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Abstract 
 
 
mRNA translation is one of the fundamental and well controlled cellular process requiring 

the combined function of a large number of molecular components. The three main stages 

of translation, initiation, elongation and termination are facilitated by more than 20 proteins 

known as translation factors. Translation is the final step in the flow of genetic information, 

and regulation at this level allows for an immediate and rapid response to changes in 

physiological conditions. The control exerted at the systems level of translation has not 

precisely been characterized. Three different techniques have been employed to 

quantitative the control exerted by the respective translation factors.  

 

In the first approach, employing the microscopic techniques, in vivo intra-cellular 

distribution of translation elongation and release factors were analysed with TCM and GFP 

tags. The result indicates that the factors are cytoplasmically distributed which cannot 

influence the overall translational control. In the second approach, the protein expression 

levels of the elongation and release factors were titrated progressively to explore their 

control effects on global translation regulation. The endogenous promoter of each 

translation factor was substituted by the tetO7 synthetic promoter to regulate the expression 

level in response to varying concentrations of doxycycline. Measurement of protein 

synthesis rate and the growth rate at different levels of the elongation and release factors 

provide insight to system-level control. The results indicate that the elongation factors 

eEF1A and eEF2 and the release factor eRF1 exert an unexpectedly high degree of control 

over translation rate. Moreover, these factors, along with elongation factor eEF3 were 

found to be functionally dedicated to translation, in contrast to eEF1B and eRF3, which is 

evidently multifunctional. In the third approach, a mathematical model has been developed 

to represent the control landscape of the translational machinery. This translation model is a 

powerful tool that will be used in the quantitative analysis of translation when two factors 

are made limiting at a time. The extensive study carried out on the translational regulation 

of Saccharomyces cerevisiae reveals an interesting observation of the involvement of each 

translation factors. For the first time, the quantitative measurement of the translational 

regulation reveals the translational regulation exerted by individual translation factors. 
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Chapter 1 

 

 

Introduction 
 

 

 

1.1.  Translation : A fundamental process for life  

 

Translation is one of the fundamental processes that occur throughout all the kingdoms of 

life. It is a very complex and very well controlled process involving many proteins and 

RNA molecules. Protein synthesis is one of the most energy-consuming cellular processes, 

and is carried out by highly complex molecular machinery. During translation, messenger 

RNA (mRNA) is decoded and synthesized into specific proteins. Due to the enormous 

molecular investment and underlying complexity, each stage of translation is precisely 

monitored to avoid errors. Translation consists of four stages, initiation, elongation, 

termination and recycling (reviewed in Kapp and Lorsch, 2004a). During initiation, 

ribosome, other initiation factors and methionyl initiator transfer RNA (Met-tRNAi) 

assemble at the initiation codon of mRNA to start translation. During the elongation stage, 

mRNA is decoded with appropriate transfer RNA (tRNA) and the polypeptide is 

synthesized. Elongation continues until the stop codon on the mRNA is recognized that 

leads to termination. During termination, the newly synthesized polypeptide is released 

from the ribosome. The last stage is recycling where ribosomal subunits, initiation and 

elongation factors dissociate from the mRNA and become free to function in subsequent 

translation reactions. 
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1.2. Essential components of translation machinery  

 

1.2.1. Ribosomes 

 

The ribosome is a large ribonucleoprotein particle that consists of a number of ribosomal 

RNAs (rRNA) and a collection RNA binding proteins. The architecture of the ribosome is 

highly conserved from one kingdom to other. Between species the core structure of the 

ribosome is conserved however there are differences in the protein components as 

resultantly the overall mass and dimensions of the ribosomes. The yeast ribosome, 80S has 

two subunits, the large subunit (60S) and the small subunit (40S). The 60S subunit is 

composed of three rRNA molecules: 28S rRNA of 3392 nucleotides, 5.8S rRNA of 158 

nucleotides and 5S RNA of 21 nucleotides whereas the 40S subunit contains one rRNA; the 

18S of 1798 nucleotides. There are 42 proteins in the large subunit with a mass ratio of 

61% RNA to 39% protein and in small subunit there are 32 proteins giving a mass ratio of 

54% RNA to 46% protein (Verschoor et al., 1998). The ribosomal subunits 40S and 60S 

associate during translation to form 80S. The prokaryotic ribosome consists of large (50S) 

and small (30S) subunit which forms a 70S ribosome. The 50S subunit contains two 

rRNAs: 23S RNA of ~2900 nucleotides and 5S RNA of ~120 nucleotides and the 30S 

subunit consists of 16S RNA of ~1500 nucleotides. The large sub-unit has about 30 

proteins whereas small subunit has about 20 proteins (Schmeing and Ramakrishnan, 2009). 

The crystal structure of the 70S ribosome from bacteria has broadened the understanding of 

the ribosome and its involvement in each stage of translation (Schmeing and 

Ramakrishnan, 2009). Mammalian ribosomes differ from yeast ribosomes in size. 

Mammalian rRNAs are 10% larger in the 40S subunit and nearly 33% larger in the 60S 

subunit. Not all ribosomal proteins are essential for the survival, though, they are important 

for the optimal assembly, stability, function of the ribosome and accuracy of translation 

(Baronas-Lowell and Warner, 1990, Alksne et al., 1993). The majority of the yeast 

ribosomal proteins have homologous in mammals apart from Ribosomal Protein Large sub-

unit 28 (rpL28) which has only been identified in mammals and plants (Verschoor et al., 

1998). However, it is believed that the internal features such as the mRNA tunnel, 
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polypeptide exit tunnel, peptidyl synthesis region, A, P and E site are strikingly similar in 

all species.  

 

Multiple ribosomes bind to the mRNA during translation. The number of ribosomes 

translating a single mRNA depends upon the length of the mRNA and the requirement of 

the resultant peptide (Mathews et al. 2000). In eukaryotes, each ribosome bound to an 

mRNA occupies 10-15 codons (Mathews et al. 2000). The mRNA binds the 40S subunit 

where its codon interacts with the complimentary anticodon of the tRNA. In the ribosome, 

there are three binding sites for tRNA, the A, P and E sites. The A site binds to the 

incoming aminoacyl-tRNA, the P site holds the peptidyl-tRNA attached to the nascent 

polypeptide chain, and the E site where the deacylated P-site tRNA moves after peptide-

bond formation before its removal from the ribosome (Schmeing and Ramakrishnan, 2009). 

 

1.2.2. mRNA 

 

The cellular-level of mRNA is determined by transcription rates, active transport of the 

mRNA to the cytoplasm and mRNA degradation rates. Maturation of mRNA varies from 

prokaryotes to eukaryotes. In eukaryotes, mRNA undergoes a series of molecular processes 

such as 5’ cap-structure formation, 3’ poly (A) tail formation and mRNA splicing prior to 

translation. The translation factors recognise these structures therefore they serve to ensure 

that the mRNA is not degraded before translation. These structures are necessary for the 

initiation factors to recognize the non-degraded mRNA and for the mRNA transport to the 

cytoplasm. Eukaryotic pre-mRNA can contain introns, the non-coding regions which are 

removed before translation and exons, the coding regions. The removal of introns from pre-

mRNA messages is through a process called splicing which can occur in several different 

ways, allowing a single gene to encode multiple proteins (Geoghegan et al. 1979). 

 

Many studies have demonstrated that the mRNA localizes to distinct regions within the cell 

(St Johnston. 1995). This is believed to be an efficient way to localize the proteins. Specific 

localisation of a few mRNA molecules is presumably more energy efficient than 

transporting many protein molecules (Johnston and Lasko, 2001). The number of times 
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each mRNA is translated is based on the requirement of the protein that it encodes. Recent 

studies have indicated that mRNAs are also stored in bodies called as P-bodies for future 

use or prior to degradation (Parker and Sheth, 2007). mRNAs can exhibit a range of life-

spans in bacteria varying from seconds to hours, in yeast cells varying  from less than 1 min 

to more than 60 min and in mammalian cells varying from minutes to days.  

 

1.2.3. tRNA 

 

tRNA plays one of the most important roles in mRNA translation: amino acid delivery. 

tRNA is a small RNA molecule with 73-93 nucleotides in length (Hou, 1997). In yeast 

there are approximately 275 genes that code for tRNA. There is a unique tRNA for each 

codon. tRNA has an acceptor stem which is the base pairing of the 5'-terminal nucleotide 

with the 3’-terminal nucleotide. The terminal 3’ nucleotide contains a CCA sequence that 

recognises the amino acid and a covalent bond is formed between the amino acid and the 

tRNA during aminoacylation.  The aminoacylation is catalyzed by 20 molecules of 

aminoacyl tRNA synthetase (Hou, 1997). The anticodon stem of the tRNA recognises the 

mRNA codon during translation.  

 

There are two classes of tRNA present in all organisms; Initiator tRNA and elongation 

tRNA. Initiator tRNA binds to the P site of the ribosome and the elongation tRNA binds to 

the A site. Moreover, the initiator tRNAs are not capable of binding to the A site of the 

ribosome to be part of elongation (Varshney et al., 1993). Initiator tRNAs possesses some 

unique sequence/structures, 1) A mismatch between the nucleotides 1 and 72 (Cl-A72) at 

the end of the acceptor stem, 2) the presence of a sequence of three guanines and three 

cytosines at the bottom of the anticodon stem forming three consecutive G-C base pairs, 

and 3) the presence of a purine-11-pyrimidine-24 base pair in contrast to a pyrimidine-11-

purine-24 base pair in other tRNAs (Varshney et al., 1993).The important feature for 

targeting the tRNA to the P site on the ribosome is believed to be the three consecutive G-C 

base pairs in the anticodon stem (Varshney et al., 1993). Studies have shown that an 

elongation tRNA can be changed into an initiator tRNA by introducing a Cl-A72 mismatch 
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and with an anticodon sequence change to which allows the elongation tRNA to function in 

initiation (Varshney et al., 1993). 

 

1.3. Translation in prokaryotes and eukaryotes 

 

The process of translation is conserved in all kingdoms of life. Even though the underlying 

molecular mechanism remains the same, there are specific differences in the four stages of 

translation from species to species. The translation pathway is more complex in eukaryotes 

than in prokaryotes (McCarthy, 1998). In bacteria, translation is coupled with the 

transcription process and believed to be faster than in eukaryotes (reviewed in Kapp and 

Lorsch, 2004a). In contrast, in eukaryotes, the fully transcribed mRNA has to be exported 

from the nucleus, to the cytoplasm, where it is translated.  

 

1.3.1. Initiation  

 

One of the most important differences between prokaryotic and eukaryotic translation 

initiation is the number of initiation factors involved in the process. The 3 initiation factors 

in the prokaryote are replaced by at least 12 initiation factors in eukaryotes (Figure 1.1) 

(Kapp and Lorsch, 2004a). Translation initiation in bacteria is facilitated by factor 1 (eIF1), 

2 (eIF2) and 3 (eIF3). All the initiation factors involved in eukaryotic initiation are listed in 

Table 1.1. 

 

Translation initiation consists of four major events, 1) formation of the ternary complex and 

association of initiation factors with mRNA, 2) association of the small subunit (40S) with 

mRNA, 3) identification of the initiation codon and 4) binding of the 40S and 60S 

ribosomal subunits.  
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Table 1.1 : List of all yeast translation initiation factors with respective subunits. 

Protein 

Name 

Subunit Gene 

name 

Mass 

(kDa) 

Function Reference 

eIF1 NA* SUI1 12.3 Component of a complex involved in 

 recognition of the initiator codon;  

modulates translation accuracy at the  

initiation phase 

Cui et al., 

1998 

eIF1A NA* TIF11 17.4 Forms complex with eIF1 and 40S 

 and scans for the start codon. C- 

terminus associates with eIF5B and N  

terminus interacts with eIF2 and eIF3 

Maag et 

al., 2005 

α SUI2 34.7 Involved in identification of the  

start codon; phosphorylation of Ser51  

is required for regulation of translation 

 by inhibiting the exchange of GDP for 

 GTP 

Laurino et 

al., 1999 

β SUI3 31.6 Involved in the identification of the  

start codon; proposed to be involved 

 in mRNA binding 

Donahue 
et al., 
1988 
 

eIF2 

γ GCD1

1 

57.9 Involved in identification of the 

 start codon; binds GTP when  

forming the ternary complex with  

GTP and tRNAi-Met 

Laurino et 

al., 1999 

α GCN3 34.0 

β GCD7 42.6 

γ GCD1 65.7 

δ GCD2 70.9 
eIF2B 

ε GCD6 81.2 

 

The guanine-nucleotide exchange  

factor for eIF2; activity regulated by 

phosphorylation of eIF2. 

 

Pavitt et 
al., 1998 
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α RPG1 

/TIF32 

110.3 

β PRT1 88.1 

Form subcomplex that stimulates 

binding of mRNA and tRNA(i)Met to 

ribosomes 

Phan et 
al., 2001 
 

γ NIP1 93.2 Involved in the assembly of  

preinitiation complex and start  

codon selection 

Valasek et 

al., 2003 

δ TIF35 30.5 

ε TIF34 38.8 

Subunits of eIF3 which are 

essential for translation 

Phan et 
al., 1998 
 

eIF3 

ζ HCR1 29.6 A substoichiometric component 

of eIF3 required for processing of 

20S pre-rRNA; binds to eIF3  

subunits Rpg1p and Prt1p and  

18S rRNA 

Phan et 
al., 2001 
 

eIF4AI/

II 
NA* 

TIF1/

TIF2 
45.1 

DEAD-box RNA helicase  

that couples ATPase activity to  

RNA binding and unwinding,  

interacts with eIF4G 

Caruthers 
et al., 
2000 
 

 

eIF4B NA* TIF3 48.5 

Has RNA annealing activity;  

contains an RNA recognition motif  

and binds to single-stranded RNA 

Altmann 
et al., 
1995 
 

eIF4E NA* 
CDC3

3 
24.3 

The eIF4E-cap complex is  

responsible for mediating cap-dependent 

 mRNA translation via interactions  

with translation initiation factor eIF4G 

Fortes et 
al., 2000 
 

eIF4GI/

II 
NA* 

TIF46

31/ 

TIF46

32 

107.1 

Interacts with Pab1p and eIF4A and  

also has a role in biogenesis of the  

large ribosomal subunit 

Neff and 
Sachs, 
1999 
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eIF5 NA* TIF5 45.2 

N-terminal domain functions as a 

 GTPase-activating protein to mediate 

 hydrolysis of ribosome-bound GTP;  

C-terminal domain is the core of 

 ribosomal preinitiation complex 

 formation 

Das et al., 
2001 
 

eIF5B NA* 
FUN1

2 
112.3 

GTPase, required for general  

translation initiation by promoting  

Met-tRNAiMet binding to ribosomes 

 and ribosomal subunit joining;  

homolog of bacterial IF2 

Lee et al., 
2002 
 

Pab1p NA* PAB1 64.3 

Part of the 3'-end RNA-processing 

 complex, mediates interactions  

between the 5' cap structure and the  

3' mRNA poly(A) tail, involved  

in control of poly(A) tail length, 

 interacts with translation factor eIF-4G 

Kessler 
and Sachs, 
1998 
 

Ded1p NA* DED1 65.5 
Required for translation initiation of  

all yeast mRNAs 

Iost et al., 
1999 
 

NA* - Not applicable 

 

1.3.1.1. Ternary complex formation and interaction of initiation factors with 

mRNA 

 

The first step of eukaryotic translation initiation is ternary complex formation by the 

assembly of eukaryotic initiation factor 2 (eIF2) and Met-tRNAi (Figure 1.1). Prior to this 

assembly, eIF2-GDP is converted to eIF2-GTP by eukaryotic initiation factor 2B (eIF2B). 

eIF2 has ~100-fold higher affinity for GDP than for GTP (Panniers et al., 1988), hence 

eIF2B is essential for recycling of eIF2-GTP. eIF2 is a heteromultimer, with three subunits 
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of a total molecular mass of ~125 kDa (Laurino et al., 1999). The γ subunit of eIF2 

interacts with both GTP and Met-tRNAi (Erickson and Hannig, 1996, Naranda et al., 

1995). The γ subunit of eIF2 is homologous to the eukaryotic elongation factor 1A (eEF1A) 

and prokaryotic elongation factor Tu (EF-Tu) (Kyrpides and Woese, 1998).  

 

Concurrent to the ternary complex formation, the eukaryotic initiation factor 4F (eIF4F) 

complex, consisting of eukaryotic initiation factor 4A (eIF4A), 4B (eIF4B), 4E (eIF4E) and 

4G (eIF4G) binds to the mRNA cap (7-methylguanosine ). Binding of this complex is 

thought to unwind secondary structures found in the 5’-untranslated region (5’ UTR) of 

mRNA (reviewed in Kapp and Lorsch, 2004a). eIF4E binds directly to the 5’-cap structure 

of the mRNA. The highly conserved electron-rich tryptophans in eIF4E have high 

specificity for the positively charged 7-methylguanosine of the eukaryotic mRNA 5’-cap 

(Marcotrigiano et al., 1997). Secondary structure found near the 5’-cap of the mRNA can 

inhibit interaction with 40S. eIF4A is a RNA-dependent ATPase and has been proposed to 

function as a RNA helicase that unwinds the secondary and tertiary structure in the 5’-ends 

of mRNAs (Linder, 1992). eIF4B, an RNA-binding protein is believed to assist eIF4A in 

unwinding structures in mRNAs (Altmann et al., 1993). Another RNA-dependent ATPase 

of the DEAD box family, Ded1p is also believed to be involved in unwinding the 5’-UTR 

secondary structure (Iost et al., 1999, Berthelot et al, 2004).  

 

Addition to 5’-cap binding proteins, one initiation factor, poly (A) binding protein (PAB), 

binds to the 3’-poly (A) tail of eukaryotic mRNA. PAB contains four RNA recognition 

motifs (RRMs) which recognise the poly (A) tail of the mRNA. More than one PAB 

protein can simultaneously bind to the poly (A) tail with approximately one PAB molecule 

bound per 27 nucleotides of the mRNA poly (A). The average length of a yeast mRNA 

poly (A) tail is 70 nucleotides and possibly 2 to 10 PAB molecules can bind to the poly (A) 

tail of an mRNA (Baer and Kornberg, 1980, Baer and Kornberg, 1983). The RRM of the 

Pab1p contain the binding site for eIF4G and the poly (A) tail of an mRNA with Pab1p 

form a multivalent attachment site for eIF4G (Gray et al., 2000). The interaction between 

Pab1p and eIF4G can potentially form a circular structure to the mRNA. Moreover, it has 

been suggested that PAB may interact with the 60S subunit directly indicating that in 
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addition to facilitating mRNA binding to the 43S-ternary complex, the poly(A) tail and 

PAB may influence ribosomal subunit joining as well (Sachs and Davis, 1989, Proweller 

and Butler, 1996). It has been proposed that circularization of the mRNA is a quality 

control mechanism in eukaryotes to verify that none of the truncated mRNA is translated. 

In contrast, this quality control step is seems to be absent in prokaryotes where proteins 

synthesized from aberrant/truncated mRNAs are degraded (reviewed in Kapp and Lorsch, 

2004a). 

 

1.3.1.2.  Association of mRNA with 40S 

 

In bacteria, loading of the 30S ribosomal subunit onto mRNA is accomplished through 

complementary base pairing between the 3’ end of the 16S rRNA (the anti-Shine-Dalgarno) 

and the purine-rich Shine-Dalgarno sequence located upstream of the initiation codon in 

mRNA. The Shine-Dalgarno sequence is usually ~10 bases upstream of the initiation 

codon, therefore the peptidyl site (P site) of the small ribosomal subunit is placed near the 

initiation codon the 30S binds to the mRNA (reviewed in McCarthy, 1998). Thus, in 

bacteria, association of 30S subunits with mRNA and the recognition of the start codon 

occur as a single process.  

 

In eukaryotes, the processes of association of 40S with mRNA and identification of the 

initiation codon occur separately and require additional initiation factors. Before 

association of the mRNA with 40S, the ternary complex (eIF2-GTP-Met-tRNAi) binds with 

the 40S ribosomal subunit. This interaction is facilitated by several initiation factors, 

namely eukaryotic factors 1 (eIF1), 1A (eIF1A) and 3 (eIF3), collectively known as the 

multifactor complex (MFC) (Asano et al., 2000). The resulting 43S complex ( 40S- eIF2-

GTP-Met-tRNAi-eEF1-eEF1A-eIF3) is loaded onto the mRNA with the help of eIF4G and 

Pab1p which are bound to the 3’-poly (A) tail of mRNA (Asano et al., 2000).  
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Figure 1.1 : Schematic representation of eukaryotic translation initiation. Eukaryotic 
initiation is facilitated by 13 initiation factors. The met-tRNAi and the initiation factors 
bind to the 40S ribosomal sub-unit to form a 43S complex. Subsequently, 43S is loaded on 
to the mRNA facilitated by the cap-binding factors to form 48S. 43S scans the mRNA from 
5’ to 3’ to identify the initiation codon AUG. Once the initiation codon is identified, 60S 
associates with the 40S and starts poly-peptide synthesis. 
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The eIF3 protein complex facilitates the binding of both the ternary complex and the 

mRNA to the 40S subunit and plays an important role in the assembly of the translation 

initiation complex (Valasek et al., 2002). eIF3 is a heteromultimeric complex comprised of 

five core subunits in yeast (Phan et al., 1998) with a combined molecular mass of 360 kDa. 

This complex allows access to the ternary complex by altering the conformation of the 40S 

subunit, and may also allow the mRNA to access the 40S sub-unit to 40S. It has been 

suggested that the small factors such as eIF1 and eIF1A might alter the local conformation 

of the eIF2 binding site in the 40S subunit whereas the larger factor such as eIF3 might 

distort the conformation of the entire 40S subunit to facilitate easy access of the ternary 

complex. This theory explains the requirement for a large initiation factor such as eIF3 in 

the 43S complex (Kapp and Lorsch, 2004a). 

 

1.3.1.3. Identification of the initiation codon in a cap-dependent translation  

 

The 43S complex binds to mRNA and initiates scanning of the mRNA in a 5’ to 3’ 

direction to identify the translation initiation codon, AUG. The scanning process is not 

clearly understood however, eIF1 and eIF1A are thought to be involved in the process (Cui 

et al., 1998, Maag et al., 2005).  It has been suggested that the scanning movement is via 

diffusion which is facilitated by the unwinding of mRNA structure by eIF4A and Ded1 

allowing the ribosomal subunit movement (Kapp and Lorsch, 2004a). eIF4A and Ded1 are 

thought to hydrolyse ATP to drive the unwinding of mRNA secondary structure (Kozak, 

1980). As the ribosomes move from 5’ to 3’, the mRNA secondary structure reforms 

behind it, preventing retrograde movement of the translating ribosome (Kapp and Lorsch, 

2004a). Even though the bacterial 16S rRNA is very similar to eukaryotic 18S rRNA, 18S 

lacks the Shine-Dalgarno sequence that allows easy identification of the initiation codon. 

Instead, the 43S is loaded on the mRNA via the mRNA cap and then scans to locate the 

start codon. 
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1.3.1.4. Association of 40S and 60S ribosomal subunits 

 

Subunit joining is the final step of the translation initiation. Once the initiation codon is 

identified, codon-anticodon base pairing takes place between the Met-tRNAi and the 

initiation codon. In contrast to elongation, where the codon-anticodon base pairing is 

confirmed in the Aminoacyl site (A site) of the ribosome, in the initiation stage codon-

anticodon pairing happens at the P site and requires eIF1 to perform the inspection (Cui et 

al., 1998). Energy required for this base pairing is provided by the GTP hydrolysis of eIF2. 

After confirming the codon-anticodon base pairing, eIF1 induces eIF2 to initiate GTP 

hydrolysis. The main function of eIF2 is to provide the energy required for the release of 

Met-tRNAi from the ternary complex (Huang et al., 1997). eIF2-GDP, eIF1, eIF1A, eIF3 

and eIF5, disassociate from the ribosomal subunit after the codon-anticodon base pairing. 

This facilitates binding of the ribosomal large subunit (60S) to the 40S-mRNA-Met-tRNAi 

complex. This event is triggered by the GTP hydrolysis of eukaryotic initiation factor 5B 

(eIF5B). It has been reported that the binding of eIF5B to the 60S ribosomal subunit may 

bring a structural change on the subunit facilitating the docking of the small subunit 

(Passmore et al., 2007, Marintchev et al., 2009). The interaction between the eIF5B and the 

C-terminus of eIF1A stimulates ribosomal subunit joining and eIF5B-GTP hydrolysis. This 

triggers eIF5B-GDP to be released from the initiation complex (Acker et al., 2006). eIF5B 

promotes the release of eIF1A from the 80S to empty the A site for first aminoacyl-tRNA 

(Fringer et al., 2007). eIF5B-GDP disassociates from the 60S ribosome after the formation 

of 80S. This completes the initiation stage and leads to the next stage of translation; 

elongation.  

 

1.3.1.5.  Additional translation initiation factors  

 

In addition to the core initiation factors, a number of proteins are believed to be involved in 

translation initiation directly, for example eukaryotic initiation factor 5A (eIF5A) (Kang 

and Hershey, 1994). This factor was previously known to be an initiation factors, however, 

recently shown to be part of the elongation cycle (Gregio et al., 2009). Although it is an 
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essential protein in yeast, the functions of this factor is not clear. However it has been 

shown that the mutations of this factor have an affect on the elongation cycle and thereby 

translation.  

.  

1.3.2. Elongation  

 

Unlike the initiation and termination stages of translation, the mechanism of translation 

elongation has been highly conserved across the three kingdoms of life. Elongation begins 

when the peptidyl tRNA is at the P site and the A site of the ribosome is vacant (Figure 

1.2). In eukaryotes the translation elongation cycle is known to be facilitated by at least 

three elongation factors and in yeast four elongation factors known to be involved (Table 

1.2). The first step of elongation involves the delivery of aa-tRNA to the ribosomal A site 

and this event is carried out by eukaryotic elongation factor 1A (eEF1A). eEF1A is a 

guanidine binding proteins (G-protein) and is normally found as a complex with GDP. 

However this is the inactive form of eEF1A and the transition between active and inactive 

is based on whether GTP or GDP, respectively, is bound (Bourne et al. 1990). Recycling of 

inactive eEF1A-GDP to active eEF1A-GTP is performed by eukaryotic elongation factor 

1B (eEF1B), a guanidine nucleotide exchange factor (GEF).  

 

There is more than 30% sequence similarity between the eEF1A across the species, with 

higher identity in the GTP binding domain (Merrick and Nyborg 2000). eEF1A has three 

functional and structural domains, of which domain 1 binds the nucleotides and this GTP 

binding domain is highly conserved (Merrick and Nyborg 2000). Domains 1 and 2 bind to 

eEF1B, and domain 3 is responsible for actin binding (Munshi et al. 2001). In yeast eEF1B 

contains two subunits, eEF1Bα and eEF1Bγ (Saha and Chakraburtty, 1986). eEF1Bα has 

catalytic activity whereas the function of eEF1Bγ is unknown. 

 

eEF1A-GTP binds to aminoacyl tRNA to form the ternary complex (aa-tRNA-eEF1A-

GTP). The ternary complex enters the A site of the ribosome where the codon-anticodon 

base-pairing is examined. After the codon-anticodon base pairing is confirmed, eEF1A 

undergo hydrolysis resulting tRNA-mRNA duplex. eEF1A-GDP releases the aminoacyl 
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tRNA into the A site and detaches from the ribosome. The ribosomal peptidyl transferase 

centre catalyzes the formation of a peptide bond between the incoming amino acid at A site 

and the peptidyl tRNA at the P site (Moore and Steitz, 2003). The result is a deacylated 

tRNA in a P/E hybrid state with its acceptor end in the exit (E) site of the large ribosomal 

subunit and its anticodon end in the P site of the small subunit (Green and Noller, 1997). 

The peptidyl-tRNA is in a similar hybrid state (A/P) with its acceptor end in the P site of 

the large subunit and its anticodon end in the A site of the small subunit.  

 

 The hybrid state of the tRNA is resolved in the second main event in the elongation cycle, 

translocation. In this process the deacylated-tRNA moves from P/E hybrid site to E site and 

the peptidyl-tRNA from A/P hybrid state to the P site. The translocation event is facilitated 

by eukaryotic elongation factor 2 (eEF2), in a GTP dependent manner (Jorgensen et al., 

2006). eEF2 is another highly conserved factor and shares 36 % sequence identity across 

species. eEF2 is a monomer with six structural domain. These domains are organized in 

such a way that it divides the protein into two structural blocks. The N-terminal region 

contains the domains I ,II and G’ and the C terminal region contains the domain III, IV and 

V (Jørgensen et al., 2003). A major structural conformational change occurs when this 

protein binds to the ribosome. The N-terminal region contains the GTP binding site which 

can be phosphorylated to render the protein inactive (Nairn and Palfrey 1987). The 

translocation of peptidyl-tRNA indirectly causes the repositioning of the ribosome to the 

next codon of mRNA. The movement of the ribosome to the next codon must be efficient 

and accurate in order to maintain the protein synthesis in-frame. After translocation, eEF2 

leaves the ribosome, allowing the next aa-tRNA-eEF1A–GTP to enter the A site. 
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Figure 1.2: Schematic representation of the eukaryotic translation elongation cycle. 
The ribosome reads mRNA from 5’ to 3’ and decodes the mRNA sequence to synthesise 
the appropriate poly-peptide. eEF1A brings the amino acylated tRNA to the A site of the 
ribosome and the peptide bonds are formed at the P site. Translocation of the ribosome to 
the next codon of the mRNA is facilitated by eEF2. The tRNA in the E site of the ribosome 
is removed by eEF3. All the elongation steps are continued until the stop codon is 
recognised by the release factors.  
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The major difference between the elongation stage of yeast and that of other organisms is 

the presence of an exclusive translation elongation factor for fungi that facilitates the 

removal of tRNA from the E site of the ribosome. In yeast, the deacylated-tRNA from the E 

site is removed by eukaryotic elongation factor 3 (eEF3). eEF3 has been shown to be 

essential for the viability of yeast (Qin et al., 1990). eEF3 exhibits ribosome-dependent 

ATPase and GTPase activities (Dasmahapatra and Chakraburtty, 1981) and possesses a 

nucleotide binding motif typically found in membrane-associated ATP Binding Cassette 

(ABC) proteins (Qin et al., 1990). eEF3 is mainly found in the polysome fractions and is 

required for each round of peptide bond formation (Anand et al., 2003, Kapp and Lorsch, 

2004a). eEF3 is hypothesised to facilitate the release of deacylated-tRNA from the E site 

that enables the efficient binding of the aa-tRNA-eEF1A-GTP ternary complex to the A site 

(Triana-Alonso et al., 1995). In some higher eukaryotes, some of the ribosomal proteins are 

suggested to have similar functions to eEF3. There have been reports of ATPase activity in 

the ribosome to remove the E site deacyl-tRNA (Rodnina et al., 1994). However, there is 

no evidence of an eEF3 homologous ribosomal protein in higher eukaryotes (El'skaya et al., 

1997). eEF3 binds near the ribosomal E-site where it is capable of influencing the binding 

capacity of the head of 40S subunit and the L1 stalk, both of which contribute to the affinity 

of tRNA for the E-site. The ribosome undergoes a conformational change at this stage 

allowing the E site to open up and release the tRNA (Andersen et al 2006). Interaction of 

eEF3 with eEF1A has been proved and eEF3 believed to be competing with actin to bind to 

eEF1A (Anand et al., 2006). 

 

1.3.3. Termination 

 

Termination occurs in response to the identification of the stop codon in mRNA at the A 

site of the ribosome (Figure 1.3). This results in hydrolysis of the ester bond between the 

polypeptide and tRNA in the P site and the release of the completed polypeptide from the 

ribosome. In yeast, the stop codon is recognized by the eukaryotic releasing factor 1 (eRF1) 

which is stimulated by the GTPase activity of eukaryotic releasing factor 3 (eRF3) (Table 

1.2). The peptidyl transferase centre of the ribosome is believed to catalyse the ester bond 

hydrolysis reaction (Kisselev and Buckingham, 2000).  
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Table 1.2 : List of yeast elongation and release factors and their respective subunits. 

Protein 

Name 

Subunit Gene 

name 

Mass 

(kDa) 

Function Reference 

eEF1A NA* TEF1/

TEF2 

50.0 Functions in the binding reaction  

of aminoacyl-tRNA (AA-tRNA)  

to ribosomes; may also have a  

role in tRNA re-export from  

the nucleus 

Schirmaie

r and 

Philippsen

, 1984 

α TEF5 22.6 

Stimulates nucleotide exchange 

 to regenerate eEF1A-GTP for  

the next elongation cycle; part of  

the EF-1 complex, which facilitates 

binding of aminoacyl-tRNA to the 

ribosomal A site 

Kinzy and 
Woolford, 
1995 
 

eEF1B 

γ TEF4 46.5 

Stimulates the binding of aa-tRNA  

to ribosomes by releasing eEF1A 

 from the ribosomal complex 

Jeppesen 
et al., 
2003 
 

 eEF2 NA* 
EFT1/

EFT2 
93.3 

Catalyzes ribosomal translocation 

during protein synthesis; contains 

diphthamide, the unique post 

translationally modified histidine 

residue specifically ADP-ribosylated by 

diphtheria toxin 

Justice et 
al., 1998 
 

 eEF3 NA* YEF3 115.9 

Stimulates the binding of  

aminoacyl-tRNA (aa-tRNA) to 

ribosomes by releasing eEF1A 

(Tef1p/Tef2p) from the ribosomal 

complex; contains two ABC cassettes; 

binds and hydrolyzes ATP 

Anand et 

al., 2003 
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eRF1 NA* SUP45 49.0 

Involved in the termination of 

translation and Polypeptide release 

factor  

Stansfield 
et al., 
1995 
 

eRF3 NA* SUP35 76.6 

Catalyse the nucleotide exchange  

of eRF1, altered protein conformation 

creates the [PSI(+)] prion, a dominant 

cytoplasmically inherited protein 

aggregate that alters translational 

fidelity and creates a nonsense 

suppressor phenotype 

Salnikova 
et al., 
2005 
 

NA* - Not applicable 

 

There are three stop codons in mRNA: UAA, UAG and UGA. In bacteria, the different stop 

codons are recognized by two release factors, RF1 and RF2; RF1 recognises UAA and 

UAG where as RF2 recognises UAA and UGA (Scolnick et al., 1968). In yeast eRF1 

recognises all the three stop codons. The GGQ motif, which is required for the activation of 

the polypeptide-tRNA hydrolysis, is a universally conserved motif in all the class 1 release 

factors across all organisms (Seit-Nebi et al., 2001). The eRF1 has three functional 

domains: the first two are required for the identification of the stop codon, binding with the 

ribosome and triggering the hydrolysis of polypeptide-tRNA, and domain 3 is required for 

binding with eRF3 (Frolova et al., 2000). 

 

eRF3 is an essential GTPase protein and its interaction with eRF1 is required for the 

optimum efficiency of translation termination (Zhouravleva et al., 1995). In bacteria, it has 

been reported that the counter part of the eRF3 protein, RF3, is required for the release of 

the RF1/RF2 complex from the ribosome after polypeptide release (Grentzmann et al., 

1994). There is no sequence homology between eRF3 and RF3 apart from the GTP binding 

domain (Zhouravleva et al., 1995). eRF3 binds to GTP independently of eRF1. Yeast eRF3 

has three domains and the carboxyl domain is very similar to that of eEF1A. This domain is 

essential for cellular viability and the GTP-dependent activity whereas the function of 

domains 1 and 2 remains unclear (Paushkin et al. 1997). Both eRF1 and eRF3 interact via 
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their C terminal regions. eRF3 has been shown to bind other proteins including cytoskeletal 

assembly protein Sla1 and the translation elongation factor eEF2 (Bailleul et al. 1999). 

eRF3 is also important for the dissociation of eRF1 from the A site of the ribosome 

(Freistroffer et al. 1997). 

 

1.3.4. Recycling 

 

Recycling is the fourth and last stage of translation where all the translation factors and 

ribosomal subunits are disassociated to be used in another round of translation (Figure 1.3). 

Recycling is much more clearly understood in bacteria than in yeast. After the termination 

stage, ribosomes remain bound to mRNA and the peptidyl-tRNA at the P/E site of the 

ribosome. In bacteria, the elongation factor EF-G and the ribosome releasing factor (RRF) 

are required for the recycling (Pisarev et al., 2007). RRF recognizes the complex structure 

of the ribosome and binds near the A site. As a result, the ribosomal subunit and associated 

translation factors are released. Along with EF-G, RRF disassociates ribosomal subunits 

from mRNA and tRNA. GTP-hydrolysis seems to be required to promote the separation of 

subunits and the GTP is believed to be contributed by EF-G. The GTP hydrolysis by EF-G 

could be used to trigger the release of the factors at the appropriate time (Kapp and Lorsch, 

2004a).  

 

In eukaryotes, no factor has yet been identified which is dedicated to the disassociation of 

the ribosome. There is no RRF homologue in eukaryotes; however, recent studies have 

demonstrated that eIF3, eIF1, eIF1A and eIF3j can promote eukaryotic recycling (Pisarev et 

al., 2007). eIF3 is believed to be the main factor involved in the disassociation of the 

ribosomal subunits and releasing of mRNA and tRNA from the ribosome and eIF1 and 

eIF1A facilitate this activity (Pisarev et al., 2007). Although eIF1 and eIF3 enhance 

dissociation of the subunits, their specific roles in tRNA and mRNA release are not yet 

clearly understood.  
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Figure 1.3: Schematic representation of the eukaryotic translation termination and 
recycling. The stop codon is recognised by the release factors and the poly-peptide is 
released from the ribosome. Ribosomal subunits along with translation factors and mRNA 
are recycled for another round of translation. 
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1.4.  Global mRNA translation regulation  

 

Translation is regulated to fine-tune the protein levels in the cell. It is the final step in the 

flow of the genetic information, and regulation at this level allows for an immediate and 

rapid response to changes in environmental conditions. Translational control was first 

hypothesized in early 1960 and highlighted as the essential part of cell survival (reviewed 

in Mathews et al. 2000). However, the mechanisms by which translation is controlled 

remain unclear. In a multistep pathway like translation, regulation may be exerted at 

different levels (McCarthy 1998). There are essentially two types of translational control: 

global translational control where translation of most of the mRNAs is controlled and 

mRNA-specific control, where specific mRNAs are controlled (Gebauer and Hentze, 

2004). Global translational regulation normally occurs by controlling the translation factors 

whereas mRNA specific controls are modulated by specific protein complexes or micro-

RNA (miRNA), which binds to the 5` and/or 3` UTRs of the specific mRNA. Global 

translational regulation is exerted on the cell, for example during amino acid starvation 

whereas the mRNA specific translation control is to regulate specific cellular functions. 

Previous studies have shown that there are localized translation controls in some eukaryotic 

cells (Johnstone and Lasko 2001). This may imply that translation in all organisms is at 

maximal levels (Verschoor et al., 1998). The intra-cellular concentrations of mRNAs are 

believed to be controlling translation rate to some extent (Mathews et al. 2000). Similarly, 

when the quantity of ribosomes and the amino acids becomes limiting, global translation is 

rapidly repressed (Clemens et al. 1987). 

 

1.4.1. Regulation of translation at the initiation stage 

 

Initiation is the first stage of translation and is thought to be where translation is most 

strongly regulated. Translation regulation as a response to nutrient starvation is conserved 

throughout the eukaryotes (Hinnebusch et al., 2004). During amino acid starvation of yeast, 

uncharged tRNA binds to Gcn2p, a protein kinase that phosphorylates eIF2. 

Phosphorylation of the eIF2 α subunit blocks the GTP exchange reaction facilitated by 

eIF2B. As a consequence, global translation is down-regulated (Rowlands, 1988). 
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However, the phosphorylation of the eIF2 α subunit activates the translation of the 

transcriptional activator GCN4 mRNA. GCN4 activates the transcription of more than 500 

genes of diverse functions, the majority of which are involved in amino acid metabolism 

and rescue the cells from amino acid starvation. It has been reported that the GCN4 is 

translated in a cap-independent manner (Hinnebusch et al., 2004).  

 

Availability of the mRNA cap-binding protein eIF4E also regulates the global translation 

rate. eIF4E interacts with eIF4G, which is required for the cap-dependent recruitment of the 

43S subunit to the mRNA. A family of proteins, 4E-Binding proteins (4E-BPs), shares the 

binding site of eIF4E with eIF4G. These 4E-BPs inhibit the cap-dependent translation by 

binding to eIF4E inhibiting the interaction of eIF4G with eIF4E thereby inhibiting the 

recognition of the mRNA-cap for subsequent cap-dependent translation (Sonenberg and 

Hinnebusch, 2009). It has been shown that the formation of the MFC and the interaction of 

eIF5 with rest of the translation machinery are important for optimal translation rate 

(Hinnebusch et al., 2004). The binding of the 40S ribosomal subunits to mRNA is 

considered to be a highly rate-limiting step in translation (Sachs et al. 1997).  

 

1.4.2. Regulation of translation during elongation and termination stages 

 

Even though most translation regulation is exerted during the initiation stage, there is still 

signification regulation that can be exerted during the elongation and releasing stages. This 

occurs when the initiation rate is very fast compared to the elongation rate. As mentioned 

previously the ribosome that binds the start codon (AUG) also occupies 4-5 codons 

upstream therefore the next. The next ribosome can only bind to the mRNA if the previous 

ribosome has moved approximately 7 codons downstream of the start codon (McCarthy, 

1998, Mathews et al. 2000). When the time required to leave the initiation codon exceeds or 

becomes the same as that of initiation, elongation becomes rate controlling. It has been 

shown that elongation rate is the same for all mRNAs; 3-8 amino acid per second per 

ribosome in eukaryotes and faster in prokaryotes (Lodish and Jacobsen 1972). The rate of 

elongation can vary as some pausing occurs due to the presence of rate amino acid codons 

or secondary structure in the mRNA. If the pausing interrupts initiation it becomes the rate 
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limiting step of translation (Wolin and Walter 1988). Translation elongation rate is affected 

by the phosphorylation/non-phosphorylation of elongation factors. The main factor, which 

is affected by non-phosphorylation is eEF2 and this happens in response to growth-

promoting stimuli, calcium ion fluxes, and other agents (Mathews et al. 2000). Studies have 

shown that the action of eEF1B on eEF1A-GTP regeneration is the rate-limiting step in 

translation elongation. This is important because the spontaneous rate of GDP dissociation 

from eEF1A is very slow (Janssen et al., 1988), and the protein has no inherent preference 

for the type of nucleotide which it binds (Saha and Chakraburtty 1986). 

 

1.4.3. Translation regulation by non-translating factors 

 

Apart from translation factors, there are other factors in the cell that regulate mRNA 

translation. The concentration or the availability of ribosomes can regulate the rate of 

translation. It has been suggested that the translation speed is different for each mRNA 

based on its codons (Hou, 1997). Eventhough there are sufficient mRNA in the cytoplasm, 

studies have shown that availability of mRNA could regulate the rate of translation 

(Geoghegan et al. 1979). Both the primary and secondary structure of mRNA controls the 

translation rate. The primary structure of the 5’ cap region and upstream of the AUG 

sequences play a very important role in determining translation rate (Mathews et al. 2000). 

 

Due to the variation in the concentrations of specific tRNAs, the rate of translation 

elongation can be different for each mRNA (Zhang et al., 2009). It was believed that the 

tRNAs which are highly abundant in the cell are incorporated faster compared to tRNAs 

which are rare (Zhang et al., 2010). However, studies have demonstrated that the 

concentration of the tRNA is not proportional to the rate of incorporation into the mRNA 

(Kanaya et al., 1999). Moreover it has been demonstrated that some of the codons that code 

for rare amino acids are translated with higher rates when compared to those of the most 

abundant amino acids (Bonekamp et al., 1989).  

 

In mammalian systems, micro-RNAs (miRNA) are known to function in gene expression 

regulation. It has been demonstrated that the miRNAs regulate translation either by directly 
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inhibiting translation or by destabilizing the mRNA (Sonenberg and Hinnebusch, 2009). It 

has also been reported that in some cases miRNAs stimulate translation (Vasudevan et al., 

2007). Recent studies have also shown that P-bodies have a role in miRNA-mediated 

translation regulation (Parker and Sheth, 2007). Stress granules, which are observed during 

the cell stress or translation repression, are also believed to be involved in translational 

regulation (Anderson and Kedersha, 2008).   

 

1.5. Translation regulation due to the spatial distribution of translation 

factors  

 

A cell is a heterogeneous environment packed with macromolecules. In the cytoplasm the 

spatial distribution of the translation factors can be a crucial aspect of translation regulation. 

Each of the translation factors should be readily available to ensure that the spatial 

distribution of the translation factors is not regulating translational rate. Many of the 

translation factors have been visualized to elucidate their distribution within the living cell 

(Huh et al., 2003). This study reported that all the translation factors are homogenously 

distributed in the cell. However, a recent study reported that a number of initiation factors 

are observed to have a specific localistation within the cell (Campbell et al., 2005). The 

initiation factors eIF2 (α and γ subunits) and eIF2B (γ and ε subunits) are shown to localise 

in the cytoplasm and continually shuttle between specific foci within the cytoplasm and a 

cytoplamic pool for GDP to GTP exchange (Campbell et al., 2005). Most of the other 

initiation factors were shown to be distributed in the cytoplasm without any specific 

localisation. However, much information about the distribution of the elongation and 

release factors is not completely available.  

 

Visualising and tracking molecules within a live cell using different fluorescent tagging 

methods has revolutionised the field of molecular biology. There are a number of 

fluorescent probes and protein-tags that have been developed to improve the visualisation 

of cells and molecules. Some of the main techniques to visualise the target protein in the 

live cells are based on tagging the protein of interest with fluorescent proteins or pairing it 

with peptides which can bind to fluorescent dyes resulting in fluorescence or 
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immunostaining with antibodies conjugated to fluorescent dyes. The combination of 

advanced microscopic techniques and the wide range of fluorescent probes that are now 

available have complemented and furthered the study of gene expression and protein-

protein interactions, and have added to the spatio-temporal understanding of molecular 

behavior in vivo.    

 

The green fluorescent protein (GFP) is one of the most common fluorescent proteins 

identified, which revolutionised the visualisation of molecules within the cell. GFP emits 

green fluorescent light upon appropriate excitation (Shimomura et al., 1962). Many 

different mutants of GFP have been engineered such as red (RFP), yellow (YFP) and cyan 

(CFP) fluorescent proteins to cover a range of visualisation spectra. GFP can be fused with 

proteins of interest for visualisation. The molecular size of the GFP has been an issue of 

concern as it can affect the functional and localisation properties of the tagged protein. 

Numerous smaller fluorescent molecules have been developed in an attempt to overcome 

this issue.  

 

Tetra cysteine motif (TCM) tagging is a relatively new technique for generating 

fluorescently tagged proteins that avoids a number of problems inherent in using the GFP 

or its derivatives (Griffin et al, 1998). In this method, a stable complex is formed between 

biarsenical compounds such as green fluorescent FlAsH or red fluorescent ReAsH to an 

amino acid sequence containing the tetra cysteine motif Cys–Cys–Pro–Gly–Cys–Cys. This 

short (approximately 10 a.a.) sequence can be introduced at the 5’ or 3’ end of the protein 

of interest (Griffin et al, 1998). Upon binding with the peptides, these dyes emit 

fluorescence which can be explored using fluorescent microscopes (Griffin et al, 1998). 

The rigid spacing of the two arsenics in FlAsH/ReAsH enables them to bind with high 

affinity and specificity to the tetracysteine motifs. Binding to endogenous cysteine pairs or 

lipoamide cofactors, which would cause toxicity and nonspecific labeling, is minimized by 

addition of a low concentration of antidotes (quenching agent) such as 1,2-ethanedithiol 

(EDT), which outcompetes endogenous pairs of thiols for FlAsH binding. As the 

tetracysteine motif length is from 6-12 amino acids, it has relatively negligible effect on the 

structural and functional properties of the protein of interest. Recently this technique has 
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been further refined by including some extra flanking regions to the motif which increases 

the specificity of binding (Martin et al, 2005). 

 

1.6.  The significance of understanding  translation control 

 

Translational regulation is crucial to protein synthesis and irregularities in translational 

regulation can cause a range of human disease including cancer and metabolic 

abnormalities (Silvera et al., 2010). It has been also demonstrated that the over-expression 

of eIF4E causes cancerous cell growth (Silvera et al., 2010). Moreover, over expression of 

4E-BP was predicted to be a survival outcome for ovarian and breast cancers and childhood 

rhabdomyosarcoma (Armengol et al., 2007). 

 

In all living organism, there is a balance between cap-dependent and cap-independent 

translation. Recent studies have shown that the inhibition of cap-dependent translation 

causes an increase in cap-independent translation which results in tumorigenesis. The tumor 

suppressor 14-3-3σ binds to several initiation factors causing the inhibition of cap-

dependent translation (Wilker et al., 2007). In contrast, studies of Myc oncogenes have 

reported that they inhibit cap-independent translation and increase cap-dependent 

translation. This results in the reduction of Cdk11 levels, causing tumorigenesis. Theses 

results demonstrate the need of balance in cap-dependent and cap-independent translation 

in a normal cell (Sonenberg and Hinnebusch, 2009).  

 

1.7. The quantitative analysis of translation   

 

The information processing capability of a living organism with minimal errors has been 

investigated not only by experimental methods but also with a variety of mathematical and 

statistical methods. Mathematical modeling has evolved to be an interesting tool to 

elucidate complex behavior in biological systems. It can be used to identify the underlying 

mechanism and quantify the controlling parameters. A good mathematical model can be 

used to validate different hypotheses and understand the underlying mechanism. Biological 
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processes such as DNA replication, cell division, and mRNA translation have been 

explored using theoretical methods since the early 1970s (reviewed in May et al., 2004). 

Several mathematical models of translation initiation, elongation and the whole translation 

pathway have been developed to investigate translational regulation. However, these 

models have been generally poorly parameterized and thus unable to provide much insight 

into the functioning of the translation machinery. 

 

1.7.1. Mathematical modelling of translation initiation 

 

A number of mathematical models have been developed to explain the most complex stage 

of translation, initiation. In one of the models, translational initiation has been explained 

using the coding theory (May et al., 2004). The model investigates the error identification 

mechanisms in translation. In this model translation has been compared to the decoder in a 

communication system and uses the same theories of the decoder in translation to unfold 

errors attached with the decoding. In translation, mRNA sequence of size ‘n’ is decoded 

into protein of size ‘k’ and is similar to a decoder in a communication system, which 

decodes the messages of size ‘n’ to ‘k’, where k is always less that ‘n’. The model was able 

to predict and distinguish the coding and non-coding regions of a bacterial genome. 

Moreover, it could identify the initiation site for each of the mRNAs (May et al., 2004). 

Another mathematical model of bacterial initiation has been developed to study the 

translational rate to produce a specific quantity of proteins. The model employs the mRNA 

folding dynamics, ribosome binding dynamics and the mRNA sequence information to 

measure the translation rate (Zhang et al., 2010). Another deterministic model of yeast 

translation initiation investigates the control of each initiation factor upon translation using 

flux control coefficients (Dimelow and Wilkinson, 2009). A recent deterministic model 

based on ordinary differential equations has been developed on the aminoacylation and 

initiation of yeast translation (You et al., 2010). The model investigates the kinetic 

behaviour of translation initiation factors in response to the amino acid limitation. The 

model also examines the changes in the translation initiation rate at varying concentrations 

of initiation factors and external perturbations (You et al., 2010).  
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1.7.2. Mathematical model of elongation  

 

Recently, a translation elongation model of the amino acid incorporation rate in a ribosome 

based on bacterial translation elongation has been developed with both deterministic and 

stochastic approaches (Zhang et al., 2010). This model investigated the affect of the 

concentration of aa-tRNA-EF-GTP on the elongation rate of a single codon. The model has 

predicted that limitation of the aa-tRNA-EF-GTP complex has profound differences in the 

elongation rate at a single codon. This model claims to predict the probability of the 

translation outcome, either ribosome frame shifting or premature termination, based on the 

aa-tRNA-EF-GTP concentration (Zhang et al., 2010).  

 

1.7.3. Mathematical model of translation including initiation, elongation and 

termination 

 

Translation is a very complex biological process for mathematical modeling and owing to 

its complexity and lack of sufficient experimental data to fit the model, there are very few 

models which deal with all three stages of translation (Bergmann and Lodish, 1979). A 

kinetic rate-control deterministic model for the whole of translation has been developed 

which investigates the dependence of the translation rate on different parameters, such as 

the initiation, elongation, and termination rate constants, ribosome and initiation factor 

reduction. This model predicts that tRNA limitation can reduce the elongation rate; 

however the length of mRNA has been predicted to have no affect on the translation rate 

(Bergmann and Lodish, 1979). Some conclusions from this model were: 1) for small 

physiological values of initiation rate constants, initiation can be the rate-limiting step; 2) if 

termination is not rate-limiting, the overall translation rate is proportional to the rate of 

initiation; 3) Even if the initiation rate is so fast as to make elongation limiting, it does not 

cause ribosomal queuing on mRNA; and 4) when the termination rate is limited, ribosomes 

queue on mRNA (Bergmann and Lodish, 1979).   

 

Another deterministic kinetic model based on bacterial translation has been developed 

which investigates the sensitivity of translation rate on kinetic parameters and on the 
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concentration of the translation factors (Zouridis and Hatzimanikatis, 2007). This model 

provides a detailed study of elongation by considering the ribosomal blocking of the 

mRNA codon during elongation. In contrast to previous translation models, this model 

predicts that the translation rate is limited by initiation, elongation and termination rates. It 

was predicted that elements such as ribosomal occupancy, ribosomal distribution with 

respect to the codon position along with mRNA length can also have a role in determining 

translation rate. The important model predictions were: 1) As the number of ribosomes 

translating mRNA increases, the translation rate increases, but after reaching an optimal 

level it becomes rate limiting; 2) termination rate becomes translation rate limiting when 

number of actively translating ribosomes were large 3) Ef-Tu:GDP removal was one of the 

rate limiting step in the elongation (Zouridis and Hatzimanikatis, 2007). However, all the 

above models have incorporated a large number of assumptions whilst containing very 

limited quantitative experimental data.  

 

1.8. Yeast as a model organism to investigate eukaryotic translation 

 

Saccharomyces cerevisiae is a eukaryotic organism the genome of which can be easily 

manipulated. S. cerevisiae was the first eukaryote of which the genome was completely 

sequenced (Sherman, 2002).  Commonly known as bakers’ yeast, S. cerevisiae shares a 

significant degree of sequence similarity with higher organisms and processes in yeast can 

be easily correlated with processes within other organisms. Moreover, the rapid growth, 

well defined genome, easy genetic manipulation, dispersed cells and easy DNA 

transformation system make it a favourite model organism for study. Yeast is a non-

pathogenic organism and therefore is safe to handle. S. cerevisiae can exist in a haploid and 

a diploid state; most mutations are viable and recessive mutations are easily constructed in 

haploid strains (Sherman, 2002). A comprehensive data base of yeast has been developed 

with all the published information about its genes, the proteins encoded and phenotypes 

related to the gene mutations (http://yeastgenome.org/). 

 

Genetic engineering of yeast chromosomes can be accomplished through relatively simple 

techniques. Integrative recombination of transforming DNA in yeast is readily achieved 
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through homologous recombination (Sherman, 2002). Extra copies of genes can be 

introduced into yeast strains using plasmids. Genes can be disrupted, replaced and deleted 

from the yeast genome very efficiently and inexpensively. Such easy and efficient 

molecular techniques have been extensively used in the analysis of gene regulation, 

structure-function relationships of proteins, chromosome structure, and other general 

questions in cell biology (Sherman, 2002). Yeast has been a very popular model organism 

to study mechanisms and regulations of translational (Hinnebusch et al., 2004). The high 

degrees of the evolutionary conservation of the translational machinery mean that findings 

in yeast are easily interpreted to other organisms.  
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1.9. Aim of this study 

 

Growing evidence indicates that irregularities in translation regulation are related to various 

disease states. The control of translation plays a key role in determining growth and 

responses to appropriate variations in environmental conditions. However, translational 

control has not been a subjected to detailed quantitative analysis, particularly at the systems 

level. In this study, for the first time, translational control is explored at the systems level 

employing three different approaches: microscopic techniques, molecular biology 

techniques and mathematical modeling. The project employs a systems biology approach to 

generate the first ever comprehensive characteristics of translational control. Rather than 

focusing on role of individual factors at a time, the whole translation pathway is considered 

and studied together. With the systems level approach the data from individual 

experimental methods are integrated into an overview of control in the whole system. As 

part of a wider project exploring all parts of the translation pathway, this work concentrates 

on translational control exerted by elongation and release factors. The project quantitatively 

measures the translational control exerted by elongation and release factors and data are 

combined and analysed using mathematical modeling. Using microscopic techniques, the 

possibility that translational control might be at least partially attributable to sub-cellular 

localization of the elongation and release factors is investigated. A variety of molecular 

biology techniques are employed to explore the effect on translation control when the 

elongation and release factors are made limiting. Also, the translational control 

contributions of the individual elongation and release factors are quantitatively 

characterised. A mathematical model of the whole translational pathway is developed to 

provide a formal framework for defining translational control at a systems level. All 

together, this multiple approaches provides a novel and detailed analysis of the factors and 

processes involved in mRNA translation and contributes significantly to a greater 

understanding of translational control.  
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Chapter 2 
 
 
 

Materials and methods 
 
 
 
 
 

2.1. Strains, plasmids and primers 
 

All the strains, plasmids and primers used in this study are listed below.  

 

2.1.1. Yeast and bacterial strains 

 

Table 2.1 : Saccharomyces cerevisiae strains 

Strain Name 

Strain 

collection 

number 

Genotype Source 

PTC 41 PTC 41 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100 

M. Tuite, 

University 

of Kent 

PTC 41_∆TEF2 PTC354 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆ 

 

This study 

 

PTC 41_∆EFT2 PTC355 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

EFT2-∆ 

 

This study 
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PTC 41_∆TEF2- 

TEF1-TCM 

PTC356 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆, TEF1-tcm:KanMX 

 

This study 

 

PTC 41-eEF1B-TCM PTC357 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF5-tcm:KanMX 

 

This study 

 

PTC 41_∆EFT2- 

EFT1-TCM 

PTC358 MATα ade2-1 ura3-1 leu2-3,1 

12 his3-11,15 can1-100,  

EFT2-∆, EFT1-tcm:KanMX 

 

This study 

 

PTC 41-eEF3-TCM PTC359 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF3-tcm:KanMX 

 

This study 

 

PTC 41-eRF1-TCM PTC360 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP45-tcm:KanMX 

 

This study 

 

PTC 41-eRF3-TCM PTC361 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP35-tcm:KanMX 

 

This study 

 

PTC 49 PTC 49 MATa/MATα ade2–1/ade2–1 

can1–100/can1–100 his3–

11,15/his3–11,15  leu2–3/leu2–3 

trp1–1/trp1–1 ura3–1/ura3–1 

 

 

 

Thomas 

and 

Rothstein , 

1989 
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PTC 5 PTC 5 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0 

 

EuroSCA

RF 

 

eEF1A-GFP 

 

PTC296 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, TEF1-GFP 

 

Invitrogen 

 

eEF1B-GFP 

 

NA* MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, TEF5-GFP 

 

Invitrogen 

 

eEF2-GFP PTC308 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, EFT1-GFP 

 

Invitrogen 

 

eEF3-GFP PTC309 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, TEF3-GFP 

 

Invitrogen 

 

eRF1-GFP 

 

PTC295 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, SUP45-GFP 

 

Invitrogen 

 

eRF3-GFP 

 

PTC310 MATa his3∆1 leu2∆0 met15∆0 

ura3∆0, SUP35-GFP 

 

Invitrogen 

 

tetO7-TEF1-∆TEF2 

 

PTC362 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆, TEF1-PtetO7:KanMX 

 

This study 

 

tetO7-TEF5 PTC363 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF5-PtetO7:KanMX 

 

 

 

This study 

 



Chapter 2 – Materials and method 

 55 
 

tetO7-EFT1-∆EFT2 

 

 

PTC364 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

EFT2-∆, EFT1-PtetO7:KanMX 

 

This study 

 

tetO7-TEF3 PTC365 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF3-PtetO7:KanMX 

 

This study 

 

tetO7-SUP45 PTC366 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP45-PtetO7:KanMX 

 

This study 

 

tetO7-SUP35 PTC367 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP35-PtetO7:KanMX 

 

This study 

 

PTC 41-pTefEx PTC368 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100 

[pTefEx:URA3] 

 

This study 

 

PTC 41_∆TEF2 PTC369 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆ [pTefEx:URA3] 

 

This study 

tetO7-TEF1-∆TEF2 -

pTefEx 

PTC370 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆, TEF1-PtetO7:KanMX, 

[pTefEx:URA3] 

 

 

 

 

This study 
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tetO7-TEF5-pTefEx PTC371 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF5-PtetO7:KanMX, 

[pTefEx:URA3] 

 

This study 

 

tetO7-EFT1-∆EFT2-

pTefEx 

PTC372 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

EFT2-∆, EFT1-PtetO7:KanMX, 

[pTefEx:URA3] 

 

This study 

 

tetO7-TEF3-pTefEx PTC373 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF3-PtetO7:KanMX, 

[pTefEx:URA3] 

 

This study 

 

tetO7-SUP45-pTefEx NA* MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP45-PtetO7:KanMX, 

[pTefEx:URA3] 

 

This study 

 

tetO7-SUP35-pTefEx PTC374 MATα ade2-1 ura3-1 leu2-3,112 

his3-11,15 can1-100, SUP35-

PtetO7:KanMX, [pTefEx:URA3] 

This study 

 

tetO7-TEF1-∆TEF2-

pTefEx-TEF1 

PTC375 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF2-∆, TEF1-PtetO7:KanMX, 

[pTefEx-TEF1: URA3] 

This study 
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tetO7-TEF5-pTefEx-

TEF5 

PTC376 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF5-PtetO7:KanMX,  

[pTefEx-TEF5: URA3] 

This study 

 

tetO7-TEF3-pTefEx-

TEF3 

PTC377 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF3-PtetO7:KanMX,  

[pTefEx- TEF3: URA3] 

This study 

 

tetO7-SUP35-pTefEx-

SUP35 

PTC378 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

SUP35-PtetO7:KanMX, 

[pTefEx- SUP35: URA3] 

 

This study 

 

tetO7-GCD 

 

PTC273 MATα ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, 

GCD112-PtetO7:KanMX 

 

This study 

 

tetO7-TIF3 

 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TIF3-PtetO7:KanMX 

This study 

PTC 41-pTefEx- 

pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100 

[pTefEx: URA3] [pDLV-

L2/L0:HIS] 

 

This study 

 

tetO7-TEF1- ∆TEF2-

pTefEx-TEF1- pDLV-

L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3,112 

his3-11,15 can1-100, TEF2-∆, 

TEF1-PtetO7:KanMX, [pTefEx-

TEF1:URA3][pDLV-L2/L0: HIS] 

This study 
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tetO7-TEF5-pTefEx-

TEF5-  

pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

TEF5-PtetO7:KanMX, [pTefEx-

tef5: URA3] [pDLV-L2/L0:  HIS] 

 

This study 

 

tetO7-EFT1- ∆EFT2-

pTefEx- pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

EFT2-∆, EFT1-PtetO7:KanMX, 

[pTefEx: URA3] [pDLV-L2/L0:  

HIS] 

 

This study 

 

tetO7-TEF3-pTefEx-

TEF3- pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

tef3-PtetO7:KanMX, [pTefEx-

tef3: URA3] [pDLV-L2/L0:  HIS] 

 

This study 

 

PTC 41-tetO7-SUP45-

pTefEx- pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100,  

sup45-PtetO7:KanMX, [pTefEx: 

URA3] [pDLV-L2/L0:  HIS] 

 

This study 

 

PTC 41-tetO7-SUP35-

pTefEx-SUP35- 

pDLV-L2/L0 

NA* MAT α ade2-1 ura3-1 leu2-3, 

112 his3-11,15 can1-100, sup35-

PtetO7:KanMX, [pTefEx-sup35: 

URA3] [pDLV-L2/L0:  HIS] 

This study 

 

NA* - Not applicable 
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Table 2.2 : Bacterial strains 

 

Strains 

Name 
Genotype Remarks 

DH5α F- endA1 glnV44 thi-1 recA1 relA1 

gyrA96 deoR nupG Φ80dlacZ∆M15 

∆(lacZYA-argF)U169, hsdR17(rK
- 

mK
+), λ– 

 

Used for storage/cloning of 

plasmids 

 

BL21 

(DE3) 

F– ompT gal dcm lon hsdSB(rB
- mB

-) 

λ(DE3 [lacI lacUV5-T7 gene 1 ind1 

sam7 nin5]) 

An E. coli strain with DE3, a λ 

prophage carrying the T7 RNA 

polymerase gene and lacIq.. 

Transformed plasmids containing 

T7 promoter driven expression are 

repressed until IPTG induction of 

T7 RNA polymerase from a lac 

promoter. 

  

Top 10F’ F'[lacIq Tn10(tetR)] mcrA ∆(mrr-

hsdRMS-mcrBC) φ80lacZ∆M15 

∆lacX74 deoR nupG recA1 araD139 

∆(ara-leu)7697 galU galK rpsL(StrR) 

endA1 λ- 

Used for storage/cloning of 

plasmids 
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2.1.2. Plasmids 

 

Table 2.3 : List of plasmids  

 

Plasmid name Remarks Source 

pNEWTC Contains TCM tag and KanMX4 selective marker. 

Used as PCR template for TCM addition. 

 

This study 

 

pUG6 Contains loxp-kanMX-loxp cassette for gene 

deletion. Used as PCR template to generate yeast 

selective marker. 

Güldener et al 

1996 

 

pSH47 Contains the cre recombinase gene under control 

of a GAL promoter and URA3 selective marker. 

Used for excision of the loxp-kanMX-loxp 

cassette 

 

Güldener et al 

1996 

 

 

pCM225 Contains kanMX-tTA-tetO. Used as PCR 

template to prepare doxycycline regulatable 

promoter strains. 

 

Bellı` et al 

1998 

 

pTefEx Contains TEF1 promoter and URA3 selective 

marker. Used for preparing the gene 

complementation plasmid. 

 

This study 

 

 

pTrpEx Contains TRP1 promoter and URA3 selective 

marker. Used for preparing the gene 

complementation plasmid. 

 

 

This study 
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pTefEx-eEF1A Contains TEF1 promoter, TEF1 gene and URA3 

selective marker. Used for preparing the gene 

complementation plasmid. 

 

This study 

 

 

pTefEx-eEF1B Contains TEF1 promoter, TEF5 gene and URA3 

selective marker. Used for preparing the gene 

complementation plasmid. 

 

This study 

 

 

pTefEx-eEF3 Contains TEF1 promoter, TEF3 gene and URA3 

selective marker. Used for preparing the gene 

complementation plasmid. 

 

This study 

 

 

pTefEx-eRF3 Contains TEF1 promoter, SUP35 gene and URA3 

selective marker. Used for preparing the gene 

complementation plasmid. 

 

This study 

pDLV-L2/L0 

 

 

 

 

Plasmid used for the double luciferase assay. The 

plasmid contains both the firefly and renilla gene 

with TRP1 and DCD1 promoters respectively. 

Plasmid contains HIS marker. 

 

This study 
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2.1.3. Primer sets 
 

Table 2.4 : List of oligonucleotides used for the removal and confirmation of the EFT2 
gene. 
 

 
Name 

 

 
Sequence (5’ – 3’) 

 
 
EFT2-Del-F 

 
TTTTGGTGTTTAGCATTCAGACTCAAAGACCACAAACACAAACTATA
ACATAATTGCAAGCAGCTGAAGCTTCGTACGC 
 

EFT2-Del-R GCCCAATACATTACGACAAAAACTGAAAAAGTTAAATAATTAAAAA
TTGTTTAACCATTCGCATAGGCCACTAGTGGAT 

 
EFT2-Del-Check-F 

 
CTTAAAAGTTTTTTTTCATTTTGTGAGCTTATTCTTCTTTTCTATATAT
TCTTGATATCT 

 
EFT2-Del-Check-R 

 
ATGAAATAACACTATAGATGGTAAGTATACGTGAGAATAAACTACA
AAAAAGTCAAAAGG  

 
 
Table 2.5 : List of oligonucleotides used for construction and verification of the     
TCM tagged strains 
 

Name 
 

Sequence (5’ – 3’) 
 

 
TEF1-TC-F 

 
AGACATGAGACAAACTGTCGCTGTCGGTGTTATCAAGTCTGTTG
ACAAGACTGAAAAGGCCGCTAAGGTTACCAAGGCTGCTCAAAA
GGCTGCTAAGAAACACCGTTGGTGTTGTCCTGGT 
 

TEF1-TC-R TAAATCAACATTTGGACTGTCGCCTGTTAAGATATAACTGAAAA
AAGAGGGGAATTTTTAGATACTGAAATGATATTTTATAACTATA
GGGAGACCGGCAGAT 
 

TEF1-TC-CHECK-F GCTGTCGGTGTTATCAAGTCTG 
 

TEF1-TC-CHECK-R TTGGACTGTCGCCTGTTAAG 
 

eEF1B-TC-F CCTTGGATGACTTGCAACAAAGCATTGAAGAAGACGAAGACCA
CGTCCAATCTACCGATATTGCTGCTATGCAAAAATTACACCGTTG
GTGTTGTCCTGGT 
 

eEF1B-TC-R AATAAACACGATTCCTTATATAGTGGTTACACAAATTAGTAATA
ATGTTTCGTGTGCAGTCGAAAAGTTTATCGTTCAAATAACTATAG
GGAGACCGGCAG 
 

eEF1B-TC-Check-F TTTCGGTATCAAGAAGTTGCAAATTAACTGTGTTGTCGAAGATG
ACAAGG 
 



Chapter 2 – Materials and method 

 63 
 

eEF1B-TC-Check-R GAATATGAAAAGAGATATACATAACTTGAATATTCCCGGAATAA
ATTCAA 
 
 

eEF2-TC-F GTGAAATTGTTCTTGCTGCTCGTAAGAGACACGGTATGAAGGAA
GAAGTTCCAGGCTGGCAAGAATATTACGACAAATTGCACCGTTG
GTGTTGTCCTGGT 
 

eEF2-TC-R GTTCGATTGTAAACATTCGGAATATAACTATATGACAAAAATGT
GTAAGAAAATAATATATAAGTCTATTACCATACTATTAACTATA
GGGAGACCGGCAGAT 
 

eEF2-TC-Check-F CGACCATTGGTCCACTTTAGGTTCTGACCCATTGGACCCAACCTC
TAAGG 
 

eEF2-TC-Check-R CCTCCCCCTCTACAAAGGGGGCGGTAATACGAAAAGGTCCATTT
TTATGA 
 

eEF3-TC-F AATTGAGAAAGAAGAAGAAGGAAAGAATGAAGAAGAAGAAG G
AATTGGGTGATGCTTACGTTTCTTCTGACGAAGAATTCCACCGTT
GGTGTTGTCCTGGT 
 

eEF3-TC-R AGATGTCTGACTAATGGAACGCTTTTTCTTTTAAATAATGCCTTT
CTTTATAATAAGGAAGTTGCGTCTATATTTTACCATAACTATAGG
GAGACCGGCAGAT 
 

eEF3-TC-Check-F TATGGGTAACAAGATTGCCGGTGGTAAGAAGAAGAAGAAGTTG
TCTTCTG 
 
 

eEF3-TC-Check-R AAAGGGTATGAGGCAATGCTCAATTTGCCTGAGCTTAAGAATGT
ATGAAA 
 

SUP45-TC-F AAGTTAATTTTGAACAACTAGTTGATGAATCTGAGGATGAATAT
TATGACGAAGATGAAGGATCCGACTATGATTTCATTCACCGTTG
GTGTTGTCCTGGT 
 

SUP45-TC-R TATACACGGTCCTCTAAACCCACTATGTACTTTCAACAAAGGAA
TTAGCTCAATATAGAGCAAAAGGTTTACCAAGTATATAACTATA
GGGAGACCGGCAGAT 
 

SUP45-TC-CHECK-F AAACTTCGGTGCTACCTTGG 
 

SUP45-TC-CHECK-R ATTTGACAGGTGGGCTAGTG 
 

eRF3-TC-F ATTACCCTCAATTAGGTAGATTCACTTTGAGAGATCAAGGTACC
ACAATAGCAATTGGTAAAATTGTTAAAATTGCCGAGCACCGTTG
GTGTTGTCCTGGT 
 

eRF3-TC-R TATTTTTATGAAATTCTAGATATATTGAGAGGTGAAGTTTACCTT
GTTTATGGTATATGGTACAAAAAGAACTAAACTAATAACTATAG
GGAGACCGGCAGAT 
 

eRF3-TC-Check-F GGTCATCGCTGTTTTAGAAACTGAAGCTCCAGTTTGTGTGGAAA
CTTACC 
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eRF3-TC-Check-R CCGGGGAAGGGTTATGATGAAAACGTGATTGAAGGAGTTGAAA
CCTTGCT 
 

Kan-Check-F CTGGCTGACGGAATTTATGC 
 

Kan-Check-R ACTGAATCCGGTGAGAATGG 
 

Kan-End-F GAATGCTGGTCGCTATACTG 
 

 
 
Table 2.6: List of oligonucleotides used for construction and verification of the tetO7 
promoter strains 
 

Name 
 

Sequence (5’ – 3’) 
 

 
eEF1A-Doxy-F 

 
AATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTT
CTATTACAACTTTCAGCTGAAGCTTCGTACGC 
 

eEF1A-Doxy-R CGATAACGACAACGTTAATGTGAGACTTCTCTTTACCCATTTTGTA
ATTAAAACTTAGATGCATAGGCCACTAGTGGAT 
 

eEF1A-Doxy-Check-F CCGAGTTGGAGGACATCA 
 

eEF1A-Doxy-Check-R CCAAAACCCAAGCGTACT 
 

eEF1B-Doxy-F AAGAAGCGCTTTAGAAATCAAAGCACAACGTAACAATTTGTCGAC
AACCGAGCCTTTGAACAGCTGAAGCTTCGTACGC 
 
 

eEF1B-Doxy-R AGCCAAAGAAGCGTTTAATTGTTTCAAAGTTTCAATCTTGGAGAA
ATCGGTGGATGCCATGCATAGGCCACTAGTGGAT 
 

eEF1B-Doxy-Check-F TCTTAGGGCTCAGAACCTGCAGGTG 
 

eEF1B-Doxy-Check-R CATACCCTTCAATGTATGACTTGTC 
 

eEF2-Doxy-F GAACAAGGTGATCTTTTTCCTTTAGTTGATATTAATCCCGGGTAAA
CTTCCGTGTTGCACCAGCTGAAGCTTCGTACGC 
 

eEF2-Doxy-R ACGCACATTGGTAACTTTGTCCATTAAAGAACGCATTTGGTCAAC
AGTGAAAGCAACCATGCATAGGCCACTAGTGGAT 
 

EFT1_Doxy_F100 ATACCGAATTTGATGATGAACTATTCACTGAAGACGATGGGTACA
ACTCTCAGCTGAAGCTTCGTACGC 
 

EFT1_Doxy_R20 
 

AGTAAAAAAACCAGTGAAGCGTTTAATACAACAGTAGTATGCAAT
TGAGAGCATAGGCCACTAGTGGAT 
 

eEF2-Doxy-Check-F TATAAAGTAGAAAATTCATACCTTT 
 

eEF2-Doxy-Check-R CGACGTGAGCAATAACGGACATGTT 
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eEF3-Doxy-F AAATTTTTTCGCTTCCTCGAGTATAATTATCTCATCTCATCTTTCAT
ATAAGATAAGAAGCAGCTGAAGCTTCGTACGC 
 

eEF3-Doxy-R AACAGATAACTTCTGGAATAGTTCTTCTAGAACCTTAATGGATTGC
TGGGAATCAGACATGCATAGGCCACTAGTGGAT 
 

eEF3-Doxy-Check-F TCTTTTTCTTTTTTTGCGTTGGTGA 
 

eEF3-Doxy-Check-R TTTCGTGTCTGTTGTCAGCAGTGGC 
 

SUP45doxF TCACTGTATTTTTAACTGATATACTGTTGGTGTGGCCTTAACGACA
CCTTTATTTCTTAACAGCTGAAGCTTCGTACGC 
 

SUP45doxR AGATTGGACCAACTTCTTGACCTTCCAGATCTCAATATTTTTTTCA
ACCTCGTTATCCATGCATAGGCCACTAGTGGAT 
 

doxSUP45up CCGGATTATTCCGTTGAC 
 

doxSUP45down CGAGGCAGTACCATATTC 
 

eRF3-Doxy-F ATGTACATTACAACCGGGTATTATATCTTACATCATCGTATAATAT
GATCTTTCTTTATGCAGCTGAAGCTTCGTACGC 
 

eRF3-Doxy-R ACCGTTCTGGCTGTATTGCTGGTAGTTTTGCTGATTGTTGCCTTGGT
TTGAATCCGACATGCATAGGCCACTAGTGGAT 
 

eRF3-Doxy-Check-F TTGTCACTTCTTACCTTGCTCTTAA 
 

eRF3-Doxy-Check-R ATCTGTTGTTACCTTGTTGTTGGTT 
 

 
 
 
2.2. Growth and storage of bacterial and yeast cell strains 

 
2.2.1. Bacterial culture 

 
Bacterial cells were grown at 37 0C in Luria-Bertani (LB) broth (Ready mix 25 g/l 

ForMedium) or on LB agar medium with bacto-agar, 1.5 % (w/v) added to the LB broth. 

Media was supplemented with 100 µg/ml ampicillin (Sigma) for plasmid selection as 

appropriate. The bacterial colonies for blue-white screening were grown in LB-agar plate 

with 100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and 40 mg/ml X-Gal. 
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2.2.2. Yeast culture 

 

Yeast cells were routinely grown in yeast extract-peptone-glucose medium (YPD) (1 % 

yeast extract (w/v), 2 % peptone (w/v) and 2 % glucose (w/v) or ready mixed medium 

(ForMedium). Agar plates were prepared by adding 2 % agar (w/v) to the appropriate 

medium. Yeast selective medium was prepared by mixing 6.9 g/l Yeast Nitrogen Base 

(YNB, readymade media mix, ForMedium) with appropriate amino acids. Yeast strains 

expressing the kanamycin resistance gene (kanMX) were selected in medium with 150 

µg/ml Geneticin (G418, Sigma). The PTC 41 strain used in this study lacks the ADE2 gene, 

this results in the accumulation of the adenine biosynthesis intermediate 

phosphoribosylaminoimidazole in the cell causing background fluorescence (Stotz and 

Linder, 1990). Therefore extra adenine (100 µg/ml) was added to avoid auto-fluorescence 

during microscopic experiments. Doxycycline sensitivity of the yeast tetO7 promoter 

strains was determined by adding appropriate concentrations of doxycycline (1 ng/ml – 200 

ng/ml) to the growth media. All the strains were grown at 30 0C unless otherwise specified. 

 

2.2.3. Short and long-term storage of yeast and bacterial strains 

 

For short-term storage, bacterial and yeast strains were grown overnight on the appropriate 

plates at 37 0C and 30 0C, respectively and stored at 4 0C. For long-term storage, glycerol 

stocks were prepared by adding sterile glycerol to overnight cultures to a final 

concentration of 20 % (v/v). The cultures were mixed thoroughly, snap frozen on dry ice 

and then stored at -80 0C.  

 
2.2.4. Antibiotics 
 
Table 2.7 : List of antibiotics used in this study 

Antibiotics Abbreviation  Working concentration                    
 Source 

Ampicillin Amp 100 µg/ml Sigma 
 

Geneticin G418 150 µg/ml Sigma 
 

Doxycycline Doxy 200 µg/ml Sigma 
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2.3. Cell methods 
 
 

2.3.1. Generation of transformation competent bacterial cells 

 

1-2 ml of the an overnight culture of appropriate bacterial strain was diluted into 100 ml LB 

broth and grown at 37 0C with constant agitation (200 rpm) until the culture reached OD600 

of 0.5-0.6. The culture was kept on ice for 10 min and then harvested by centrifugation at 

4000 rpm at 4 0C for 10 min. The cell pellets were resuspended very carefully in 50 ml ice 

cold 0.1 M CaCl2 and kept on ice for another 30 min before centrifugation at 4000 rpm at 4 
0C for 10 min. The pellet was resuspended in 4 ml of ice cold 0.1 M CaCl2 and stored on 

ice for a minimum of 2 h. A final concentration of 20 % glycerol was added and 200 µl 

aliquots were snap frozen on dry ice or liquid nitrogen and stored at -80  0C. 

 

2.3.2. E.coli transformation  
 

An aliquot of glycerol stock of the competent cells was thawed on ice for 30 min. 2 µl of 

the desired plasmid DNA was added to 200 µl of the bacterial cell suspension and was 

incubated on ice for 30 min. Cells were then heat-shocked at 42 0C for 40 sec and 

immediately transferred to ice for a minimum of 5 min. 250 µl of LB media was added very 

carefully and incubated for 1 h at 37 0C with constant shaking (200 rpm). Cells were then 

spread on LB agar plates with 100 µg/ml ampicillin and incubated overnight at 37 0C. 

 

2.3.3. Saccharomyces cerevisiae transformation 

 

The yeast transformation procedure was adapted and modified from Güldener et al., 1996. 

Yeast strains were incubated overnight in YPD media at 30 0C with constant agitation (200 

rpm). Cells were resuspended in 50 ml of YPD to a starting OD600 of 0.2 and grown to an 

OD600 of 0.7-1.0. The cells were then harvested by centrifugation at 4000 rpm at 4 0C for 5 

min. The cell pellet was resuspended in 1 ml of sterile water and transferred to a 1.5 ml 

eppendorf tube and centrifuged at 5000 rpm for 1 min. The cell pellet was washed twice in 

1 ml of sterile water and resuspended in freshly prepared sterile TE/LiOAc (10 mM Tris–
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HCl pH 7.5, 1 mM EDTA, 0.1 M LiOAc pH 7.5 adjusted with dilute acetic acid). The cells 

were harvested and resuspended in 200 µl TE/LiOAc. For chromosomal integration ~5 

mg/ml (12 µl) of the tranforming DNA (generated by PCR) was mixed with 5 µl of freshly 

denatured salmon sperm DNA (10 mg/ml, denatured at 92 0C for 1 min, then chilled on 

ice). 50 µl of cells in TE/LiOAc were added to the DNA and mixed carefully. 300 µl of 

freshly prepared sterile 40 % PEG/LiOAc (50 % PEG, 10 mM Tris–HCl pH 7.5, 1 mM 

EDTA, 0.1 M LiOAc pH 7.5 adjusted with dilute acetic acid) was added to the mixture 

immediately and carefully mixed. Yeast cells with the DNA fragment were incubated for 

30 min at 30 0C with constant agitation (200 rpm) and heat shocked for 15 min at   42 0C. 

To recover the transformed cells, 800 µl sterile water was added, mixed carefully and the 

pellet was collected by centrifugation at 13000 rpm for 10 sec. The cell pellet was 

resuspended in 1 ml of YPD and incubated for 2–3 h at 30 0C. After 2-3 h of growth, cells 

were collected by centrifugation at 13000 rpm for 10 sec, resuspended in 200 µl of YPD 

and spread onto appropriate agar plates. Plates were incubated at 30 0C until colonies were 

visible. After 24-48 h these plates were replica-plated onto a new appropriate agar plates to 

eliminate any false positive colonies.  

 

2.4. DNA purification and recombination method 

 

2.4.1. Isolation of plasmid DNA from bacteria 

 

1-2 ml of an overnight culture of appropriate bacterial strains was harvested by 

centrifugation at 4000 rpm for 5 min. Plasmid DNA was purified using a QIAprep Spin 

Miniprep kit (QIAGEN) according to the manufacturer’s instructions. The collected 

plasmid was resuspended in 50 µl of sterile water and stored at 4  0C. 

 

2.4.2. Saccharomyces cerevisiae genomic DNA preparation  

 

5 ml of appropriate medium was inoculated with the yeast and incubated overnight at  30 
0C (shaking at 200 rpm). Cells were harvested by centrifugation at 4000 rpm for 5 min. The 

cell pellet was washed twice in 1 ml of sterile water and centrifuged at 4000 rpm for 1 min. 
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The cell pellet was resuspended in 1 ml of buffer A (1 M Sorbitol, 50mM Tris-HCl pH 7.5, 

10 mM EDTA and 1 % 2-mercaptoethanol). 5 µl of 10 mg/ml Lyticase (Sigma) and 5 µl of 

10 mg/ml RNase A (Promega) were added and incubated at 37 0C for 1 h. The suspension 

was centrifuged at 13000 rpm for 1 min and the supernatant was discarded carefully. The 

pellet was resuspended gently in 1 ml of buffer B (10 mM Tris-HCl pH 7.5, 10 mM EDTA 

and 0.5 % SDS (w/v)) and incubated at 65 0C for 10 min. 150 µl of 8 M KOAc was added 

and mixed by inverting the tube and incubated on ice for 5 min. The suspension was 

centrifuged at 13000 rpm for 1 min and the supernatant was collected and transferred into a 

fresh 2 ml micro-tube. To precipitate the genomic DNA, 2 vol of isopropanol were added to 

the supernatant and mixed by inverting. The DNA pellet was collected by centrifugation at 

13000 rpm for 1 min. The supernatant was discarded and the pellet was washed in 70 % 

ethanol. The DNA pellet was air dried and resuspended in 50 µl of sterile water. 

 

2.4.3. Polymerase chain reaction (PCR) 

 

DNA products were amplified from plasmid or genomic DNA using the PCR method. The 

reactions were carried out either in a MJ-Mini (Bio-Rad) or a DNA Engine (MJ-Research 

now Bio-Rad) instrument in 0.2 ml micro-tubes (Eppendorf). The High Fidelity Expand 

Polymerase PCR system (Roche) was used for the amplification of DNA to be used in 

plasmid or strain construction for its proof-reading capability ensures correct DNA 

sequence duplication. RedTaq Ready-Mix (Sigma) was used for routine analytical PCR. 

PCR reactions with Expand Polymerase were prepared as a final volume of 50 µl reactions, 

by adding primers, genomic DNA/plasmid, appropriate buffer, dNTPs and polymerase, 

according to the manufacturer’s instructions (Table 2.8). RedTaq contains all the necessary 

components for PCR excluding primers and genomic DNA/plasmid template. PCR 

reactions using RedTaq were prepared by adding 10 µl of the RedTaq along with primers, 

genomic DNA/plasmid and sterile water to make a final volume of 20 µl. The first 

denaturing temperature was set to 98 0C to denature the template DNA. In the PCR cycle, 

the denaturing and annealing temperature for primers were set according to the primers 

melting temperature and the extension temperatures were calculated based on the expected 
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product size. A polymerisation step at 72 °C for 5 min was included after 30 cycles to 

ensure all amplification reactions had reached completion. 

 

Table 2.8 : PCR mixture table for expand high fidelity enzyme 

 

Component  Volume (20 µl reaction) Volume (50 µl reaction) 

Nucleotide mix 0.5 µl (200 µM each of dNTP) 1 µl (200 µM each of dNTP) 

PCR primer mix 0.5 µl (300 nM each of primer)  1 µl (300 nM each of primer) 

Template DNA 0.5 µl  (0.1 - 250 ng) 1 µl (0.1 - 250 ng) 

Expand High Fidelity 

buffer 

0.25 µl 5 µl 

Expand High Fidelity 
Enzyme mix 

0.3 µl 0.75 µl 

Sterile water To make upto 25 µl To make upto 50 µl 

 

2.4.4. PCR product purification  

 

PCR amplified DNA products were purified from the PCR reaction using 

phenol/chloroform DNA extraction and ethanol precipitation. To isolate the DNA from the 

protein within the PCR reaction mix, an equal volume of phenol:chloroform:iso-amyl 

alcohol-24:23:1 (Sigma) was added to the DNA solution and mixed thoroughly by 

vortexing. The two liquid phases were then separated by centrifuging for 5 min at 13000 

rpm. The aqueous phase containing the PCR products was collected very carefully and 

transferred into a clean 2 ml micro-tube. 0.1 volume of 3 M NaAc and 2.5 volume of 100 % 

ethanol was added to the isolated DNA solution and mix well. This mixture was kept at -80 

°C for 20 min and then centrifuged for 20 min at 14000 rpm. The supernatant was 

discarded and the DNA pellet was washed with 70 % ethanol. After air drying for 10 min, 

DNA was resuspended in 10 µl of sterile water. 
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2.4.5. Cloning : Restriction enzyme digestion and ligation of vector with DNA inserts 

 

Purified DNA fragments and plasmids were digested with appropriate restriction enzymes 

(New England Biolabs) and ligated into the desired plasmids. Plasmid and DNA fragments 

which were to be ligated together were digested as separate reactions with the same 

restriction enzymes. Reactions were carried out as 20 µl final volume with 1 - 5 µl of 

plasmid (~ 1 µg) or PCR product (~0.2 µg), 2 µl of 10 x reaction buffer and 1-2 µl of 

restriction enzyme(s). Incubation periods, temperatures and buffer compatibility were 

adjusted according to the manufacturer’s recommendations to maximise the restriction 

enzyme performance. The digested plasmids and DNA fragments were purified as 

explained in 2.4.4 and were resuspended in 10 µl of sterile water.  

 

Ligation reactions were set up as a final volume of 10 µl with Quick ligase enzyme (New 

England Biolabs) or T4 DNA Ligase (New England Biolabs), 3 µl of the digested and 

purified DNA fragment, 1 µl of the digested and purified plasmid and buffer according to 

the manufactures directions (Table 2.9). The ligation reaction was kept at room temperature 

for 30 min and was transformed into competent cells as explained in 2.3.1. 

 

Table 2.9 : Ligation mixture and concentration 

Components  Volume (10 µl reaction) 

digested and purified DNA fragment 3 µl (150 – 200 ng) 

digested and purified plasmid 1 µl (50 ng) 

10 x Quick ligase buffer 1 µl  

Quick ligase enzyme 1 µl 

Sterile water To make upto 10 µl volume 

 

Genetic complementation vectors for the tetO7 strains were constructed using the blue-

white screen technique with the TA Cloning® Kit (Invitrogen). Using High Fidelity Expand 

Polymerase PCR system, the desired gene was amplified from the genomic DNA. High 
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Fidelity Expand Polymerase PCR system has a nontemplate-dependent activity that adds a 

single deoxyadenosine (A) to the 3´ ends of PCR products. Linearized vector supplied in 

TA Cloning® Kit has single 3´ deoxythymidine (T) residues that allow PCR inserts to ligate 

efficiently with the vector. The ligated samples are transformed to the TOP10F´ competent 

cells and plated into a LB-agar plate with 100 mM Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and 40 mg/ml X-Gal. The plate was kept at 37°C overnight and the white colonies 

were picked and tested for the positive insert. From the TA vector, DNA fragments were 

re-digested and re-cloned into any other vector as required. 

 

2.4.6. DNA sequencing 

All the plasmids constructed were sequenced by Eurofins MWG Operon DNS sequencing 

service. 50-100 ng/µl of purified plasmid DNA was mixed with 2 pmol/µl of primers for an 

final volume of 15 µl for the sequencing. The sequences were analysed using the sequence 

alignment module of Clone manager Software (Sci-Ed Software).  

2.5. Electrophoresis 

 

2.5.1. Agarose gel electrophoresis 

 

Agarose gels to separate and visualise DNA fragments were prepared by melting agarose (1 

%) in TAE buffer (40 mM Tris-HCl, 0.11 % v/v glacial acetic acid, 1 mM EDTA, pH 8.0) 

with Ethidium bromide (0.2 µg/ml) or 0.1 % of SYBR safe DNA gel stain (Invitrogen). The 

gel was poured in the DNA gel casting tray with well-combs and was allowed to 

polymerise at room temperature. The DNA samples for electrophoresis were prepared by 

adding 1 µl of 5x concentrated DNA loading dye (30% (v/v) glycerol, 0.25% (w/v) 

bromophenol blue, 0.25% (w/v) xylene cyanol)  into 5 µl of DNA solution. The DNA 

samples along with the GeneRuler™ 1 Kb DNA Ladder (250 – 10000 bp, Fermantas) were 

electrophoresed at 100 V in 1 x TAE buffer in a BioRad horizontal gel tank. After 

electrophoresis the DNA bands were visualised using a UV transilluminator (Biorad). 
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2.5.2. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Proteins were resolved by electrophoresis on pre-cast 4-20% SDS-polyacrylamide gels 

(NuSep Ltd) in HEPES buffer (100 mM Tris, 100 mM HEPES and 3 mM SDS) using a 

Biorad Electrophoresis system. Protein samples were mixed with 10 µl SDS-gel loading 

buffer (0.20 % w/v bromophenol blue, 4 % w/v SDS, 20 % v/v glycerol, 200 mM 

dithiothreitol (DTT), l00 mM Tris-HCl, pH 6.8, 0.1 % bromophenol blue), were heated for 

5 min at 95 0C and electrophoresised. The protein samples were centrifuged at 13000 rpm 

for 10 sec before loading. Protein samples along with the PageRulerTm Plus (10 – 250 kDa; 

Fermantas) protein marker were electrophoresised at 100 V for 1-2 h until the protein 

marker was separated as desired.  If required the protein gels were visualised using a UV 

transilluminator or were used for Western blotting.  

 

2.6. Microscopy techniques 

  

Visualisation of fluorescently tagged proteins (TCM and GFP) was performed on live cells 

grown in YNB media with all amino acids, glucose and adenine to avoid auto fluorescence. 

To visualise the distribution of TCM-tagged proteins coupled to the fluorescent dye FlAsH, 

5 ml liquid cultures of individual yeast strains were grown overnight at 30 0C. The cells 

were diluted to an OD600 of 0.2 at 30 0C at 200 rpm and grown further to an OD600 of 0.6. 1 

ml of this culture was harvested then resuspended in 100 µl of fresh media. Cells were 

incubated at 30 0C for 1-2 h in the dark with 2 µM – 4 µM of FlAsH and 10 µM 

EthileneDiThiol (EDT). FlasH is supplied as a 2 mM solution in DMSO and a working 

stock of 0.2 mM was made by dilution with 20 mM Tris-HCl pH 7.5. To remove and 

quench non-specifically bound FlAsH, the cells were resuspended in 1 ml of SC media with 

25 µM EDT and incubated on a rotating wheel for 30 min in the dark. Cells were harvested 

and resuspended in 1 ml of SC media with 25 µM EDT and incubated for another 15 min. 

After another wash with 1 ml of SC media without EDT, the cells were resuspended in 10 

µl of SC media. The cells were mounted onto slides coated with 0.5 % poly-L-lysine. Poly-

L-lysine-coated slides were prepared by spreading 0.5 % poly-L-lysine on to the slides. The 
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slides were incubated in a humid chamber to prevent evaporation before gently removing 

the excess poly-L-lysine with running water and air drying.  

 

For visualisation of GFP tagged proteins, 5 ml liquid cultures of individual yeast strains 

were grown overnight at 30 0C. The cells were diluted to an OD600 of 0.2 and grown further 

at 30 0C at 200 rpm to an OD600 of 0.6. 100 µl of the culture was resuspended in 1 ml of 

medium and 10 µl of the cells were mounted onto 0.5 % poly-L-lysine coated slides for 

visualisation. Clear nail varnish was used to seal the sides of the cover slips.  

 

Rhodamine conjugated phalloidin staining of actin within cells expressing TCM tagged 

eEF1A was performed on fixed cells as described by Gross and Kinzy, 2005. Yeast cells 

growing in log phase (OD600 of 0.6) were collected and a final concentration of 4 % (v/v) 

formaldehyde (methanol free) and 0.5 % (v/v) Triton X-100 was added for the fixation of 

the cells. Cells were fixed by incubation for 30 min and then pelleted by centrifugation at 

4000 rpm. Then the pellets were resuspended in Phosphate buffered saline (PBS) (137 mM 

NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 and 1.47 mM KH2PO4 adjusted to final pH 7.4) with 

0.5 mM MgCl2 and 4 % (v/v) formaldehyde for further fixation for 90 min at room 

temperature. The cells were washed once with PBS before addition of phalloidin 

conjugated to rhodamine (Invitrogen) to a final concentration of 0.6 µM in PBS and 

incubated for 1 h at room temperature in the dark. Yeast samples were subsequently 

washed three times with PBS. Cells were mounted on 0.5 % poly-L-lysine coated slides 

before visualisation.  

 

The DNA in the nucleus of the yeast strains expressing TCM-tagged elongation and 

releasing factors was visualised with 4',6-diamidino-2-phenylindole (DAPI). The TCM-

tagged strains were first treated with FlAsH as described above and after mounting on to 

the poly-L-lysine coated slides, 1 µl of 10 µg/ml DAPI was added to the cells and incubated 

for 1 h before visualisation.  

 

All of the cells were visualised with a Zeiss LSM 510 confocal microscope with a 100x 

Plan-Apochromat oil objective (Numerical Aperture 1.4). An argon laser (540 nm) was 
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used for visualization and images were analyzed with Zeiss LSM software (Carl Zeiss 

MicroImaging, Inc.). 

 

2.7. Growth analysis of yeast strains 

 

Growth analyses of the yeast strains that contain TCM tags and ∆EFT2 strain were carried 

out in YPD medium. Overnight cultures were diluted into 20 ml to OD600 0.1. Cells were 

grown at 30 0C at 200 rpm and the OD600 was determined every hour until the OD600 reach 

1.0. The OD600 points for individual strains along with the wild-type cells were plotted 

against time. The slope of the curve was determined and compared with that of the wild-

type cells. The wild-type growth curve slope served as a reference, and the percentage of 

the growth with respect to the wild-type strain growth was determined. 

 

The strains containing a tetO7 promoter were grown overnight in YNB media without 

methionine and with 2 % glucose. The culture was diluted to an OD600 0.2 and grown for 

another 8 h. The cultures being incubated without doxycycline were diluted to OD600 0.01, 

and those with doxycycline were diluted to an OD600 0.02 and grown for 17 h. In the 17 h 

period the gene under tetO7 promoter expression will be completely controlled by the 

concentration of the doxycycline in the medium. 17 h is identified to be the optimum time 

period for the complete doxycycline effect to occur. Different concentrations of 

doxycycline were used for different tetO7 strains to compare growth. After growing for 17 

h, cultures were diluted to specific OD’s such that the strains reach about OD600 0.4 after 4 

h. This ensured that the strains were at the same growth stage when the experiments were 

performed. The differences in the slope of the growth curve indicate the effect that an 

addition of a specified concentration of doxycycline has on cell growth rate. The OD600 to 

which the strains have to be diluted was calculated based on the doubling time using the 

formulae:  

N0 = Nt / 2
G 

 

Where N0 is the OD which the cultures had to be diluted to Nt is the OD600 required after 4 

h, in this study Nt is 0.4, and G is the number of generations the cultures go through.  
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G is calculated as  

G = log2 (Mt / M0 ) 

 

where Mt is the final OD600 and M0 is the initial OD600. The doubling time of strains was 

calculated as T/G where T is the total time the culture grown for.  

 

ODs were measured every hour for 4 h and after 4 h of growth the cultures were used to 

determine the level of protein. Growth rate was calculated by plotting the OD600 points 

against the time and the slope of the curve is determined. The slopes of individual tetO7 

strains were compared to the slope of the wild-type strains and the percentage of growth 

rate was calculated.  

 

2.8. Cell counting  
 
The number of yeast cells per 1 ml of culture in the logarithmic growth stage was 

determined using Cellometer auto M10 software (Cellometer, Peqlab). 20 µl of the cell 

culture was collected and placed on the slides provided by the manufacturers and analysed 

using the M10 software. The focus was corrected for clear visualisation and counting. 

Mean diameter, cell size and the distribution of the cell population with cell size were 

obtained.  

 

2.9. Western Blotting  

 

Cells were harvested by centrifugation from 10 ml culture grown to OD600 0.4 

(approximately 3x107 cells/ml). The protocol for the extraction of protein from cells for 

Western blotting was adapted from von der Haar, 2007. Briefly, the cell pellet was 

resuspended in 200 µl of lysate buffer (0.1 M NaOH, 0.05 M EDTA, 2 % SDS, 2 % 2-

mercaptoethanol) and was incubated at 90 0C for 10 min. 5 µl of 4 M acetic acid was 

added, vortexed for 30 sec and incubated at 90 0C for another 10 min. 50 µl of 4x loading 

buffer (0.25 M Tris-HCl pH 6.8, 50 % Glycerol and 0.05 % bromophenol blue) was added 
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to the mixture and proteins were separated using electrophoresis as explained in section 

2.5.2. After electrophoresis, gels were washed in transfer buffer (5.8 g Tris Base, 0.37 g 

SDS, 2.9 Glycine, 200 ml methanol) for 30 min to remove the HEPES buffer. The protein 

was subsequently transferred to Hybond-C Extra Nitrocellulose membrane (Amersham 

Biosciences) in transfer buffer in a semi-dry transfer blot cell (Bio-Rad) at a constant 

current of 11 V and 400 mA for 60 min. 

 
Table 2.10 : List of antibodies used in this study 
 

Name Antigen Dilution 
 
Source 
 

 
Α-eEF1A 

 
yeast eEF1A 

 
1:5000 

 
Dr. Jenna Hutton 
 

α-eEF1B yeast eEF1B 1: 4000 Munshi et al, 2001 
 

α-eEF2 yeast eEF2 1:10000 Ortiz et al, 2006 
 

α-eEF3 yeast eEF3 1:10000 Ortiz et al, 2006 
 

α-eRF1 yeast eRF1 1:5000 Von der Haar and 
Tuite, 2007 
 

α-eRF3 yeast eRF3 1:5000 Von der Haar and 
Tuite, 2007 
 

α-Hex Yeast Hexokinase 1:2000 Sigma 
 

α-FITC Rabbit antibody 1:4000 Sigma 
 

 
After transfer, the membrane was incubated with TBS buffer (6.06 g Tris with pH 6.8, 

8.766 g NaCl) with 5 % milk powder (w/v) for 30 min at room temperature. The membrane 

was incubated overnight at 4 0C with TBS buffer, 5 % milk powder and the appropriate 

primary antibody (Table 2.10) with 10 % sodium azide. All the primary antibodies were 

raised in rabbit. After incubation with the primary antibody the membrane was 

subsequently washed 3 times with TBS buffer. The washed membrane was incubated with 

a second primary antibody (control, anti-Hexokinase) in TBS buffer, 5 % milk, Tween 
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(0.05 %) and 10 % Sodium Azide for 1 h at room temperature. The membrane was then 

washed three times with TBS buffer. Then the membrane was incubated with Fluorescein 

isothiocyanate (FITC) labelled anti-rabbit secondary antibody, α-FITC (Sigma, Table 2.10) 

in 5 % milk, TBS buffer and 10 % Sodium Azide, for 1 h at room temperature. The FITC-

conjugated secondary antibody is light sensitive, so all subsequent procedures were 

performed in the dark. The secondary antibody was raised in goat. After incubating with the 

secondary antibody, the membrane was further washed 5 times with TBS buffer before 

drying. The dried membrane was scanned using the Molecular Dynamics Typhoon 8600 

scanner and the fluorescence was quantified using ImageQuant software (GE Healthcare).  

 
2.10. Polysomal gradient analysis 
 
Polysomal gradient profiles were generated based on the protocol adapted and modified 

from Sagliocco et al., 1993.  

 
2.10.1.   Cell collection 
 
20 ml of growth medium was inoculated with yeast, grown overnight at 30 0C (200 rpm) 

then diluted in 100 ml of medium to an OD600 of 0.2. The culture was further grown at 30 
0C (200 rpm) and collected at OD600 of 0.5. A final concentration of 100 µg/ml of 

cycloheximide was added directly to the flask and mixed thoroughly to arrest the activity of 

ribosomes on the translating mRNA by inhibiting translation elongation. Subsequently, 

cells were harvested by centrifugation at 4000 rpm at 4 0C for 5 min. The cells were washed 

twice in sterile water and stored as pellets at -80 0C. 

 

2.10.2.   Cell lysis 

 

The cell pellets were thawed and resuspended in 10 ml of cold cell lysis buffer (10 mM 

Tris-HCl pH 7.4, 100 mM NaCl, 30 mM MgCl2) with 100 µg/ml of cycloheximide. Cells 

were harvested by centrifugation at 4000 rpm at 4 0C for 5 min. The cell pellet was 

resuspended in 600 µl of cell lysis buffer and transferred into a 2 ml micro-tube. An equal 

volume of glass-beads (Acid treated from Sigma) were added and cells were broken with 6 

rounds of vortexing and cooling (30 sec each). Then the mixture was centrifuged at 12000 
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rpm at 4°C for 20 min and the supernatant was collected and transferred to clean 1.5 ml 

eppendorf tubes.  

 

2.10.3.   Preparing sucrose gradients 

14%, 26%, 38% and 50% of sucrose solution was prepared in sucrose gradient buffer (50 

mM Tris.HCl pH 7.4, 50 mM NH4Cl, 12 mM MgCl2) to make 14 - 50 % sucrose gradient 

for separating the ribosome subunits and polysomes. 1 mM Dithiothreitol (DTT) was added 

to each of the solutions. 2.75 ml aliquots of each sucrose solution were poured into 

Beckman SW40 ultracentrifuge tube placed in dry ice. The densest solution was poured 

first followed by other sucrose solutions, each aliquot being frozen before addition of the 

next.  

2.10.4.   Gradient centrifugation 

 

Sucrose gradients were thawed at room temperature. 500 µl of the cell lysate was very 

carefully applied to the top of the gradient. The centrifuge tubes were balanced by adding 

extra cell lysis buffer if required. Samples were placed in pre-cooled SW 40Ti Beckman 

rotor. The gradients were centrifuged at 4 °C at 39000 rpm for 2.5 h in Beckman optima 

Le-80K centrifuge.  

 

2.10.5.  Polysome trace and fraction collection 

 

Polysome traces were collected using the density gradient fractionator (ISCO Model 185). 

The sucrose gradients were displaced upwards by high density (55%) sucrose solution 

pumped through a syringe needle piercing the base of the tube, which push the gradient 

very slowly upwards, passing a UV detector and through to collection in 2 ml tubes. The 

UV detector measures the concentration of the gradient solution (A280) and the reading is 

traced on a chart. Subsequently the fraction is collected in the pre-arranged tubes. 2 ml 

micro-tubes were labelled and arranged on the fraction collector. For these measurements 

the UV/rotor was set with a sensitivity of 2.0 or 1.0, baseline adjusted to 4.0, lamp current 
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to 200 A, rise to 2.5 sec, chart speed of 15 cm/h, timer/counter 0.6 ml, and flow rate 0.375 

ml/min.  

 

2.11. In vivo protein synthesis  

 

In vivo protein synthesis of exponentially growing yeast cells was measured using a method 

adapted from Sachs and Deardorff (1992). Yeast cells growing with an OD600 of ~ 0.4 were 

diluted to an OD600 0.1 in pre-warmed YNB-Met medium with concentration of 

doxycycline ranging from 0 – 100 ng/ml. The culture was incubated at 30 0C for 15 min. 

Labelling mixture with [35S]-methionine was prepared by adding 1.5 µl [35S]-methionine 

(14.3 mCi/ml, Perkin Elmer) to 100 µl of the freshly prepared 2 times concentrated TEM 

(TCA 25%,  0.25 M EDTA and 166 mM methionine). Five fresh 2 ml micro-tubes were 

prepared containing 0.5 ml of TEM to collect the samples. After 15 min of growth in at 30 
0C, 100 µl of the labelling mixture was added to the culture. 0.5 ml samples were taken at 0 

min and every 2 minutes thereafter for a total of 10 minutes. The samples were transferred 

to the 2 ml micro-tube containing 500 µl TEM. These samples were vortexed for 3 sec and 

heated at 95 0C for 20 min before cooling on ice for 10 min. The samples were filtered 

through GF/C filters (Whatman) in a vacuum manifold (Millipore) and the filtered were 

washed first with 2 ml of the TEM and then with 2 ml of 95 % (w/v) ethanol. The filters 

were collected in fresh 2ml micro-tubes and transferred to clean scintillation vials. 1.5 ml of 

Optiphase HiSafe 3 scintillation solution (Perkin Elmer) was added to each vial and [35S] 

incorporation was counted on a scintillation counter (Perkin Elmer) for 1 min.  

 
2.12. Dual luciferase assay 

 
 

Dual luciferase assays were performed with the dual luciferase reporter assay system 

(Promega). The protocol was adapted as described by McNabb et al., 2005. All the reagents 

were prepared as described by the manufactures. The tetO7 promoter strains containing the 

pDLV-L2/L0 plasmid for the luciferase assay were grown overnight in YNB-Met-His 

media with 2 % glucose. The culture was diluted to an OD600 0.2 and grown for 8 h. The 

strains without doxycycline were diluted to OD600 0.01 and those with doxycycline were 
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diluted to an OD600 0.02 for 17 h. Different concentrations of doxycycline were used to 

repress protein expression  levels to 80% and 60% of the wild type. The OD600 was 

measured after 17 h and the growth rate was measured as described in the section 2.7. 

Based on the growth rate, the strains were diluted to an OD600 such that the OD600 reach 0.4 

after 4 h of growth. 180 µl of the culture at exponential growth stage (OD600 ~ 0.4) was 

collected in four 1.5 ml eppendorf tubes for the assay.  

 

45 µl of the 5 x passive lysis buffer (PLB) was added to the 180 µl of cells and votexed for 

20 sec for cell lysis. After allowing cell lysis for another 10 sec, 5 µl of this cell lysate was 

added to 40 µl of the firefly luciferase reagent (LarII) in the luminometer tube. Samples 

were allowed to equilibrate for 10 sec and then, the firefly luciferase activity was measured 

using the luminometer (BERTHOLD Technologies Lumat LB 9507). After the 

measurement of the firefly luciferase activity, 45 µl of the Renilla luciferase reagent and 

firefly quenching (STOP & GLO) reagent (1 µl of Stop & Glo Substrate and 100 µl Stop & 

Glo Buffer) was added immediately. After allowing 10 sec of equilibration time, the 

Renilla luciferase activity was measure using the luminometer.  
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Chapter 3 

 

 

Spatial Distribution of elongation and release factors 

 

 

 

3.1. Introduction  

 

3.1.1. Visualisation and distribution of translation factors 

 

Comprehensive knowledge of the intra-cellular localization of proteins is crucial to 

understanding their functional roles and interactions. Translation factors are highly 

expressed in all stages of cellular growth and information about their distribution within the 

cell is relevant to translation control. Previously, the localisation of most yeast proteins, 

including translation factors, has been investigated using GFP or epitope-tagging methods 

(Huh et al., 2003, Kumar et al., 2002). In these global studies most of the translation factors 

are shown to be located in the cytoplasm. However, evident has been presented that the 

initiation factors eIF2 (α and γ subunits) and eIF2B (γ and ε subunits) have a specific 

localisation in the cytoplasm which results in translational regulation (Campbell et al., 

2005). Moreover, the eIF2 components were found to shuttle between specific foci within 

the cytoplasm and a less restricted, diffuse cytoplamic pool for GDP to GTP exchange. 

However, other initiation factors, such as eIF4A1, eIF5, eIF4G1, eIF4E, and eIF3b were 

observed to be distributed in the cytoplasm without any apparent heterogeneity (Campbell 

et al., 2005).  

 

In the high throughput global analysis of the distribution of yeast proteins fused GFP (Huh 

et al., 2003, http://yeastgfp.yeastgenome.org/), eEF1A has been shown to be homogenously 
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distributed in the cytoplasm, although nothing is known about the other elongation and 

release factors. Yeast genome wide epitope-tagging with GFP shows that all the elongation 

factors are located in the cytoplasm and eRF3 was predicted to be located in the nucleus 

(http://bioinfo.mbb.yale.edu/genome/localize/, Kumar et al., 2002). However, this study 

failed to determine the localisation properties of eIF2 (α and γ subunits) and eIF2B (γ and ε 

subunits). Therefore at present the distribution of elongation and release factors remains 

unclear.  

 

3.1.2. Aim of this work 

 

In this study, sub-cellular localisation of the translation, elongation and termination factors 

within yeast (Saccharomyces Cerevisiae) was examined using the tetra-cystiene motif 

(TCM) and GFP fluorescent tagging methods. For visualisation of protein distribution in 

live cells the tag of choice (TCM or GFP) was fused to the C-terminus of the genomic copy 

of the elongation and termination factor genes. Tags can be fused either to the N or to the C 

terminal of target genes, a choice that can be significant in obtaining accurate localization 

data. N-terminal reporter fusions may disrupt the promoter sequences, and can result in 

anomalous protein localizations. C-terminal tagging allows gene expression levels to 

remain under the control of the endogeneous promoter sequences, ensuring proteins are 

expressed at wild-type levels, but many still affect protein function and/or localization.  
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3.2. Results  

 

3.2.1.  Construction and phenotype analysis of ∆EFT2 strains 

In S. cerevisiae, the elongation factor eEF2 is encoded by two genes EFT1 (chromosome 

XV) and EFT2 (chromosome IV). Pairwise sequence alignment of these two genes using 

ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) shows 99% sequence 

identity. Sequence alignment of the proteins coded by both of the genes shows 100% 

sequence identity, indicating that both of the genes encode the same protein. Therefore, one 

of these genes, EFT2, was deleted so that EF2 protein was encoded by only one gene which 

could be tagged using TCM to explore the cellular distribution. This strategy confirmed that 

all of the eEF2 expressed had a TCM tag.  

 

The loxP-KanMX-loxP gene disruption method was used to construct the ∆EFT2 strain 

(Figure 3.1). The gene disruption cassette (1.7Kb) with the KanMX gene was PCR 

amplified from the plasmid pUG5 using primers EFT2-Del-F and EFT2-Del-R (Table 2.4) 

and transformed into PTC41 yeast cells (Figure 3.2a). The KanMX cassette, with gene 

specific flanking regions, replaces the EFT2 gene from the yeast chromosome IV. 

Subsequently, the KanMX gene from the ∆EFT2 strain was removed using the single 

recombinase technique. The ∆EFT2 strain was transformed with the cre expression plasmid 

pSH47 under the control of the inducible GAL1 promoter. Expression of cre recombinase 

was induced by growing the transformed cells in YP galactose medium. The cre gene is 

expressed within 2 h of growth in galactose media thereby the recombinase on the KanMX 

gene cassette results in the excision of the KanMX gene from the yeast chromosome. 

Elimination of KanMX and EFT2 genes were further confirmed by PCR using EFT2-Del-

Check-F and EFT2-Del-Check-R primers (Figure 3.2b).  
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Figure 3.1: Schematic representation of the gene deletion method using loxP double 
recombinase. Step 1: KanMX and loxp cassette was PCR amplified from the pUG6 
plasmid and transformed into the yeast cell. Due to the double recombinase activity, the 
KanMX cassette replaced the EFT2 gene from the yeast chromosome. Step2: pSH47 
plasmid with the cre gene was transformed into the ∆EFT2 strain and grown in galactose 
media to activate the cre gene. Step 3: expression of the cre gene activates the single 
recombinase to remove the KanMX gene from the yeast chromosome.  
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Figure 3.2: PCR confirmation of the ∆EFT2 strain construction. A) Agarose gel 
showing the PCR amplification of loxP-KanMX-loxP gene cassette (1.7 Kb) from pUG6 
plasmid. This cassette was transformed into the yeast cell to replace EFT2 gene. The first 
lane is the DNA ladder (Generuler) and the second lane is the PCR product of the PUG6 
plasmid using EFT2-Del-F and EFT2-Del-R primers B) PCR confirmation of EFT2 gene 
deletion (~350b) (lane 2). The PCR was prepared using the genomic DNA of the ∆EFT2 
strain with EFT2-Del-Check-F and EFT2-Del-Check-r primers.  

 

After construction of the ∆EFT2 strain, the growth phenotype was analysed by comparing 

it with that of the wild type. The growth comparison shows that the ∆EFT2 strain has 80% 

wild-type growth rate (Figure 3.3a). The expression level of the eEF2 protein in the ∆EFT2 

strain and wild-type cells were measured by Western blotting using a polyclonal antibody 

(Table 2.5) against the eEF2 protein. The expression levels of eEF2 in all strains were 

calculated relative to a loading control (Hexokinase) which is identified on these blots 

using a specific antibody. This study shows a 25% reduction in the eEF2 level compared to 

the wild-type (Figure 3.3b). The ∆TEF2 strain (Constructed by Helena.Firczuk, University 

of Manchester) was used to generate a eEF1A-TCM strain to study the cellular localisation 

of eEF1A factor. Along with ∆EFT2 strain, the growth phenotype of ∆TEF2 strain was also 

analysed relative to that of the wild-type cells.  
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Figure 3.3: Growth rate analysis of ∆EFT2 strains. A) The growth curve analysis of the 
∆EFT2 strain shows a 20% reduction in growth when compared to that of the wild type. All 
growth points were taken as the average of three independent experiments B) Level of 
eEF2 protein in wild-type and ∆EFT2 strain. There was a 25% reduction in eEF2 protein 
level due to the deletion of EFT2 gene that codes eEF2.  
 

3.2.2.  Construction of TCM-tagged elongation and release factors 

 

Cellular localisation of the translation elongation and release factors was explored using the 

TCM tag. The TCM tag was amplified from the pNEWTC plasmid (Martin et al., 2005) 

using gene specific primers and the cassette was chromosomally integrated and fused to the 

C terminus of the elongation and release factors genes.  
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Figure 3.4: Schematic illustration of the chromosomal fusion of the TCM-tag to the C-
terminus of the elongation and release factor gene. The TCM cassette including the 
KanMX gene and TCM tag was PCR amplified using gene specific primers and was 
transformed into the yeast cells. The TCM tag was inserted between the ORF and the stop 
codon of the yeast gene. The strains with TCM tags were selected by growing on YPD with 
G418.  
 

All the translation elongation and release factor genes were C-terminally fused with TCM 

tags (Figure 3.4) using primers listed in Table 2.5. Primers were designed such that the 

TCM tag was integrated between the open reading frame and the stop codon. Integration of 

the TCM tag was confirmed by growing the strains on selective media of YPD with G418 

(150 µg/ml). The integration of the TCM tag at the desired location was further confirmed 

by PCR amplification (Figure 3.5).   
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Figure 3.5: PCR confirmation of the TCM integration in translation elongation and 
release factors (1.7 Kb). Gene specific primers were used to confirm the TCM cassette 
with KanMX gene. ∆TEF2 strain was used to construct the eEF1A-TCM strains and ∆EFT2 
strains were used to construct the eEF2-TCM strains. All the remaining TCM-tagged 
strains were constructed in a PTC41 wild-type background.  
 

3.2.3. Phenotype analysis of TCM tagged elongation and release factor strains  

 

The growth rates of all the strains containing a chromosomally TCM-tagged elongation or 

release factor were analysed to determine any possible growth deficiency. The growth 
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analyses revealed that the eEF1A-TCM strain grew at a similar rate to the wild-type strain, 

whereas eEF1B-TCM strains showed slightly slower growth (Figure 3.6a). The protein 

levels of both eEF1A and eEF1B in the TCM strains were compared with those found in 

the wild-type cells. There were no differences evident in the eEF1B protein level in the 

Western blot data (Figure 3.6b).  
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Figure 3.6: Phenotype analysis of eEF1A-TCM and eEF1B-TCM. A) The growth rates 
of eEF1A-TCM strains are comparable to that of the wild-type strain. This reveals that the 
eEF1B-TCM strain showed a slight decrease in growth B) Western blot analysis of the 
protein expression level of eEF1A and eEF1B in wild-type and TCM strains. There were no 
reductions in the level of eEF1A and eEF1B proteins in eEF1A-TCM and eEF1B-TCM 
strains due to TCM integration.   
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Figure 3.7: Phenotype analysis of eEF2 and eEF3 TCM strains. A) The growth curves 
of eEF2-TCM and eEF3-TCM were compared with that of the wild type. eEF2-TCM 
showed slower growth which is consistent with deletion of the EFT2 gene however no 
growth difference was observed in the eEF3-TCM strain. B) Western blotting of cell 
extracts and probing with EFT2 and eFT3 antibodies. Hexokinase is a loading control. 
There was no significant difference in the cellular level of eEF3 factor in eEF3-TCM strain. 
Average of three independent experiments shows a slight decrease (8 %) in the level of 
eEF2 observed in the eEF2-TCM strain.  

 

The growth curves of eEF2-TCM and eEF3-TCM strains were compared with that of wild-

type cells (Figure 3.7a). There was no apparent difference in the growth rate of eEF3-TCM 

strains when compared to wild-type cells. However, the eEF2-TCM strains showed slightly 

slower growth which was also observed in the ∆EFT2 strain. The eEF2-TCM strain showed 
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a consistent reduction in protein level. This degree of reduction in protein expression was 

similar to that observed upon deletion of EFT2 (∆EFT2 strain) while the eEF3 level 

remained the same in both wild-type and the eEF3-TCM strain (Figure 3.7b). This indicates 

that the TCM tag is not interfering with any functional or structural properties of the 

factors.  
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Figure 3.8: Phenotype analysis of eRF1 and eRF3 TCM strains. A) The growth curves 
of TCM-tagged release factors showed no apparent difference in growth rate compared to 
wild type. B) The Protein level of the release factors was determined and compared with 
that of the wild-type and Hexokinase was used as the control to determine the comparative 
level of the release factors. There were no decreases in the levels of either eRF1 or eRF3. 
This confirms that the integrated TCM tag is not affecting the expression level of release 
factors.  
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The release factors, eRF1 and eRF3 were also C-terminally tagged with TCM. The growth 

rates of the two strains were also compared with the wild-type strain. There were no 

differences in the growth rate or protein level of the strains containing eEF1-TCM or eRF3 

compared to un-tagged wild-type strains (Figure 3.8a and 3.8c). 

 

3.2.4. Cellular morphology and translational control  

 

Previous studies have shown that changes in the protein expression levels of translation 

factors can have a significant influence on cell morphology (Munshi et al., 2000) and can 

influence translational regulation (Gross and Kinzy 2007). The cell morphology of each of 

the TCM tagged elongation and release factor strains was analysed to identify differences 

in the cell shape or size. Average cell diameter was measured using the Cellometer Auto 

M10 software (Cellometer, Peqlab) (Table 3.1). For all the TCM strains, the average cell 

diameter was smaller than the wildtype. For further verification, cells were further 

categorised into sub-populations on the basis of cell diameter. Cells were categorised as 

small: with cellular diameters less than 5µm, average: with cellular diameters between 5-10 

µm and large: with cellular diameters larger than 10 µm. During logarithmic cell growth 

95% of the cells are either small or average, indicating that the cells are actively budding, 

whereas in stationary growth phase 80% of the cell population is either average or large 

indicating that the cell division has decreased. This observation confirmed that there is no 

apparent difference in the cell morphology when compared to that of the wild-type (Figure 

3.9).            

 

Table 3.1: Average cell diameter of TCM tagged translation elongation and release 

factors compared to the wild-type cells in stationary and log phase.  

Growth 

phase 

 

PTC41 

 

eEF1A-

TCM 

eEF1B-

TCM 

eEF2-

TCM 

eEF3-

TCM 

eRF1-

TCM 

eRF3-

TCM 

Log  7.3 6.1 6.4 6.6 6 5.9 5.8 

Stationary 7.7 7 5.9 7.1 6.2 5.8 6.6 
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Figure 3.9 :  Cell size distribution of strains containing TCM-tagged factors compared 
to that of the wild-type cells. A) during logarithmic growth more than 95% of all the TCM 
strains fall in the category of <5µm and 5-10 µm range indicating that the cells are actively 
dividing,  B) whereas the stationary growth phase distribution of the cellular size indicate 
that more than 80% of the cells are in 5-10µm and >10µm category. 
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3.2.5. Interaction between eEF1A and actin 

 

Previous studies have suggested that the binding of eIF1A to filamentous actin may 

regulate its organisation and thereby function in maintaining of the cell’s shape. Also, over- 

expression of this factor in yeast has a very strong affect on cell morphology and the 

distribution of actin (Munshi et al., 2000). This putative interaction was investigated here to 

determine if the eEF1A-TCM strains exhibit any aberrant actin organisation. Calculation of 

the cellular diameter of the eEF1A-TCM-containing cells showed no difference in the cell 

size when compared with wild-type cells (Figure 3.9). The distribution of actin in the 

eEF1A-TCM strain was analysed using fluorescent rhodamine-conjugated phalloidin. 

Phalloidin selectively binds and stabilizes polymerized, filamentous actin without binding 

monomeric actin and its non-specific staining is negligible. Phalloidin is cell-impermeable, 

so cells to be stained have to be fixed and detergent-permeabilized. Cells to be stained 

should not be fixed with methanol because methanol fixation destroys the phalloidin-

binding site on actin, thereby eliminating staining.  Under normal conditions, budding yeast 

cells show a high concentration of actin at the tip of the bud (Munshi et al., 2000). Munshi 

and co-workers (2000) demonstrated that when eEF1A was over-expressed, actin filaments 

were disorganised and distributed along the length of the bud. Images presented in Figure 

3.10 reveal that in eEF1A-TCM actin is concentrated at the bud tip with the same 

distribution as that observed in wild-type cells. This further shows that the TCM tag has no 

affect on cell morphology or the distribution of actin. 



Chapter 3 - Spatial Distribution of elongation and release factors 

 96 
 

Phase image

FlAsH

Phalloidin

Merged

PTC41 eEF1A-TCM

5 µm
 

Figure 3.10: Rhodamine-phalloidin staining of actin in a yeast strain expressing 
eEF1A-TCM.  Both wild-type and the eEF1A-TCM strains showed a concentrated 
distribution of the actin on the bud tip (shown using arrows). The actin filaments were not 
disorganised in the eEF1A-TCM strains confirming no effect on the actin distribution due 
to TCM tags.  
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3.2.6. Cytoplasmic distribution of elongation and release factors observed with TCM 

tag 

 

TCM-tagged elongation and release factor strains were incubated with appropriate 

concentrations of FlAsH dye before microscopic analysis (Section 2.6). FlAsH is a cell-

permeable dye that binds the four cysteine residues of the TCM-tag and upon binding 

fluoresces green. The concentration of FlAsH (2 uM-4 uM) was optimised for each strain to 

ensure maximal image quality and cell viability. Cells were treated carefully to avoid any 

stress conditions. In log phase, all the elongation factors and release factors were 

distributed homogeneously throughout the cytoplasm (Figure 3.11).  
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Figure 3.11: Distribution of TCM tagged translation factors in log phase. A) TCM 
tagged release factors B) TCM tagged elongation factors and wild type. All the factors were 
found to be homogenously distributed through out the cytoplasm.  
 

 

 



Chapter 3 - Spatial Distribution of elongation and release factors 

 99 
 

1 µm

2 µm

TCM MergedDAPI

eEF1A

eEF2

eEF3

eRF1

eRF3

 

 

Figure 3.12 : DAPI staining of the TCM tagged elongation and release factors. There is 
no overlap between fluorescence, confirming that the translation factors are only distributed 
in the cytoplasm but not in the nucleus.  
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Yeast strains expressing TCM-tagged elongation and release factors were incubated with 

DAPI; a fluorescent dye that binds strongly to DNA and is therefore a good marker for the 

nucleus. The elongation and release factors were visualised with DAPI to determine any 

presence of the TCM-tagged factors within the nucleus. The images show no overlap 

between DAPI and TCM fluorescence indicating that the translation factors are not 

distributed within the nucleus (Figure 3.12). 

 

3.2.7. Cytoplasmic distribution of elongation and release factors confirmed using 

GFP tag  

 

The sub-cellular distribution of TCM-tagged elongation and release factors was compared 

with that of GFP-tagged elongation and release factors. The GFP tag was chromosomally 

fused to the c-terminus of the endogenous elongation and release factor gene. The growth 

phenotype of the GFP tagged elongation and release factors was compared with that of the 

wild-type strain (Figure 3.13). The strains expressing eEF1A-GFP and eEF2-GFP proteins 

contain both the genes coding these proteins. The GFP tags are fused with TEF1 and EFT1 

genes respectively. There was no difference observed in the growth rate of these strains. 

These data confirm that the chromosomally GFP-tagged strains display a wild-type growth 

rate which indicates that the addition of a C-terminal GFP tag to these translation factors 

creates no adverse effects. 

 

The intra-cellular distribution of the GFP-tagged elongation and release factors was 

examined in the log growth phase of the yeast strains. The images show that, as observed 

for the TCM-tags, elongation and release factors are homogenously distributed in the 

cytoplasm (Figure 3.14).  
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Figure 3.13 : The growth curve comparison of all the GFP-tagged elongation and 
release factors with wild-type cells. There was no significant growth phenotype observed 
in the GFP tagged strains. 
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Figure 3.14: Distribution of GFP-tagged elongation and release factors in log phase. 
A) Distribution of release factors (b) elongation factors and wild type. All the factors were 
found to be distributed homogenously in the cytoplasm. 
 

 

 

 

 

 

 



Chapter 3 - Spatial Distribution of elongation and release factors 

 103 
 

3.3. Discussion 

 

3.3.1. Deletion of the EFT2 gene causes growth defects and eEF2 factor reduction in 

S. cerevisae 

 

In yeast, two genes code for the eEF2 translation factor, EFT1 and EFT2. These genes 

produce peptides with 100% amino acid identity. The EFT2 gene was deleted in this study 

and the EFT1 gene was fused with the TCM tag for the localisation study. The growth 

curve analysis of the ∆EFT2 strain shows a clear decrease in the growth efficiency. 

Moreover, a decrease in the eEF2 level was also observed in the ∆EFT2 strain. Similar to 

the eEF2 factor, eEF1A is encoded by two genes, TEF1 and TEF2. However, defective 

growth was not observed in ∆TEF2 strain. The growth defect observed in the ∆EFT2 strain 

suggests that expression of eEF2 from a single copy gene is not sufficient for the 

endogenous protein expression level of eEF2 factor and normal growth of the yeast strain. 

This shows that both of the genes of eEF2 are required for normal growth of the yeast 

strains. Reduction in the protein expression level indicates that, even though both genes are 

expressing the same protein, the EFT1 gene might be contributing about 75% and EFT2 

gene might be contributing about 25% of the total eEF2 protein in the yeast cell. The 

decrease in the growth rate exhibited by the ∆EFT2 strain might be the result of decrease in 

the protein expression level of eEF2 factor. However, the reduction in the growth rate of 

these strains is unlikely to affect the distribution of the eEF1A and eEF2 factors within the 

cells. ∆TEF2 and ∆EFT2 strains were used to construct the TEF1-TCM and EFT2-TCM 

strains respectively.  

 

3.3.2. TCM tags – a new fluorescent tag to investigate protein localisation in living 

cells 

 

Visualising and tracking the proteins within the living cell to elucidate the distribution, 

interaction and dynamics of the proteins of interest has been of great importance. GFP has 

been used intensively to achieve these goals. But the relatively large size of GFP (23 kDa) 

is of concern as it could potentially affect the endogenous behaviour of the protein. 
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Specifically GFP can form dimers and trimers that may result in aberrant localisation of the 

fusion proteins, affect dynamics and protein-protein interaction. Work by the Tsien lab 

(Griffith et al., 1998) has generated the small (~10 a.a.) TCM-tag which would be expected 

to have a lower probability of causing the problems that might be associated with the larger 

GFP-tag. The TCM tag can be attached either at the C-terminal or N-terminal of the protein 

of interest. The tag binds to the membrane permeable dyes, FlAsH/ReAsH resulting in 

green/red fluorescence respectively upon binding.  

 

For the first time, the yeast elongation and release factors were tagged with TCM to 

visualise their distribution. Phenotypic analysis of TCM-tagged yeast strains exhibited no 

effect on the cell growth, cell shape, tagged protein level or actin distribution. Only, TCM-

tagged eEF1Bα exhibited slower growth when compared to wild-type cells. The cellular 

function of the eEF1Bα C-terminus domain is unknown. However, the slower growth 

observed with eEF1B-TCM strains might be due to an adverse effect of the C-terminal 

TCM tag on eEF1A-eEF1B complex formation (Figure 3.6a). This may cause slower 

translation, which results in slower growth. Another possibility is that the eEF1B is 

involved in another cellular process other than translation which is also affected by the C-

terminal modification of the factor. None of the other factors showed any phenotypic 

changes due to inclusion of a TCM-tag indicating that the TCM-tag has no adverse effect 

on the strains and the tagged proteins are exhibiting normal behaviour.  

 

3.3.3. Cytoplasmic distribution of elongation and release factors 

 

Even though yeast translation initiation factors have been intensively studied for their 

distribution within the cell and the effect of their distribution over translation regulation, 

very little has been known about the distribution of elongation and release factors. In this 

study, for the first time, all yeast elongation and termination factors were C-terminally 

TCM-tagged to explore their distribution and contribution to translation regulation. The 

TCM-tag has a minimal effect on the endogenous behaviour of the protein. The intra-

cellular distribution of the elongation and release factors were explored with live-cell 

imaging techniques. The growth phenotype and protein expression levels of each of the 
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elongation and release factors were measured to confirm that the factors are displaying 

wild-type protein behaviour. 

 

Yeast elongation and release factors all were observed to be cytoplasmically distributed in 

the yeast cells. The nuclei of cells in strains expressing TCM-tagged elongation and release 

factors were visualised using DAPI to determine whether the elongation and release factors 

might also be evident in the nucleus. But the images revealed no evident of the presence of 

these factors in the nucleus. 

 

3.3.4. Actin intra-cellular organisation is unaffected by TCM tagged eEF1A 

 

The interaction of eEF1A and actin has been demonstrated in numerous organisms and the 

over-expression of eEF1A in yeast causes alterations in the intra-cellular distribution of 

actin (Munshi et al., 2000). To determine if the fusion of the TCM-tag to eEF1A causes 

actin re-organisation, TCM-tagged strains were visualised by confocal microscopy Figure 

3.9 shows that there are no alterations in the actin distribution and the cell size or shape due 

to TCM-tagging of eEF1A. In yeast, actin has a role in bud formation and localises on the 

bud tip. It has been suggested that the regulation of eEF1A also causes enlargement of the 

yeast cells and the loss of the ability to form buds (Munshi et al., 2000). Actin localisation 

to the bud tip was observed in TCM-tagged eEF1A expressing yeast strain as observed in 

the wild-type cell (Figure 3.10). This study confirms that the cell shape, size or bud 

formations are not altered by TCM tags.  

 

3.3.5. GFP tags confirms the cytoplasmic distribution of elongation and release 

factors 

 

The intra-cellular distribution of elongation and release factors in yeast was examined with 

GFP tags in order to provide an alternative means of determining their cytoplasmic 

distributions. In yeast, only the eEF1A distribution was investigated previously using the 

GFP tag. It was demonstrated that GFP-tagged eEF1A is diffusely distributed within the 

cytoplasm (Huh et al. 2003). The same cytoplasmic distribution of eEF1A was observed in 
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this study. All the other elongation and release factors were also found to be dispersed 

within the cytoplasm (Figure 3.14). The growth phenotypes of the yeast strains with GFP-

tagged elongation and release factors were examined and showed no growth defect due to 

the tags. These data suggest that the yeast strains with GFP-tagged translation factors 

exhibit similar behaviour to that of the wild-type strains and strains with TCM-tagged 

proteins. Overall, the above data conclusively demonstrate that yeast elongation and release 

factors are cytoplasmically distributed. Furthermore these data confirm that since the 

elongation and release factors are cytoplasmically distributed throughout the cell, the 

spatial distribution of these factors might not be affecting the translational rate.  

 

3.4. Conclusion  

 

The intra-cellular distributions of the elongation and release factors were analysed in vivo 

in order to ascertain whether sub-cellular heterogeneity might play a role in the control of 

translation. The factors were tagged with both TCM and GFP tags to observe their cellular 

distribution. The results indicate that the translation elongation and release factors are 

homogenously distributed in the cytoplasm of the cell. This suggests that the spatial 

distribution of elongation and releasing factors are not affecting the translational control. 

Thus the sub-cellular distributions of the factor are not an aspect to be considered in the 

mathematical modelling of the translational control in yeast cells. The study also confirms 

that the elongation and release factors are not present in the nucleus of the yeast cells. The 

study also demonstrates the utility of the small tag, TCM, which can be chromosomally 

integrated in to the genome to enable visualisation of the proteins of interest in vivo with 

very little probability of functional defects.  
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Chapter 4 

 

 

Rate control analysis of elongation and release factors 
 

 

 

4.1. Introduction  

 

mRNA translation is one of the most important and well controlled cellular processes 

requiring the combined function of a large number of molecular components. In 

Saccharomyces cerevisiae, 13,000 protein molecules per cell per second are produced by 

the translation machinery (von der Haar, 2008). Translation is the final step in the flow of 

the genetic information, and regulation at this level allows for an immediate and rapid 

response to changes in physiological conditions (McCarthy, 1998). However, the processes 

that facilitate the precise regulation of translation are not clearly defined.  Regulation of a 

multistep pathway like translation involving more than 20 translation factors, can be 

exerted at different levels. However, most of the translational controls are believed to occur 

at the initiation stage of translation. Nevertheless, later stages of translation namely 

elongation and termination, are also actively involved in the translational control (Mathews 

et al. 2000). Previous studies of translation regulation suggest that the rate of translation 

depends on the rate of initiation, the rate of elongation/termination and the 

activation/repression of mRNA (Mathews et al. 2000).  

 

Multiple or individual steps have been found capable of regulating translation. One of the 

very first steps of translation is the GDP to GTP exchange in eIF2, facilitated by eIF2B, 

which can control translation globally (Rowlands, 1988). Together with eIF2, the mRNA 

cap-binding protein eIF4E is thought to regulate the global translation rate. Loading of the 
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40S subunit onto mRNA together with other translation initiation factors is also one of the 

important steps in translation regulation (Sachs et al. 1997). In addition, translation rates are 

shown to be dramatically repressed when the amino acids levels are limited (Clemens, 

1987). It has been suggested that the absolute quantities of ribosome and mRNA are not a 

rate-limiting factor in translation but this view is on limited validity in the context of 

system analysis (Henshaw et al. 1971). However, mRNA could be translation rate-limiting 

due to its secondary structure at the 5’ cap region and upstream of AUG sequences 

(Mathews et al. 2000). When the translocation of the ribosome from the AUG codon is 

slower than the initiation rate, the elongation becomes extremely rate-limiting. The 

presence of mRNA encoding rare amino acids, the secondary structure in the mRNA and 

phosphorylation of elongation factors can cause a non-uniformity of the elongation rate 

(Wolin and Walter, 1988).  

 

Recent studies of translation control have identified its role in many disease states and 

irregularities in growth (Silvera et al., 2010). However, a quantitative study of translational 

control at the systems level has not been available. In this study, for the first time, using a 

combination of molecular biology techniques, the response coefficients of the individual 

elongation and release factors have been determined. The response coefficient, the 

relationship between the intracellular abundance and control exerted by respective 

translation factors over the translation rates has been investigated. In addition the impact on 

translation and cellular growth rates due to the increase in the cellular levels of translation 

factors above endogenous levels were investigated.  
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4.2. Results 

 

4.2.1. Construction and confirmation of tetO7 promoter elongation and 

release factor strains 

 

Intra-cellular levels of the elongation and release factors were repressed by substituting the 

endogenous promoter by the doxycycline regulatable tetO7 promoter. The tetO7 cassette 

comprises of the kanMx4 gene as a selective marker, the tetracycline regulatable tTA gene 

and the tetO7 promoter (Figure 4.1). Doxycycline binds to the tTA gene which suppresses 

the activation of tetO7 promoter, consequently reducing the expression of the upstream 

gene (Bellı` et al 1998).  

 

 

Figure 4.1: Schematic representation of tetO7 cassette and the promoter substitution. 
The endogenous promoter of the elongation and release factors were substituted with the 
doxycycline regulatable tetO7 promoter. The tetO7 cassette was introduced into the yeast 
chromosome by homogenous recombinase. The level of gene expression is doxycycline 
dose-dependent. 
 

The tetO7 cassette was PCR amplified from the pCM225 plasmid (Table 2.3) using gene 

specific primers (Table 2.6). All the primers used in this study for the promoter substitution 

and for the confirmation of the promoter substitutions are listed in the Table 2.6. The gene 

specific tetO7 cassette was transformed into yeast cells and positive colonies were 

confirmed by PCR. The tetO7 cassette replaced the endogenous promoter of the gene of 

interest by targeted chromosomal homology substitution.  
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Figure 4.2 : PCR amplification of the tetO7 cassette from genomic DNA to confirm the 
tetO7 cassette integration with elongation and release factors. Generuler is the marker 
DNA ladder used in the agarose gel. The PCR product of the tetO7 cassette of size ~4000 
bp for the promoter substitution of A) eEF1A (tetO7-TEF1) and eEF1B (tetO7-TEF5) 
respectively B) eEF2 (tetO7-EFT1) and eEF3 (tetO7-TEF3) and C) eRF1 (tetO7-SUP45) 
and eRF3 (tetO7-SUP35) factors. Gene specific primers were employed to confirm the 
integration.  
 

Strains with tetO7 promoter substitution were confirmed by PCR amplifying the cassette 

from the genomic DNA of the tetO7 strains. The tetO7 promoter region was PCR amplified 
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using gene specific primers and the PCR product of size ~ 4000 bp confirms the 

substitution of the desired gene promoter (Figure 4.2).                     
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Figure 4.3: Serial dilution to determine the doxycycline sensitivity of elongation and 
release factors tetO7 promoter strains. Ten-fold dilutions of all the strains are spotted on 
to the YPD plates with G418 (150 µM) and YPD plates with doxycycline (2 µM). Serial 
dilutions of the elongation and release factor tetO7 strains. The tetO7 strains are resistant to 
the G418 due to the kanMx selective gene and sensitive to doxycycline. However the wild-
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type strains (PTC 41) are not sensitive to doxycycline but are non-resistant to G418.  + 
Control (tetO7-GCD11) strain confirm the doxycycline sensitivity of the factors. 
 

Strains with the tetO7 promoter were further confirmed by examining their doxycycline 

sensitivity. Ten-fold serial dilutions of exponentially growing tetO7 elongation and release 

factors strains were spotted on YPD with G418 (150 µM) and YPD with doxycycline (2 

µM) plates (Figure 4.3). Strains with the tetO7 promoter grew normally on YPD with G418 

plates though exhibit repressed or no growth on YPD plates containing doxycycline. In 

contrast, the wild-type strains grow normally in the presence of doxycycline but growth is 

repressed in the presence of G418. An initiation factor, tetO7-GCD11 (Dr. Helena Firczuk, 

University of Manchester) strain which is sensitive to the doxycycline was used as a control 

in the serial dilution to confirm the doxycycline sensitivity of the elongation and release 

factors. 

 

4.2.2. Growth curves and intra-cellular protein level analysis of tetO7 

promoter elongation and release factor strains 

 

Endogenous promoter substitution may cause variation in the protein expression levels 

which can have an effect on cellular growth rate. Any variations in the protein level and 

growth rate of the tetO7 strains were examined. All the strains were grown in YNB media 

with all amino acids and cell density in liquid culture was determined by measuring the 

optical density (O.D.) at a wavelength of 600 nm (OD600) at one hour time points. The 

protein expression level under the control of the tetO7 promoter was determined by 

collecting samples in the exponential growth phase (OD600 = 0.6) and quantified using 

Western blotting (Figure 4.6).  

 

tetO7-TEF1, tetO7-TEF5 and tetO7-EFT1 strains showed approximately 20-30% reduction 

in the protein level (Figure 4.6 A, B and C) whereas tetO7-TEF3 showed approximately 

70% reduction (Figure 4.6 D). Interestingly, tetO7-SUP45 strains showed approximately 

60% increase in the intra-cellular protein level (Figure 4.6 E). Whereas the tetO7-SUP35 

intra-cellular level was approximately 50-60% reduced (Figure 4.6 E). 
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Figure 4.4: Growth curve comparison of the tetO7 constructs of elongation and release 
factors strains with the wild-type cells (PTC-41). A) tetO7-TEF1 and wild-type B) 
tetO7-TEF5 and wild-type C) tetO7-EFT1 and wild-type D) tetO7-TEF3 and wild-type, E) 
tetO7-SUP45 and wild-type and F) tetO7-SUP35 and wild-type.  
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Growth curves of the tetO7 strains were compared to that of the wild type to explore the 

effects of reductions in translation factor levels on growth. tetO7-TEF1, tetO7-TEF5 and 

tetO7-EFT1 (Figure 4.4 A, 4.4 B and 4.4 C) strains were growing approximately 10-20% 

slower growth when compared to that of the wild-type (PTC41) cells. The reduction in the 

growth rate correlates with the reduction in the protein level. Similarly, the growth rate of 

tetO7-TEF3 (Figure 4.4 D) was reduced to 50-70% of that of the wild-type cells similar to 

the protein expression level. Interestingly, the increase in the protein level of release factor, 

eRF1 was not reflected in the growth curve. The growth curve of tetO7-SUP45 was very 

similar to that of the wild-type (Figure 4.4 E) indicating no effect on the growth due to 

promoter substitution. On the contrary, the protein level of the eRF3 strain was about 50-60 

% of the wild-type, however, the tetO7-SUP35 (Figure 4.4 F) growth curve was 

approximately similar to wild-type cells with a growth difference of about 5%. 

 

4.2.3. ‘Top-up’ to increase the protein expression level of elongation and 

release factors  

 

The differences in protein expression levels observed due to promoter substitution were 

rescued by transformation of tetO7 strains with specific ‘top-up’ plasmids. In order to 

return the protein levels in the tetO7 strains to wild-type levels, individual elongation and 

release factor genes were cloned into a yeast expression vector. The elongation and release 

factor genes were PCR amplified (Figure 4.5A, 4.5C, 4.5E, 4.5F and 4.5I) from the 

genomic DNA of the wild-type and cloned into single copy plasmids pTefEx or pTrpEx. 

The plasmids expressing the individual translation factors were transformed into the tetO7 

strains. The pTefEx vector has the PTEF1 promoter which is stronger than the PTRP1 promoter 

in  the pTrpEx vector. Both plasmids contain the URA3 gene as a selective marker. The 

growth and doxycycline resistance of the transformed tetO7 strains were examined. Ten-

fold serial dilutions of the strains containing these ‘complementation’ plasmids were 

spotted on YNB media without uracil (URA) and with/without doxycycline (Figure 4.5B, 

4.5 D, 4.5F, 4.5H and 4.5J).  
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Figure 4.5: PCR amplification of the elongation and release factor genes and serial 
dilutions of the tetO7 strains with genetic complementation. The elongation and release 
factor genes were PCR amplified from the genomic DNA of the wild-type cell (A, C, E, G 
and I). These genes were cloned to the pTefEX plasmid and transformed into the tetO7 
strains to rescue them from the decrease in the protein expression level. The increase in the 
protein expression level of the elongation and release factors resulted in reduction of 
growth defect. The serial dilution of the tetO7 strains with the ‘top-up’ vectors exhibit 
growth improvement (B, D, F, H and J). The tetO7 strains with the complementation vector 
are resistant to G418 and not sensitive to doxycycline. This indicates that the protein 
expression level of elongation and release factors are rescued through complementation 
vector. 
 
 



Chapter 4 - Rate control analysis of elongation and release factors 

 117 
 

WT tetO7-TEF1-
∆TEF2

-
“Top up”

- +

eEF1A (~ 50kDa)

Hexokinase (~50kDa)

WT tetO7-TEF5
- - +

eEF1B (~ 22kDa)

Hexokinase (~50kDa)

WT

- - +

eEF3 (~ 115kDa)

Hexokinase (~50kDa)

WT

- - +

eRF3 (~ 76 kDa)

Hexokinase (~50kDa)

“Top up”

“Top up”

“Top up”

(A)

(B)

(C)

(D)

WT tetO7-SUP45

eRF1 (~ 49 kDa)

Hexokinase (~50kDa)

- -“Top up”

WT

eEF2 (~ 93 kDa)

Hexokinase (~50kDa)

- -“Top up”
(E) (F)

tetO7-TEF1-
∆TEF2

tetO7-TEF5

tetO7-TEF3 tetO7-TEF3

tetO7-SUP35 tetO7-SUP35

tetO7-EFT1-∆EFT2

WT tetO7-TEF1-
∆TEF2

-
“Top up”

- +

eEF1A (~ 50kDa)

Hexokinase (~50kDa)

WT tetO7-TEF5
- - +

eEF1B (~ 22kDa)

Hexokinase (~50kDa)

WT

- - +

eEF3 (~ 115kDa)

Hexokinase (~50kDa)

WT

- - +

eRF3 (~ 76 kDa)

Hexokinase (~50kDa)

“Top up”

“Top up”

“Top up”

(A)

(B)

(C)

(D)

WT tetO7-SUP45

eRF1 (~ 49 kDa)

Hexokinase (~50kDa)

- -“Top up”

WT

eEF2 (~ 93 kDa)

Hexokinase (~50kDa)

- -“Top up”
(E) (F)

tetO7-TEF1-
∆TEF2

tetO7-TEF5

tetO7-TEF3 tetO7-TEF3

tetO7-SUP35 tetO7-SUP35

tetO7-EFT1-∆EFT2

 

 
Figure 4.6: Western blot analysis of the protein levels of tetO7 promoter elongation 
and release factors with or without ‘top-up’ plasmids. Reduction in the protein 
expression level of eEF1A in tetO7-TEF1 strain (A), eEF1B in tetO7-TEF5 strain (B), 
eEF3 in tetO7-TEF3 strain (C), eRF3 in tetO7-SUP35 strains were increased to the wild-
type level using the ‘top-up’ vectors pTefEx. However, the protein expression level of 
tetO7-EFT1 was not improved through complementation vectors. In contrast, the protein 
expression level of tetO7-SUP45 strain was increased after promoter substitution. 
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The ‘top-up’ vectors restored the protein expression level and thus growth rate back to the 

wild-type level. The strains with ‘top-up’ vectors were expressing elongation and release 

factors from the PTEF1 promoter and thus the strains were partially resistant to doxycycline. 

Protein expression levels of eEF1A in the tetO7-TEF1 strain were increased from 70% 

growth to 97% (Figure 4.6A). The increase in the protein expression level rescued the strain 

from the growth defect (Figure 4.7 A). The protein level of eEF1B was very low; it was 

approximately 50% of the wild type level and was increased to the wild-type level through 

the complementation vector (Figure 4.6 B). The reduction in the protein expression level of 

eEF1B had a limited effect on growth rate. Even though, the ‘top-up’ vector was employed 

to reduce difference in the growth rate of wild-type and tetO7-TEF5 strains (Figure 4.7 B). 

eEF3 expression level in the tetO7-TEF3 was only up to 30% of the wild-type level. 

However, the protein expression level was increased to 92 % through the ‘top-up’ 

complementation vector (Figure 4.6 C). This also improved the growth of the tetO7-

TEF3strains to the wild-type level (Figure 4.7 C). The reduction in the protein expression 

level of tetO7-EFT1 was not improved with by the ‘top-up’ complementation plasmid.  

 

The protein level of the tetO7-SUP45 strain was observed to be higher than that of the wild 

type (Figure 4.6 F). However, the strains were neither resistant to doxycycline nor showed 

any increase in growth. Since there is no reduction in the protein level or growth, no 

complementation vector was required for tetO7-SUP45 strains (Figure 4.6 E). However, an 

appropriate concentration of doxycyline (3 ng/ml) was employed to bring the protein level 

to the endogenous level. As enormous difference in the protein expression level was 

observed in tetO7-SUP35 strains compared to wild-type and this difference was decreased 

with the ‘top-up’ complementation vector (Figure 4.6 D). Even though, there was not much 

variation in the growth rate of the tetO7-SUP35 strain with wild-type cells, growth of the 

tetO7-SUP35 strain was improved through complementation vectors (Figure 4.7 D).  

 



Chapter 4 - Rate control analysis of elongation and release factors 

 119 
 

PTC41
tetO7-TEF5

tetO7-TEF5-pTefEx-TEF5

PTC41

tetO7-TEF3

tetO7-TEF3-pTefEx-TEF3

PTC41

tetO7-SUP35

tetO7-SUP35-pTefEx-SUP35

Time (h)

0 2 4 6 8 10

O
D

60
0

0.0

0.2

0.4

0.6

0.8

1.0

PTC41 
tetO7-TEF1- ∆∆∆∆TEF2
tetO7-TEF1- ∆∆∆∆TEF2-pTefEx-TEF1 

(A)

Time(h)

0 2 4 6 8 10

O
D

60
0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PTC41 
eEF1B-te07 
eEF1B-tet07 + pTefEx-eEF1B 

(B)

Time (h)

0 2 4 6 8 10 12

O
D

60
0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PTC41 
eEF3-te07 
eEF3-tet07 + pTrpEx-eEF3 

(C)

Time (h)

0 2 4 6 8 10 12

O
D

60
0

0.0

0.2

0.4

0.6

0.8

1.0

PTC41 
eRF3-te07 
eRF3-tet07 + pTefEx-eRF3 

(D)

 

 
 
Figure 4.7: Growth curve comparison for the elongation and release factor strains 
with ‘top-up’ vectors. The genetic complementation technique was employed to rescue the 
growth defects and protein level reduction observed in the tetO7 strains. The black line is 
the wild-type cell growth, red line represents the strains with no genetic complementation 
and the green line represents the strains with genetic complementation. A) tetO7-TEF1 
strain growth was improved by ‘top-up’ plasmids from 75% of the wild-type level to 98%. 
B) tetO7-TEF5 exhibited small growth defect and the difference (5%) was recovered by 
‘top-up’ plasmids. C) The tetO7-TEF3 strain exhibited very high sensitivity to the promoter 
substitution; however, the growth defect was rescued by ‘top-up’ plasmids. D) Even though 
the growth of tetO7-SUP35 strains was very similar to that of the wild-type, the small 
difference was complemented by the ‘top-up’ plasmids. 
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4.2.4. Growth rate and cellular protein level measurement of elongation 

and release factor strains at varying concentrations of doxycycline 

 

The ‘topped-up’ tetO7 strains were studied for their responses to varying concentrations of 

doxycycline (2 ng - 25 ng). Individual elongation and release factors were titrated over a 

range of doxycycline concentrations with and without the ‘top-up’ vectors (Figure 4.8). The 

reduction in the growth rate and cellular level of elongation and release factors was 

measured. The growth rates were measured as explained in section 2.7. Protein samples 

were collected and the intra-cellular concentration of each factor at the particular 

doxycycline concentration was quantified via Western blotting.  

 

The growth rate of the tetO7-TEF1 strains with different concentrations of doxycycline was 

plotted (Figure 4.10 A and B). The tetO7-TEF1 strains showed a very sensitive reduction 

with increasing concentrations of doxycycline. Even though the growth rate of tetO7-TEF5 

(Figure 4.10 C and D) was reduced with higher concentrations of the doxycycline, the 

strains exhibited lower sensitivity. Until the level of eEF1B factor was decreased below 

80% with doxycycline, the growth rate was not drastically affected. The tetO7-EFT1 

growth rates have been observed to reduce very rapidly at higher concentrations of 

doxycycline (Figure 4.10 E). 



Chapter 4 - Rate control analysis of elongation and release factors 

 121 
 

(A) (B)

(C) (D)

(E) (F)

Doxycycline (ng)
1 2 3 4 5 6 8 10 12 14

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

20

40

60

80

100
tetO7-TEF1- ∆∆∆∆TEF2

Doxycycline (ng)
1 2 4 6 8 10 16

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

20

40

60

80

100
tetO7-TEF5

Doxycycline (ng)
1 2 3 4 5 6 8 9 10 12

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

20

40

60

80

100
tetO7-EFT1- ∆∆∆∆EFT2

Doxycycline (ng)
1 2 4 5 6 8 9 10 12 14

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

20

40

60

80

100

120
tetO7-TEF3

Doxycycline (ng)
0 0.5 1 1.5 2 2.5 3 4 5 6 8 10 15

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

50

100

150

200
tetO7-SUP45

Doxycycline (ng)
2 4 6 8 10 12 14 16 18 20 22 24

%
 o

f p
ro

te
in

 e
xp

re
ss

io
n 

le
ve

l

0

20

40

60

80

100
tetO7-SUP35

 

 

Figure 4.8 : Translation elongation and release factor expression level with varying 
levels of doxycycline. The expression level of the elongation and release factors were 
repressed with different concentrations of doxycycline (0-25 ng). Most of the elongation 
factors were repressed to 60 % of the endogenous level with approximately 10 ng 
doxycycline (A, B, C, D). However, eRF1 was observed to be more sensitive to 
doxycycline (E) whereas tetO7-SUP35 requires higher doxycycline to repress the 
expression level of eRF3 factor.  
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Figure 4.9: Western blots showing the protein levels of the elongation and release 
factors in the tetO7 strains before and after complementation with ‘top-up’ vectors. 
Different concentrations of doxycycline was employed to systematically reduce the level of 
each of the factors. With the expression from the complementing plasmids, the reductions 
in protein expression were increased to the wild type level. Varying concentrations of 
doxycycline were employed to reduce the protein expression level of factors from 100 – 
80%, 80 – 60%, and below 60 %.  
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Figure 4.10: Growth rate measurement of tetO7 elongation factor strains over varying 
concentrations of doxycycline with and without genetic complementation. The growth 
rate was measured as a percentage of the wild-type cell growth. Growth rate of tetO7-TEF1 
strains without (A) genetic complementation was about 75% of the wild-type level which 
was rescued by genetic complementation (B). Over a range of doxycycline concentration, 
the growth rate of the strain was progressively reduced from 100% to 40%. The growth rate 
of tetO7-TEF5 strains without genetic complementation (C) was about 95% which have 
been rescued to be 95% with the external supply of the gene (D). Over a range of 
doxycycline, the tetO7-EFT1 strain exhibits a systematic reduction in growth rate.  
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Figure 4.11: Growth rate comparison of the eEF3 and release factors over a range of 
doxycycline concentrations with and without ‘top-up’ plasmids. A) The tetO7-TEF3 
strain growth was about 30% of that of the wild type and showed very sensitive growth rate 
decreases with doxycycline level. B) The growth rate of the tetO7-TEF3 strain was restored 
by ‘top-up’ plasmids and the strains exhibited a decrease in the growth rate. C) The growth 
rate of tetO7-SUP45 was not reduced with promoter substitution, however a gradual 
reduction in the growth rate was observed in response to varying levels doxycycline. D) 
The tetO7-SUP35 strain growth rate was not varied with the tetO7 promoter. E) The tetO7-
SUP35 strain was observed to have much more stable growth with the addition of 
doxycycline. Higher levels of doxycycline have been used to reduce the growth rate to 40-
60% of the wild-type level.  
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The tetO7-TEF3 growth rate was markedly reduced because of the tetO7 promoter 

substitution. Even at a limited level of doxycycline, the growth rate was strongly reduced 

(Figure 4.11 A). Through the ‘top-up’ plasmids, the growth rate of the tetO7-TEF3 strain 

was restored to the wild-type range and the strain showed a very significant reduction in 

growth rate (Figure 4.11 B). When compared to the elongation factors, eRF1 growth rate 

changed by the promoter substitution. However, a very rapid change in the growth rate was 

observed with increasing concentration of doxycycline use indicating or implying that the 

factor is essential for the cell survival. tetO7-SUP35 strains showed a very different growth 

rate pattern when compared to that of tetO7-SUP45 strain. tetO7-SUP35 strain growth rate 

was not much affected by the promoter substitution (Figure 4.11 C) and even with higher 

concentrations of doxycycline, the growth of the strain was not significantly reduced. The 

growth rate remained unchanged until the doxycycline concentration was increased to 12 

ng/ml (Figure 4.11 D). This indicates that the eRF3 protein may not be that essential for the 

growth of the tetO7 strains. 

 

4.2.5. Protein synthesis rate measurement of tetO7 promoter strains with 

varying concentrations of doxycycline 

 

As with determination of the growth rate, protein synthesis of the tetO7 strains was 

measured over a range of doxycycline concentrations. The protein synthesis rates of the 

tetO7 strains were measured in vivo using a 35S-methionine incorporation. The tetO7 strains 

were grown and samples were collected as explained in section 2.11.  Individual tetO7 

strains of the elongation and release factors were treated with varying concentrations (1 ng -

25 ng) of doxycycline. The protein synthesis rate at each level of the translation factors was 

measure along with the growth rate.  
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Figure 4.12 : Protein incorporation in the tetO7 elongation factor strain with different 
concentrations of doxycycline. One of the protein incorporation experiments with tetO7-
TEF1 strains without (A) and with (B) complementation plasmids. Protein incorporation 
experiments with eEF2 (E), tetO7-TEF3 strains without (C) and with (D) the 
complementation plasmid.  
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Figure 4.13 : Protein incorporation in the tetO7 release factor strain with different 
concentrations of doxycycline. One of the protein incorporation experiments with tetO7-
TEF3 strains without A) and with B) complementation plasmid. Protein incorporation 
experiments of tetO7-SUP45 strain (C) tetO7-SUP35 strains without (D) and with (E) the 
complementation plasmid.  
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tetO7-TEF1 and tetO7-EFT1 showed similar changes in the protein synthesis rate when 

treated with doxycycline (Figure 4.12 B and E). The protein synthesis rate for these two 

factors was reduced considerably with a low amount of doxycycline (Figure 4.12 B and E). 

The protein synthesis rate of tetO7-TEF5 was not much altered when at high levels of 

doxycycline (Figure 4.12 D). Conversely, eEF3 was observed to manifest a strong 

dependence of protein synthesis on the concentration of doxycycline (Figure 4.13 B). The 

protein synthesis rate of the tetO7-SUP45 strain was observed to decrease drastically in 

response to low doxycycline concentrations (Figure 4.13 C). In contrast, tetO7-SUP35 

protein synthesis was observed to be unchanged by high concentrations doxycycline 

(Figure 4.13 E).    

 

4.2.6. Protein synthesis and growth rate at above the physiological levels 

of translation factors 

 

An important question in relevance to rate control in the translation machinery is whether 

physiological levels of translation factors are in any way limiting to protein synthesis. In 

order to address this question,  the intra-cellular protein concentrations of the elongation 

and translation factors were increased above the physiological level to identify any 

variation in growth or protein synthesis rate (Figure 4.18 and 4.19). The wild-type cells 

were transformed with the pTefEx plasmid with individual elongation and release factors. 

Each of the strains with increased protein expression levels of translation factors were 

analysed for any changes in the growth or protein synthesis rate. However, none of the 

tetO7 elongation factor strains exhibited any variation in the protein synthesis or growth 

rate. In contrast, the eRF1 strain exhibited a small increase in the growth rate, but not in the 

protein synthesis rate.  
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4.2.7. Investigation of the possible involvement of elongation and release 

factors in scanning competence  

 

The mRNA scanning by the 40S ribosomal sub-unit to identify the AUG start-codon in the 

initiation step is dependent solely on the initiation factors. The involvement of elongation 

and release factors in the scanning process is unknown. To investigate any possible role of 

the elongation and release factors in the scanning process, double luciferease assays (DLA) 

with firefly (Photinus pyralis) and sea pansy protein (Renilla reniformis) were employed. 

The DLA exploits the difference in the biochemical requirement for the luminescence of 

Renilla and firefly luciferase proteins (McNabb et al., 2005). Both the firefly luciferase and 

Renilla gene were cloned in the pDLV-L2/L0 plasmid with varying length of 5’ UTRs. The 

firefly gene was cloned with the PTRP1 promoter and had a long 5’ UTR (1240 nucleotides 

in length) whereas the Renilla gene was cloned with the PDCD1 promoter with a shorter 5’ 

UTR (41 nucleotides in length) (Figure 4.14). The plasmid contains the HIS3 gene as a 

selective marker. The plasmid was transformed into the tetO7 elongation and termination 

strains and grown in selective medium with or without doxycycline.  
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Figure 4.14 : Schematic representation of the pDLV-L2/L0 plasmid employed in DLA 
experiments. The plasmid contains two luciferase genes, the firefly gene with a long 5’ 
UTR (L2) and the Renilla gene with a shorter 5’ UTR (L0). The plasmid also contains a 
HIS3 marker gene. The ratio between firefly and Renilla luminescence was measured to 
determine any possible scanning role of elongation and release factors. 
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Employing the DLA experiments, the ratio between the luminescence of the firefly (with a 

long UTR) and renilla (with a short UTR) gene were measured to analyse the ability of 

individual factors to promote scanning efficiency. The involvement of the elongation and 

release factors in the scanning process was examined by reducing the intra-cellular protein 

expression level of the factors to 80% of the wild-type level and examining the effect on the 

scanning efficiency. The ratio between the luminescence of the firefly and Renilla enzymes 

was compared with the wild-type cell luminescence ratio. Reductions in the protein 

expression levels of the elongation and release factors were not observed to have any 

significant effect on the scanning efficiency (Figure 4.15).  
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Figure 4.15 : The ratio between the luminescence of the firefly and Renilla luciferase 
of the elongation and release factors with the wild-type. The ratio between the 
luminescence encoded by the firefly (with a long UTR) and Renilla (with a short UTR) 
genes was measured to detect any potential involvement of the elongation and release 
factors in the scanning efficiency.  
 
 
4.2.8. Polysome profiling of the tetO7 strains 

 

The polysome profiles of the tetO7 strains expressing a 20% reduction in the level of 

initiation, elongation and release factors were examined to identify changes in the 
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monosome to polysome distribution. Polysome profiles were obtained from cells harvested 

during exponential growth (OD600 0.5).  Yeast strains were treated with cyclohexaminde 

(100 µg/ml) to inhibit translation elongation and thus retain ribosomes bound to mRNAs. 

 

Priliminary data of the polysome traces of yeast strains in which the eIF2 level was 

decreased to 80% of the wild-type level reveal a very strong decrease in the polysosme 

peaks of the trace (Figure 4.16 B). Moreover, there was an increased accumulation of 

monosomes. However, when the level of eIF4B was decreased, the polysome-monosome 

ratio was not significantly changed (Figure 4.16 C). In contrast to the initiation factor 

profiles, the elongation factor profiles had larger polysome peaks when compared to that of 

the wild-type. Reduction in eEF1A (Figure 4.16 D) and eEF2 (Figure 4.17 A) yielded 

similar profiles in which the polysomal peaks were increased. Reduction in the factors 

eEF3 (Figure 4.17 B) and eRF1 (Figure 4.17 C) to 80% of the wild-type level caused rather 

smaller increase in the polysome-monosome ratio. However, the polysome profile was not 

much altered when the protein expression level of eRF3 was reduced to 80% of the wild-

type level (Figure 4.17 D). 
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Figure 4.16 : Polysosme profiles of the initiation and elongation factor strains with 
wild-type. A) PTC 41 B) eIF2 c) eIF4B and D) eEF1A. The translation factors were 
reduced to 80% of the wild-type level. The polysome distributions of the tetO7 strains were 
examined during exponential growth (OD600 0.5). The polysomes of the initiation and 
elongation factors strains were compared with that of wild-type. Lower levels of eIF2 result 
in polysomal reduction and reductions in the elongation factor eIF1A have increased 
polysomal fractions. 
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Figure 4.17: Polysome traces of the tetO7 strains with reduced levels of elongation and 
release factors. A) eEF2 B)eEF3 c)eRF1 and D)eRF3. The protein expression level of the 
translation factors was reduced to 80% of the wild-type level. Polysome traces of eEF2, 
eEF3 and eRF1 showed increases in the polysome peaks. However polysome levels hardly 
changed in the eRF3 strain. 
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4.2.9. Response coefficients of the elongation and releasing factors 

 

The protein synthesis rates at different levels of the elongation and release factors were 

measured using the in vivo 35S-methionine incorporation method. The protein levels of 

individual elongation and release factors over the 100 – 80 % range relative to the wild-

type level were plotted against the corresponding decrease in the protein synthesis rate. The 

response coefficient (RJ1 ) is the gradient of the plot of protein level of translation factors in 

the 100% -80% ranges against the protein synthesis rate. Similarly RJ
2  was measured from 

80 % to 60 % of the physiological level. The response coefficient reveals the control 

extended each of the elongation and release factors. Response coefficient mostly falls 

between 0 to 1 and high response coefficient indicates stronger control over translation. 

However, the RJ  values below 80 % may be influenced by a complex combination of 

factors related to larger reductions in gene expression, and therefore at this stage it is 

difficult to interpret with full confidence the higher values of RJ
2  values.  

 

Table 4.1 : The overall response coefficient and system specificity ratio of elongation 

and release factors  

 

Translation 
factor name 

R J
1+  R J

1  R J
2  

 
RSp  
 

eEF1A 0.063 0.897 0.897 0.99 
 

eEF1B -0.007 -0.007 0.946 0.63 
 

eEF2 - 0.937 0.937 1.02 
 

eEF3 -0.012 -0.012 1.057 1.06 
 

eRF1 0.162 0.748 0.748 1.10 
 

eRF3 0.022 0.022 0.635 0.29 
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Figure 4.18: Measurement of response coefficient (RJ1 ) of the elongation factors. The 
intra-cellular level of the elongation factors were systematically reduced about 100%-80% 
and respective protein synthesis rate were measured. Both the data were plotted together to 
obtain the RJ

1  value. This indicates the dependence of the translation rate over the 
concentration of the elongation factors. tetO7-TEF1 (A), tetO7-EFT1 (C) and tetO7-TEF3 
(D) shows a very sudden decrease in the protein synthesis whereas tetO7-TEF5 (B) shows a 
stable protein synthesis for a while and then reduces. The results indicate that eEF1A, eEF2 
and eEF3 have better control over the translation than that of eEF1B.  
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Figure 4.19: Measurement of response coefficients (R J
1 ) of the release factors. The 

intra-cellular level of the release factors was systematically reduced from 100%-80% and 
beyond and the protein synthesis rates were measured. Both set of data were plotted 
together to obtain the RJ1  value. This indicates the dependence of the translation rate on the 
concentration of the release factors. The protein synthesis rate is very sensitive to the 
reduction in the level of eRF1, however, the protein synthesis rate was not reduced until the 
level of eRF3 was reduced to around 20% of the endogenous level.  
 

4.2.10. System specificity ratio of the elongation and releasing factors 

 

Most of the components of the translation machinery are likely to function solely in 

translation; however there are a number of factors which are though to be involved in other 

cellular functions. However, the degree of “dedication” of the components to the translation 

pathway has not previously been defined in an accurate, quantitatively meaningful manner. 

The system specificity ratio (RSp) is defined here as the relationship between the protein 

synthesis rates and the growth rate. To measure the system specificity ratio, the level of the 

individual translation factors are titrated down from 100 % – 40 % of the wild-type level 

and the corresponding growth rate and protein synthesis rates were measured and plotted 

against each other.  
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Figure 4.20: The system specificity ratios (RSp) for the elongation factors. The intra-
cellular levels of the elongation factors were systematically reduced from 100%-80% and 
respective protein synthesis and growth rate were measured. Both the data sets were plotted 
together to obtain the RSp value of individual factors. The gradients for the elongation 
factors eEF1A, eEF2 and eEF3 were observed to have RSp values of around one indicating 
that they are dedicated factors of translation whereas the RSp of eEF1B was significantly 
lower than one indicating its involvement in another cellular function (Table 4.1).  
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Figure 4.21: The specificity coefficients (RSp) of the release factors. The intra-cellular 
levels of the release factors were systematically reduced from 100%-80% and respective 
protein synthesis and growth rates were measured. Both the set of data were plotted to 
obtain the RSp value for each factors.  
 

4.3. Discussions  

 

4.3.1. Complementation with ‘top-up’ vectors rescued the phenotype of 

the tetO7 strains  

 

Most of the tetO7 constructs were observed to support restricted production of elongation 

and release factors compared to wild-type cells even in the absence of doxycycline. As a 

consequence, decreases in growth rate were observed for the tetO7 strains. This reduction 

in protein expression was rescued by the introduction of a plasmid containing the gene of 

interest expressed under the control of the TEF or TRP promoter in the tetO7 strains. Two 

plasmids, pTefEx with PTEF1 promoter and pTrpEx plasmid with PTRP1 promoter were 

employed for the complementation. Even though most of the elongation and release factors 

exhibit reduction in the protein expression level, eRF1 was over-expressed with the tetO7 

promoter. The eRF1 protein level in the tetO7 strain was 60% more than that of the 

endogenous promoter expression. However, no increased growth rate or protein synthesis 

rate was observed due to the over-expression of eRF1.  
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In the absence of the ‘top-up’ vector, the eEF1A protein expression level and growth rate of 

tetO7-TEF1 strains were observed to be approximately 75 % of the wild-type. However, 

with genetic complementation, the protein expression level and growth were enhanced to 

about ~97% of the wild-type. Even though tetO7-TEF3 strains were expressing eEF1B 

protein at about 50 % of the wild-type level, the growth rate remained similar to the wild-

type. Reduction in the protein expression level of the strain was complemented by the 

pTefEx-eEf1B plasmid and the growth rate was improved to about 98% of the wild-type 

level. Similar to tetO7-TEF1 strains, tetO7-EFT1 strains were found to have about 85% of 

the protein expression and growth rate. However, the reductions in protein expression and 

growth rate were not rescued by ‘top-up’ vectors.  

 

The tetO7-TEF3 strains were identified to manifest severely reduced eEF3 production 

levels due to the promoter substitution. The growth rate and the eEF3 protein expression 

levels were reduced to about 30 % of the wild-type level. The drastic differences in growth 

rate and protein synthesis level were rescued by ‘top-up’ vectors. After complementation, 

the strains were observed to have about 97 % of the protein expression and growth when 

compared to that of the wild-type cells.  

 

In contrast to the other strains considered here, eRF1-tetO7 strain exhibited a higher 

expression level of eRF1. The strains synthesized about 60 % higher eRF1 than that of the 

wild-type cell. The tetO7-SUP35 strains exhibited drastic reductions in the eRF3 expression 

level. However, growth was not detectably influenced by the reduction in the eRF3 

expression level. The small difference in the growth rate and protein synthesis rate 

observed in the tetO7-SUP35 strain was rescued with the ‘top-up’ complementation using 

pTefEx-eRF3 plasmid. 
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4.3.2. Response coefficients reflects the translational control exerted by 

elongation and release factors 

 

The examination of RJ1  values for the elongation and release factors reveals two different 

kinds of response. Elongation factors such as eEF1A and eEF2 exhibited very high RJ
1  

values whereas eEF1B and eEF3 have relatively low RJ
1  values (Figure 4.18). The 

elongation factor eEF1A was observed to have the same RJ
1  and RJ

2  values (0.897).  The 

elongation factor eEF2, was observed to have a higher response coefficient of 0.9368. 

Similar to eEF1A, eEF2 also exhibited identical RJ
1  and RJ

2  values. This shows that the 

translation rates are highly sensitive to even minimal changes in the levels of eEF2 and 

eEF1A near the physiological levels. Moreover, the observed response coefficients clearly 

indicate that the absolute sub-cellular concentration of a factor and the level of control that 

it exerts on translation are not obviously correlated.  

 
Protein synthesis was barely affected by the reductions in eEF1B and eEF3 down to 85 % 

of the wild-type level. In these two cases, below 85 % of factor abundance, there was high 

sensitivity of translation to changes in factor concentration. The eEF1B factor was 

measured to have an RJ
1 of about - 0.007 and RJ2  of about 0.946. The eEF1B factor 

facilitates the exchange of GDP to GTP in eEF1A and is thus efficiently catalytic. The 

reduction of eEF1B level up to 85 % might not significantly influence facilitation of the 

recycling of eEF1A however; below 85 % of the wild-type level of eEF1B might have a 

considerable effect on eEF1A recycling and thus reduces the translational rate. 

 

In the case of eEF3, the RJ
1  value was observed to be -0.012 and RJ

2  to be 1.057. This 

indicates that the translation rates are not altered by small reductions in the elongation 

factor eEF3 level. After reducing the eEF3 factor below 85 % the response coefficient was 

1.057 which exhibits a high reduction in the translational rate. Overall, the above 

observations indicate that the factors eEF1A, eEF2 and eEF3 exert stronger control over 

translation than eEF1B. 
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The release factors were also observed to manifest two kinds of behaviour. The eRF1 factor 

has a higher RJ1 value than eRF3 (Figure 4.19). As pointed out for the elongation factors, 

these results indicate that eRF1 exerts more control over translation than eRF3. For eRF1, 

the RJ
1  and RJ

2 values were observed to be the same, 0.748. Translation is much more 

sensitive to variations in eRF1. eRF3 has RJ
1  and RJ

2 values of 0.022 and 0.635 

respectively. These data indicate that translation is not particularly affected by a reduction 

in the eRF3 protein level. However, the RJ
2  value of eRF3 was lower than those of eEF1B 

and eEF3, indicating that this factor might have less control over translation than all other 

translation elongation and release factors (Figure 4.22). 
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Figure 4.22 : Response coefficients of the elongation and release factors. The 
expression level of the elongation and release factors were altered from 120-100 % (RJ

1+ ), 

100-80 % (RJ
1 ) and 80-60 % (RJ

2 ). The RJ
1+ was calculated as the slope of the line 

connecting protein synthesis rate to the factor concentration over 100%, RJ1 was calculated 
as the slope of the line connecting protein synthesis rate to the factor concentration at 100 - 
80% and RJ

2 was calculated as the slope of the line connecting protein synthesis rate to the 
factor concentration over 80-60%. 
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4.3.3. System specificity ratio : the degree of “dedication” of translation 

factors 

If the factors are dedicated only to translation, the slope of the linear curve between the 

protein synthesis and growth rate will be approximately equal to 1 whereas if the factor is 

involved in other cellular functions other than translation then the slope will be <1. 

Elongation factors eEF1A, eEF2, eEF3 and release factor eRF1 were observed to have a 

similar patterns of system specificity dependence (Figure 4.20 A, C, D and 4.21 A). The 

eEF1A RSp ratio was measured to be 0.99 (Table 4.1) indicating that the factor is a 

dedicated factor in translation. Similarly, RSp values of eEF2, eEF3 and eRF1 were 

observed to be 1.02, 1.06 and 1.1 respectively (Table 4.1). The data indicates that all of 

these factors are more involved in translation than in any other cellular functions. In 

contrast, the elongation factor eEF1B and the release factor eRF3 were identified to have 

lower RSp values (Figure 4.20 B and 4.21 B). The RSp values of eEF1B and eRF3 were 

observed to be 0.63 and 0.29, respectively. This observation indicates that these factors are 

involved in other cellular functions in addition to the translation. System specificity ratio 

analysis reveals that the elongation factors eEF1A, eEF2 and eEF3 and release factor eRF1 

are mostly functionally involved in just translation whereas eRF3 and eEF1B are involved 

in other cellular functions in addition to translation (Figure 4.23). 
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Figure 4.23: The system specificity ratio (RSp) of the elongation and release factors.  
The specificity ratio was measured as the slope of the curve between the protein synthesis 
rate and the growth rate of the tetO7 strains with varying levels of elongation and releasing 
translation factors. The specificity ratio identifies the functionally dedicated translation 
factors. If the ratio is 1, it indicates that the factor is mostly involved in translation whereas 
<1 indicates involvement in other cellular functions.  
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4.3.4. Response coefficient and specificity ratios when elongation or 

release factors are expressed at levels higher than wild-type 

 

The response coefficient (RJ1+ ) and specificity ratio for elongation and release factors were 

also determined at above physiological levels to determine if this had any effect on protein 

synthesis or cell growth rates (Table 4.1). The intra-cellular levels of the elongation and 

release factors were increased to 120% of the endogenous level. Interestingly, none of the 

strains showed any significant increase in protein synthesis or growth rate (Figure 4.18 and 

4.19). This raises an interesting question as to why no increases above physiological growth 

and protein synthesis rates are attainable. It might suggests that there may be further 

mechanism(s) to control the level of growth rate and protein synthesis rate even though the 

translation factors are increased to above the physiological level. This is also an indication 

that the translation and growth rate of yeast is maintained at an optimum level that is 

dictated by precisely controlled properties of the entire systems.  

 

4.3.5. Scanning competency data show no participation of elongation and 

release factors in the 40S scanning  

 

The 40S scanning process to identify the initiation codon is a poorly understood step in 

which the small ribosomal subunit, 40S, is reported to be capable of scanning more than 

1000 nucleotides to identify the AUG codon (Kapp and Lorsch, 2004a). The DLA was 

employed to determine if reducing the protein concentration of elongation or release factors 

had any effect on the scanning and AUG recognition function of the 40S subunit. In the 

DLA assay, the luminescence activity of Renilla and Firefly genes are proportional to the 

efficiency of scanning of the 5’ UTR by the 40S and other translation factors. Scanning 

competency of each of the translation factors was determined as the ratio of the 

luminescence of Firefly versus Renilla. Measurement of scanning competency reveals any 

influence on the efficiency of the scanning process. The data show that when the elongation 

and release factors were reduced to 80% of the endogenous level, no key variation in the 

scanning efficiency was observed. The experimental observations strongly suggest that the 
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elongation and release factors do not play a role in the mRNA scanning process of the 40S 

ribosomal subunit, and demonstrate that the initiation factors are exclusively responsible for 

controlling this step. 

 

4.3.6. Reduction in the level of initiation, elongation and termination 

factors alters polysome distribution 

  

Polysome distribution analysis is an efficient way to observe changes in the interaction 

between ribosomes and mRNA. Any alteration in the translation factors and ribosomal 

association with the mRNA has an impact on the polysome distribution which can be 

visualised by this technique. Polysome profiles of yeast strains were generated to determine 

the polysome distribution in response to changes in intra-cellular concentrations of the 

translation factors. The 40S and 60S peaks in the polysome profile represent the non-

translating ribosomal subuits whereas the polysome peaks represent actively translating 80S 

ribosomes. The 80S peak itself corresponds to a combination of both non-translating 40S-

60S ‘couple’ and translating 80S particles. The intra-cellular levels of the initiation, 

elongation and release factors were reduced to 80% of the endogenous level and the 

polysosme traces were compared with those generated from wild-type cell cultures.  

 

When the endogenous level of eIF2 was reduced, an increase in the level of 40S ribosomal 

subunits along with a decrease in the polysome peaks was observed (Figure 4.16 B). eIF2 is 

involved in the delivery of Met-tRNA to the ribosome which is an essential event in the 

translation initiation step. Therefore it is likely that a reduction in the cellular concentration 

of this factor would have a very strong impact on the identification of the initiation codon 

and on the polypeptide synthesis. Reduction of eIF2 would affect the association of 40S 

and 60S, resulting in the accumulation of monosomes and a decrease in the number of 

actively translating polysomes. However, a drastic reduction in polysomes was not 

observed with a reduction in the eIF4B protein concentration. Even though there is a 

decrease in the polysomal peaks when compared to the wild-type trace, it is not as marked 

as the decrease observed with eIF2 protein level reduction. eIF4B indirectly binds to the 

mRNA cap with other initiation factor and the reduction of this factor may not affect the 
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active translation to a high extent. The results indicate that eIF2 has a very crucial role in 

the translation and a reduction in this factor can regulate translation. 

 

When the eEF1A protein levels were decreased, there was an increase in the polysome 

peaks (Figure 4.16 D). eEF1A is involved in the delivery of aa-tRNA to the ribosome 

which is an essential event in elongation process. Consequently the reduction in the cellular 

concentration of this factor would have a very high impact on the elongation cycle, 

blocking the ribosome on the mRNA from continuing with elongation. This explains the 

observed increase in the polysome peaks when the protein cellular level of eEF1A was 

reduced. Similarly, when the eEF2 protein levels were decreased, the polysome level was 

increased (Figure 4.17 A). eEF2 factor is involved in the translocation of the ribosome on 

the mRNA. The reduction in the protein level of eEF2 could have attached the ribosome to 

the mRNA resulting in an increased level of polysomes. 60S monosome accumulation was 

not observed when the level of eEF2 or eEF3 was reduced. Reduction in the eEF3 level 

also caused an increase in the polysome peaks, but the increase was not as marked as that 

observed with eEF1A or eEF2.  

 

Reductions in the release factors were observed to have an effect on the polysome 

distribution. Even though the increase in the polysome peaks was not as marked as those 

observed with the elongation factors, a reduction in the protein level of eRF1 caused an 

increase in the polysome peaks. eRF1 identifies all three of the stop codons in the 

eukaryotic translation pathway. The reduction in this factor can cause read-through mRNA 

or slow down termination thus potentially causing a queue towards the end of the mRNA. 

The reduction in eRF3 level was not observed to cause much effect on the polysome 

profile. The polysome trace was very similar to that of the wild-type equivalent indicating 

that eRF3 reduction was not affecting the polysome distribution. Both of these observations 

agree with the results obtained by the protein incorporation experiments. 
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4.4. Conclusion  

 

In order to determine quantitatively the control exerted by elongation and release factors 

during translation, the expression of these factors was repressed and resulting variations in 

protein synthesis were measured. The elongation factors eEF1A and eEF2 and the release 

factor eRF1 were observed to exert the greatest control over translation. The protein 

synthesis rate was sharply reduced when these factors were expressed at 80% of wild-type 

level. However, eEF3 exerted the greatest effect over translation when it was repressed 

from 80 – 60 % of the wild-type level. eEF1B and eRF3 were observed to have the least 

control over translation compared to other elongation and release factors.  

 

These observations were reinforced by the polysome profiles. The elongation and release 

factors were made limiting in the cell and the corresponding polysome distributions were 

analysed. The data indicates that when the eEF1A and eEF2 expression is repressed in the 

cell, the polysome levels were increased. This is likely to be the result of reductions in the 

elongation rate. Reduction in the eEF3 and eRF1 levels also resulted in increased 

polysosme levels; however; the increase was not as high as observed with eEF1A and eEF2 

factor reduction. This indicates that the elongation rate is not strongly affected by the 

reduction in eEF3 and eRF1 over the 100 % - 80 % range.  

 

The system specificity ratio of the elongation and release factors was measured to 

determine which factors function solely in the translation pathway and which factors may 

play a role in other cellular processes. The factors eEF1A, eEF2, eEF3 and eRF1 were 

observed to be solely involved in the translation pathway. A reduction in the cellular 

protein concentration of factors results in a proportional reduction of protein synthesis and 

growth. In contrast when the eEF1B and eRF3 factors were reduced, growth decreased 

faster than the protein synthesis rate suggesting that the reduction in these factors affects 

some other cellular function(s) in addition to translation. All of the above types of data are 

of relevance to the development of a comprehensive, quantitative model for the process of 

translation (chapter 5).                                                                 

                                  . 
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Chapter 5 

 

A mathematical model of yeast translation 

 

5.1.  Introduction  

 

Eukaryotic mRNA translation is a highly sophisticated and precisely controlled molecular 

process. Translation is one of the fundamental processes that are well conserved across all 

Kingdoms of life. Through translation, information is passed from mRNA to proteins. 

Translation comprises mainly of three stages: initiation, elongation and termination. The 

nature of fourth stage, recycling, is not understood in the eukaryotic system. In yeast, 

mRNA translation is controlled by more than 20 different proteins and vast amounts of 

RNA molecules. Each of the translation steps is facilitated by a number of translation 

factors. The translation factors are critically important components of the system. Apart 

from these components, mRNA, tRNA and ribosomal subunits constitute essential parts of 

the translation machinery. A vast amount of experimental work has been carried out to 

understand this complex process, most of it taking the form of studies of the roles of 

individual components. Depending on the environmental conditions and intrinsic capacity 

of the mRNA, the translational rates differ for individual proteins (Siwiak and 

Zielenkiewicz, 2010). There are numerous examples of translational control being 

exercised via the initiation step (Sonenberg and Hinnebusch, 2009, Mathews et al., 2000), 

yet the protein synthesis pathway can also be modulated at the elongation and termination 

steps (Wang et al., 2001) and the interplay between these steps is not understood. 

Mathematical modeling is a very powerful tool to incorporate all experimental data to 

understand how a complex process such as translation functions. Precise control of 

translation is difficult to understand without quantitative understanding based on an 

adequate mathematical model. A mathematical model can be used to develop a system-

level view of the whole pathway rather than looking at the individual components of the 
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system. Several studies were been carried out previously to understand the complexity of 

the translation pathway using mathematical modelling. In the late 1960, translation was 

modelled as a set of kinetic reactions and ribosomal progression steps (McDonald et al., 

1968). This was considered to be the first attempt to construct a mathematical model of 

translation. The model was later extended and modified to incorporate ribosomal crowding 

and its overall effect on translation (Heinrich and Rapoport, 1980).  

 

This study states that initiation and elongation are rate-limiting whereas termination has no 

control over translation under the regular cellular conditions. Ribosomal crowding has been 

incorporated in a translation model for the bacterial system as well as considering 

elongation as a set of ribosomal states (Zourdis and Hetzimanikatis, 2007). This model 

takes into account possible variations in the elongation cycle due to differences in the 

amino acid codons in the mRNA. However, all of these models lack appropriate 

experimental data to verify the results they observed and therefore provide little insight into 

the true nature of translation control.  

 

There are a number of software packages developed to model and simulate complex 

biological processes. COPASI (COmplex PAthway SImulator) has been employed to 

construct and simulate the translation model (Hoops et al., 2006). COPASI converts the 

biochemical reactions into mathematical formulations such as ordinary differential 

equations. Moreover, COPASI can accommodate different types of analyses such as steady 

state analysis, sensitivity analysis and metabolic control analysis.  

 

In this work, a mathematical model for the eukaryotic mRNA translation has been 

developed. As well as considering every elementary step in the initiation, elongation and 

termination stages, ribosomal blocking at the AUG recognition stage of initiation and the 

translocation stage of elongation has been incorporated. This model examines rate-limiting 

steps in translation and variations in translation rate as a consequence of reduction in 

translation factors. The translation model has there been filled to the experimental data in 

order to allow us to simulate translational control under physiological conditions.  
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5.2. Results  

 

5.2.1. Yeast translation machinery  

 

The three main stages of mRNA translation are facilitated by specific factors. Initiation is a 

series of reactions in which the ribosomal small subunit associated with mRNA and 

identification of the initiation codon after which the large ribosomal subunit binds to the 

small subunit to synthesis polypeptide. Elongation is the cycle of reactions in which amino 

acids are added to the growing poly-peptide chain. Termination is the one step reaction that 

occurs after the identification of the stop codon by the release factors, after which the 

translation complex disassociates. According to the current consensus of translation, there 

are 13 translation initiation factors, 4 elongation factors and 2 termination factors involved 

in the process. Apart from the translation factors, the ribosomal subunits, mRNA, tRNAs 

and aa-tRNAs are also included in the model. The schema of the translation model is 

represented here using petri-net (Figure 5.1). 33 reactions have been formulated to 

represent the whole of translation process including the elongation cycle. The 

concentrations of the translation components in this model are listed in Table 2.11. The 

total amount of ribosome subunits are estimated in this model based on the ribosome 

concentration. In this model the ribosomes are regarded as large bodies moving in a step-

wise manner. Prokaryotic ribosomes are reported to occupy 12 codons during elongation 

(Mathews et al. 2000) however, since the eukaryotic ribosomes are known to be larger than 

the prokaryotic ones, the ribosome is assumed to cover 15 codons of an mRNA during 

translation. The model constituents for the general mRNA translation and all mRNA 

species are assumed to have the same parameter values. 
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5.2.2. Model formulation  

 
The mathematical model of the yeast mRNA translation pathway was developed as a 

deterministic system of ordinary differential equations. The model was developed in 

Complex Pathway Simulator (COPASI) (Development version 4.5.31) (Hoops et al., 2006) 

with the script developed in Perl (Dr. Juergen Pahle, University of Manchester). The three 

stages of translation: initiation, elongation and termination, were described using 33 key 

reactions with a subset of elongation reactions for each codon. The model was built with 19 

translation factors, mRNA, tRNA, 40s, 60s and 80s of ribosome and the intermediate 

complexes. Mass action kinetics was applied for most of the initiation and releasing steps 

whereas blocking kinetics was introduced to describe the identification of the initiation 

codon and the translocation stage in elongation. All the set of differential equations are 

listed in appendix -1.   

 
5.2.2.1.  Parameter values 
 
The concentration values for all the translation factors and reactions used in this model 

were taken from the published literature (Table 5.1). The kinetic values are taken as the 

default values from the model (appendix - 2). The rest of the parameters were optimized 

using experimental data with the parameter optimisation module of COPASI. The cell 

volume was selected as 42x10-15 L (Jorgensen et al., 2002). The model was fitted to the 

experimental data (protein synthesis rate) using the parameter estimation module of 

COPASI (appendix -3).  

 
Table 5.1 : List of translation factors in the translation model along with their 
corresponding concentrations values 
 

Name of 
Species Gene name Concentration 

(particle/cell) 

 
Source 

 
 
eIF1 

 
SUI1 

 
2.50E+05 

 
von der Haar and McCarthy, 2002 

eIF1A TIF11 3.51E+04 Ghaemmaghami et al., 2003. 
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eIF2α SUI2 1.71E+04 Ghaemmaghami et al., 2003 
. 

eIF2Bα GCN3 8.97E+03 Ghaemmaghami et al., 2003. 
 

eIF3a RPG1(TIF32) 5.27E+04 Ghaemmaghami et al., 2003. 
 

eIF4A 
 

TIF1/TIF2 
 

1.06E+05 
 

Ghaemmaghami et al., 2003. 

eIF4B 
 

TIF3 
 

2.40E+04 
 

Ghaemmaghami et al., 2003. 

eIF4E 
 

CDC33 
 

1.42E+04 
 

Ghaemmaghami et al., 2003. 

eIF4G1 
 

TIF4631/ 
TIF4632 
 

9.76E+03 Ghaemmaghami et al., 2003. 

eIF5 
 

TIF5 
 

4.83E+04 
 

Ghaemmaghami et al., 2003. 

eIF5B 
 

FUN12 
 

1.34E+04 
 

Ghaemmaghami et al., 2003. 

Pab1 
 

PAB1 
 

1.98E+05 
 

Ghaemmaghami et al., 2003. 

Ded1 
 

SPP81 
 

5000 
 

This study 

eEF1A 
 

TEF1/TEF2 
 

3.77E+02 
 

Ghaemmaghami et al., 2003. 

eEF1B 
 

TEF5 
 

190549 
 

von der Haar, 2008. 

eEF2 
 

EFT1/EFT2 
 

8.27E+04 
 

Ghaemmaghami et al., 2003. 

eEF3 
 

TEF3/YEF3 
 

8.71E+05 
 

Ghaemmaghami et al., 2003. 

eRF1 
 

SUP45 
 

1.31E+04 
 

Ghaemmaghami et al., 2003. 

eRF3 
 

SUP35 
 

7.89E+04 
 

Ghaemmaghami et al., 2003. 

Met-tRNA  640000 This study  
 

40S  222000 This study 
 

60S  222000 This study 
 

aa-tRNA  12800000 
 

This study 

mRNA  4900780 Chu and Maley, 1980 
 

tRNA  6400000 This study 
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5.2.2.2.   Model assumptions 
 

Translation is a complex pathway and most of the parameters, including the concentration 

of factors and the rate of the reactions are not accurately determined. A number of 

assumptions were employed in the formulation of the translation mathematical model. The 

translation steps and factors which are not well studied were omitted in the model. 

  

Assumption 1: Each ribosome physically covers 15 codon of the mRNA 

 

The ribosomes were assumed to cover 15 codons during translation, thereby blocking the 

binding of another ribosome (and subsequent initiation of translation and translocation) on 

this stretch of mRNA. If the seventh and eighth codons are covered by the ribosome P and 

A site respectively, 7 codons upstream and downstream will be blocked by the ribosome in 

the initiation and translocation states.  

   

Assumption 2: Concentration of the aa-tRNA and the elongation rate for individual 

codons was assumed to be the same 

 

The concentration of the aa-tRNA in the cell was assumed to be the same for all amino 

acids. Similarly, the codon-anticodon base pairing for all the amino acids was assumed to 

be the same. This implies that the elongation rate is not limited by the concentration or rate 

of rare aa-tRNAs.  

 

Assumption 3: mRNA length assumed to be 20 codons 

 

The translation model developed is applies to the general mRNA translation in yeast. To 

implement the model, the mRNA translation length is assumed to be 20 codons. However, 

the model can be extended to study mRNA of any size longer than 15 codons. 15 codons is 

the minimum length required for the ribosome to bind to an mRNA. 
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5.2.2.3.   Model construction  
 

The model for translation is constructed based on the model first proposed by McDonald et 

al., 1968 and later extended by Heinrich and Rapoport, 1980. A number of assumptions 

were employed to simplify the complex model (section 2.13.3). The model is a 

deterministic model generated using perl scripts as a set of differential equations and 

analysed in COPASI. Most of the initiation stages are considered to follow mass action 

kinetics. The elongation and termination stages, except translocation are also constructed as 

mass action kinetics. However, the subunit joining in the initiation stage and translocation 

in the elongation stage are constructed by considering ribosomal occupation of regions of 

mRNA. Ribosomes are assumed to block 15 codons on the mRNA during subunit joining 

and translocation. Blocking rate equations were formulated (Juergen Pahle, University of 

Manchester) to represent different stages of elongation and blocking properties of the 

ribosome. 

 

If ‘l’ is the codons occupied by ribosome and if Xj is the probability that the jth codon of the 

mRNA being translated is occupied by the front of the ribosome, then the probability that 

the initiation codon is free can be represented as  











−= ∑

=

l

j j
X

I
W

1

1
1

 

Where, 
I

W
1

 is the probability of the initiation site being free. 

Then the rate of initiation blocking can be represented as 

 

VI
1 = S1 S2 kI

1 Mtot WI
1 

Where VI
1 is the rate of blocking, S1 is the first substrate (40S), S2 is the second substrate 

(60S), Mtot is the total concentration of mRNA in the translation and WI
1 is the probability 

of initiation site being free.  

 

 

 



Chapter 5 – A mathematical model of yeast translation 

 156 
 

Similarly, in the translocation stage, the fluxes for translocation can be formulated as  

 

V j = S1 kj Xj Mtot Wj+1 

 

Where Vj is the flux through translocation, S1 is the substrate (80S), kj is the first order rate 

constant and Wj+1 is the conditional probability that the j+1 position is free provided that 

the jth position is occupied. It can be written as   

 

V j = S1 kj Xj Mtot 











−











−

∑

∑
−

=

=
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1

1

1

1

l

j

l

j
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j
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5.2.3. Mass conservation  

 

The model was constructed in COPASI. After model construction, the mass conservation of 

the model was determined. Mass conservation relations are algebraic sums of chemical 

species that are constant in any state of the model (Hoops et al., 2006). If the model 

satisfies a mass conservation relation for a species, then that species could be represented as 

an expression of all the compounds that species involved with. In COPASI mass 

conservation is calculated using an algorithm described by Vallabhajosyula et al., 2006. 

Total concentration of each of the individual factor in the translation pathway remains 

constant in the model. Mass conservations are helpful in validating the mathematical 

conditions of the model. If one of the translation factors is not occurring in the mass 

conservation relation it means that the model is broken.  

 

5.2.4. Time course simulations of the model  

 

The model was simulated over a time period to analyse the behaviour of individual 

components of the model. In time course simulations the model behaviour is observed over 

a period of time with certain parameter values (Figure 5.2). COPASI calculates the time 
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courses for deterministic models using the LSODA integrator (Petzold. 1983). The 

translation model was simulated up to 10000 sec to observe the behaviour of the system. 

The model behaviour can be explored over duration of time specified for the time course 

simulations. The time series simulation of the model were plotted to analyse the result.  

(A)
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(B)

 

(C)

 

Figure 5.2 : Time course simulation of the translation model. Time course behaviour of 
the model before parameter fit. The model default values are used as the initial kinetic 
parameters (appendix -2). A) Formation of the 80S, the initiation stage of translation where 
the 40S associates with 60S B) 80S_aa-tRNA_eFF2_GTP formation for the whole 
elongation cycle and C) formation of 80S_eRF1_eRF3_GTP in the termination stage where 
translation is completed and all the factors dissociate.  
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5.2.5. Steady state calculation  

 

After confirmation of mass conservation relation, the model was simulated to find a steady 

state. In steady state, the concentrations of the chemical species in the system do not change 

over time. Using COPASI steady states are determined using three different methods 1) the 

Newton–Raphson method 2) Forward integration of the ODEs and 3) Backward integration 

of the ODEs. Both the integrations are carried out using ODEs solver LSODA. COPASI 

can use either one of these methods or a combination of the three. Steady state calculation 

in COPASI is based on Schuster et al., 1999. The translation model was able to predict a 

steady state with the Newton–Raphson and forward integration method. The model found 

the resolution at 1e-09 without accepting any negative concentration in the model 

simulation. The resolution distinguishes the smallest values of the concentration change of 

species from zero. The model steady state fluxes are listed in Table 5.2.  

 

Table 5.2 : List of all the reaction fluxes through the translational pathway. 

Reactions Particle 

Flux (1/s) 

1. eIF2_GDP + eIF2B = eIF2_GDP_eIF2B 

2. eIF2_GDP_eIF2B = eIF2_GTP + eIF2B 

3. eIF2_GTP + Met-tRNA = eIF2_GTP_Met-tRNA 

4. eIF3 + eIF5 = eIF3_eIF5 

5. eIF2_GTP_Met-tRNA + eIF3_eIF5 = eIF3_eIF5_eIF2_GTP_Met-tRNA 

6. eIF1 + eIF3_eIF5_eIF2_GTP_Met-tRNA = eIF1_eIF3_eIF5_eIF2_GTP_Met-tRNA 

7. 40S + eIF1A = 40S_eIF1A 

8. eIF1_eIF3_eIF5_eIF2_GTP_Met-tRNA + 40S_eIF1A -> 43S 

9. eIF4E + eIF4G = eIF4E_eIF4G 

10. mRNA_cap + Pab1 = mRNA_Pab1 

11. eIF4E_eIF4G + mRNA_Pab1 = eIF4E_eIF4G_mRNA_Pab1 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 
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12. eIF4A + eIF4B = eIF4A_eIF4B 

13. eIF4E_eIF4G_mRNA_Pab1 + eIF4A_eIF4B = eIF4E_eIF4G_mRNA_Pab1_eIF4A_eIF4B 

14. 43S + eIF4E_eIF4G_mRNA_Pab1_eIF4A_eIF4B -> 48S 

15. 48S + Ded1 -> 48S_Ded1 

16. eIF5B_GDP = eIF5B_GTP 

17. 48S_Ded1 + eIF5B_GTP -> 48S_Ded1_eIF5B_GTP 

18. 60S + 48S_Ded1_eIF5B_GTP -> 80S_1 + eIF1 + eIF1A + eIF2_GDP + eIF3 + eIF4A + 

eIF4B + eIF4E + eIF4G + eIF5 + eIF5B_GDP + Pab1 + Ded1 + mRNA_cap 

19. eEF1A_GDP + eEF1B = eEF1A_GDP_eEF1B 

20. eEF1A_GDP_eEF1B = eEF1A_GTP + eEF1B 

21. eEF1A_GTP + aa-tRNA = aa-tRNA_eEF1A_GTP 

22. eEF2_GDP = eEF2_GTP 

23. eEF3_GDP = eEF3_GTP 

24. aa-tRNA_eEF1A_GTP + 80S_1 = 80S_aa-tRNA_eEF1A_GTP_1 

25. 80S_aa-tRNA_eEF1A_GTP_1 -> 80S_aa-tRNA_1 + eEF1A_GDP 

26. eEF2_GTP + 80S_aa-tRNA_1 = 80S_aa-tRNA_eEF2_GTP_1 

27. 80S_aa-tRNA_eEF2_GTP_1 -> 80S_tRNA_1 + eEF2_GDP 

28. 80S_tRNA_1 + eEF3_GTP -> 80S_tRNA_eEF3_GTP_1 

29. 80S_tRNA_eEF3_GTP_1 -> 80S_2 + eEF3_GDP + tRNA 

30. eRF3_GDP = eRF3_GTP 

31. eRF1 + eRF3_GTP = eRF1_eRF3_GTP 

32. eRF1_eRF3_GTP +80S_tRNA_eEF3_GTP_20 -> 80S_tRNA_eEF3_GTP_eRF1_eRF3_GTP 

33. 80S_tRNA_eEF3_GTP_eRF1_eRF3_GTP -> 40S + 60S + tRNA + eEF3_GDP + eRF1 + 

eRF3_GDP 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

 

6100.25 

6100.25 

6100.25 

6100.25 

6100.25 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

305.013 

 

305.011 
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5.2.6. Parameter Estimation 

 

As described in previous chapters, the protein synthesis rates at varying levels of initiation, 

elongation and release factors have been measured using protein incorporation experiments. 

These experimental data were employed to set constrains on the translation model 

(appendix -3). The experimental data comprised a set of concentration values for individual 

translation factors and the corresponding protein synthesis rates. The total (maximal) 

protein synthesis rate was set at 13000 molecules/sec (von der Haar, 2008).  The 

incorporation of this extensive set of new data into the model represents a major step-

change in the development of a quantitatively meaningful understanding of translational 

control.  

 

The experimental data were mapped onto the model to determine the unknown parameters 

in the model. The parameter estimation function in the COPASI software was employed to 

calculate the fit the model to the experimentally observed parameter values. Parameter 

estimation minimises the distance between the model simulation values and the 

experimental data and the distance is derived from a least-squares approach.  

 

 

 

where X i,j,k is the experimental value of variable i at measurement j within experiment k 

and the corresponding simulated data point is given by Y k,i,j ( p ) where p is the vector of 

parameter values used for the simulation. It is important that the data for the different 

variables be of comparable magnitude so each group of values for each variable in each 

experiment is multiplied by a weight ω k,I (Hoops et al., 2006). 
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5.3. Discussion  

 

5.3.1. Integration of ribosomal blocking into the initiati on and 

translocation stages of translation  

 

A deterministic kinetic model of eukaryotic translation has been developed in order to 

understand the translational control exerted by individual translation factors. The model 

focuses on every elementary step in the translation pathway and considers the ribosomal 

blocking exerted during initiation and elongation. Yeast ribosomes are estimated to block 

15 mRNA codons during translation. In the model, ribosomal blocking is introduced in two 

states, first, at the ribosomal subunit joining step during initiation and second during 

translocation step of elongation phase. The consideration of the blocking phenomena 

ensures that two ribosomes do not collide during translation. The termination stage of 

translation is mass action kinetics involving two translation release factors.  

 

During initiation step the ribosomal subunit joining is only possible if the AUG codon and 

the seven codons downstream of the AUG codon are not occupied. Similarly, translocation 

of the ribosome from jth codon to j+1th codon is only possible if the j+8th codon is 

unoccupied. Multiple initiation events can only take place if the previous ribosome has 

moved sufficiently far away (seven codons) from the initiation site so that the next 

ribosome can bind to the initiation codon. Ribosome translocation depends on the 

conditional probability that the codon adjacent to the codon occupied by the front of the 

ribosome is free, given that the previous codon is occupied by the front of the ribosome 

 

5.3.2. Steady state determination and parameter estimation of the 

translation model  

 

The translational model was analysed using the software COPASI with mass action kinetics 

for most of the translation steps. However, subunit joining in initiation and the translocation 
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state in elongation were represented using a ‘blocking’ rate constant for ribosomal 

possession of mRNA codons. After construction, the model was simulated to find the 

steady state. In a complex model like translation, most of the parameters are unknown. 

However, using the algorithms incorporated in COPASI, the steady state of the model was 

determined. The model with the steady state was further employed for the parameter 

estimation.  

 

Most of the kinetic parameter of the translation is currently unknown. It is very crucial that 

the model is used to predict the unknown kinetic parameters for the reactions in translation. 

For predicting these parameters, the model was simulated with the experimental data. From 

previously explained experiments (Chapter 4), the concentration of each of the translation 

factors and their corresponding protein synthesis rate are known. 5 experimental data set 

were used for each of the translation factors. The parameter estimation simulation was able 

to find a set of values for each of the reaction kinetics based on the model fitting with each 

of the data set. These resulting data set for the reaction kinetics can be further analysed to 

estimate each of the reaction kinetics. The extra information about the mass action kinetics 

will enable the model to predict the translational control better.  
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5.4. Conclusions  

 

Translation is one of the most challenging biological pathways to mathematically model 

and quantitatively understand due to the complexity and lack of enough experimental data. 

Construction of mathematical model is meaningful only with strong quantitative 

experimental data. Until now, most of the translation models were deficient of quantitative 

experimental data to construct and predict the underlying mechanism precisely. 

 

In this work, a new type of detailed translation model has been developed that incorporate 

an extensive set of experimentally determined rate control data. This is the first ever 

example of a model that includes all three steps of the translation process and incorporate 

such precisely measured quantitative data. The model was constructed in perl script and 

analysed in COPASI which enables to easily incorporate any further information of the 

translation pathway. In the current study, the average mRNA length being translated was 

considered to be 20 codons, however, the length of the mRNA can be easily changed. The 

steady state of the model was determined using the differential equation solver in COPASI.  

Concentrations of individual translation factors with respective protein synthesis rate were 

incorporated into the model to estimate each of the kinetic parameters. Employing the 

parameter estimation algorithms in COPASI software, the model was fitted with the 

experimental data.  

 

At this stage of the translation model construction, the model was able to converge to the 

steady state and was fitted with the experimental data for better estimation of the parameter 

values. The parameter estimation of the model produced a vast amount of data which 

require careful statistical analysis to estimate each of the unknown kinetic parameters of the 

model. Once the kinetic parameters are estimated precisely, the mathematical model of the 

translation is available as a valuable tool for understanding the nature of control in the 

eukaryotic translation system. 
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Chapter 6 

 

General Discussion  
 

6.1. mRNA translation and understanding the control mechanism  

 

mRNA translation is a highly conserved cellular process in which the information encoded 

by the mRNA is deciphered by the ribosomes with the support of a number of proteins. In 

Saccharomyces cerevisiae there are more than 20 translation factor proteins directly 

participate in this complex cellular phenomenon. The control of translation is a critical step 

in the regulation of cell growth and adaptation to environmental conditions. Translational 

control is identified to be a crucial component of cancer development. Both global 

translational control and mRNA-specific translational control are reported to promote 

tumour cell survival, angiogenesis, transformation, invasion and metastasis (Silvera et al., 

2010). Quantitative understanding of these controls is essential components in 

understanding the highly sophisticated and well conserved process of translation. 

 

In this study, employing three different approaches, high resolution microscopy, molecular 

biology and mathematical modelling, comprehensive control of the yeast mRNA translation 

has been quantitatively assessed. This study precisely elucidates the mode of control 

exerted by individual translation factors at different stages of translation. The imaging 

approach explores the cellular distribution of translation factors to determine if these could 

be rate limiting in global translation. Employing molecular biology techniques, the 

translation factors have been made limiting in the cell to identify their controlling influence 

on translation. Finally, employing a mathematical modelling approach, the whole 

translation pathway is theoretically represented, to identify the system-level control of 

translation. These approaches seek to explain the adaptations in translation in response to 

different environmental conditions. Given the high degree of conservation of the translation 
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machinery, the principles of translation control elucidated using yeast as a model organism 

are relevant to all other higher eukaryotes. 

 

Previous studies have shown that translation control is exerted at several different steps 

within the translation pathway. Specifically, more than thirteen protein factors participate in 

eukaryotic translation initiation and this step is believed to be one of the most regulated 

stages of translation. Cells under nutrient limiting conditions are known to regulate global 

translation by phosphorylating eIF2. This results in the inhibition of eIF2B mediated 

recycling of eIF2 to its active form and causes global translational regulation. Further 

initiation regulation occurs at the mRNA cap identification step. The initiation factor, 

eIF4E, an mRNA cap binding protein has been suggested to be a rate limiting factor in 

translation initiation (Koromilas et al., 1992). In addition translation termination has been 

identified as a key step in the translation regulatory mechanisms (Sonenberg and 

Hinnebusch, 2007). Translational control of specific mRNAs is a principal aspect in early 

embryonic development and differentiation (Sonenberg and Hinnebusch, 2007). Recent 

studies have reported that up-regulation of the protein expression levels and activity of the 

initiation factors is associated with different disease conditions such as cancer and heart 

diseases (Silvera et al., 2010). These studies have focussed on the control exerted by 

specific factors whereas this study looks at the translation pathway entirety to determine the 

relative control exerted by each factor across the whole process 

 

6.2. Intra-cellular distributions of elongation and release factors do not 

suggest any form of spatial control on translation  

 

The intra-cellular distribution of elongation and release factors was explored employing 

TCM and GFP tagging. Each gene encoding a translation factor was genetically modified to 

have a TCM or GFP tag at the C terminal end. Manipulating the genome of the yeast is an 

elegant yet easy method to modify selected proteins in a living cell. TCM tags are short 

fluorescent peptides of 10-12 amino acids, which can be fused with the protein of interest to 

visualise it in vivo. The elongation and release factors were observed to be cytoplasmically 

distributed in the exponential growth phase. The distribution patterns observed with the 
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elongation and release factors with TCM tags were identified to those obtained with the 

GFP tagged distribution analysis. This confirms that the cytoplasmic distribution of 

elongation and release factors observed in this study was not altered by TCM or GFP 

fluorescent tags. To determine any possible presence of elongation and release factors 

within the nucleus cells were also labelled with DAPI, a DNA stain. The data indicates that 

none of the elongation and release factors is present at significant levels in the nucleus of 

the yeast cells. The data demonstrating the homogenous distribution of the elongation and 

release factors suggests that the spatial distribution of the elongation and release factors are 

not a rate limiting aspect of global translation. 

 

Characterisation of the intra-cellular distributions of the individual factors in the molecular 

process is essential in order to a better understanding of the process of translation. 

Translation factors are some of the most highly synthesised, utilised and functionally 

essential proteins in the cell. Thus, availability and accessibility of these factors is crucial to 

the translation process. Previous studies have shown that most of the translation initiation 

factors are cytoplasmically distributed in the cell (Huh et al., 2003, Kumar et al., 2002). 

However, initiation factors such as eIF2 (α and γ subunits) and eIF2B (γ and ε subunits) 

have reported to assume a specific localisation in the cytoplasm, which could in term play a 

role in translational regulation (Campbell et al., 2005). The sub-cellular distributions of the 

elongation and release factors have not been subjected to imaging analysis. In this study, 

the translational elongation and release factors are shown to be cytoplasmically distributed. 

This agrees with the distribution analysis carried out with the GFP-tagged eEF1A as part of 

the global yeast protein localisation study (Huh et al., 2003). In this the distribution of all 

the elongation and release factors were explored extensively using GFP and TCM 

fluorescent tags. This study suggests that the intra-cellular distribution of the elongation 

and release factors are not a translational rate limiting step because the factors are 

homogenously distributed in the cytoplasm and readily available for translation.  
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6.3. The response coefficient reflects the degree of translational 

regulation exerted by the elongation and release factors 

 

Translational regulation is vital for the rapid response and adaptation to environmental 

changes and therefore precise understanding of translational control is crucial. In this study, 

the intra-cellular protein expression level of the elongation and the release factors were 

reduced and the corresponding protein synthesis rate was measured. The response 

coefficient (RJ
1 ), the gradient of the ratio between the intra-cellular level of individual 

translation factors and the corresponding protein synthesis rate, was determined. The 

response coefficient explains the control of translation rate exerted by each of the 

translation factors studied. The response coefficient is measured from 0 to 1 with a high 

response coefficient indicates higher control over translation. When the gradient between 

the protein concentration and the protein synthesis rate is higher, it suggests that the protein 

synthesis rate is more affected with even the smaller changes in the protein expression level 

of that factor.  

 

The endogenous promoters of the individual elongation and release factors were substituted 

with the Doxycycline regulatable synthetic tetO7 promoter. Expression levels of the 

translation were titrated down from 100 % to 60 % of the physiological level with a range 

of concentrations of doxycycline. The response coefficient was calculated by reducing the 

level of translation factors to 100 – 80 % of the physiological level. RJ
2 was calculated as 

the response coefficient when the level of factors were reduced to 80 – 60 %. 

 

As mentioned previously, regulation of translation is thought to be exerted at different 

stages of the initiation phase of translation (Sonenberg and Hinnebusch, 2009). However, 

recent studies have also reported that the elongation step exerts a strong influence on 

translational control (Wang et al., 2001). However, comprehensive knowledge about these 

controls is yet to be determined. As initiation play much an important role in translation 

regulation, extensive studies have been carried out over many decades to determine the 

specific control exerted by initiation factors. In a quantitative translational control study, 
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the response coefficients of translation initiation factors eIF1A, eIF4E, eIF4G1 and eIF5B 

were measured (Sangthong et al., 2007). Additionally, large differences in the intra-cellular 

concentration of the translation factors have been identified (von der Haar and McCarthy, 

2002; von der Haar, 2008). However, the relationship between the intra-cellular abundance 

of individual translation factors and their control over translation has remained unclear. In 

this study, the response coefficients of the elongation and release factors were determined 

from which the relative translational control exerted by each of these factors can be 

identified. 

 

The elongation factors eEF1A and eEF2 were observed to have a very high response 

coefficient. The high response coefficient (0.897) observed for eEF1A can be clearly 

understood by analysing the functions of these factors in the translation elongation cycle. 

eEF1A factors are responsible for delivering the aminoacyle tRNA to the ribosome. The 

elongation cycles are reported to be subject to limitation by the rare amino acids. Also, 

eEF1A availability to deliver the amino acids is crucial. Delay in the amino acid delivery 

due to the reduction in the factor eEF1A can have a great impact on the translational rate. 

The eEF2 factor is responsible for one of the most essential steps in the elongation cycle 

translocation and in this study the factor was observed to have a high response coefficient 

of 0.937. In translocation the ribosomes moves from one codon to the next available codon 

of mRNA. A limitation in eEF2 activity could prevent translocation and cause ribosome to 

stall on mRNA.  This can cause a reduction in the rate of translation.  

 

However, eEF1B and eEF3 exhibited lower RJ
1  values. This could be explained by the 

functional roles these factors fulfil in translation. eEF1B recycles eEF1A factors by GDP to 

GTP conversion. However, other studies have suggested that eEF1A has a similar 

preference for GTP and GDP (Janssen et al., 1988). So even at a reduced eEF1B levels, 

eEF1A might be recycled to its active form. eEF3 is an unique factor in the fungi group and 

this factor functions to remove the tRNA from the E site of the ribosome. Unexceptionally, 

eEF3 exhibited a very low RJ1  value yet has a very high RJ
2  value. This indicates that 

translation was not much affected when the level of eEF3 was reduced to approximately 85 

% of the endogenous level. However, when the protein expression level was further 
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reduced, the translation rate was reduced significantly. The eEF3 protein has been shown to 

present at approximately 871000 molecules per cell which is significantly higher than the 

expression level of other elongation and release factors (Ghaemmaghami et al., 2003). The 

above studies suggest that there may be an excess of eEF3 in the cell with respect to 

translation so that the cell can afford to lose some of this pool without suffering significant 

reductions in translation rate.   

 

The release factors were also observed to have two distinctive response coefficients. Yeast 

strains with reduced levels of eRF1 were observed to have a significantly reduced 

translational rate. eRF1 is responsible for the identification of the stop codon in the mRNA. 

Reductions in this factor can cause non-recognition of the stop codons, which results in the 

accumulation of proteins with extended c-terminus. Reductions in the eRF1 may also cause 

the ribosome to become stalled on the mRNA due to a reduction in the termination rate. 

This can cause reductions in the global translational rate. However, eRF3 was observed to 

have a lower RJ
1  and RJ

2  indicating that the reduction in the expression level of this factor 

has minimal affect on translation. eRF3 provides the energy required for the interaction 

between the stop codon and the eRF1. However, the lower response coefficient can be 

explained by suggesting that there must be some other factor facilitating the binding of 

eRF1 or that this could be possible without energy consumption.   

 

The affect of reduced protein expression level of translation elongation and release factors 

on the global translation were observed by analysing the polysomal distribution. The 

factors were reduced to the 80% of the wild-type level and the polysomal profiles were 

compared and analysed with wild-type polysomal profiles. The polysome profile of cells 

expressing reduced levels of eEF1A and eEF2 observed to have increased level of 

polysosmes and 60S monosome. This could be the impact of the reduced elongation rate 

which causes the ribosomes to stall on mRNA. Polysome distribution of the cells 

expressing reduction level of other elongation and release factors were also observed to 

have a increased polysomal level, but not as major as observed for eEF1A and eEF2. These 

observations suggest that the reduction in the level of the factors eEF1A and eEF2 has a 
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high impact on the rate of the translation and these factors play a significant role in the 

regulation of global translation. 

 

In this study effect on translation rate exerted by over-expression of elongation or release 

factors were explored. Interestingly, even when the elongation and release factors were 

increased to 120% of the wild-type level, the protein synthesis rate was not increased. 

Moreover, over expression of the factors not exhibited any protein synthesis inhibition. 

This indicates that the translation and growth rates of wild-type yeast are optimally set by 

the physiologically normal translational machinery. 

 

6.4. System specificity of the elongation and release factors 

 

A number of these factors are identified to be involved in other cellular functions distinct 

from the translation process. The relationship between translation and the growth rate were 

explored in this study. This study determined which factors functioned solely in translation 

and which played a role in translation and other cellular processes. The growth rate and 

protein synthesis rate exhibit a linear relationship and the gradient of the line (the system 

specificity ratio, RSp) was measured. From the system specificity ratio the translation 

factors which function solely in translation were identified. If the factors are solely 

involved in translation, the system specificity ratio will be approximately equal to 1 

whereas if the factor is involved in other cellular functions apart from translation then the 

slope will be <1.  

 

The elongation factors eEF1A, eEF2 and eEF3 were observed to have an RSp values of 

approximately 1. The growth rate to protein synthesis rate relationship of these factors was 

linear with a gradient of 1. eEF1A, eEF2 and eEF3 exhibited 0.99, 1.02 and 1.06 RSp values 

respectively. The elongation factor eEF1A has been reported to be involved in actin 

organisation in yeast cells (Munshi et al, 2001). However, the RSp values of the factors 

suggest that the reduction in eEF1A has no additional affect on the growth rate that is 

attributed to this role in actin organisation. The system specificity ratio reveals that the 

reduction in the growth rate observed with lower levels of eEF1A was due to the reduction 
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in protein synthesis rate. eEF2 and eEF3 have been thought to function only in the 

translation pathway and the RSp value agrees with this (Justice et al., 1998, Anand et al., 

2003). The translation elongation factor eEF1B on the other hand, was observed to have an 

RSp value of 0.63. When the factor was reduced, the growth rate reduced faster than the 

translation rate. This strongly suggests that eEF1B has a role in atleast one cellular process 

other than translation. While, eEF1B is not known to be involved in any other cellular 

function apart from translation (Kinzy and Woolford, 1995, Jeppesen et al., 2003), this 

requires further investigation. 

 

The release factors were observed to have two very distinct RSp values. eRF1 was observed 

to have a very high RSp value, 1.10. The reduction in eRF1 abundance correlates with a 

reduction in the growth rate and protein synthesis rate. This suggests that eRF1 is only 

involved in the translation pathway. In sharp contrast, eRF3 was observed to have a lower 

RSp value, 0.29. This reveals that when eRF3 is made limiting, the growth rate is reducing 

quicker than the protein synthesis rate. This data suggests there is another cellular function 

of eRF3 in addition to the translation process. eRF3 is known to protein aggregates, and to 

act as a prion in yeast (Derkatch et al., 2001). The lower system specificity ratio might 

therefore be the result of prion activity.  

 

6.5. Building a mathematical model of the translation pathway 

 

Decades of study have generated a vast amount of information about the steps, components 

and regulation of mRNA translation. These data need to be integrated in to a systems 

framework for a better understanding of the underlying properties of this process. 

Mathematical formulation of the translation could be a powerful tool to visualize translation 

in a systems level. However, there are very few quantitative experimental data to study 

translation mathematically.  

 

In this study, a detailed comprehensive model of translation has been developed 

incorporating an extensive set of quantitative data. Eukaryotic translation has been 

represented as a set of differential equations using mass kinetics combining with a 
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representation of mRNA occupances to elucidate translational control. The respective 

concentrations of the translation factors were derived from previous studies 

(Ghaemmaghami et al., 2003). In addition to consideration of every detail of the translation 

stages, the subunit association and elongation cycle have been modelled considering the 

ribosomal occupation of mRNA codon. Eukaryotic ribosomes are assumed to occupy 15 

codons of the mRNA during translation. This detailed information has been incorporated 

into the model and a separate kinetic law which considers this ‘blocking’ phenomenon has 

been incorporated. These blocking kinetics ensure that ribosomes do not collide with each 

other during translation. The model has been constructed using perl script and simulated 

using the software COPASI. The model was successfully determined steady state and was 

fitted with the rate control data to estimate the kinetic parameters. The parameter estimation 

of the model has produced a subset of data which has to be precisely analysed to estimate 

the unknown paramters of the model. After the estimation of all kinetic parameters, the 

model can be used to predict and analyse different behavioural scenarios for the translation 

pathway. The model can be used to analyse the control exerted by individual translation 

factors over the translation and the result can be compared with the experimental data. 

These comparisons between the model predictions and experimentally observed control 

responses can determine the quality of the model. The model can be further used to predict 

sensitivity of the pathway towards reduction in the expression of more than one translation 

factor and the resulting change in translational control. 

 

Due to the complexity and lack of the quantitative data available for the translation 

pathway, most of the previous models address only one stage of translation. Prokaryotic 

translation is less complex and most of the parameter values are known. This encouraged 

formulation of mathematical models of prokaryotic translation covering all three stages of 

translation (Zouridis and Hatzimanikatis, 2007). However, most of the reaction parameters 

have not been determined experimentally in a eukaryotic system. In another study on 

bacterial translation, the initiation step has been modelled to help find ways to increase the 

translation efficiency and thus to boost protein yields (Zhang et al., 2010). The model 

incorporates the mRNA folding dynamics, ribosome binding dynamics and mRNA 

sequence information to represent the translation rate. 
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An earlier deterministic model of yeast translation initiation investigates the control of each 

initiation factor over translation using flux control coefficients (Dimelow and Wilkinson, 

2009). However, this model lacks experimental data to fit the model and the kinetic 

parameters used in it are completely based on the assumed values. The aminoacylation and 

initiation of yeast translation have been modelled using ordinary differential equations 

(You et al., 2010). The model investigates the kinetic behaviour of translation initiation 

factors in response to amino acids limitation and examines the changes in the translation 

initiation rate at varying concentrations of initiation factors and external perturbations. 

Even though the nutrient limitation model was based on experimental data, the response of 

the translation rate with varying concentrations of the initiation factors was based on 

assumptions. In a recent work, a complete translation model for the yeast translation has 

been developed (Siwiak and Zielenkiewicz, 2010). This model concentrates on the 

differences in the translational rate of the individual 64 codons on the mRNA. However, 

this model does not explain the overall translation rate and the effect of individual 

translation factor on the translational rate. Moreover, the model lacks experimental support. 

Very few models attempt to incorporate all three stages; initiation, elongation and 

termination of translation with all the minute details and enough experimental data to 

support the model. And all of these models suffer from being under-parameterized. 

However, the eukaryotic translational mode constructed in this study incorporates all three 

stages of the eukaryotic translation pathway. Moreover, it is constructed based on an 

extensive set of quantitative experimental data which enables it to confidently determine 

other kinetic parameters in the model. Thus, this translational model is a useful tool to 

analyse and predict translation pathway behaviours.  

 

6.6. Future directions 

 

A systems biology study integrating experimentally determined parameters and 

mathematical modelling was performed to better understand translational control in yeast. 

Because of the importance and the complexity of the translation pathway, many studies 

have sought to determine the translation mechanisms, most focusing on individual factors. 
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This systems level study now provides a platform for developing a far deeper 

understanding of translational control in eukaryotes. In particular, quantitative studies of 

translation control exerted by the elongation and release factors in nutrient limiting 

conditions or at varying temperatures will be for more enlightening in the context of a high 

quality model. A further aspect of importance is that the level of parameterization will be 

continuously increased over time, thus improvising the predictive power of the model. For 

example more accurate determination of intracellular factor levels can be determined 

employing quantitative mass spectroscopy techniques such as QconCAT (Pratt et al., 

2006). The absolute concentration of the translation factors can be employed to improve the 

current observations as well as included in the translational model. Also, any possible 

change in the distribution of elongation and release factors with varying growth conditions 

such as temperature or carbon and nitrogen nutrient sources can be explored. The change in 

the growth condition might cause translational regulation and cause subcellular 

redistribution of translation factors to regulate global translation.  

 

The mathematical model of translation can be further refined to understand the changes in 

control in response to multi-site variation in component activity. Currently, most of the 

reaction kinetics in the eukaryotic translation pathway is missing. This additional 

information about the kinetics of each of the translational steps would improve the 

predictive power of the translation model. The additional data will include newly 

determined values for the on and off rates for all of the interactions between the translation 

machinery components.  

 

The striking similarity between the yeast and human translational mechanisms means that 

the model is also relevant to human cells. Identification of the influence of translation 

factors and their control in many diseases could potentially lead to development of new 

gene/protein-targeted therapies for treatment of these diseases. New approaches from 

systems biology, combining molecular biology and mathematical modelling can be 

employed to decipher mRNA translation role in human diseases. Further, specific target 

components of the translation apparatus can be identified for the development of cancer 

therapeutics. 
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Appedix -2 
 

 
NO:  Reaction  Kinetic values 

 
Source 

 
1 eIF2_GDP + eIF2B = eIF2_GDP_eIF2B 

 
k1: 280 l/(mol*s) 
k2: 10 1/s 
 

This 
study 

2 eIF2_GDP_eIF2B = eIF2_GTP + eIF2B 
 

k1: 20000 1/s 
k2: 0.5 l/(mol*s) 
 

This 
study 

3 eIF2_GTP + Met-tRNA = eIF2_GTP_Met-tRNA 
 

k1:20000 l/(mol*s) 
k2: 0.1 1/s 
 

This 
study 

4 eIF3 + eIF5 = eIF3_eIF5 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

5 eIF2_GTP_Met-tRNA + eIF3_eIF5 = 
eIF3_eIF5_eIF2_GTP_Met-tRNA 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

6 eIF1 + eIF3_eIF5_eIF2_GTP_Met-tRNA = 
eIF1_eIF3_eIF5_eIF2_GTP_Met-tRNA 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

7 40S + eIF1A -> 40S_eIF1A 
 

k1:20000 l/(mol*s) 
 

This 
study 

8 eIF1_eIF3_eIF5_eIF2_GTP_Met-tRNA + 40S_eIF1A 
-> 43S 
 

k1:20000 l/(mol*s) 
 

This 
study 

9 eIF4E + eIF4G = eIF4E_eIF4G 
 

k1: 3e+006 l/(mol*s) 
k2: 0.01 1/s 
 

This 
study 

10 mRNA_cap + Pab1 = mRNA_Pab1 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

11 eIF4E_eIF4G + mRNA_Pab1 = 
eIF4E_eIF4G_mRNA_Pab1 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

12 eIF4A + eIF4B = eIF4A_eIF4B 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

13 eIF4E_eIF4G_mRNA_Pab1 + eIF4A_eIF4B = 
eIF4E_eIF4G_mRNA_Pab1_eIF4A_eIF4B 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

14 43S + eIF4E_eIF4G_mRNA_Pab1_eIF4A_eIF4B -> 
48S 
 

k1:20000 l/(mol*s) 
 

This 
study 

15 48S + Ded1 = 48S_Ded1 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

16 eIF5B_GDP = eIF5B_GTP k1:20000 1/s This 
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 k2:12 1/s 
 

study 

17 48S_Ded1 + eIF5B_GTP = 48S_Ded1_eIF5B_GTP 
 

k1:20000 l/(mol*s) 
k2:0.1 1/s 
 

This 
study 

18 60S + 48S_Ded1_eIF5B_GTP -> 80S_1 + eIF1 + 
eIF1A + eIF2_GDP + eIF3 + eIF4A + eIF4B + eIF4E 
+ eIF4G + eIF5 + eIF5B_GDP + Pab1 + mRNA_cap  
 

K:20000 
l^2/(mol^2*s) 
 

This 
study 

19 eEF1A_GDP + eEF1B = eEF1A_GDP_eEF1B 
 

k1: 7.5e+007 
l/(mol*s) 
k2: 117 1/s 
 

This 
study 

20 eEF1A_GDP_eEF1B = eEF1A_GTP + eEF1B 
 

k1: 1e+006 1/s 
k2: 25 l/(mol*s) 
 

This 
study 

21 eEF1A_GTP + aa-tRNA = aa-tRNA_eEF1A_GTP 
 

k1:20000 l/(mol*s) 
k2: 0.1 1/s 
 

This 
study 

22 aa-tRNA_eEF1A_GTP + 80S_1 = 80S_aa-
tRNA_eEF1A_GTP_1 
 

k1: 1.948e+06 
l/(mol*s) 
k2: 1000 (1/s) 
 

This 
study 

23 80S_aa-tRNA_eEF1A_GTP_1 -> 80S_aa-tRNA_1 + 
eEF1A_GDP 
 

k1 :100000 (1/s) 
 

This 
study 

24 eEF2_GDP = eEF2_GTP 
 

k1 : 20000 1/s 
k2 : 0.1 1/s 
 

This 
study 

25 eEF2_GTP + 80S_aa-tRNA_1 = 80S_aa-
tRNA_eEF2_GTP_1 
 

k1:10000 (l/(mol*s)) 
k2: 1000 (1/s) 
 

This 
study 

26 80S_aa-tRNA_eEF2_GTP_1 -> 80S_tRNA_1 + 
eEF2_GDP 
 

k1: 250000 (1/s) 
 

This 
study 

27 eEF3_GDP = eEF3_GTP 
 

k1: 20000 1/s 
    k2  0.1 1/s 
 

This 
study 

28 80S_tRNA_1 + eEF3_GTP -> 
80S_tRNA_eEF3_GTP_1 
 

k1 : 1.5e+06 
(l/(mol*s)) 
 

This 
study 

29 80S_tRNA_eEF3_GTP_1 -> 80S_2 + eEF3_GDP + 
tRNA 
 

K: 20000 (1/s) 
 mRNA_tot : 4.9e+06 
mol/l) 
 

This 
study 

30 eRF3_GDP = eRF3_GTP 
 

 k1: 20000 1/s 
 k2: 0.1 1/s 
 
 
 

This 
study 
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31 eRF1 + eRF3_GTP = eRF1_eRF3_GTP 
 
 

k1: 3.5e-006 
l/(mol*s) 
k2: 13 1/s 
 

This 
study 

32 eRF1_eRF3_GTP + 80S_tRNA_eEF3_GTP_20 -> 
80S_tRNA_eEF3_GTP_eRF1_eRF3_GTP 
 

k1: 20000 l/(mol*s) 
 

This 
study 

33 80S_tRNA_eEF3_GTP_eRF1_eRF3_GTP -> 40S + 
60S + tRNA + eEF3_GDP + eRF1 + eRF3_GDP 

k1 : 2000 1/s 
 

This 
study 
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Appendix – 3: Protein synthesis rate with respective factor concentration used 
model fitting 
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