the anisotropic case, the

orbits are less extended in the direction of the strongest radiative
force. This might first appear counter-intuitive, but is readily ex-
plained if one considers that the radiative force adds energy to
the orbit, as long as the motion is outward, but brakes down the
cloud, when it moves inward. If the major orbit axis coincides
with the direction of maximum radiation force, the contributions
nearly cancel, whereas one may get positive changes when the
major axis has advanced past that direction. Energy losses are ex-
pected, when the major axis has not yet reached the maximum force
direction.

If the column densities are not too high, the radiation field favours
a disc configuration: consider an initially isotropic ensemble of
clouds with relatively low column densities, comparable to the one
given in equation (14), and a broad distribution of angular momenta.
Because of angular momentum conservation, each cloud orbits the
black hole in a particular orbital plane on an elliptical orbit. Once
an anisotropic AGN is switched on, we may assign an a value to
each cloud. Because a ∝ cos (θ o), clouds at low polar angle (closer
to the symmetry axis of the emission of the central accretion disc)
have greater a values. If this a value is too large, the high angular
momentum clouds will be ejected. For the remaining clouds at
low polar angle, the major axis of their orbits will shrink when it
points towards higher latitudes on their course of precession. In
Fig. 4 we have demonstrated this effect. The result will be a disc-
like BLR. For column densities much higher than the one given in
equation (14), the orbits are less affected by radiation pressure. For
such clouds, the BLR would therefore not be constrained to have
a disc or other geometry by these dynamic considerations. It may
or may not be in a disc configuration for other reasons. The critical
column density is of the order 1024 cm−2 for common luminosities
of 10 per cent of the Eddington value, which is rather large compared
to observational constraints (compare references in Section 1). One
might therefore generally expect this effect to be significant in many
BLRs.

The detailed mixture of orbits is of course very hard to predict.
Since the cloud mass is unimportant for the acceleration of the cloud,
we expect clouds of a wide range of masses, with the column density
adjusting according to the cloud’s position in phase space. Some
BLR clouds might have been born in situ (e.g. Perry & Dyson 1985).
If the clouds would have come from further out, an interaction would
be required to reach the bound orbits. This might favour eccentric
orbits. The mixture of orbits will determine the observed velocity
structure.

Pressure confined spherical clouds as used in this analysis, suffer
from shearing by differential radiative forces due to the varying
column density from the cloud’s rim to it’s centre (Mathews 1986).
For our parameters one would expect complete disruption after
about a 100th of an orbital period. This issue is common to this class
of cloud model (compare e.g. Rees et al. 1989), and has not been

solved so far. Possible ideas to stabilize the clouds include magnetic
fields and a more favourable geometry (e.g. Netzer 2008).

4 C O N C L U S I O N S

We have shown that pressure confined clouds may rotate stably
on bound orbits near the dynamical equilibrium between radiation,
centrifugal and gravitational forces at all sub-Keplerian rotational
velocities. This is true for isotropic illumination, as well as for the
case where the radiation flux is correlated with the polar angle.
While angular momentum is conserved in both cases, energy is
not conserved for anisotropic illumination. This leads to Rosetta
orbits that extend less in the direction of maximum radiation force.
An intrinsically isotropic low column density cloud system would
therefore become less extended in the polar directions, when an
anisotropic AGN would be switched on, and consequently appear
disc like. We show that it is possible to find clouds of low and
high rotational velocity with well separated peaks in the spatially
resolved emission spectra as a function of velocity, as required
by spectropolarimetric BLR data. These findings confirm the idea
that significant corrections of black hole masses due to radiative
forces are possible in certain objects, as proposed by Marconi et al.
(2008).
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Bon E., Popović L. Č., Gavrilović N., Mura G. L., Mediavilla E., 2009,

MNRAS, 400, 924
Borguet B., Hutsemékers D., Letawe G., Letawe Y., Magain P., 2008, A&A,

478, 321
Denney K. D. et al., 2009, ApJ, 704, L80
Done C., Krolik J. H., 1996, ApJ, 463, 144
Eracleous M., Halpern J. P., 2003, ApJ, 599, 886
Ferland G. J., Elitzur M., 1984, ApJ, 285, L11
Gaskell C. M., 2009, New Astron. Rev., 53, 140
Jarvis M. J., McLure R. J., 2006, MNRAS, 369, 182
Kollatschny W., 2003, A&A, 407, 461
Königl A., Kartje J. F., 1994, ApJ, 434, 446
Kwan J., Krolik J. H., 1981, ApJ, 250, 478
Laor A., Barth A. J., Ho L. C., Filippenko A. V., 2006, ApJ, 636,

83
Marconi A., Axon D. J., Maiolino R., Nagao T., Pastorini G., Pietrini P.,

Robinson A., Torricelli G., 2008, ApJ, 678, 693
Marconi A., Axon D. J., Maiolino R., Nagao T., Pietrini P., Risaliti G.,

Robinson A., Torricelli G., 2009, ApJ, 698, L103
Mathews W. G., 1986, ApJ, 305, 187
Narayan R., Yi I., 1994, ApJ, 428, L13
Netzer H., 2008, New Astron. Rev., 52, 257
Netzer H., 2009, ApJ, 695, 793
Netzer H., Marziani P., 2010, ApJ, in press (arXiv:1006.3553)
Osterbrock D. E., 1978, Proc. Natl. Acad. Sci. USA, 75, 540
Osterbrock D. E., 1988, Astrophysics of Gaseous Nebulae and Active

Galactic Nuclei. University Science Books, Mill Valley, CA
Perry J. J., Dyson J. E., 1985, MNRAS, 213, 665

C© 2010 The Authors, MNRAS 411, 550–556
Monthly Notices of the Royal Astronomical Society C© 2010 RAS



556 M. Krause, A. Burkert and M. Schartmann

Peterson B. M., 1997, Active Galactic Nuclei. Cambridge Univ. Press,
Cambridge

Rees M. J., Netzer H., Ferland G. J., 1989, ApJ, 347, 640
Smith J. E., Robinson A., Alexander D. M., Young S., Axon D. J., Corbett

E. A., 2004, MNRAS, 350, 140
Smith J. E., Robinson A., Young S., Axon D. J., Corbett E. A., 2005,

MNRAS, 359, 846
Ulrich M., Horne K., 1996, MNRAS, 283, 748

Wills B. J., Browne I. W. A., 1986, ApJ, 302, 56
Young S., Axon D. J., Robinson A., Hough J. H., Smith J. E., 2007, Nat,

450, 74
Yuan F., Ma R., Narayan R., 2008, ApJ, 679, 984

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2010 The Authors, MNRAS 411, 550–556
Monthly Notices of the Royal Astronomical Society C© 2010 RAS


