
The Minimal Scale Invariant

Extension of the Standard Model

A thesis submitted to the University of Manchester for the degree of

Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

Lisa Pamela Alexander-Nunneley

School of Physics and Astronomy



Contents

Abstract 8

Declaration 9

Copyright 10

Acknowledgements 12

1 Introduction 13

2 Scale Invariance 20

2.1 The Ward Identity for Scale Invariance . . . . . . . . . . . . . . . 22

2.2 The Gildener and Weinberg Approach to EWSSB . . . . . . . . . 24

3 The Minimal Scale Invariant Extension of the Standard Model 31

3.1 The MSISM Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Classification of the Flat Directions . . . . . . . . . . . . . . . . . 35

3.2.1 The Type I Flat Direction . . . . . . . . . . . . . . . . . . 36

3.2.2 The Type II Flat Direction . . . . . . . . . . . . . . . . . . 37

3.2.3 The Type III Flat Direction . . . . . . . . . . . . . . . . . 38

3.3 The One-Loop Effective Potential . . . . . . . . . . . . . . . . . . 39

3.4 Phenomenology of the MSISM . . . . . . . . . . . . . . . . . . . . 42

2



4 The Type I Flat Direction 45

4.1 The U(1) Invariant Scenario . . . . . . . . . . . . . . . . . . . . . 46

4.2 The U(1) Non-Invariant Scenario . . . . . . . . . . . . . . . . . . 53

5 The Type II Flat Direction 61

5.1 The U(1) Invariant Scenario . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 The Heavier h Boson Region . . . . . . . . . . . . . . . . . 69

5.1.2 The Ultra-Light h Boson Region . . . . . . . . . . . . . . . 70

5.2 Minimal U(1) Non-Invariant Scenario with Maximal SCPV . . . . 72

6 Neutrinos in the MSISM 82

6.1 Neutrinos in the U(1) Invariant Type II Flat Direction . . . . . . 85

6.2 Neutrinos in the Minimal U(1) Non-Invariant Type II Flat Direc-

tion with Maximal SCPV . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 The CP Symmetric Scenario . . . . . . . . . . . . . . . . . 90

6.2.2 The σ ↔ J Symmetric Scenario . . . . . . . . . . . . . . . 96

7 Conclusions 101

A Derivation of the Ward Identity for Scale Invariance 105

B The Yukawa and Gauge Sectors of the MSISM 108

B.1 The Gauge-Invariant Lagrangian . . . . . . . . . . . . . . . . . . 108

B.2 The Gauge-Fixing and Faddeev-Popov Lagrangians . . . . . . . . 111

C The One-Loop Effective Potential 113

C.1 The Scalar Contribution . . . . . . . . . . . . . . . . . . . . . . . 114

C.2 The Gauge Boson Contribution . . . . . . . . . . . . . . . . . . . 117

C.3 The Ghost Contribution . . . . . . . . . . . . . . . . . . . . . . . 117

C.4 The Charged Fermion Contribution . . . . . . . . . . . . . . . . . 117

3



C.5 The Neutrino Contribution . . . . . . . . . . . . . . . . . . . . . . 118

D The One-Loop Anomalous Dimensions and β Functions 119

D.1 Formal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D.2 The One-Loop Anomalous Dimensions and β Functions of the

MSISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

E The Oblique Parameters 127

E.1 The Scalar Contribution . . . . . . . . . . . . . . . . . . . . . . . 128

E.2 The Neutrino Contribution . . . . . . . . . . . . . . . . . . . . . . 130

E.3 Experimental Values . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 132

Total word count: 24036

4



List of Tables

3.1 The possible phenomenology that could occur in the Type I and

Type II flat directions of the MSISM. . . . . . . . . . . . . . . . . 43

4.1 Upper limits on λ3(Λ) from the S, T and U oblique parameters in

the U(1) invariant MSISM with a Type I flat direction . . . . . . 49

5.1 Minimum and maximum values ofmh, mH1
, mH2

and Λ in the U(1)

non-invariant MSISM with a Type II flat direction that minimally

realises maximal SCPV. . . . . . . . . . . . . . . . . . . . . . . . 78

B.1 The SU(3)c, SU(2)L and U(1)Y charge assignments for the scalar

and fermion fields of the MSISM. . . . . . . . . . . . . . . . . . . 109

5



List of Figures

4.1 The scalar masses mh and mσ,J as functions of λ3(Λ) in the U(1)

invariant MSISM with a Type I flat direction. . . . . . . . . . . . 50

4.2 The RG scale Λ as a function of λ3(Λ) in the U(1) invariant MSISM

with a Type I flat direction. . . . . . . . . . . . . . . . . . . . . . 51

4.3 Theoretical and experimental exclusion contours in the λ3(Λ)-|λ4(Λ)|

parameter space of the general MSISM with a Type I flat direction. 56

4.4 The scalar masses mh, mH1
and mH2

as functions of λ3(Λ) in the

general MSISM with a Type I flat direction. . . . . . . . . . . . . 58

4.5 The RG scale Λ as a function of λ3(Λ) in the general MSISM with

a Type I flat direction. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Theoretical and experimental exclusion contours in the λ1(Λ)-λ3(Λ)

parameter space in the U(1) invariant MSISM with a Type II flat

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 The scalar masses mh and mH as functions of λ1(Λ) in the U(1)

invariant MSISM with a Type II flat direction. . . . . . . . . . . 68

5.3 The RG scale Λ as a function of λ1(Λ) in the U(1) invariant MSISM

with a Type II flat direction. . . . . . . . . . . . . . . . . . . . . 69

5.4 The scalar masses mh and mH2
and the RG scale Λ as functions

of λ3(Λ) in the U(1) non-invariant MSISM with a Type II flat

direction that minimally realises maximal SCPV. . . . . . . . . . 77

6



5.5 The scalar mass mH1
as a function of λ3(Λ) in the U(1) non-

invariant MSISM with a Type II flat direction that minimally re-

alises maximal SCPV. . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 The scalar mass mh as a function of hN(Λ) in the U(1) invariant

MSISM with a Type II flat direction and right-handed neutrinos. 87

6.2 The heavy neutrino mass mN as a function of hN(Λ) in the U(1)

invariant MSISM with a Type II flat direction and right-handed

neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 The scalar mass mh as a function of hN (Λ) in the U(1) non-

invariant MSISM with a Type II flat direction that minimally re-

alises maximal SCPV and includes CP symmetric right-handed

neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 The heavy neutrino mass mN as a function of hN(Λ) in the U(1)

non-invariant MSISM with a Type II flat direction that minimally

realises maximal SCPV and includes CP symmetric right-handed

neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 The scalar mass mh as a function of RehN(Λ) in the U(1) non-

invariant MSISM with a Type II flat direction that minimally re-

alises maximal SCPV and includes a σ ↔ J parity symmetric

right-handed neutrino sector. . . . . . . . . . . . . . . . . . . . . . 98

6.6 The heavy neutrino mass mN as a function of RehN(Λ) in the U(1)

non-invariant MSISM with a Type II flat direction that minimally

realises maximal SCPV and includes a σ ↔ J parity symmetric

right-handed neutrino sector. . . . . . . . . . . . . . . . . . . . . . 99

E.1 The generic Feynman diagrams of the φ contributions to the WW

and ZZ self-energies. . . . . . . . . . . . . . . . . . . . . . . . . . 129

7



Abstract

The Minimal Scale Invariant Extension of the

Standard Model

The Minimal Scale Invariant extension of the Standard Model (MSISM) is
a model of low-energy particle physics which is identical to the Standard Model
except for the inclusion of an additional complex singlet scalar and tree-level scale
invariance. Scale invariance is a classical symmetry which is explicitly broken
by quantum corrections whose interplay with the quartic couplings can be used
to trigger electroweak symmetry breaking. The scale invariant Standard Model
suffers from a number of problems, however the inclusion of a complex singlet
scalar results in a perturbative and phenomenologically viable theory.

We present a thorough and systematic investigation of the MSISM for a num-
ber of representative scenarios along two of its three classified types of flat direc-
tion. In these scenarios we determine the permitted quartic coupling parameter
space, using both theoretical and experimental constraints, and apply these limits
to make predictions of the scalar mass spectrum and the energy scale at which
scale invariance is broken. We calculate the one-loop effective potential and the
one-loop β functions of the pertinent couplings of the MSISM specifically for this
purpose. We also discuss the phenomenological implications of these scenarios,
in particular, whether they realise explicit or spontaneous CP violation, contain
neutrino masses or provide dark matter candidates. Of particular importance is
the discovery of a new minimal scale invariant model which provides maximal
spontaneous CP violation, can naturally incorporate neutrino masses, produces
a massive stable scalar dark matter candidate and can remain perturbative up to
the Planck scale. It can be argued that the last property, along with the classical
scale invariance, can potentially solve the gauge hierarchy problem for this model.

Lisa Pamela Alexander-Nunneley
The University of Manchester
For the degree of Doctor of Philosophy
September 2010
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Chapter 1

Introduction

Understanding the nature of electroweak symmetry breaking is one of the most

important challenges of particle physics today. The solution to this puzzle will not

only answer the fundamental question of where the masses of the elementary par-

ticles come from, but will undoubtedly require an extension to the current theory

of particle physics: the Standard Model (SM). The SM1 is a renormalisable gauge

field theory with a minimal particle content that includes both the electroweak

theory of Glashow, Weinberg and Salam [4], described by the SU(2)L×U(1)Y

gauge groups, and Quantum Chromodynamics (QCD) which is based on the

SU(3)c colour gauge group [5]. After rigorous testing at the LEP collider, Teva-

tron and a number of low energy experiments [6], the SM appears to describe

the fundamental interactions up to energies of the order of 100 GeV remarkably

well and with very high precision. For example, prior to its experimental detec-

tion, successful predictions of the top quark mass were made based on quantum

fluctuations to within 10% of the physical value eventually measured at the CDF

and D0 detectors at Tevatron [7]. Given the experimental successes of the rest of

particle physics, it is particularly surprising how little is known about the nature

of electroweak symmetry breaking.

In the SM, the electroweak symmetry is thought to be broken spontaneously

1For reviews of the SM see for example [1, 2, 3].
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and the W± and Z boson masses generated via the Higgs mechanism [8]. For this

to happen, a complex scalar doublet field with a negative mass squared parameter

−m2 (m2 > 0), a quartic self-coupling λ and a non-zero vacuum expectation value

(VEV) needs to be included in the model. Once the scalar field is postulated, it

can also be used to generate the fermion masses. Thus the SM predicts the ex-

istence of an additional massive scalar to the known particle content: the Higgs

boson (HSM). However, to-date, this Higgs boson has evaded all experimental

searches. This non-detection has not been fruitless but has provided strong ex-

perimental constraints on the mass of the SM Higgs: the LEP2 Higgs mass limit

requires mHSM
> 114.4 GeV [9], whilst recent results from the Tevatron exclude

masses in the region 158 GeV < mHSM
< 175 GeV [10]. These limits are not

inconsistent with the theoretical limits from unitarity, triviality and vacuum sta-

bility. Unitarity places an upper bound of mHSM
≤ 1 TeV [11], beyond which

perturbative unitarity cannot be maintained. The triviality bound provides an

upper limit onmHSM
by pushing the Landau pole beyond a specific energy scale Q.

Requiring vacuum stability gives a lower bound on the Higgs mass by demanding

that the potential stay bounded from below (BFB) or λ(Q) ≥ 0. These last two

constraints are commonly displayed on a “chimney plot” (for example see Figure

6 of [12]) and assuming Q is of the order of the Planck scale MPlanck ≈ 1019 GeV

then mHSM
∼ 160 − 170 GeV [12].

As well as the currently undetected Higgs boson, the SM also suffers from the

infamous gauge hierarchy problem [13] as a result of the negative mass squared

parameter. In the SM, the fermions and gauge bosons are massless before elec-

troweak spontaneous symmetry breaking (EWSSB) due to the chiral and gauge

symmetries respectively. This means that any masses they obtain after EWSSB

are protected from quantum corrections. However, the Higgs boson has no such

symmetry to protect its mass from the large quantum corrections which contain

quadratically divergent terms proportional to Λ2, where Λ is an ultra-violet (UV)
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cut-off scale. This UV cut-off scale is usually associated with the scale of a possi-

ble higher-energy theory in which the SM is embedded, such as a Grand Unified

Theory (GUT), which occur at scales MGUT ≈ 1016 GeV. In the SM, which has

no intermediate mass scale or theory between the electroweak (EW) and Planck

scale, the cancellation of the divergent terms requires an excessive amount of

fine-tuning to give a Higgs mass of the order of the EW scale. Many beyond

the SM theories have been postulated with the aim of trying to avoid the gauge

hierarchy problem, these include Supersymmetry (SUSY). In SUSY this problem

is naturally solved provided the SUSY-breaking scale, MSUSY, stays close to the

EW scale (MSUSY . 1 TeV). In this thesis, we propose a different and very min-

imal approach that could solve the gauge hierarchy problem: imposing tree-level

scale invariance.

A classically scale invariant (SI) theory naturally excludes any dimension-

ful parameters, including the negative scalar mass squared parameter, from the

Higgs potential. The removal of the −m2 term does not solve the gauge hierarchy

problem in itself, as Λ2 terms can still be generated by quantum corrections in

a regularisation scheme with a UV cut-off. However, the quadratic divergences

introduced by the UV cut-off regularisation scheme explicitly violate the symme-

try of scale invariance. One may argue that if two regularisation schemes provide

different answers for observable quantities, which usually results from one or both

violating a symmetry of the theory, and if the symmetry is taken to be fundamen-

tal, a new axiom of the theory, then the regularisation scheme which preserves the

symmetry must be applied. Following the arguments of [14, 15, 16], the quadratic

divergences in a SI theory are considered to be only spurious effects of the regu-

larisation process and to remove them one has to simply adopt a regularisation

scheme which does not break the classical symmetries of the local classical action,

in this case scale invariance. Dimensional regularisation (DR) [17] is such a SI

scheme within which the vanishing of the mass squared parameter is maintained

to all orders in perturbation theory. A further two requirements are suggested
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by [16]; firstly, that the theory has no intermediate scales between the EW and

Planck scale and secondly, that the running couplings have neither Landau poles

nor instabilities before the Planck scale. Consequently, provided DR is used as

the renormalisation scheme and the above criteria are met, the gauge hierarchy

problem can be considered to be removed in SI theories.

We should mention that SI models are not without their own problems. An

inherent field-theoretic difficulty of a SI model is the incorporation of gravity

which requires the introduction of a dimensionful parameter, the Planck mass,

MPl. The presence of a Planck mass would explicitly break the classical symme-

try of scale invariance and thereby reintroduce the issue of quadratic divergences.

Addressing this problem lies beyond the scope of this work, but we note that at-

tempts have been made in the literature [15, 16, 18, 19] to provide SI descriptions

of quantum gravity.

It is remarkable that the removal of the one and only dimensionful parameter

−m2, which has been included for the sole purpose of generating EWSSB, would

render the whole tree-level Lagrangian of the SM naturally SI. However, as first

discussed by Coleman and E. Weinberg [20] and later by Gildener and S. Weinberg

[21], the exclusion of the −m2 term does not necessarily mean the removal of

EWSSB. This is because quantum corrections generate logarithmic terms which

explicitly break the scale invariance of the theory and can trigger EWSSB. In this

case, the VEVs of any scalar fields would be determined by a balance between the

scalar quartic term and the quantum corrections rather than between the quartic

term and a scalar mass term, which is the case for the SM. The seemingly simple

solution of imposing scale invariance on the SM is complicated and suffers from

a number of issues. To overcome these problems, several authors have considered

various SI extensions to the SM either with real or complex singlet scalar fields

[15, 18, 22, 23, 24, 25, 26, 27, 28].

In this thesis, we present a detailed study of a SI extension of the SM which

includes a new complex singlet scalar field, S, which transforms as a singlet
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under SU(3)c× SU(2)L×U(1)Y . We call this model the Minimal Scale Invariant

extension of the Standard Model (MSISM) [29]. Unlike the aforementioned scalar

extended SI SM analyses, we impose no additional constraints on the theory, for

example a U(1) symmetry or some other specific discrete symmetry acting on S.

Hence, the MSISM potential contains all possible interactions allowed by gauge

invariance:

V (Φ, S) =
λ1

2
(Φ†Φ)2 +

λ2

2
(S∗S)2 + λ3 Φ†ΦS∗S + λ4 Φ†ΦS2

+ λ∗4 Φ†ΦS∗2 + λ5 S
3S∗ + λ∗5 SS

∗3 +
λ6

2
S4 +

λ∗6
2
S∗4 ,

where the quartic couplings λ1,2,...,6 are all dimensionless constants and Φ is the

familiar SM Higgs doublet Φ =


 G+

1√
2
(φ+ iG)


, where G+ and G are the Gold-

stone bosons and φ is the CP-even real scalar field which in the SM is equivalent

to HSM . Recall that the imposition of scale invariance forbids the appearance of

dimensionful mass parameters or trilinear couplings in the potential2.

In our analysis of the MSISM, we follow the perturbative approach introduced

by Gildener and S. Weinberg (GW) [21]. With the aid of this approach, we can

find expressions for the scalar boson mass spectrum and the scale at which the

scale invariance is broken Λ. By determining the theoretically allowed region of

parameter space from the following two criteria: firstly keeping the theory per-

turbative, i.e. the theory has perturbative couplings (similar to the SM triviality

bound), and secondly keeping the effective potential BFB (the vacuum stability

bound), we can provide numerical predictions for the scalar masses and Λ. Fur-

ther experimental constraints on the MSISM are obtained from an analysis of the

LEP2 data [9], the Tevatron results [10] and the electroweak oblique parameters,

S, T and U [32, 33].

2For recent studies of non-SI models with dimensionful self-couplings and with real or com-
plex scalar singlet extensions see [30, 31] and references therein.
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The approach of GW [21] is based on minimising the full potential perturba-

tively along a flat direction of the scalar potential. The tree-level MSISM scalar

potential can possess a large number of different phenomenologically viable flat

directions, which can be classified into three major categories: Type I, Type II

and Type III. Flat directions of Type I are characterised by a zero valued VEV

for the complex singlet scalar S, whereas in flat directions of Type II both S

and Φ possess non-zero VEVs. Finally, in flat directions of Type III the SM Φ

has a zero VEV, this makes it difficult to naturally realise EWSSB without large

differences in the scalar VEVs [27, 28] and therefore we do not study them.

The MSISM also provides some interesting phenomenology which the current

SM can not address. A natural extension to the MSISM would be to include

right-handed neutrinos which could couple to the complex singlet scalar S in a

SI way [15, 25, 26, 27, 28]. If the VEV of S is non-zero then the low-scale seesaw

mechanism [34] can be used, this would provide a natural explanation for the

smallness in mass of the light neutrinos as seen in the low-energy neutrino data [6].

The Majorana mass scale generated has an expected size of the order of the EW

scale which would generate a relatively light set of heavy neutrinos as well as the

experimentally observed light neutrinos. Unlike the SM, in specific circumstances

the scalar sector of the MSISM can contain either explicit or spontaneous CP

violation, or both. The new CP-violating phase could act as a source for creating

the observed baryon asymmetry in the Universe. Moreover, the MSISM has

the ability to produce stable massive scalar particles that could qualify as dark

matter (DM) candidates. One scenario of particular phenomenological interest,

as it contains all the aforementioned phenomenology, is a new minimal model of

maximal spontaneous CP violation with a Type II flat direction. This scenario

also remains perturbative up to energy scales of the order of the Planck scale,

which, following the discussion above, is a necessary criteria to remove the gauge

hierarchy problem.

In this thesis we present a thorough investigation of the MSISM based on
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our previous work in [29]. In Chapter 2 we review the basic properties of a SI

classical action. We derive the Ward identity which is obeyed by SI tree-level

scalar potentials and include a review of the GW [21] approach to EWSSB in

multi-scalar SI models. In Chapter 3, we present the general Lagrangian that

describes the MSISM and provide a general classification of the flat directions

which occur in the tree-level scalar potential of the MSISM. We also present the

one-loop effective potential for the MSISM, as calculated in Appendix C, which

is used to determine the scalar mass spectrum and the scale at which scale invari-

ance is broken. At this point we briefly discuss the short-comings of the SI SM.

Furthermore, we discuss the possible phenomenology of the different flat direc-

tions. Chapter 4 investigates the MSISM with a Type I flat direction, specifically

in a scenario invariant under a U(1) symmetry acting on the complex scalar S

and also the general non-invariant scenario. Similarly, Chapter 5 investigates the

MSISM with a Type II flat direction, in the U(1) invariant limit and a simpli-

fied non-invariant scenario. In Chapter 6, we discuss extending the MSISM with

right-handed neutrinos, which can interact with the complex singlet field S and

its complex conjugate S∗. Finally, our conclusions are contained in Chapter 7 and

technical details of all our calculations are presented in a number of appendices.
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Chapter 2

Scale Invariance

In this chapter we discuss some general aspects of SI theories which are perti-

nent to our analysis of the MSISM. We first impose a scale transformation on

a simple scalar model and show why dimensionful parameters must be excluded

in SI theories. We then proceed to derive the Ward identity (WI) that results

from imposing scale invariance on a general theory. Finally, we shall review the

perturbative GW approach to EWSSB in weakly coupled multi-scalar SI theories

[21]. The analytic results presented in this chapter will be used throughout our

study of the MSISM.

We start by considering a simple model consisting of only one real massive

scalar field, φ(x), which is described by the Lagrangian

L =
1

2
∂xµφ(x)∂µ

xφ(x) − 1

2
m2φ2(x) − λφ4(x) , (2.1)

with the notation ∂µ
x ≡ ∂

∂xµ
. A scale transformation is a space-time transforma-

tion such that x → x′ = σ−1x, where σ = eǫ > 0, which acts linearly on all the

fields of the theory. Keeping space-time fixed, the general field Φ(x), which could

be a scalar, fermion or gauge boson, transforms under the scale transformation

as

Φ(x) → Φ′(x) = σaΦ(σx) , (2.2)
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where a is the scaling dimension of Φ(x) and, at the classical level, a takes the

values, a = 1 if Φ(x) is a scalar or gauge boson and a = 3
2

if Φ(x) is a fermion.

The classical action S[φ(x)] =
∫
d4xL[∂µφ(x), φ(x)] transforms under a scale

transformation as follows

S[σφ(σx)] =

∫ ∞

−∞
d4x

[
σ21

2
∂xµφ(σx)∂µ

xφ(σx) − 1

2
m2σ2φ2(σx) − λσ4φ4(σx)

]

=

∫ σ(∞)

σ(−∞)

d4(σx)

[
1

2
∂(σx)µφ(σx)∂µ

(σx)φ(σx) − 1

2
σ−2m2φ2(σx) − λφ4(σx)

]
, (2.3)

where in the last line the variable of integration and the partial derivative have

been adjusted to act on σx instead of x through the simple relations

d4x =
1

σ4
d4(σx) , ∂µ

x =
∂

∂xµ
= σ

∂

∂(σxµ)
= σ∂µ

(σx) . (2.4)

If the classical action is SI we expect S[σφ(σx)] = S[φ(x)], which would only

occur in (2.3) if the dimensionful parameter m2 vanishes. Concisely, the absence

of the scalar mass term results in a SI theory.

We can further show that quantum corrections, which contain terms of the

type φ4(x) ln φ2(x)
µ2 , are not SI. Under a scale transformation, the quantum correc-

tions transform as

φ4(x) ln
φ2(x)

µ2
→ (σφ(σx))4 ln

(σφ(σx))2

µ2

= σ4φ4(σx) ln
φ2(σx)

µ2
+ σ4φ4(σx) ln σ2 . (2.5)

Inserting the last line into (2.3) we can see that the first term is SI whilst the

second is not. Thus, we have shown that classical scale invariance holds at tree-

level in a theory with no dimensionful couplings, but it is broken by the quantum

corrections’ logarithmic terms.
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2.1 The Ward Identity for Scale Invariance

Having gained some insight into scale invariance from the above simple scalar

model, we now consider a general theory, where Φ(x) represents a generic field

of the theory, which could be a scalar, fermion or vector boson. The variation of

the classical action under a scale transformation is calculated via

δS[Φ(x)] =

∫
d4y

[
δ
(
∂µΦi(y)

) δ

δ
(
∂µΦi(y)

) + δ
(
∂µΦ†

i (y)
) δ

δ
(
∂µΦ†

i (y)
)

+ δΦi(y)
δ

δΦi(y)
+ δΦ†

i (y)
δ

δΦ†
i(y)

] ∫
d4x L[Φ(x)] (2.6)

where summation over repeated indices is implied for all the fields in the theory.

Under an infinitesimal scale transformation, the variation of the generic field Φ(x)

takes the form

δΦ(x) = ǫ
(
a+ xµ∂µ

)
Φ(x) . (2.7)

Using (2.7) it can be shown (see Appendix A) that the variation of the classical

action δS[Φ(x)] is

δS[Φ(x)] = ǫ

∫
d4x

[
a
∂L[Φ(x)]

∂Φi(x)
Φi(x) + (1 + a)

∂L[Φ(x)]

∂
(
∂µΦi(x)

)
(
∂µΦi(x)

)

+ aΦ†
i (x)

∂L[Φ(x)]

∂Φ†
i (x)

+ (1 + a)
(
∂µΦ†

i (x)
) ∂L[Φ(x)]

∂
(
∂µΦ†

i (x)
)

− 4L[Φ(x)]

]
. (2.8)

Assuming S[Φ(x)] describes a SI theory so that δS[Φ(x)] = 0, we obtain the WI

for scale invariance:

4L[Φ] = (a+1)

[
∂L[Φ]

∂
(
∂µΦi

)
(
∂µΦi

)
+
(
∂µΦ†

i

) ∂L[Φ]

∂
(
∂µΦ†

i

)
]

+ a

[
∂L[Φ]

∂Φi
Φi + Φ†

i

∂L[Φ]

∂Φ†
i

]
.

(2.9)

For notational simplicity, we have suppressed the x-dependence of the generic

field Φ, i.e. Φ = Φ(x). If the WI for scale invariance (2.9) is applied to just the
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SI tree-level scalar potential V tree(Φ), rather than to the whole Lagrangian, then

we obtain the WI relation

4V tree(Φ) =
∂V tree(Φ)

∂Φi
Φi + Φ†

i

∂V tree(Φ)

∂Φ†
i

. (2.10)

In a multi-scalar model, the scalars of the theory can be rewritten in terms

of a vector whose components represent all the scalar fields of the theory as real

degrees of freedom, i.e.

Φ = (φ1, φ2, . . . , φn) . (2.11)

Likewise, the WI (2.10) can be generalised to

4V tree(Φ) = Φ · ∇V tree(Φ) , (2.12)

where ∇ ≡
(

∂
∂φ1

, ∂
∂φ2

, · · · , ∂
∂φn

)
, and the single dot in (2.12) indicates the usual

scalar product of two vectors in an n-dimensional vector space.

It is possible to apply the WI (2.12) to a specific direction, or ray, in the

n-dimensional real scalar field space. To do this, we parametrise the scalar field

vector Φ as

Φ = ϕN , (2.13)

where N is an n-dimensional unit vector in the field space and ϕ is the radial

distance from the origin of the field space. Using this parameterisation, we can

rewrite (2.12) as

4V tree(ϕN) = ϕN · ∇V tree(ϕN)

= ϕ
dΦ

dϕ
· d

dΦ
V tree(ϕN)

= ϕ
dV tree(ϕN)

dϕ
. (2.14)

The condition for V tree(ϕN) to have an extremal or stationary line, called a
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flat direction, along a specific unit vector N = n is

∇V tree(Φ)
∣∣∣
Φ=Φflat

= 0 , (2.15)

where Φflat = ϕn is the flat direction. Applying (2.15) in the first line of (2.14) we

find V tree(ϕn) = 0, that is, the tree-level potential is both zero and an extremum

when evaluated for the flat direction. From the last line of (2.14) we obtain an

equivalent condition to (2.15):

dV tree(ϕN)

dϕ

∣∣∣
N = n

= 0 . (2.16)

The flat direction is an extremum, but in order for it to also be a local minimum

of the potential Φflat also has to satisfy

(v · ∇)2V tree(Φ)
∣∣∣
Φ = Φflat

≥ 0 , (2.17)

for any arbitrary vector v belonging to the n-dimensional field space. Finally, to

ensure that the scalar potential is BFB, we require V tree(ϕN) ≥ 0, for all possible

directions N.

2.2 The Gildener and Weinberg Approach to

EWSSB

In this section we review the GW [21] approach to EWSSB in SI multi-scalar

renormalisable gauge field theories. According to this approach, the minimisation

of the full potential V is performed perturbatively along a minimal flat direction

Φflat, which was discussed in the previous section. The full potential V consists

of the classical tree-level potential V tree as well as a set of quantum corrections,

V k−loop
eff , generated at the kth-loop level (k = 1, 2, ...). Each k-loop contribution is

a kth order polynomial in ln φ2

µ2 , where µ is the renormalisation group (RG) scale.
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The GW approach requires that the logarithms are not too large so that V tree >

V 1−loop
eff > V 2−loop

eff > ... and perturbation theory can be applied. The theory must

also be weakly coupled for this approach to be valid, which constitutes the regime

of validity for our investigations.

Assuming that the logarithmic terms of the quantum corrections are small

then the full potential V is dominated by the tree-level (or zero-loop) term

V tree(Φ) =
1

4!
fijkl φiφjφkφl , (2.18)

where repeated indices are summed over and Φ (2.11) is an n-dimensional field

multiplet composed of the real scalar fields of the theory, φi (with i = 1, 2, . . . , n).

In (2.18), the quartic couplings of the potential are represented by fijkl which is

fully symmetric in all its indices. It can easily be verified that the tree-level

potential V tree(Φ) (2.18) is a general solution to the WI for SI given in (2.12).

To ensure that perturbation theory stays valid, the idea of GW is to choose a

value of the RG scale µ = Λ at which V tree(Φ) has a non-trivial continuous local

minimum along a ray Φflat. Using the parameterisation for Φ in (2.13), the local

minimum is found by adjusting the RG scale µ so that

min
NiNi=1

V tree(N) = min
NiNi=1

fijkl(µ)NiNjNkNl = 0 , (2.19)

which it is assumed occurs for a particular unit vector N = n and at a specific

value of the RG scale, µ = Λ. It should be noted that (2.19) imposes only one

constraint on the parameters fijkl(Λ), independent of the number of parameters

fijkl contains and specifically only at the RG scale Λ. Since (2.19) is equivalent to

applying (2.16) to (2.18), then according to Section 2.1, the tree-level potential

is both zero and an extremum along the ray Φflat = ϕn. Applying the extremum

relation (2.15) to (2.18) leads to the constraint

∂V tree(N)

∂Ni

∣∣∣
N=n

= 0 ⇔ fijkl(Λ)njnknl = 0 . (2.20)
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To ensure that the stationary flat direction is a local minimum requires sat-

isfying the condition in (2.17). To achieve this the Hessian matrix P, which is

defined as

(P)ij ≡ 1

ϕ4

∂2V tree(N)

∂Ni∂Nj


N=n

=
1

2
fijklnknl , (2.21)

must be non-negative definite, i.e. the n × n-dimensional matrix P has either

vanishing or positive eigenvalues. To ensure P is non-negative definite requires

ui(P)ijuj ≥ 0, for all non-zero vectors u in the n-dimensional real scalar field

space.

Since V tree(Φ) vanishes along Φflat, the full potential V will be dominated by

higher-order loop contributions along the flat direction, specifically by the one-

loop effective potential, V 1−loop
eff (Φ). Adding higher-order quantum corrections

gives a small curvature in the radial direction of Φflat, which picks out a specific

value of ϕ, vϕ, along the ray as the minimum. In addition, a small shift may also

be produced in a direction δΦ = vϕδn which is perpendicular to the flat direction

n, i.e. n · δn = 0.

The stationary condition (2.15) can be extended to find the minimum of the

new one-loop corrected scalar potential

∇
(
V tree(Φ) + V 1−loop

eff (Φ)
) ∣∣∣

Φ = vϕ(n+δn)
= 0 . (2.22)

According to the GW perturbative approach, one has to consistently expand

this last expression to the first-loop order, where the perpendicular shift δΦ is

considered to be a first-loop order parameter. Thus, expanding to first order in

small quantities gives

v2
ϕP · δΦ + ∇V 1−loop

eff (Φ)
∣∣∣
Φ=vϕn

= 0 , (2.23)

where the dot indicates the matrix multiplication of the Hessian matrix P with the

vector δΦ. The perturbative minimisation condition (2.23) uniquely determines
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δΦ, except for directions along eigenvectors of P with zero eigenvalues. These

zero eigenvectors include the flat direction n itself, since n · P = 0 by virtue of

(2.20) and (2.21). They also include any Goldstone boson directions which result

from the spontaneous symmetry breaking (SSB) of any continuous symmetries.

There is no reason to expect any more zero eigenvalues of P, and it is assumed

that this is the case.

Instead of using (2.23) to determine δΦ, it can be used to find a relation that

defines the value of vϕ. Contracting (2.23) from the left with n, leads to the

minimisation condition along the radial direction:

n · ∇V 1−loop
eff (Φ)

∣∣∣
Φ=vϕn

=
dV 1−loop

eff (ϕn)

dϕ

∣∣∣∣
ϕ=vϕ

= 0 . (2.24)

Along the flat direction the one-loop effective potential, V 1−loop
eff (ϕn), can be

written in the general form:

V 1−loop
eff (ϕn) = A(n)ϕ4 + B(n)ϕ4 ln

ϕ2

Λ2
, (2.25)

where the n-dependent renormalised dimensionless constants A and B are given

in the modified minimal subtraction (MS) renormalisation scheme1 [35] by

A =
1

64π2v4
ϕ

{
Tr

[
m4

S

(
−3

2
+ ln

m2
S

v2
ϕ

)]
+ 3Tr

[
m4

V

(
−5

6
+ ln

m2
V

v2
ϕ

)]

−4Tr

[
m4

F

(
−1 + ln

m2
F

v2
ϕ

) ]}
,

B =
1

64π2v4
ϕ

(
Trm4

S + 3Trm4
V − 4Trm4

F

)
, (2.26)

where the trace is taken over the mass matrix and over all internal degrees of

1In the MS renormalisation scheme one absorbs the divergent part of the Feynman diagram
calculations plus a universal constant into the counterterms, see (D.16).
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freedom2. The scalar, vector and fermion masses mS,V,F in (2.26) are the tree-

level scalar, vector and fermion mass matrices evaluated at vϕ n.

Minimising (2.25) according to (2.24) implies that the potential has a non-

trivial stationary point at a value of the RG scale Λ, given by

Λ = vϕ exp

(
A

2B
+

1

4

)
. (2.27)

Note that since the effective potential coefficients A and B are of the same loop

order, the RG scale Λ and the minimum vϕ are expected to be of comparable

order as well. Thus, provided potentially large logarithms of the type ln
v2

ϕ

Λ2 can

be kept under control, i.e. of the order of unity, then perturbation theory should

be a valid approximation.

The relation in (2.27) can now be used to define the one-loop effective potential

along the flat direction in terms of the one-loop VEV vϕ

V 1−loop
eff (ϕn) = B(n) ϕ4

(
ln
ϕ2

v2
ϕ

− 1

2

)
. (2.28)

Even though the explicit dependence of V 1−loop
eff (ϕn) on the RG scale Λ has

disappeared, there still exists an indirect dependence on Λ through the kinematic

parameters in B(n). At the minimum V 1−loop
eff (ϕn) reduces to

V 1−loop
eff (vϕ n) = −1

2
B(n) v4

ϕ . (2.29)

For vϕn to be a minimum, V 1−loop
eff (vϕn) must be less than the value of the poten-

tial at the origin V (Φ = 0) = 0, hence V 1−loop
eff (vϕn) must be negative. This can

only happen if B(n) > 0. This constraint also ensures that the potential is BFB,

i.e. the one-loop effective potential (2.28) remains non-negative for infinitely large

values of ϕ.

2Note that the internal degrees of freedom for Majorana fermions are half those of the Dirac
fermions. Consequently, if the fermion F is Majorana, the pre-factor −4 in front of the trace
should be replaced with −2.
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At tree-level the squared masses of the scalar bosons are given by the eigen-

values of the matrix

(m2
S)ij =

∂2V tree(Φ)

∂φi ∂φj

∣∣∣∣∣
Φ= vϕ n

= v2
ϕ (P)ij . (2.30)

Previously, we demanded that the Hessian matrix P had positive definite eigen-

values, except for a set of zero eigenvalues due to the Goldstone bosons associated

with the SSB of continuous symmetries of the theory and one zero eigenvalue due

to the flat direction. Hence the model contains a set of massive scalars, a set of

massless Goldstone bosons and a single massless scalar, which we denote as h,

associated with the flat direction.

Beyond the tree approximation, h does not remain massless. By including the

one-loop correction V 1−loop
eff , the mass matrix will shift to

(m2
S + δm2

S)ij =
∂2
(
V tree(Φ) + V 1−loop

eff (Φ)
)

∂φi∂φj


Φ=vϕ(n+δn)

, (2.31)

which to first order in small quantities becomes

(δm2
S)ij =

∂2V 1−loop
eff (Φ)

∂φi∂φj

∣∣∣∣∣
Φ=vϕn

+ vϕ fijklnkδφl . (2.32)

Using perturbation theory to first order, the mass of h can be calculated by taking

the expectation value of δm2
S with respect to the unperturbed eigenvector n:

m2
h = ninj(δm

2
S)ij

= ninj
∂2V 1−loop

eff (Φ)

∂φi∂φj

∣∣∣∣∣
Φ=vϕn

=
d2V 1−loop

eff (ϕn)

dϕ2

∣∣∣∣∣
ϕ=vϕ

= 8Bv2
ϕ , (2.33)
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where we have used (2.25) and (2.27) to arrive at the last line. The field h is the

pseudo-Goldstone boson of the anomalously broken scale invariance, since it is

massless at tree-level when scale invariance holds, but acquires a non-zero mass at

the one-loop level (2.33) once scale invariance is broken by quantum corrections.

The other massive scalar states of the theory can be easily determined pro-

vided (δm2
S)ij remains a small effect compared to the tree-level mass matrix

(m2
S)ij. If this is the case, their masses are given by the relation:

m2
H = ñiñj

∂2V tree(Φ)

∂φi∂φj


Φ=vϕn

= ñ · P · ñ , (2.34)

where the massive scalar directions are defined similarly to Φflat as ΦH = ϕñ,

where ñ is a unit vector perpendicular to n. The Goldstone bosons associated

with the SSB of continuous symmetries of the theory remain massless provided

V 1−loop
eff (Φ) respects the same global symmetries as V tree(Φ).
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Chapter 3

The Minimal Scale Invariant

Extension of the Standard Model

In this chapter we present the Minimal Scale Invariant extension of the Standard

Model. We begin with a review of the general Lagrangian that describes the

MSISM, we then determine several necessary conditions for the MSISM tree-

level potential and consider the effects of applying the WI to it. We continue

by discussing the flat directions of the MSISM, first considering an appropriate

parameterisation and then presenting a general classification of the types of flat

directions that can occur in the tree-level scalar potential. We also present the

one-loop effective potential for the MSISM from which we derive the mass of the

pseudo-Goldstone boson of the broken scale invariance h and the RG scale Λ.

At this point, we also take the opportunity to discuss the short-comings of the

SI SM. Finally, we briefly discuss the generic phenomenological features of the

different types of flat directions in the MSISM. A detailed investigation of the

physically viable flat directions of the MSISM in a number of different scenarios

is continued in Chapters 4 and 5.
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3.1 The MSISM Lagrangian

The Lagrangian that defines the MSISM can be written as a sum of five terms:

LMSISM = Linv + LGF + LFP + Lν − V tree(Φ, S) . (3.1)

Of these five terms, the gauge-invariant Linv, gauge-fixing LGF and Faddeev–

Popov LFP Lagrangians are discussed in depth in Appendix B, whilst analysis of

the right-handed neutrino Lagrangian Lν is postponed until Chapter 6. The last

term V tree(Φ, S) is the tree-level potential of the MSISM which is given by

V tree(Φ, S) =
λ1

2
(Φ†Φ)2 +

λ2

2
(S∗S)2 + λ3Φ

†ΦS∗S + λ4Φ
†ΦS2

+ λ∗4Φ
†ΦS∗2 + λ5S

3S∗ + λ∗5SS
∗3 +

λ6

2
S4 +

λ∗6
2
S∗4 . (3.2)

We can linearly decompose the SU(2)L scalar doublet Φ and the complex singlet

field S as follows

Φ =


 G+

1√
2
(φ+ iG)


 , S =

1√
2
(σ + iJ) , (3.3)

where φ and σ are the CP-even real scalar fields, G and J the CP-odd real scalar

fields and G+ is the charged Goldstone boson.

To obtain a stable minimum for the scalar potential we must ensure that

V tree is BFB. This can be achieved by placing a set of constraining conditions

on the quartic couplings λ1,2,...,6. These conditions are determined by analysing

the potential in terms of two real and independent gauge-invariant field bilinears:

Φ†Φ and S∗S. To convert (3.2) into this representation, we re-express the field S

as S = |S|eiθS , where θS is the phase of the complex field and S∗S = |S|2. The

32



tree-level scalar potential can then be rewritten as

V tree =
1

2

(
Φ†Φ , S∗S

)

Λ11 Λ12

Λ21 Λ22




Φ†Φ

S∗S


 , (3.4)

where the elements of the matrix take the form:

Λ11 = λ1 ,

Λ12 = Λ21 = λ3 + λ4e
2iθS + λ∗4e

−2iθS ,

Λ22 = λ2 + 2λ5e
2iθS + 2λ∗5e

−2iθS + λ6e
4iθS + λ∗6e

−4iθS . (3.5)

Since, by definition, the two bilinears Φ†Φ and S∗S are positive-definite, the

requirement for V tree to be BFB depends exclusively on the matrix elements. We

find that the following two conditions are required to keep V tree BFB:

(i) TrΛ ≥ 0 , (ii)





Λ12 ≥ 0 , if Λ11 = 0 or Λ22 = 0

DetΛ ≥ 0 , if Λ11 6= 0 and Λ22 6= 0
. (3.6)

Obviously, these conditions explicitly depend on the phase θS through the matrix

elements given in (3.5). Since θS is the phase of the complex field S it determines

the direction of a ray in the σ-J plane within the entire real scalar field space.

It is therefore essential that the conditions (3.6) hold true for all values of θS

thereby ensuring that V tree remains BFB in all possible field directions, including

along the flat direction.

The WI for scale invariance (2.10) can be applied to the MSISM. We first

note that the derivatives of the tree-level potential V tree (3.2) with respect to

the different representations, real fields, complex fields and bilinears, are related
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through

2Φ†Φ
∂V tree

∂(Φ†Φ)
=

∂V tree

∂Φ
Φ + Φ†∂V

tree

∂Φ†

= ℜG+ ∂V
tree

∂ℜG+
+ ℑG+ ∂V

tree

∂ℑG+
+G

∂V tree

∂G
+ φ

∂V tree

∂φ
,

2S∗S
∂V tree

∂(S∗S)
= S

∂V tree

∂S
+ S∗∂V

tree

∂S∗

= σ
∂V tree

∂σ
+ J

∂V tree

∂J
, (3.7)

where ℜG+ = 1√
2
(G+ + G−) and ℑG+ = i√

2
(G− − G+) with G− = (G+)∗. The

second equation in (3.7) involving the complex singlet field S was derived by

employing the relations:

S∗S
∂V tree

∂(S∗S)
+

∂V tree

∂(2iθS)
= S

∂V tree

∂S
,

S∗S
∂V tree

∂(S∗S)
− ∂V tree

∂(2iθS)
= S∗∂V

tree

∂S∗ . (3.8)

Using these relations, we can re-express the WI (2.10) in terms of derivatives with

respect to bilinears only, explicitly we find

S∗S
∂V tree

∂(S∗S)
+ Φ†Φ

∂V tree

∂(Φ†Φ)
= 2V tree . (3.9)

As expected the absence of a derivative term with respect to the phase θS implies

that θS can not affect whether the MSISM is SI or not.

It is now an appropriate time to discuss the predictive power of the scalar

sector of the MSISM. The MSISM potential contains nine real quartic couplings,

implying that the MSISM is much less predictive than the SM, which contains

only two real couplings, m2 and λ. However, imposing the flat direction condition

(2.15) and including possible additional symmetries, such as a U(1) symmetry

acting on S, can reduce the number of independent parameters significantly. In

34



fact, most of the scenarios we study rely on only two or three essential independent

quartic couplings, thereby making the MSISM a comparatively predictive theory.

3.2 Classification of the Flat Directions

Following the approach presented in Chapter 2, the flat direction is parameterised

as an n-dimensional vector Φflat, whose components represent all the real degrees

of freedom of the scalars fields in the theory. In the MSISM there are six real

scalar fields, ℜG+, ℑG+, G, φ, σ and J , and the flat direction lies in the vector

space spanned by all of them. However, by exploiting the SM gauge symmetry,

the flat direction can be restricted to the vector space spanned by the fields φ,

σ and J only. This does not result in a loss of generality since the VEVs of

the Goldstone bosons G± and G can be chosen to be zero, and remain so even

beyond tree-level, therefore they will always contribute zero components to the

flat direction. Thus, the general flat direction Φflat can be dimensionally reduced

to1

Φflat = ϕ




nφ

nσ

nJ


 =




ϕφ

ϕσ

ϕJ


 , (3.10)

where the components nφ,σ,J satisfy the unit vector constraint: n2
φ +n2

σ +n2
J = 1.

At the one-loop minimum of the flat direction we have

vϕnφ ≡ vφ , vϕnσ ≡ vσ , vϕnJ ≡ vJ , (3.11)

where vϕ is the specific value of ϕ picked out to be the minimum along the flat

direction by the addition of the quantum corrections to the full potential V . The

VEV of the real fields σ and J are vσ and vJ respectively, whilst vφ is the VEV

of φ. Since σ and J do not interact with the gauge bosons or the fermions, the

1We introduce a new notation for the second vector which is different from that used in [29]
so that we may explicitly differentiate between the scalar field and the flat direction component.
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VEV of φ is equal to the SM VEV of the field HSM , vSM = 246 GeV, whereas vσ

and vJ are dependent on the conditions of the specific scenario.

To minimise the potential and ensure that the flat direction represents an

extremum of the tree-level potential, we need to satisfy relation (2.15), i.e. we

require that all the derivatives of V tree with respect to the real fields φ, σ and J

vanish when evaluated along the flat direction. Using (3.7), it is much simpler

to calculate these derivatives with respect to the fields Φ and S instead. We find

that the following two complex tadpole conditions (and their complex conjugates)

need to be satisfied

∂V tree

∂Φ

∣∣∣∣∣
Φflat

= ϕ†
Φ

[
λ1(Λ)ϕ†

ΦϕΦ + λ3(Λ)ϕ∗
SϕS + λ4(Λ)ϕ2

S + λ∗4(Λ)ϕ∗ 2
S

]
= 0 ,(3.12)

∂V tree

∂S

∣∣∣∣∣
Φflat

= ϕ∗
S

[
λ2(Λ)ϕ∗

SϕS + λ3(Λ)ϕ†
ΦϕΦ + 3λ5(Λ)ϕ2

S + λ∗5(Λ)ϕ∗ 2
S

]

+ ϕS

[
2λ4(Λ)ϕ†

ΦϕΦ + 2λ6(Λ)ϕ2
S

]
= 0 , (3.13)

where Φflat is defined in (3.10). To clarify the notation, we assume along the

dimensionally reduced flat direction Φ and S become respectively ϕΦ = 1√
2
ϕφ

and ϕS = 1√
2
(ϕσ + iϕJ), this is analogous to the decomposition of the fields

(3.3). There are three distinct approaches to simultaneously satisfying both of

the above minimisation conditions, which generically lead to three different types

of flat directions: Type I, Type II and Type III.

3.2.1 The Type I Flat Direction

The Type I flat direction is defined so that along the flat direction the scalar

doublet Φ develops a VEV but the singlet S does not, i.e. ϕΦ 6= 0 and ϕS = 0.

Since ϕS = 0, the minimisation condition (3.13) is automatically satisfied, whilst

the other condition (3.12) forces us to set λ1(Λ) = 0. The values of the other

quartic couplings in V tree are constrained by the BFB conditions (3.6), such that
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Λ22 > 0 and Λ12 > 0.

Since the flat direction components ϕσ and ϕJ are both zero, the flat direction

(3.10) can be further reduced to

Φflat = ϕnφ = ϕφ , (3.14)

where nφ = 1. This implies that the flat direction lies directly along the φ

axis in the real scalar field space. Therefore, since the field which is associated

with the flat direction corresponds to the massless pseudo-Goldstone boson of

the anomalously broken scale invariance h (see Section 2.2), we have that for the

Type I flat direction φ ≡ h.

3.2.2 The Type II Flat Direction

Along the Type II flat direction, both the doublet Φ and the singlet S develop

non-zero VEVs. This implies (3.12) and (3.13) can only be satisfied if specific

relations among the quartic couplings are met at some RG scale Λ. To examine

what this means let us consider a U(1) invariant MSISM scalar potential which

is invariant under U(1) rephasings of the field S → eiαS, where α is an arbitrary

phase. As a direct consequence of the U(1) invariance the quartic couplings λ4,5,6

in (3.2) vanish. Moreover, the minimisation conditions (3.12) and (3.13) lead to

the constraint:

ϕ†
ΦϕΦ

ϕ∗
SϕS

=
n2

φ

n2
σ + n2

J

= −λ3(Λ)

λ1(Λ)
= −λ2(Λ)

λ3(Λ)
. (3.15)

In order to satisfy the above relation and the BFB condition (3.6), we must

demand that λ1 > 0, λ2 > 0 and λ3 < 0.

In a general Type II flat direction, both σ and J will develop VEVs, since S

is a complex field. However, if a U(1) symmetry is acting on the scalar potential,

any possible phase of S can be eliminated through a U(1) rephasing, such that

ϕS is real and ϕJ = 0. Consequently, for the U(1) invariant scenario, the flat
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direction can be dimensionally reduced to a two component vector and applying

the constraints (3.15) and n2
φ + n2

σ = 1 yields

Φflat = ϕ



√

−λ3(Λ)
λ1(Λ)−λ3(Λ)√

λ1(Λ)
λ1(Λ)−λ3(Λ)


 = ϕφ


 1√

λ1(Λ)
−λ3(Λ)


 . (3.16)

Since the U(1) invariant Type II flat direction is composed of both the φ and

σ fields, there will be mixing between the two CP even states in the mass basis.

The mass basis is defined by the field associated with the flat direction h and

those fields associated with directions perpendicular to the flat direction. Thus,

for the U(1) invariant scenario, the mass eigenstates are the massless Goldstone

boson J , associated with the spontaneous breaking of the U(1) symmetry, the

massless pseudo-Goldstone boson associated with broken scale invariance h, and

a single massive scalar H , where h and H are given by

h = cos θ φ + sin θ σ , H = − sin θ φ + cos θ σ , (3.17)

where cos2 θ = −λ3(Λ)
λ1(Λ)−λ3(Λ)

.

The general U(1) non-invariant scenario is much more involved and will be

discussed in more detail in Section 5.2. However, in general, the flat direction of

the U(1) non-invariant scenario is a three component vector, which implies that

the scalar boson mass eigenstates will be a mixture of all three quantum fields φ,

σ and J .

3.2.3 The Type III Flat Direction

The Type III flat direction is characterised so that along the flat direction the

doublet field Φ has a zero VEV. This poses a phenomenological problem because

without a VEV for Φ, or consequently φ, the Higgs mechanism can not occur

and the electroweak gauge bosons remain massless. However, beyond the tree

approximation, there will be a small shift perpendicular to the direction of the
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flat direction. If this shift is in a direction which gives the field φ a VEV, it will

in general be too small to account for the W± and Z boson masses unless a large

hierarchy between the VEVs of the Φ and S fields is introduced [27, 28]. For this

reason we do not study the Type III flat direction.

The three types of flat direction described above provide a complete classifica-

tion of the flat directions in the MSISM. However, we should note that each type

of flat direction may contain several different variations. For example, consider

the U(1) non-invariant Type II flat direction. It requires (3.12) and (3.13), but

places no explicit constraints on how the quartic couplings of the scalar potential

satisfy these relations. Each choice provides a unique and valid flat direction and

this gives rise to a vast number of possible variants. We do not intend to go

through each such variant, but rather concentrate on a few representative sce-

narios which appear to be physically interesting, in terms of new sources of CP

violation, neutrino masses and DM candidates.

3.3 The One-Loop Effective Potential

The one-loop effective potential of the MSISM has been computed in terms of

Φ and S in Appendix C, where the full one-loop renormalised effective potential

V 1−loop
eff is given in (D.17). Along the flat direction, the RG scale takes the specific

value µ = Λ and the renormalised V 1−loop
eff can be written in a form similar to the

one in (2.25)

V 1−loop
eff (ϕφ) = αϕ4

φ + β ϕ4
φ ln

ϕ2
φ

Λ2
, (3.18)
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where the coefficients α and β are dimensionless renormalised parameters and are

given in the MS renormalisation scheme [35] by

α =
1

64π2v4
φ

[ 2∑

i=1

m4
Hi

(
− 3

2
+ ln

m2
Hi

v2
φ

)
+ 6m4

W

(
− 5

6
+ ln

m2
W

v2
φ

)

+ 3m4
Z

(
− 5

6
+ ln

m2
Z

v2
φ

)
− 12m4

t

(
− 1 + ln

m2
t

v2
φ

)

− 2
3∑

i=1

m4
Ni

(
− 1 + ln

m2
Ni

v2
φ

)]
,

β =
1

64π2v4
φ

( 2∑

i=1

m4
Hi

+ 6m4
W + 3m4

Z − 12m4
t − 2

3∑

i=1

m4
Ni

)
. (3.19)

In the above, we have neglected all the light fermions and retained only the

top quark and possible heavy Majorana neutrinos N1,2,3 [cf. (D.17)]. The mass

terms mX , where X = {H1,2, W, Z, t, N1,2,3}, are the particle masses, which are

determined by evaluating the mass parameters MX , defined in Appendix C, at

the minimum of the flat direction.

In the MSISM it is possible to write the one-loop effective potential V 1−loop
eff (Λ)

in (3.18) entirely in terms of ϕφ and vφ, without the need to involve the other

flat direction components ϕσ or ϕJ . This is possible because either, ϕσ = ϕJ = 0

along the Type I flat direction, or ϕσ and ϕJ are related to ϕφ along the Type II

flat direction.

It is possible to rewrite the MSISM effective potential (3.18) in the general

parameterisation of (2.25). Employing the fact that ϕφ = ϕnφ in (3.18), we find

the following relations between the parameters A, B, α and β:

A = αn4
φ + β n4

φ lnn2
φ , B = β n4

φ , (3.20)

which can be substituted into (3.18) to give (2.25). Futhermore, substituting the

above expressions for A and B into (2.33) and (2.27), we obtain the explicit de-

pendence of the mass of h and the RG scale Λ on the effective potential coefficients
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α and β:

m2
h = 8 β n2

φv
2
φ , (3.21)

Λ = vφ exp

(
α

2β
+

1

4

)
. (3.22)

These two relations mh (3.21) and Λ (3.22) will be used in our detailed investi-

gation of the Type I and Type II flat directions in Chapters 4 and 5 respectively.

With the aid of (3.22), we can eliminate the explicit dependence of the one-

loop effective potential in (3.18) on the RG scale Λ,

V 1−loop
eff (ϕφ) = β ϕ4

φ

(
ln
ϕ2

φ

v2
φ

− 1

2

)
, (3.23)

where all kinematic quantities on the right-hand side, such as β, ϕφ and vφ, are

evaluated at the RG scale Λ [cf. (2.28)]. Hence, the size of the radiative correc-

tions along the minimum flat direction is determined by the effective potential

coefficient β and is therefore highly model dependent.

Now we have presented the one-loop effective potential we can summarise

the scalar mass spectrum of the MSISM. The scalar mass spectrum consists of

two scalars H1,2 which generally both have non-zero masses mH1,2
, unless, for

example, the U(1) symmetry acts on S so that mH2
= mJ = 0, and one other

scalar h, which gains a mass at one-loop via (3.21). We note that the Gold-

stone bosons G± and G associated with the EWSSB of the SM gauge group

receive gauge-dependent masses along the minimum flat direction e.g. see (B.9).

However, the one-loop effective potential V 1−loop
eff (Λ) remains gauge independent,

since the gauge-dependent mass terms of the Goldstones cancel against the gauge-

dependent parts of the gauge boson and ghost contributions. For more extensive

details see Appendix C.

We also take this opportunity to consider the short-comings of the SI SM.

Given the explicit form of the effective potential coefficient β for the MSISM in

(3.19), we can see why a SI version of the SM using the one-loop perturbative
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GW [21] approach is not phenomenologically viable. The SI extension of the SM

is similar to the Type I flat direction except that the extra scalar S does not

exist, but the flat direction still lies along the φ axis. This implies that the Higgs

boson HSM corresponds to φ ≡ h and is massless at the tree level, but acquires a

one-loop radiatively generated mass given by (3.21). Consequently, the SM Higgs

boson mass mHSM
≡ mh is explicitly dependent on β, i.e.

β =
1

64π2v4
φ

(
6m4

W + 3m4
Z − 12m4

t

)
. (3.24)

Given the presently well-known experimental values of the top quark, W± and

Z boson masses [6], the coefficient β is negative and hence so is m2
HSM

. This is

in violation of the LEP2 limit [9]: mHSM
> 114.4 GeV. Additionally, considering

our discussion in Section 2.2, since β and B are negative, the SI limit of the SM

has a potential which is not BFB.

Other attempts have been made in the literature to discuss the SI SM without

using the one-loop perturbative GW approach, for example see [36, 37]. However,

it appears that these approaches require large values of the quartic coupling

λ which would approach a Landau pole not far beyond the EW scale. Also,

without the additional scalars, the SI SM would not be able to address any of

the phenomenology that the SM currently can not incorporate.

3.4 Phenomenology of the MSISM

As previously mentioned in the introduction, the MSISM could provide a con-

ceptually simple solution to the gauge hierarchy problem by including a minimal

set of new fields and new couplings. It is interesting to see what effect these

new fields and couplings have on the phenomenological features of the different

variations of flat direction in the MSISM. In particular, we are interested in sce-

narios which include new sources of CP violation, provide massive DM candidates

and can incorporate a natural mechanism for generating the small light-neutrino
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Flat Direction U(1) Invariant CP Violation Massive DM Seesaw
Type Candidate Neutrinos

Type I

ϕS = 0 Yes None Yes No

ϕS = 0 No Explicit Yes No

Type II

ϕS = real Yes None No Yes

ϕS = real No Explicit Model Yes
Dependent

ϕS = imaginary No Explicit Model Yes
Dependent

ϕS = complex No Explicit or Model Yes
Spontaneous Dependent

Table 3.1: The possible phenomenology that could occur in the Type I and Type II
flat directions of the MSISM for different variations of the complex singlet scalar S
VEV. This includes their potential to realise explicit or spontaneous CP violation,
massive DM candidates and possible implementation of the seesaw mechanism for
naturally explaining the small light-neutrino masses.

masses. We should note here that any U(1) symmetry imposed on the MSISM

is not gauged, unlike [22, 27], and so there will be no additional gauge bosons in

any of these considered scenarios.

A natural extension of MSISM is to include right-handed neutrinos, which

would couple to the complex singlet scalar S in a SI way [15, 25, 26, 27, 28]. If

the VEV of S is non-zero, such as in the Type II flat direction, then the naturally

small Majorana masses for the light neutrinos can be generated via the seesaw

mechanism [34]. In the Type I flat directions, where ϕS = 0, Dirac-type neutrino

masses can still be generated from the SM Higgs VEV, however, just like the

SM, the neutrino Yukawa couplings would need to be many orders of magnitude

lower than the electron Yukawa coupling, of which there would be no explanation.
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Hence, as we have listed in Table 3.1, only Type II flat directions have the ability

to realise the seesaw mechanism.

The Sakharov Criteria [38] requires CP violation as one of its conditions for

the Universe to dynamically evolve a baryon asymmetry. However, the level of

CP violation in the SM from the Kobayashi-Maskawa phase [39] is not enough

to generate the large matter-antimatter asymmetry in the Universe today and

additional CP violation is required. We have presented in Table 3.1 the scenarios

of the MSISM which can contain either explicit CP violation, through the complex

quartic couplings λ4,5,6, or spontaneous CP violation, from the complex VEV of

S, in the newly extended scalar sector. Notice that the Type II flat direction

with an imaginary ϕS does not violate CP spontaneously, since one may redefine

S as S ′ ≡ iS to render this flat direction real without introducing any new phase

in the quartic couplings of the scalar potential2.

Finally, Table 3.1 also shows the scenarios which could contain a massive stable

scalar particle that could qualify as a DM candidate. As was pointed out in [41],

a natural way of including a massive stable scalar boson is to impose a parity

symmetry on the scalar potential. Such parity symmetries could be: σ → −σ,

J → −J , or σ ↔ ±J . Therefore, as we comment in Table 3.1, the existence of

a DM candidate is model dependent and requires more specific details about the

scenario.

In the next two chapters we discuss the phenomenology of a few representative

scenarios of the MSISM in more detail, without the inclusion of right-handed

neutrinos. A detailed analysis of the MSISM extended by right-handed neutrinos

is given in Section 6.

2An analogous approach is discussed in [40].
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Chapter 4

The Type I Flat Direction

In this chapter we investigate the Type I flat direction of the MSISM. We consider

two different scenarios: the U(1) invariant and the general U(1) non-invariant, and

for both scenarios make predictions on the size of their scalar mass spectrum and

the RG scale Λ. These predictions are achieved by first determining the allowed

region of quartic coupling parameter space permitted by both theoretical and

experimental constraints, and then applying these limits to the scalar masses and

Λ. The theoretical constraints are determined by keeping the quartic couplings

perturbative and keeping the potential BFB, whilst the experimental constraints

come from the electroweak oblique parameters S, T and U [32], the LEP2 Higgs

mass limit: mHSM
> 114.4 GeV [9] and the recently determined Tevatron excluded

range: 158 GeV < mHSM
< 175 GeV [10]. Having determined the scalar mass

spectrum we can discuss the possible phenomenology for each scenario in detail.

Before we begin this investigation, we shall briefly review some general aspects

that occur in all Type I MSISM flat directions. The Type I flat direction is defined

so that along the flat direction the complex singlet scalar S does not develop a

VEV at tree level. This implies that the flat direction lies along the φ axis in

the real scalar field space and as a direct consequence, the quantum field φ is the

pseudo-Goldstone boson associated with the anomalously broken scale invariance

h. As discussed in Section 3.2.1, in addition to ϕS = 0, the Type I flat direction
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also requires λ1(Λ) = 0 to satisfy the tree-level minimisation condition (3.12).

4.1 The U(1) Invariant Scenario

In the U(1) invariant limit, which assumes the MSISM is symmetric under U(1)

rephasings of the field S → eiαS, where α is an arbitrary phase, the tree-level

potential (3.2) for a Type I flat direction reduces to

V tree(Λ) =
λ2(Λ)

2
(S∗S)2 + λ3(Λ) Φ†ΦS∗S . (4.1)

The two quartic couplings λ2(Λ) and λ3(Λ) are both positive due to the BFB

conditions (3.6). Although the scalar potential (4.1) depends on two independent

couplings λ2(Λ) and λ3(Λ), it is not difficult to show that the scalar masses and

the RG scale Λ are completely dependent on only one, namely λ3(Λ). By setting

S = ϕS = 0, φ = vφ and λ1(Λ) = 0 in the general squared scalar mass matrix

M2
S (C.9), we find that the masses of σ and J are given by

m2
σ = m2

J =
1

2
λ3(Λ) v2

φ . (4.2)

Since these are the only two non-zero elements of M2
S, i.e. mφ = 0 and there is no

mixing between the scalars, the scalar spectrum consists of the mass eigenstates

φ ≡ h , σ ≡ H1 , J ≡ H2 , (4.3)

where σ and J have degenerate masses proportional to
√
λ3(Λ) (4.2). The other

scalar h, the pseudo-Goldstone boson associated with the anomalously broken

scale invariance, receives its mass mh at the one-loop level, by means of (3.21),

or more explicitly

mh =
1√

8πvφ

√
m4

σ +m4
J + 6m4

W + 3m4
Z − 12m4

t (4.4)
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where nφ = 1, see Section 3.2.1, and the V 1−loop
eff coefficient β is given in (3.19).

From (4.4) we can see mh is dependent on only one unknown, the quartic coupling

λ3(Λ), through the scalar masses mσ,J . Likewise, the RG scale Λ, also depends

on m2
H1,2

= m2
σ,J through the V 1−loop

eff coefficients α and β, and hence its value is

also fixed by λ3(Λ).

Considering the above discussion it is now clear that any theoretical con-

straints on λ3(Λ) will directly translate into constraints on the scalar mass spec-

trum and the RG scale Λ. An upper theoretical constraint on the value of λ3(Λ)

can be derived by requiring that all the couplings of the MSISM remain pertur-

bative at the scale Λ. We enforce this constraint by requiring that the one-loop

RG beta functions for all the generic couplings of the MSISM are less than one

when evaluated at the scale Λ:

βλ(Λ) ≤ 1 , (4.5)

where λ denotes the generic couplings of the MSISM, i.e.

λ = {λ1,2,...,6, g
′, g, gs, he,u,d, hN , h̃N} . (4.6)

We have calculated the one-loop beta functions βλ for all the significant cou-

plings in the MSISM and present them in Appendix D along side their one-loop

anomalous dimensions. The perturbative coupling constraint (4.5) is equivalent

to the triviality bound on the SM Higgs mass discussed in Chapter 1. Setting

λ1(Λ) = 0, we find that the most stringent upper limit on λ3(Λ) comes from

βλ3
(Λ) ≤ 1, which implies

2λ2
3(Λ) +

[
1.86 + 2λ2(Λ)

]
λ3(Λ) ≤ 8π2 , (4.7)

for mW = 80.40 GeV, mZ = 91.19 GeV and mt = 171.3 GeV [6]. Assuming

λ2(Λ) is negligible we obtain a maximum upper limit of λ3(Λ) ≤ 5.84, however
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this value decreases if λ2(Λ) increases. To clarify, by calling βλ3
(Λ) ≤ 1 the most

stringent limit we mean that the other two constraints on the quartic couplings

βλ1,2
(Λ) ≤ 1 allow larger values of λ3(Λ) than βλ3

(Λ) ≤ 1 does. A lower theoretical

constraint can be obtained by requiring that the potential remains BFB, which

is analogous to the vacuum stability bound of the SM, see Chapter 1. This is

assured at one-loop if the V 1−loop
eff coefficient β is positive, thus giving rise to a

lower theoretical bound of λ3(Λ) > 2.32. In summary, the theoretical constraints

require that λ3(Λ) lies in the range,

2.32 < λ3(Λ) ≤ 5.84 . (4.8)

Further constraints on λ3(Λ) can be derived from the experimental data of

direct Higgs searches and the electroweak oblique parameters S, T and U . The

oblique parameters are used to parameterise the effect of new physics on the gauge

boson self-energies. We discuss the oblique parameters and present the analytic

results of the electroweak oblique parameter shifts δS, δT and δU evaluated in

the MSISM with respect to the SM in Appendix E. In the U(1) invariant Type I

MSISM, the only scalar which interacts with the W± and Z bosons at one-loop is

h, since σ and J are decoupled from the SM particles. As a consequence, the shifts

δS, δT and δU are obtained from the h interactions only. Since these interactions

are identical to those of the SM Higgs boson HSM, the shift parameters δS, δT

and δU only depend on the difference between the two masses, mh and mHSM
.

For a fixed SM Higgs boson mass reference value, e.g. mref
HSM

= 117 GeV [6],

and assuming that δS, δT and δU fall within their 95% CL intervals, given in

(E.10), we obtain the results presented in Table 4.1. For values of λ3(Λ) < 100

the result for δU lies within the range set by δUexp and provides no constraint,

whilst the combined limit from δS and δT yields the constraint: λ3(Λ) < 49.12.

There are two direct Higgs boson searches that are of interest to us, the LEP2

limit: mHSM
= mh > 114.4 GeV [9] and region excluded by the Tevatron results:

158 GeV < mHSM
< 175 GeV [10]. Applying the LEP2 Higgs mass limit on the
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Oblique δS δT δU
parameter

Limit λ3(Λ) < 49.12 λ3(Λ) < 74.28 All values of λ3(Λ) < 100
on λ3(Λ) are within the range

of δUexp

Table 4.1: Upper limits on λ3(Λ) from the S, T and U oblique parameters in
the U(1) invariant MSISM with a Type I flat direction, assuming they fall within
their respective 95% CL intervals given in (E.10).

mass of the SM-like h boson we obtain the constraint λ3(Λ) > 6.29, whilst the

Tevatron results exclude the parameter space region 8.40 < λ3(Λ) < 9.24. Thus,

the experimental constraints require λ3(Λ) lies in the ranges

6.29 < λ3(Λ) < 8.40 or 9.24 < λ3(Λ) < 49.12 , (4.9)

where the lower of the two ranges is slightly outside the theoretical range given

in (4.8).

In Figure 4.1, we apply the above theoretical and experimental constraints,

(4.8) and (4.9) respectively, on the h (upper panel) and σ, J (lower panel) scalar

boson masses where we display the dependence of mh (4.4) and mσ,J (4.2) on the

quartic coupling λ3(Λ). The solid black βλ3
< 1 lines represent the theoretically

permitted values of the scalar boson masses determined from (4.8), whereas the

continuation of these lines into the dashed grey βλ3
> 1 lines correspond to the

non-perturbative regime, in which λ3(Λ) > 5.84. The region of the scalar mass

line between the horizontal blue LEP line and the horizontal red δS line, except

the green TEV region which is excluded by the Tevatron results, indicates the

region permitted by the combined experimental limits on λ3(Λ) summarised in

(4.9). Similarly, the region above the horizontal red δT line is excluded by the

weaker δT limit (see Table 4.1). It is interesting to remark that Figure 4.1 shows
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Figure 4.1: The scalar masses mh (upper plot) and mσ,J (lower plot) as func-
tions of λ3(Λ) in the U(1) invariant MSISM with a Type I flat direction. The
solid/black βλ3

< 1 lines represent the scalar masses for theoretically permit-
ted values of λ3(Λ), whilst the dashed/grey βλ3

> 1 extensions show the non-
perturbative values with λ3(Λ) > 5.84. The region of the mass line between the
horizontal blue LEP line and the horizontal red δS line is allowed by experimental
considerations of the LEP2 Higgs mass limit on the SM-like h boson and the δS
oblique parameter respectively, except for the green TEV region which is excluded
by the Tevatron results. The area above the horizontal red δT line is excluded by
the δT parameter constraint.
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Figure 4.2: The RG scale Λ plotted as a function of the quartic coupling λ3(Λ)
in the U(1) invariant MSISM with a Type I flat direction. The same line colour
convention as Figure 4.1 is applied. The only difference is the horizontal blue
LEP line, green TEV region and red δS and δT lines are now vertical, where the
area between the LEP and δS lines, excluding the green TEV region, is allowed
by the experimental conditions (4.9) and to the right of the δT line is excluded.

an exact value (the solid black and dashed grey line) for the physical scalar masses

mh,σ,J against the quartic coupling λ3(Λ). This implies that if the Type I U(1)

invariant flat direction of the MSISM was physically true, then a measurement of

mh would automatically give λ3(Λ) which in turn gives the RG scale Λ and the

other scalar masses mσ,J .

The effect of the constraints (4.8) and (4.9) on the RG scale Λ is shown in

Figure 4.2 as a dependence on the quartic coupling λ3(Λ). We have used the same

line colour convention as Figure 4.1, only now the horizontal LEP, TEV, δS and

δT lines are vertical, such that the green TEV region and the regions to the right

of the red δS and δT lines and to the left of the blue LEP line are experimentally

excluded. We observe that as λ3(Λ) approaches its minimum value, the coefficient

β gets closer to zero, and so the RG scale Λ tends to infinity. However, this is not

an issue since the area is not physically viable as it is excluded by the LEP2 Higgs

mass limit. For the majority of the line, except when λ3(Λ) → 2.32, Λ is of the
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order of the EW scale. This is important for a reason we have not yet addressed;

the running of the coupling constants. Given the circular nature of the following

argument; the value of the RG scale Λ is unknown until a value of λ3(Λ) which

depends on Λ is given, we have, for simplicity, evaluated all the quartic couplings

at the EW scale 246 GeV. This assumes that the quartic couplings do not vary

much between the EW scale and the RG scale Λ, which we have verified, and we

acknowledge that there could be an error on the values of the scalar masses and

RG scale Λ present here, but of no more than about 5%.

If we assume the LEP2 limit λ3(Λ) ≈ 6.3 as the most experimentally and

theoretically favourable value of λ3(Λ) then we obtain a value for the RG scale of

Λ ≈ 294 GeV. We find that although λ3(Λ) ≈ 6.3 is non-perturbative at Λ, i.e.

βλ3
(Λ) > 1, the theory does not develop a Landau pole until 104 GeV. By virtue

of (4.2), we are also able to predict the masses of the heavier degenerate scalar

bosons σ and J , specifically, mσ,J ≈ 437 GeV. Since the fields σ and J are both

stable, massive and have zero VEVs, they can qualify as DM candidates in the

so-called “Higgs-portal” scenario (also known as scalar phantoms) [41].

Phenomenological distinction between the MSISM with a Type I U(1) in-

variant flat direction and the SM would be very difficult as the two theories so

closely resemble each other. Since all the non-scalar couplings in the MSISM

are the same as the SM and the h-boson couplings to fermions and electroweak

gauge bosons are exactly the same as those for the SM Higgs boson, they can not

be used as a distinguishing factor. However, one subtle difference is the lack of

tree-level trilinear and quadrilinear h self-couplings in the MSISM with a Type I

flat direction, which are present in the SM. Thus, any experiment in search of the

trilinear Higgs boson coupling λHHH, for example see [42], will see a dramatically

reduced value for the trilinear coupling than that expected for the SM. Since

these are precision Higgs experiments they will not be performed at the Large

Hadron Collider (LHC), but could be tested at a collider like the International

e+e− Linear Collider (ILC). Since the two scalars σ and J only interact with h,
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they could be inferred through missing energy or because of the large hσ2 and

hJ2 couplings which would give sizable contributions at the one-loop quantum

level. Therefore, to distinguish between the MSISM with a Type I U(1) invariant

flat direction and the SM, precision Higgs experiments at an ILC-type collider

would be required.

Considering the analysis above, it is clear that in spite of being very predic-

tive by predominantly relying on only one unknown parameter λ3(Λ), the U(1)

invariant MSISM with a Type I flat direction has a number of weaknesses. This

scenario satisfies all experimental limits for a large quartic coupling λ3(Λ) ≈ 6.3,

but it lies above the boundary of non-perturbative dynamics given in (4.8). An-

other problematic feature is that it exhibits a Landau pole at energy scales of

order 104 GeV, which is many orders of magnitude below the standard GUT

(MGUT ≈ 1016 GeV) and Planck (MPlanck ≈ 1019 GeV) mass scales. Therefore,

in the next section, we relax the constraint of U(1) invariance and investigate

whether a general MSISM with a Type I flat direction can remain perturbative

up to the GUT or Planck scales.

4.2 The U(1) Non-Invariant Scenario

If the U(1) symmetry on the scalar field S is removed then the MSISM with a

Type I flat direction permits an extensive general tree level potential:

V tree(Λ) =
λ2(Λ)

2
(S∗S)2 + λ3(Λ) Φ†ΦS∗S + λ4(Λ) Φ†ΦS2 + λ∗4(Λ) Φ†ΦS∗2

+ λ5(Λ)S3S∗ + λ∗5(Λ)SS∗3 +
λ6(Λ)

2
S4 +

λ∗6(Λ)

2
S∗4 . (4.10)

Similar to the U(1) invariant scenario we can show that the scalar boson masses

and the RG scale Λ do not depend on all the quartic couplings in V tree(Λ) (4.10)

but only rely on two; λ3(Λ) and the modulus |λ4(Λ)| =
√
λ4(Λ)λ∗4(Λ) of the

generally complex coupling λ4(Λ). By substituting S = ϕS = 0, φ = vφ and
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λ1(Λ) = 0 into the general squared scalar boson mass matrix M2
S given in (C.9),

we obtain three non-zero matrix elements

m2
σ =

1

2

(
λ3(Λ) + λ4(Λ) + λ∗4(Λ)

)
v2

φ ,

m2
J =

1

2

(
λ3(Λ) − λ4(Λ) − λ∗4(Λ)

)
v2

φ ,

mσJ =
i

2

(
λ4(Λ) − λ∗4(Λ)

)
v2

φ . (4.11)

Determining the eigenvalues of M2
S provides the tree-level scalar boson masses

m2
H1

=
1

2

(
λ3(Λ)+2|λ4(Λ)|

)
v2

φ , m2
H2

=
1

2

(
λ3(Λ)−2|λ4(Λ)|

)
v2

φ , (4.12)

thus, in the most general case, the scalar spectrum consists of the mass eigen-

states,

h ≡ φ , H1 = cos θ σ + sin θ J , H2 = − sin θ σ + cos θ J , (4.13)

where cos2 θ =
m2

σ−m2

H2

m2

H1
−m2

H2

. From (4.12) we can see that the scalar masses depend on

only two coupling parameters, λ3(Λ) and |λ4(Λ)|. Consequently, the two effective

potential coefficients α and β also depend on λ3(Λ) and |λ4(Λ)| through the scalar

boson masses mH1,2
. It is therefore not difficult to see that the one-loop induced

h boson mass and the RG scale Λ also only depend on λ3(Λ) and |λ4(Λ)| through

(3.21) and (3.22) respectively.

We can see that if λ4(Λ) is complex then the two particle scalar-pseudoscalar

mixing term mσJ (4.11) explicitly violates CP and so the mass eigenstates H1,2

have indefinite CP parities. If, however, λ4(Λ) is real then the CP violating

term mσJ = 0 and under this condition the scalar fields reduce to H1 = σ and

H2 = J and CP is preserved. Throughout this analysis we use |λ4(Λ)| and are

not required to specify the complexity of λ4(Λ).

The quartic couplings are constrained at tree-level by the BFB conditions

given in (3.6). The allowed parameter spaces of the couplings λ2, λ5 and λ6 are
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restricted by the first condition in (3.6) which is only fulfilled if Λ22(Λ) ≥ 0. In

order for the first BFB condition to hold for any possible value of the phase θS,

we require that

λ2(Λ) ≥ 4 |λ5(Λ)| + 2 |λ6(Λ)| > 0 . (4.14)

For the second V tree BFB condition in (3.6), i.e Λ12(Λ) ≥ 0, for Λ11(Λ) = 0, to

hold for any value of θS requires

λ3(Λ) ≥ 2|λ4(Λ)| > 0 . (4.15)

Comparing this latter condition to the scalar boson masses given in (4.12), then

(4.15) ensures that mH1,2
are positive and consequently is an important condition

for the quartic couplings to respect.

As in the U(1) invariant scenario, we can derive more specific theoretical

constraints on the values of λ3(Λ) and |λ4(Λ)|, by demanding that the couplings

remain perturbative at Λ and that the one-loop effective potential V 1−loop
eff is BFB.

The most stringent theoretical upper limit on λ3(Λ) and |λ4(Λ)| is obtained by

requiring that βλ3
≤ 1 at Λ and assuming λ2(Λ), λ5(Λ) and λ6(Λ) are negligible,

which gives the constraint

2 λ2
3(Λ) + 8 |λ4(Λ)|2 + 1.86 λ3(Λ) ≤ 8π2 . (4.16)

This upper limit decreases if λ2(Λ), λ5(Λ) and λ6(Λ) increase. The lower theoret-

ical limit is obtained by requiring that β > 0, which translates into the constraint

λ2
3(Λ) + 4 |λ4(Λ)|2 > 5.39 . (4.17)

Complementary experimental constraints on the quartic couplings λ3(Λ) and

|λ4(Λ)| arise from the electroweak oblique parameters S, T and U and the direct

Higgs boson searches at LEP2 and Tevatron. Once again only h interacts with the

SM particles and useful experimental constraints on λ3(Λ) and |λ4(Λ)| are derived
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Figure 4.3: Theoretical and experimental exclusion contours in the λ3(Λ)-|λ4(Λ)|
parameter space of the general MSISM with a Type I flat direction. The theoret-
ically permitted region is shaded yellow and is enclosed by the black lines which
correspond to keeping λ3(Λ) ≥ 2|λ4(Λ)| > 0, βλ3

(Λ) ≤ 1 and β > 0. Above the
blue LEP line is experimentally allowed by the LEP2 Higgs mass limit and below
the red δS and δT lines is allowed by their respective 95% CL interval limits. The
green TEV region is excluded by the direct Higgs searches at the Tevatron.

from the 95% CL interval of the electroweak oblique parameters δS and δT using

the fixed SM Higgs boson mass reference value mref
HSM

= 117 GeV. The shift δU

does not provide a constraint since all values of λ3(Λ) and |λ4(Λ)| evaluate a value

of δU within its experimental 95% CL interval. Applying the LEP2 Higgs mass

limit to h, mHSM
= mh > 114.4 GeV, gives rise to the constraint:

λ2
3(Λ) + 4 |λ4(Λ)|2 > 39.54 . (4.18)

Similarly, the Tevatron exclusion range 158 GeV < mHSM
< 175 GeV [10], ex-

cludes the region

70.54 < λ2
3(Λ) + 4 |λ4(Λ)|2 < 85.31 . (4.19)

Combining all the aforementioned theoretical and experimental constraints,

we present the pertinent region of the λ3(Λ)-|λ4(Λ)| parameter space in Figure 4.3.
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The theoretically permitted region is shaded yellow and is enclosed by the black

λ3 = 2|λ4|, |λ4| = 0, βλ3
= 1 and β = 0 lines, which respectively represent keeping

the scalar masses positive (4.15), keeping the quartic couplings perturbative at

Λ (4.16) and keeping V 1−loop
eff (Λ) BFB (4.17). The regions below both the λ3 =

2|λ4| and β = 0 lines are theoretically excluded, and above the βλ3
= 1 line

corresponds to the non-perturbative regime where βλ3
(Λ) > 1. The region above

the blue LEP line is permitted by the LEP2 Higgs mass limit (4.18), implying

that the experimentally permitted region once again lies just outside the region of

perturbative dynamics. The regions above the red δS and δT lines are excluded

by their respective 95% CL intervals, δSexp and δTexp, and the green shaded TEV

region is excluded by the Tevatron excluded range (4.19).

We present the effect of all the theoretical and experimental constraints, dis-

played in Figure 4.3, on the scalar boson masses mh (upper panel), mH1
(middle

panel) and mH2
(lower panel) as functions of the quartic coupling λ3(Λ) in Figure

4.4. In each plot the white areas between the black lines represent the pertur-

bative regions (βλ3
< 1) which also contain positive scalar masses (4.15) and

keep the one-loop effective potential coefficient β > 0, which corresponds to the

shaded yellow region in Figure 4.3. Whereas, the non-perturbative extrapolations

(βλ3
> 1) are shaded grey with black dashed border lines. The areas above or

to the right of the red δS and δT lines are excluded by their respective 95% CL

limits on δSexp and δTexp (E.10). Likewise, the areas below or to the left of the

blue LEP lines are also excluded by the LEP2 Higgs mass limit applied to mh.

For clarity, the Tevatron excluded range has been neglected from the figures, but

from Figure 4.3 we can see it clearly lies in the non-pertubative region.

In Figure 4.5 we display the dependence of the RG scale Λ on the quartic

coupling λ3(Λ) after incorporating all the theoretical and experimental limits

and using the same line colour convention as Figure 4.4. Similar to the U(1)

invariant scenario, as λ3(Λ) approaches values which set β = 0, the RG scale Λ

tends to infinity, however, once again these values are all excluded by the LEP2
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Figure 4.4: The scalar masses mh (upper panel), mH1
(middle panel) and mH2

(lower panel) as functions of λ3(Λ) in the general MSISM with a Type I flat
direction. The white areas between the black lines show the regions which respect
the theoretical constraints; βλ3

(Λ) ≤ 1, λ3(Λ) ≥ 2|λ4(Λ)| > 0 and β > 0, whilst
the grey-shaded areas show their non-perturbative extensions, i.e. βλ3

(Λ) > 1.
The areas lying to the right or above the red lines for δS and δT are excluded.
Likewise, the areas to the left or below the blue LEP line are ruled out by the
LEP2 Higgs mass limit.
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Figure 4.5: The RG scale Λ as a function of λ3(Λ) in the general MSISM with
a Type I flat direction. The white area between the black lines shows the region
that corresponds to perturbative values of λ3(Λ) and |λ4(Λ)|, whilst the grey-shaded
area shows the non-perturbative region, both of which respect the constraint (4.15).
The area lying to the left of the blue LEP line is ruled out by the LEP2 Higgs
mass limit. Likewise, the areas to the right of the red lines for δS and δT are
also excluded.

Higgs mass limit.

Since the experimentally permitted regions lie just outside the boundary for

perturbative dynamics, we again take mh ∼ 115 GeV as the most favourable

value from which we can predict the range of the RG scale Λ and the mass ranges

for the other scalars H1,2. From Figure 4.5, we see that the RG scale Λ lies in

the range 293 GeV <∼ Λ <∼ 359 GeV and is of the order of the EW scale. We note

that the change from a specific value in the U(1) invariant scenario to a range

of values is entirely due to the addition of the quartic coupling λ4(Λ). Similarly,

from the middle and lower panels of Figure 4.4, we find that the preferred values

of the H1 and H2 masses are constrained to lie in the intervals:

436 GeV <∼ mH1

<∼ 519 GeV , 0 GeV ≤ mH2

<∼ 436 GeV . (4.20)

The general Type I MSISM can provide two types of stable DM candidates,
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H1 and H2, however specific criteria must be met by both scalars. ForH1, it could

only become a viable DM candidate provided its decay via the quartic interaction

H1H
3
2 is kinematically forbidden, i.e. as long as 3mH2

> mH1
. The other scalar

H2 has similar mass problems, however this time the scalar must not have a small

mass, otherwise it would form hot or warm DM which is undesirable for galaxy

formation. Determining exact limits on the minimum value of mH2
is beyond the

scope of this work. However, we note that if mH2
is small, then it opens a new

decay channel for the SM-like Higgs boson h via h → 2H2 which could compete

with h→ bb to be the dominant decay mode when mh ∼ 115 GeV. This decay is

not present in the SM and could be used as an indication of the general MSISM

with a Type I flat direction. If however, 2mH2
> mh, then as in the U(1) invariant

scenario, the distinction of the Higgs sector of the general MSISM with a Type

I flat direction from that of the SM would require precision Higgs experiments

at an ILC-type collider and would again be based on the fact that the tree-level

trilinear h self-coupling is zero at tree level [42] .

The general CP-violating MSISM with a Type I flat direction shares the same

weakness as the U(1) invariant scenario. Assuming mh ∼ 115 GeV and λ4(Λ) is

negligible, the theory generates a Landau pole at 104 GeV, which decreases as

λ4(Λ) increases. As we can see the Landau pole is again far below the GUT and

Planck scales. However, unlike the U(1) invariant scenario, the general model

contains new sources of CP violation, provided λ4(Λ) is complex, which might

be of particular importance for realising electroweak baryogenesis. One serious

drawback of all scenarios of the MSISM with Type I flat directions is the inability

to provide a natural implementation of the seesaw mechanism, since the VEV of

the complex singlet scalar vanishes, i.e. ϕS = 0, and so no Majorana mass terms

can be generated in this scenario. Therefore, in the next chapter, we turn our

attention to the Type II flat direction, where ϕS 6= 0.
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Chapter 5

The Type II Flat Direction

In this chapter we study the Type II flat direction of the MSISM. We investigate

two distinct scenarios: (i) the U(1) invariant limit and (ii) a minimal U(1) non-

invariant scenario where CP is maximally and spontaneously broken along the flat

direction. In both these scenarios we determine the permitted quartic coupling

parameter space, using both theoretical and experimental constraints, and apply

these limits to make predictions on the scalar mass spectrum. We also discuss

the possible phenomenology of the two scenarios.

The Type II flat direction of the MSISM is more scenario dependent than the

Type I flat direction, however, the different scenarios do share some generic traits

that we shall briefly discuss here. The Type II flat direction requires that both

the Higgs doublet Φ and the complex singlet S develop non-zero VEVs along the

flat direction. Thus, unlike the Type I flat direction, the flat direction in the Type

II case is a 2 or 3 component vector and the pseudo-Goldstone boson h, which is

the field associated with the flat direction, is in general a linear composition of all

the neutral fields φ, σ and J . This has interesting phenomenological implications

as it could be possible for all the Higgs mass eigenstates h, H1 and H2 to couple

to the SM particles, but with reduced strengths compared to the respective SM

Higgs boson coupling.
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5.1 The U(1) Invariant Scenario

In the U(1) invariant limit, the tree-level MSISM with a Type II flat direction

takes the simple form

V tree(Λ) =
λ1(Λ)

2
(Φ†Φ)2 +

λ2(Λ)

2
(S∗S)2 + λ3(Λ) Φ†ΦS∗S . (5.1)

We have already discussed this case in some detail in Section 3.2.2, however, we

shall review its main features here. The U(1) symmetry of the field S → eiαS,

where α is an arbitrary phase, allows us to set the VEV of the S field real, i.e.

ϕσ 6= 0 and ϕJ = 0. Hence, the flat direction Φflat can be dimensionally reduced

to a two-dimensional vector with components ϕφ and ϕσ, explicitly given in (3.16).

Imposing the minimisation conditions (3.12) and (3.13) on the tree-level potential

(5.1) generates the following relations between the flat direction components and

the quartic couplings at the RG scale Λ:

ϕ2
φ

ϕσ2

=
n2

φ

n2
σ

= −λ2(Λ)

λ3(Λ)
= −λ3(Λ)

λ1(Λ)
. (5.2)

As stated after (3.15), the quartic couplings should lie in the ranges: λ1(Λ) > 0,

λ2(Λ) > 0 and λ3(Λ) < 0 to satisfy the BFB conditions (3.6) taking into account

the form of (5.2).

The flat direction relation (5.2) may be used to reduce the number of inde-

pendent quartic couplings at Λ to two, λ1(Λ) and λ3(Λ), by eliminating λ2(Λ)

via the relation λ2(Λ) =
λ2
3
(Λ)

λ1(Λ)
. Consequently, it is possible to express the scalar

masses and the RG scale Λ entirely in terms of the two quartic couplings λ1(Λ)

and λ3(Λ). Taking the relations in (5.2) into account, the scalar mass matrix

given in (C.9) contains the following non-zero elements:

m2
φ = λ1(Λ) v2

φ , m2
σ = −λ3(Λ) v2

φ , mφσ = −
√

−λ1(Λ)λ3(Λ)v2
φ . (5.3)

Due to the scalar mixing term mφσ, the scalar mass spectrum consists of the mass
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eigenstates

h = cos θ φ+sin θ σ , H1 ≡ H = − sin θ φ+cos θ σ , H2 ≡ J , (5.4)

where cos2 θ = −λ3(Λ)
λ1(Λ)−λ3(Λ)

. At tree-level, there is only one massive scalar, the H

boson, whose mass squared is given by

m2
H1

= m2
H =

[
λ1(Λ) − λ3(Λ)

]
v2

φ , (5.5)

the other two scalars h and J are massless since J is the massless Goldstone

boson associated with the spontaneous breaking of the U(1) symmetry and h is the

pseudo-Goldstone boson associated with the anomalously broken scale invariance.

We note that although there is a non-zero two particle mixing term mφσ (5.3),

there is no CP violation as the mixing is between two CP-even states, this means

all the mass eigenstates have definite CP parity: h and H are CP-even and J is

CP-odd.

From (5.5) we can see that m2
H depends on the combination λ1(Λ) − λ3(Λ),

and therefore, so too do the two effective potential coefficients α and β (3.19).

Likewise, the RG scale Λ also depends on the combination λ1(Λ)−λ3(Λ), through

α and β, see (3.22). However, the one-loop contribution to mh, given in (3.21),

or explicitly

mh =
1√

8πvφ

√
−λ3(Λ)

λ1(Λ) − λ3(Λ)

√
m4

H + 6m4
W + 3m4

Z − 12m4
t , (5.6)

shows mh depends on λ3(Λ) independently as well, through the flat direction

component nφ = cos θ, given in (3.16). Thus, the Higgs sector of the U(1) invari-

ant MSISM with a Type II flat direction depends on λ1(Λ) − λ3(Λ) and λ3(Λ),

or equivalently on λ1(Λ) and λ3(Λ).

We display the theoretical and experimental limits on the two quartic cou-

plings λ1(Λ) and λ3(Λ) in Figure 5.1. The top panel displays the full perturbative
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Figure 5.1: Theoretical and experimental exclusion contours in the λ1(Λ)-λ3(Λ)
parameter space of the U(1) invariant MSISM with a Type II flat direction. The
upper panel shows the full perturbative parameter space, whilst the lower panel
focuses on the region with small values of λ3(Λ). The theoretically permitted areas
are the regions enclosed by the black lines which correspond to keeping βλ1,2

(Λ) ≤
1, β > 0 and λ3(Λ) ≤ 0. The LEP2 constraint is given by the blue (grey) LEP line
and above (below) is excluded for the upper (lower) panel so that the blue and grey
shaded areas are allowed by the theoretical constraints, the LEP2 constraint and
the oblique parameters. The region of parameter space which remains perturbative
to GUT (Planck) scale is enclosed by the solid (dashed) green Pert lines.
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range, whilst the lower panel focuses on a very narrow region which is viable for

very small values of λ3(Λ), this region would not be clear if it were included in the

top panel. The theoretical constraints we impose are that the quartic couplings

remain perturbative at the RG scale Λ and that the one-loop effective potential

V 1−loop
eff is BFB. There are two limits that come into play to keep the quartic cou-

plings perturbative at Λ; βλ1
(Λ) ≤ 1 and βλ2

(Λ) ≤ 1, which are represented by

the black βλ1,2
= 1 lines in Figure 5.1. The other one-loop β function, βλ3

(Λ), is

much less constraining and is not included in the figure. From the above consider-

ations, we find the upper limits λ1(Λ) ≤ 3.45 and λ3(Λ) ≥ −3.29. Requiring that

the one-loop effective potential remains BFB or β > 0, generates the constraint

λ1(Λ) − λ3(Λ) > 1.64 , (5.7)

which is represented by the black β = 0 lines in Figure 5.1. In summary, the

theoretically relevant regions are the areas enclosed by the βλ1,2
= 1, β = 0 and

λ3(Λ) = 0 lines in the upper panel and between the β = 0, βλ1
= 1 and λ3(Λ) = 0

lines in the lower panel.

The λ1(Λ)-λ3(Λ) parameter space may be further constrained by experimental

data of direct Higgs searches and the electroweak oblique parameters S, T and

U . We find that all values of λ1(Λ) and λ3(Λ) which respect the theoretical

limits give values of δS, δT and δU within the 95% CL limits of δSexp, δTexp and

δUexp respectively. This means that the oblique parameters provide no constraints

within the theoretically admissible region and so have not been included in the

figures.

The LEP2 Higgs boson mass limit, however, significantly restricts the λ1(Λ)-

λ3(Λ) parameter space. To apply the experimental results correctly, we first

observe that h and H interact with reduced couplings, ghV V and gHV V , to a pair

of vector bosons V = W±, Z, compared to the SM coupling of HSM to two vector

bosons, gHSMV V . This is because h and H are linear compositions of φ and σ (5.4),

but only φ interacts with the SM particles. The squared reduced couplings g2
hV V
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and g2
HV V are given by the amount of h or H the scalar φ contains, multiplied by

the SM coupling squared of HSM to a pair of vector bosons g2
HSMV V , explicitly

g2
hV V = cos2 θ g2

HSMV V =
−λ3(Λ)

λ1(Λ) − λ3(Λ)
g2

HSMV V ,

g2
HV V = sin2 θ g2

HSMV V =
λ1(Λ)

λ1(Λ) − λ3(Λ)
g2

HSMV V , (5.8)

which satisfies the identity: g2
hV V + g2

HV V = g2
HSMV V . Since the reduced hZZ and

HZZ couplings are smaller than the HSM coupling, the LEP2 Higgs boson mass

limit mh > 114.4 GeV no longer applies. Instead, we have to use the combined

constraints on ξ2
h,H and the scalar masses mh,H which are presented in Figure

10(a) of Ref. [9] where we define

ξ2
h =

g2
hZZ

g2
HSMZZ

, ξ2
H =

g2
HZZ

g2
HSMZZ

. (5.9)

In short, Figure 10(a) of Ref. [9] shows that as the coupling of a scalar to ZZ

reduces compared to the HSMZZ coupling, the LEP2 Higgs mass limit also drops,

i.e. if ξ2
h = 0.5 then the LEP2 Higgs mass limit falls from mh > 114.4 GeV to

mh
>∼ 86 GeV. We note that the minimum value of λ1(Λ) − λ3(Λ) given by the

BFB constraint (5.7) gives a lower limit ofmH = 315.0 GeV, which is comfortably

above the LEP2 Higgs mass limit for any value of ξ2
H . Therefore, the LEP2 Higgs

mass limit is applied only to the lighter scalar h. We perform a polynomial fit

up to order 10 on the LEP2 Higgs mass data to obtain a reliable constraint on

ξ2
h as a function of mh, which in turn restricts the λ1(Λ)-λ3(Λ) parameter space.

This constraint is represented by the blue (grey) LEP line in the upper (lower)

panel of Figure 5.1, where the blue (grey) shaded region respects the theoretical

constraints, the LEP2 Higgs mass limit and also falls within the 95% CL limits

of oblique parameters. For clarity, the results of applying the LEP2 Higgs mass

limit to mh will hereafter be referred to as the LEP2 constraint. Consequently,

we can apply the LEP2 constraint restriction on the values of λ1(Λ) and λ3(Λ)
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to obtain a limit on the mass of the other scalar H and the RG scale Λ.

In Figure 5.1, we note that the region of parameter space that remains per-

turbative to GUT or Planck scales (enclosed by the dashed and solid green lines

respectively) lies firmly in the region excluded by the requirement that β > 0

and so neither of the two regions permitted by the LEP2 constraint will remain

perturbative up to GUT or Planck scales. Finally, to date, the Tevatron Higgs

mass exclusion range [10] has only been applied to SM-like Higgs bosons and so

can not be applied in a general manner in this scenario.

We apply the aforementioned theoretical and LEP2 constraints, presented in

Figure 5.1, to the scalar masses mh (5.6) and mH (5.5) and display the results,

mh in the upper panel and mH in the lower panel, as a dependence on λ1(Λ) in

Figure 5.2. The areas enclosed by the black lines are the regions which respect

the theoretical constraints, βλ1,2
(Λ) ≤ 1, β > 0 and λ3(Λ) ≤ 0. The blue and grey

shaded regions correspond to the two regions permitted by the LEP2 constraint.

The grey shaded area is not clearly visible in the lower panel of Figure 5.2, as it

closely follows the λ3 = 0 line.

In Figure 5.3, we have similarly applied these constraints to the RG scale Λ

as a function of λ1(Λ), where we have used the same line colour convention as

Figure 5.2. Again the theoretically permitted region corresponds to the region

enclosed by the black lines and the blue and grey (not clearly visible as it follows

the λ3 = 0 line) shaded regions correspond to the two regions permitted by the

LEP2 constraint.

As we can see there are two distinct regions permitted by the LEP2 constraint,

shaded blue and grey on the various figures. These two regions correspond re-

spectively to higher and lower values of mh and to different values of the quartic

couplings λ1(Λ) and λ3(Λ). Therefore, we shall consider the scalar mass spectrum

and phenomenology of each region separately.
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Figure 5.2: The scalar masses mh (upper panel) and mH (lower panel) as func-
tions of λ1(Λ) in the U(1) invariant MSISM with a Type II flat direction. The
areas within the black lines show the regions which respect the theoretical con-
straints i.e. keeping βλ1,2

(Λ) ≤ 1, the potential BFB and λ3(Λ) ≤ 0. The blue
(heavier mh) and grey (ultra-light mh) shaded regions (denoted LEP) are permit-
ted by the LEP2 constraint, the oblique parameters and the theoretical constraints.
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Figure 5.3: The RG scale Λ as a function of λ1(Λ) in the U(1) invariant MSISM
with a Type II flat direction. The theoretically permitted regions, which keep
βλ1,2

(Λ) ≤ 1, the potential BFB and λ3(Λ) ≤ 0, are enclosed by the black lines.
The blue (heavier mh) and grey (ultra-light mh) shaded regions (denoted LEP)
are permitted by the LEP2 constraint, the oblique parameters and the theoretical
constraints.

5.1.1 The Heavier h Boson Region

In this section we consider the heavier h boson region which is dominated by large

values of λ1(Λ) and λ3(Λ) and corresponds to the blue shaded area in Figures

5.1, 5.2 and 5.3.

The two scalar masses mh (5.6) and mH (5.5) are shown in Figure 5.2 and

have the following allowed ranges

111.7 GeV < mh ≤ 123.9 GeV , 592.7 GeV < mH ≤ 627.1 GeV ,

(5.10)

assuming they respect the theoretical constraints and the upper LEP2 constraint

(shaded blue). The h boson could be observed at the LHC, through the decay

channel h → γγ, whilst the heavier H boson may be detected via the so-called

“golden channel”, H → ZZ → 4l. However, in this region of parameter space

λ1(Λ) ≈ −λ3(Λ) which implies that g2
hV V ≈ g2

HV V ≈ 0.5 g2
HSMV V , see (5.8), and
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means both decays will have reduced signals compared to the SM Higgs signals.

Moreover, the heavier H boson may predominantly decay invisibly into a pair

of J bosons, thanks to the relatively large quartic couplings. This new decay

could be detected at the LHC along the lines of [43]. This last characteristic and

the fact that two scalar bosons would be detected with very specific masses and

reduced couplings makes this region of the U(1) invariant MSISM with a Type II

flat direction distinguishable from the Type I flat direction and the SM.

The RG scale Λ as a function of λ1(Λ) is presented in Figure 5.3. Assuming

λ1(Λ) and λ3(Λ) are within the blue shaded region, so that the theoretical and

experiment constraints are met, then the RG scale Λ is of the order of the EW

scale and lies in the range 390.9 GeV ≤ Λ < 407.7 GeV.

Since we are only just within the constraints βλ1,2
(Λ) ≤ 1, this region of the

parameter space does not remain perturbative up to either the GUT or Planck

scales and develops a Landau pole at around 2 × 104 GeV.

5.1.2 The Ultra-Light h Boson Region

The other experimentally and theoretically viable region of the λ1(Λ)-λ3(Λ) pa-

rameter space corresponds to a very small quartic coupling λ3(Λ) which gives

rise to an ultra-light h boson. The relevant regions are shaded grey in the lower

panel of Figure 5.1 and also Figures 5.2 and 5.3. Since this region is based on an

extrapolation of the LEP2 Higgs mass limit to low masses we will not present a

detailed phenomenological analysis of this scenario, but rather highlight its key

features.

In Figure 5.1 it can be seen that the LEP2 constraint places an upper bound

on λ3(Λ) of −λ3(Λ) <∼ 0.019. As a direct consequence of this very low upper

bound, the h boson mass is ultra-light, mh
<∼ 6.3 GeV, as illustrated by the grey

shaded region in the upper panel of Figure 5.2. In this ultra-light h boson region,

the reduced hZZ-coupling is strongly suppressed with g2
hV V ≤ 0.0055 g2

HSMV V , as

can be determined from (5.8), which will make h almost impossible to directly

70



detect at the LHC.

The other CP-even H boson has an almost SM-like coupling to the vector

bosons, with g2
hV V ≈ g2

HSMV V . The grey shaded region representing the H boson

mass is unclear in the lower plot of Figure 5.2 as it closely follows the λ3 = 0

line, nevertheless its mass lies in the range 315.2 GeV < mH < 458.4 GeV.

Since H ≈ HSM the Tevatron exclusion range [10] can be approximately applied,

however, mH is large and avoids the excluded region. For this region the H → JJ

decay is suppressed since the HJJ-coupling is proportional to the small λ3(Λ)

quartic coupling, therefore the SM-like H boson would most likely be detected

via the “golden channel” H → ZZ → 4l.

In Figure 5.3, the grey shaded area representing Λ for this ultra-light h boson

region is not clear as it closely follows the λ3 = 0 line. Furthermore, we notice

that unlike the previous cases there appears to be nothing to stop Λ from taking

very large non-EW scale values. This is clear in Figure 5.1 since the grey shaded

LEP2 constraint permitted region touches the β = 0 line implying Λ → ∞.

However, in Section 2.2, we required that for the perturbative GW approach to

work V tree > V 1−loop
eff > V 2−loop

eff > ..., i.e. we can require that the coefficients

α and β of the one-loop effective V 1−loop
eff in (3.18) are small, e.g. α, β ≤ 1.

Requiring α ≤ 1 places an upper constraint on Λ of Λ <∼ 680 GeV, whilst β ≤ 1

requires Λ of Λ <∼ 750 GeV.

An interesting feature of the ultra-light h boson region is that it remains per-

turbative to higher scales than the previously considered models, indicated by

the proximity to the area enclosed by the solid and dashed green lines in Figure

5.1. Specifically, within the allowed region, the model does not develop a Landau

pole until energies of the order 106 GeV, which is higher than the heavier mass

h boson scenario, but is still far below the GUT and Planck scales.

In conclusion, it is worth reiterating (cf. Table 3.1) that the U(1) invariant

MSISM with a Type II flat direction has no new source of CP violation and
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predicts no massive DM candidate, since J is massless and both h and H decay

to SM particles. However, the model does have the ability to generate Majorana

neutrino masses through the seesaw mechanism, which we have not included here

but will discuss in more detail in Chapter 6. In the following section, we consider

a minimal U(1) non-invariant MSISM with a Type II flat direction which realises

maximal spontaneous CP violation (SCPV).

5.2 Minimal U(1) Non-Invariant Scenario with

Maximal SCPV

The general MSISM tree-level potential with a Type II flat direction, without the

restriction of U(1) invariance, contains a total of nine real quartic couplings, see

(3.2), where the couplings are evaluated at Λ along the flat direction. Due to the

large number of couplings there is a multitude of valid solutions that all satisfy the

minimisation requirements (3.12) and (3.13). Not all of these possible solutions

are phenomenologically interesting, therefore we have focused our investigation

on one scenario: the U(1) non-invariant MSISM with a Type II flat direction that

minimally realises maximal SCPV.

The tree-level scalar potential of this scenario is given by

V tree =
λ1

2
(Φ†Φ)2 +

λ2

2
(S∗S)2 + λ3 Φ†ΦS∗S +

λ6

2
(S4 + S∗4) , (5.11)

where λ6 is real due to CP invariance and λ4 = λ5 = 0 to make the model

minimal. In addition to CP invariance, the tree-level scalar potential (5.11) also

possesses an accidental Z4 discrete symmetry: S → S ′ = ωS and Φ → Φ′ = Φ,

where ω4 = 1. The CP symmetry and the Z4 discrete symmetry are sufficient to

uniquely define the form of the tree-level scalar potential V tree (5.11).

Minimising the tree-level potential at the RG scale Λ, by means of (3.12) and
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(3.13), generates the following two conditions for the flat direction:

i)
ϕ2

φ

ϕ2
σ

=
n2

φ

n2
σ

= −2λ3(Λ)

λ1(Λ)
= −2

[
λ2(Λ) − 2λ6(Λ)

]

λ3(Λ)
,

ii) ϕ2
σ = ϕ2

J ⇔ n2
σ = n2

J . (5.12)

Note that the second condition implies a flat direction that triggers maximal

spontaneous CP violation. Any choice of angle θS = (2n− 1)π
4

where n = 1, 2, ...

will minimise the flat direction and give maximal CP-violation. Arbitrarily we

set θS = π/4 so that ϕσ = ϕJ . Even values of n will give ϕσ = −ϕJ , but

this does not affect the scalar masses or the phenomenology of the model in an

essential manner. Combining (5.12) with the BFB condition (3.6) requires that

λ1(Λ) > 0 , λ3(Λ) < 0 , λ2(Λ) − 2λ6(Λ) > 0 , (5.13)

where the signs of λ2(Λ) and λ6(Λ) individually remain undetermined.

Other solutions to the minimisation conditions, (3.12) and (3.13), are possible

for V tree (5.11), but they either modify it to a Type I flat direction (ϕσ = ϕJ = 0)

or reduce the potential to the U(1) invariant scenario (λ6(Λ) = 0), both of which

have been previously investigated in Chapter 4 and Section 5.1, respectively.

The flat direction for this scenario can not be dimensionally reduced further

than the 3-dimensional vector, i.e. the φ, σ and J components are all non-zero,

Φflat =
ϕ√

2
[
λ1(Λ) − λ3(Λ)

]




√
−2λ3(Λ)
√
λ1(Λ)

√
λ1(Λ)


 =

ϕφ√
−2λ3(Λ)




√
−2λ3(Λ)
√
λ1(Λ)

√
λ1(Λ)


 .

(5.14)

Considering the flat direction conditions in (5.12), the scalar mass matrix (C.9)

contains no non-zero components, and evaluating at the minimum, the scalar
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mass matrix elements in (C.10) become

m2
φ = λ1(Λ) v2

φ , m2
σ = m2

J =
[
λ2(Λ) + 2λ6(Λ)

]
v2

σ ,

mσJ =
[
λ2(Λ) − 6λ6(Λ)

]
v2

σ , mφσ = mφJ = λ3(Λ) vφvσ , (5.15)

where the elements mφJ and mσJ are CP-violating. Diagonalising the matrix

(C.9) gives the eigenvalues

m2
h = 0 , m2

H1
=
[
λ1(Λ) − λ3(Λ)

]
v2

φ , m2
H2

= 4
λ1(Λ)λ6(Λ)

−λ3(Λ)
v2

φ , (5.16)

with the corresponding mass eigenstates

h =

√
−λ3(Λ)

λ1(Λ) − λ3(Λ)
φ +

√
λ1(Λ)

2(λ1(Λ) − λ3(Λ))
(σ + J) ,

H1 =

√
λ1(Λ)

λ1(Λ) − λ3(Λ)
φ −

√
−λ3(Λ)

2(λ1(Λ) − λ3(Λ))
(σ + J) ,

H2 =
1√
2

(−σ + J) . (5.17)

where have we employed the relation λ2(Λ) =
λ2
3
(Λ)

λ1(Λ)
+2λ6(Λ), which can easily be

derived from (5.12). In order for the H2 boson mass squared m2
H2

to be positive,

we require that λ6(Λ) > 0, implying from (5.13), λ2(Λ) > 2λ6(Λ) > 0.

We can show through the first condition in (5.12) that the scalar sector of

the U(1) non-invariant scenario with maximal SCPV can be written entirely in

terms of only three quartic couplings, which we choose to be λ1(Λ), λ2(Λ) and

λ3(Λ) with λ6(Λ) = 1
2

(
λ2(Λ) − λ2

3
(Λ)

λ1(Λ)

)
. Explicitly, the scalar masses mH1

and

mH2
depend on the three quartic couplings λ1,2,3(Λ), as can be seen from (5.16).

Likewise, the RG scale Λ determined in (3.22) depends on the effective potential

coefficients α and β that are both functions of mH1
and mH2

. Finally, the one-

loop induced h boson mass depends on β and nφ =
√

−λ3(Λ)
λ1(Λ)−λ3(Λ)

which is given
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in (5.14), see (3.21), or explicitly

mh =
1√

8πvφ

√
−λ3(Λ)

λ1(Λ) − λ3(Λ)

√
m4

H1
+m4

H2
+ 6m4

W + 3m4
Z − 12m4

t . (5.18)

Consequently, the entire scalar boson mass spectrum and the RG scale Λ of the

model depend on only three quartic couplings: λ1,2,3(Λ).

The extra freedom which comes from having three independent quartic cou-

plings can be exploited to place tighter constraints on the values of the quartic

coupling constants. To be precise, instead of requiring that the couplings are per-

turbative at Λ, we now require them to remain perturbative to the Planck scale.

Explicitly, we require that βλ1,2,3,6
(MPlanck) ≤ 1 to keep the quartic couplings per-

turbative to the Planck scales, and λ1(MPlanck) > 0, λ2(MPlanck)−2λ6(MPlanck) >

0 and λ3(MPlanck) < 0 to keep the potential BFB up to the Planck scale. More-

over, we find that the tightest constraints are given by βλ1
(MPlanck) ≤ 1 and

λ1(MPlanck) > 0, which restricts λ1(Λ) to the range

0.39 <∼ λ1(Λ) <∼ 0.52 . (5.19)

If we assume λ6(Λ) ≈ 1
2
λ2(Λ) with negligible values of λ1(Λ) and λ3(Λ), then

βλ2
(MPlanck) ≤ 1 can be used to find the maximum perturbative value of the

λ2(Λ) quartic coupling, explicitly

0 < λ2(Λ) <∼ 0.20 . (5.20)

A further theoretical constraint is required to prevent λ3(Λ) → 0, since from

(5.16) we observe that in the limit λ3(Λ) → 0 the H2 boson mass mH2
becomes

infinite, which leads to undesirable infinite values for mh and Λ. To obtain a

lower limit on λ3(Λ), we can require that the coefficients α and β of the one-loop

effective V 1−loop
eff in (3.18) are small, e.g. α, β ≤ 1, so that the perturbative

GW approach is valid. We apply the constraint α ≤ 1, which is slightly less
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constraining than β ≤ 1.

The parameter space can be further restricted by applying the LEP2 Higgs

mass limit in a similar fashion to the U(1) invariant scenario, i.e. we have to

use the combined constraints on ξ2
h,H1

and the scalar masses mh,H1
which are

presented in Figure 10(a) of Ref. [9], since the scalars h and H1 have reduced

couplings compared to the HSM coupling to the SM particles. In spite of the

additional quartic coupling λ6(Λ), the interactions of the h and H1 scalars to a

pair of V = W±, Z bosons are very similar to the U(1) invariant scenario and

their reduced hV V and H1V V couplings are given by

g2
hV V =

−λ3(Λ)

λ1(Λ) − λ3(Λ)
g2

HSMV V , g2
H1V V =

λ1(Λ)

λ1(Λ) − λ3(Λ)
g2

HSMV V . (5.21)

The LEP2 Higgs mass limit is again only applied to the scalar h since mH1

is greater than the LEP2 Higgs mass limit. Thus, we call the restriction on the

quartic couplings which arises from applying the LEP2 Higgs mass limit to mh the

LEP2 constraint, which can subsequently be applied to mH1
, mH2

and Λ. We find

that for values of the quartic couplings which respect the theoretical constraints

the oblique parameters give values of δS, δT and δU within their respective 95%

CL limits δSexp, δTexp and δUexp and so do not provide any constraints within

the theoretically permitted region.

In summary, our numerical analysis uses the following theoretical constraints

as the most stringent limits on the parameter space

βλ1
(MPlanck) ≤ 1 , λ1(MPlanck) > 0 , β > 0 , α ≤ 1 , (5.22)

whilst the only experimental constraint comes from the LEP2 constraint. Also

due to the logistics of representing the effects of three independent parameters,

we choose two representative values of λ2(Λ): λ2(Λ) = 0.02 and λ2(Λ) = 0.2.

In Figure 5.4, we apply the theoretical constraints (5.22) and the LEP2 con-

straint on the scalar boson masses, mh (top panel) and mH2
(middle panel) and
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Figure 5.4: The scalar masses mh (top panel) and mH2
(middle panel) and the RG

scale Λ (bottom panel) as functions of λ3(Λ) in the U(1) non-invariant MSISM
with a Type II flat direction that minimally realises maximal SCPV. The areas
between the two solid (dashed) black lines correspond to the masses for which
βλ1

(MPlanck) ≤ 1, λ1(MPlanck) > 0 and β > 0 for λ2(Λ) = 0.02 (0.2). The solid
and dashed blue lines represent the LEP2 constraint, below which are excluded.
The solid and dashed red lines represent the constraint α ≤ 1 and above each of the
lines is excluded. The grey regions correspond to areas that respect the theoretical
and LEP2 constraints. The solid lines correspond to λ2(Λ) = 0.2 whilst the dashed
lines correspond to λ2(Λ) = 0.02.
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λ2(Λ) mh mH1
mH2

Λ
min max min max min max min max

0.2 54 78 155 181 783 1110 490 675
0.1 34 56 155 180 703 1110 444 674
0.05 21 39 154 179 607 1110 395 674
0.02 11 25 154 178 515 1110 350 675

Table 5.1: Minimum and maximum values of mh, mH1
, mH2

and Λ as determined
by the LEP2 constraint and the theoretical constraint α ≤ 1 for a range of λ2(Λ).

the RG scale Λ (bottom panel), as functions of the quartic coupling λ3(Λ). The

solid (dashed) black lines enclose the regions which respect the first three theo-

retical constraints in (5.22) with λ2(Λ) = 0.2 (0.02). The solid and dashed red

lines represent the theoretical limit α ≤ 1 for λ2(Λ) = 0.2 and 0.02 respectively,

where the area above the α = 1 lines is excluded. The solid and dashed blue

lines represent the LEP2 constraint for λ2(Λ) = 0.2 and 0.02 respectively and

the regions below the blue LEP lines are excluded for the specific values of λ2(Λ)

considered. As a result, the λ3(Λ) coupling has to take small absolute values,

with λ3(Λ) >∼ −0.02. The grey shaded regions are the areas which respect all the

theoretical constraints, the LEP2 constraint and lie within the 95% CL limits of

the oblique parameters δSexp, δTexp and δUexp. In Table 5.1, we present the upper

and lower limits on the masses of the h and H2 bosons and on the RG scale Λ

for different values of λ2(Λ). The lower bounds are determined from the LEP2

constraint, whilst the upper bounds come from the theoretical constraint α ≤ 1.

We display the results of applying the theoretical constraints (5.22) and the

LEP2 constraint to the H1 boson mass mH1
as a function of the λ3(Λ) in Figure

5.5. The black lines correspond to values of the quartic couplings which respect

the limits λ1(MPlanck) > 0, βλ1
(MPlanck) ≤ 1 and β > 0. Even though mH1

does not explicitly depend on λ2(Λ) itself, see (5.16), the LEP2 constraint and

the theoretical constraint α ≤ 1 do. The grey shaded areas between the solid

(dashed) blue LEP and red α = 1 lines are allowed by the respective constraints
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Figure 5.5: The scalar mass mH1
as a function of λ3(Λ) in the U(1) non-invariant

MSISM with a Type II flat direction that minimally realises maximal SCPV. The
upper panel shows λ2(Λ) = 0.2 whilst the lower panel displays λ2(Λ) = 0.02. The
area enclosed by the black lines corresponds to masses restricted by the conditions:
βλ1

(MPlanck) ≤ 1, λ1(MPlanck) > 0 and β > 0 (λ2(Λ) = 0.02 only). The grey
shaded regions correspond to the areas permitted by the LEP2 constraint (solid
and dashed blue lines) and the α ≤ 1 limit (solid and dashed red lines).
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for λ2(Λ) = 0.2 (0.02). The LEP2 constraint provides an upper limit on the value

of mH1
, whilst the α ≤ 1 constraint gives a lower limit. These upper and lower

limits on the H1 boson mass are exhibited in Table 5.1, for various values of the

λ2(Λ) coupling.

The U(1) non-invariant scenario with maximal SCPV gives rise to a plethora of

phenomenology. As emphasized throughout this section, the model spontaneously

and maximally violates the CP symmetry, which might open up the possibility for

successful electroweak baryogenesis in this scenario. The model can also generate

naturally small neutrino masses through the seesaw mechanism since the complex

singlet S has a non-zero VEV. Moreover, the presence of a permutation parity

symmetry, σ ↔ J , which remains intact after EWSSB, renders the massive H2

boson stable with vanishing VEV. Hence, the H2 boson could act as a cold DM

candidate, according to the Higgs-portal scenario [41]. In general, there are two

parity symmetries that could be imposed on the tree-level potential (5.11), they

are: σ ↔ J and σ ↔ −J , but since both symmetries lead to identical mass

spectra we do not discuss them separately.

Experimental verification of the U(1) non-invariant scenario with maximal

SCPV would be difficult. The scalar h has a very small coupling to the SM

particles, g2
hV V

<∼ 0.05 g2
HSMV V where we have used (5.21), (5.19) and λ3(Λ) >∼

−0.02 as determined by the LEP2 constraint. The small value of g2
hV V makes

it very difficult to directly detect h despite it having a reasonable sized mass,

see Table 5.1. On the other hand, the H1 boson has a SM-like coupling to the

electroweak vector bosons g2
H1V V

>∼ 0.95 g2
HSMV V

and would again most likely be

detected through the discovery channel H1 → ZZ → 4l. Distinguishing H1

from HSM could be performed by determining the trilinear and quadrilinear self-

couplings since the trilinear and quadrilinear self-couplings of the SM Higgs are

based on the same quartic coupling, whereas those for H1 are based on different

combinations of quartic couplings which are not easily related. Considering how

similar H1 and HSM are, the Tevatron Higgs mass exclusion range for a SM-like
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Higgs boson 158 GeV < mHSM
< 175 GeV [10], should approximately apply to

mH1
. Considering the range of values mH1

can take, see Table 5.1, the Tevatron

excludes most of this region, however the effect of the reduced coupling has not

been applied. In any case, if the Tevatron continues to run there is a large

possibility that it would either detect H1 or exclude this scenario with quartic

couplings which remain perturbative to the Planck scale.

In summary, the U(1) non-invariant MSISM with a Type II flat direction

that minimally realises maximal SCPV is a theoretically and experimentally vi-

able scenario. The quartic couplings of the model can remain perturbative up to

Planck energy scales and its scalar boson mass spectrum is compatible with limits

from the LEP2 and Tevatron Higgs searches and the S, T and U oblique param-

eters. Most importantly, the model does not require additional theory to stay

perturbatively renormalisable up to the standard quantum gravity scale, MPlanck.

Since the addition of right-handed neutrinos can have a significant impact on

the one-loop effective potential V 1−loop
eff and on the phenomenology of the model

in general, we analyse the addition of right-handed neutrinos to the MSISM in

detail in the next chapter.
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Chapter 6

Neutrinos in the MSISM

In this chapter we consider the effect of including three right-handed neutrinos

ν0
1,2,3R in the MSISM. The motivation for this addition is to try to naturally

generate the observed small neutrino masses [6] which are currently unexplained

in the SM. The neutrino Lagrangian Lν in (3.1), contains the following SI terms

Lν = ν̄0
iRiγ

µ∂µν
0
iR − hν

ijL̄iLΦ̃ν0
jR − hν†

ij ν̄
0
iRΦ̃†LjL − 1

2
hN

ij ν̄
0C
iR Sν

0
jR

− 1

2
hN†

ij ν̄
0
iRS

∗ν0C
jR − 1

2
h̃N

ij ν̄
0
iRSν

0C
jR − 1

2
h̃N†

ij ν̄
0C
iR S

∗ν0
jR . (6.1)

where the summation convention for repeated indices is implied, and i, j = 1, 2, 3

denotes the three generations, e, µ and τ , respectively. In (6.1), hν is a matrix

containing the Dirac neutrino Yukawa couplings of the SM Higgs doublet Φ to

the lepton doublets LiL, which are defined in Appendix A. In addition, since

we have not assumed any symmetries on Lν , for example lepton number conser-

vation, there are two Majorana neutrino Yukawa coupling matrices hN and h̃N

that couple the singlet field S to the right-handed neutrinos ν0
1,2,3R. Due to the

Majorana nature of the neutrinos, hN and h̃N are symmetric 3 × 3 matrices, i.e.

hN = hN T , h̃N = h̃N T .

As previously mentioned in Section 3.4, the MSISM with a Type I flat direc-

tion cannot generate neutrino masses via the seesaw mechanism since the VEV
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of the S field is zero along the minimal flat direction. Moreover, including Ma-

jorana neutrino masses by hand i.e. −1
2
mM

ij ν̄
0
iRν

0C
jR , is not permitted in a SI

theory because of the dimensional coupling mM . However, Dirac-type neutrino

masses can still be obtained through the coupling with the SM Higgs doublet Φ.

Unfortunately, this requires hugely suppressed Dirac neutrino Yukawa couplings

of order 10−12, about 6 orders of magnitude smaller than the electron Yukawa

coupling. Just like the SM, such a scenario would have difficulty naturally ex-

plaining the smallness of the light neutrino masses. Moreover, if the Dirac-type

neutrino masses existed then the MSISM with a Type I flat direction would not

be greatly affected by the inclusion of right-handed neutrinos as the actual effect

of the very small neutrino Yukawa couplings on the scalar mass spectrum, the

RG scale Λ and the one-loop effective potential would be negligible. Thus, the

results presented in Chapter 4 would not change.

We therefore turn our attention to the MSISM with a Type II flat direction.

Since ϕS 6= 0 along the Type II flat direction, the following neutrino mass terms

are generated:

LMass
ν = − 1

2
(ν̄0

iL, ν̄
0C
iR )



 0 mDij

mT
Dij mMij







 ν0C
jL

ν0
jR



 + h.c. (6.2)

where

mD =
ϕφ√

2
hν , mM =

1√
2

[
ϕσ(h

N + h̃N†) + iϕJ(hN − h̃N†)
]
, (6.3)

and h.c. is the hermitian conjugate. Without loss of generality, we can work in

the basis where mM is diagonal, real and positive, whilst hN , h̃N and mD are in

general 3 × 3 non-diagonal complex matrices.

The 6×6 mass matrix in LMass
ν can be block-diagonalised via a unitary matrix

U as follows:

UT


 0 mD

mT
D mM


U =


 mν 0

0 mN


 . (6.4)
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Assuming mM ≫ mD we can perform an expansion of the unitary matrix U in

powers of mDm−1
M and at leading order we obtain the standard seesaw formulas

[34]:

mν = − mDm−1
M mT

D , mN = mM , (6.5)

where mν is the 3× 3 light neutrino mass matrix of the observed light neutrinos

ν1,2,3 whilst mN is the heavy neutrino mass matrix of the new heavy Majorana

neutrinos, which we denote as N1,2,3, i.e.

LMass
ν = − 1

2
( ν̄mνν + N̄mNN ) . (6.6)

As we will see in this chapter, the heavy Majorana neutrinos N1,2,3 in the

MSISM with a Type II flat direction are typically not much heavier than the EW

scale. However, these new heavy neutrino masses could have a large effect on the

one-loop effective potential and the one-loop β functions, technical details are

given in Appendices C and D, and consequently will have a knock-on effect on

the scalar mass spectrum and the RG scale Λ. Assuming no large cancellations

between the matrices we require that all the Dirac neutrino Yukawa couplings in

hν are about 10−6, e.g. of order the electron Yukawa coupling, to generate the

light neutrino masses mν ∼ few eV. Thus, even though we keep the analytical

dependence of hν in the main formulas, we assume that all hν
ij ∼ 10−6, such that

their numerical impact on the one-loop effective potential and the one-loop β

functions can be safely ignored.

In the following sections we study several representative scenarios within the

framework of the MSISM with a Type II flat direction and right-handed neutri-

nos. First, we consider the U(1) invariant scenario that preserves lepton number.

We then consider the inclusion of neutrinos in the U(1) non-invariant scenario

that minimally realises maximal SCPV through two different symmetries on the

neutrino sectors. The first scenario assumes a CP-symmetric neutrino sector,

where the CP invariance is only violated spontaneously by the ground state of
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the theory. The second scenario promotes the parity symmetry present in the

scalar potential of the model to the neutrino Yukawa sector, thus giving rise to

a massive stable scalar particle which could act as a potential candidate to solve

the cold DM problem.

6.1 Neutrinos in the U(1) Invariant Type II Flat

Direction

In its most general form the U(1) invariant MSISM with a Type II flat direction

and right-handed neutrinos contains an impractically large number of new neu-

trino Yukawa couplings. This large number of new couplings becomes apparent

when we consider the matrix mM (6.3), which due to the U(1) symmetry reduces

to the ϕσ term only, since ϕJ = 0. Although we can work in a basis where mM

is diagonal, real and positive, this does not imply that the Majorana Yukawa

coupling matrices hN and h̃N† are also diagonal, real or positive, we only require

that their off diagonal terms cancel when the two matrices are added. This leads

to the possibility of up to 21 new real parameters, which must all be taken into

account in calculations. However, if the U(1) symmetry acting on S is extended to

include the neutrino sector then the number of real Majorana Yukawa couplings

can be reduced to a maximum of three. Applying the U(1) symmetry to the

Yukawa sector is equivalent to imposing lepton number conservation, where the

right-handed neutrinos ν0
1,2,3R carry the lepton number +1 and the singlet field S

the lepton number −2. As a consequence of the lepton number conservation, the

Majorana Yukawa coupling matrix h̃N vanishes and mM reduces to

mM =
ϕσ√

2
hN , (6.7)

which implies that if mM is diagonal, real and positive then hN is too. Thus, the

only new Majorana neutrino Yukawa couplings are the three diagonal elements
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of hN .

In the lepton number conserving U(1) invariant Type II flat direction the light

and heavy neutrino mass matrices mν and mN can be written as

mν = −
√

−λ3(Λ)

2λ1(Λ)
vφ hν(hN)−1hνT , mN =

√
λ1(Λ)

−2λ3(Λ)
vφ hN . (6.8)

were we have used (5.2) to write the masses in terms of the SM VEV vφ. For

simplicity, we assume that the three heavy Majorana neutrinos N1,2,3 are degen-

erate, specifically, by assuming that hN = hN13×3. The maximum value of hN

can be determined by assuming the Majorana Yukawa coupling β function given

in (D.15) remains perturbative at Λ, i.e. β
hN (Λ) ≤ 13×3. This constraint leads

to the upper bound, hN(Λ) < 4.0. If we insist on the tighter constraint, that

the Majorana Yukawa coupling hN stays perturbative up to the GUT (Planck)

scale, we find the upper limit: hN (Λ) ≤ 0.97 (0.89). Finally, the condition that

the one-loop effective potential is BFB, i.e. β > 0, within the parameter space

permitted by the perturbation conditions βλ1,2,3
(Λ) ≤ 1, gives the upper limit on

hN of hN (Λ) < 2.5. For clarity, if hN (Λ) > 2.5 then the BFB condition excludes

the whole region of parameter space permitted by βλ1,2,3
(Λ) ≤ 1, i.e. no region of

parameter space is allowed by all the theoretical constraints.

Including heavy neutrinos has a dramatic impact on the mass of the scalar h,

explicitly

mh =
1√

8πvφ

√
−λ3(Λ)

λ1(Λ) − λ3(Λ)

√√√√m4
H + 6m4

W + 3m4
Z − 12m4

t − 4

3∑

i=1

m4
Ni ,

(6.9)

where mNi are the three degenerate heavy neutrino masses given in (6.8). Figure

6.1 shows the dependence of the h boson mass on the Majorana neutrino Yukawa

coupling hN(Λ). The maximum value of mh is represented by the black mmax
h

line, such that the area between the black line and the mh = 0 line is permitted

by the constraints βλ1,2
(Λ) ≤ 1 and β > 0. The value of mmax

h is determined from
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Figure 6.1: The scalar mass mh as a function of hN (Λ) in the U(1) invariant
MSISM with a Type II flat direction and right-handed neutrinos. The blue and
grey shaded areas correspond to the regions allowed by the LEP2 constraint for the
heavier and ultra-light h boson regions respectively. The blackmmax

h line represents
the maximum perturbatively attainable values of mh.

the point at which βλ1
(Λ) = 1 and βλ2

(Λ) = 1 are simultaneously satisfied, as

can be seen in the non-neutrino case in Section 5.1, specifically Figure 5.2, this

is the point that gives the largest value of mh. Since the right-handed neutrinos

induce a negative contribution to mh (6.9), mmax
h decreases as the right-handed

neutrino Yukawa coupling hN , correspondingly mN , increases. In Figure 6.1, the

areas which are permitted by the LEP2 constraint (the result of applying the

LEP2 Higgs mass limit to mh (6.9)) are shaded blue and grey for the heavier and

ultra-light h boson regions, discussed in Sections 5.1.1 and 5.1.2, respectively. In

the heavier h boson scenario, where λ3(Λ) ≈ −3, the LEP2 constraint restricts

the Majorana neutrino Yukawa coupling hN to be: hN < 1.40. Conversely, for

the ultra-light h boson scenario (with λ3(Λ) ≈ −0.02), we get the upper limit:

hN < 0.074. We have also verified that all values of λ1(Λ) and λ3(Λ) which

respect the theoretical constraints βλ1,2
(Λ) ≤ 1 and β > 0 for all perturbative

values of hN , lie within the 95% CL interval of δSexp, δTexp and δUexp (E.10).

The effect of the Majorana Yukawa coupling hN on the heavy neutrino mass
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Figure 6.2: The heavy neutrino mass mN as a function of hN(Λ) in the U(1)
invariant MSISM with a Type II flat direction and right-handed neutrinos. The
perturbatively allowed region is given by the area between the black min and max
lines. The internal blue and grey shaded areas represent the regions allowed by the
LEP2 constraint, for the heavier and ultra-light h boson scenarios respectively.

mN is displayed in Figure 6.2. The area between the black min and max lines

represents the values of mN which are allowed by the theoretical constraints

βλ1,2
(Λ) = 1 and β > 0. The min line represents the minimum value of mN and

is given by the simultaneous satisfaction of the two relations βλ1
(Λ) = 1 and

β > 0, whilst the max line represents the maximum value of mN given by the

point satisfying the two relations βλ2
(Λ) = 1 and β > 0. The blue and grey

shaded areas indicate the regions which are allowed by the LEP2 constraint for

the heavier and ultra-light h boson scenarios respectively. As can be seen from

Figure 6.2, the resulting LEP2 constraint allowed areas set upper limits on the

heavy Majorana neutrino masses, mN < 244 GeV and mN < 274 GeV, for the

heavier and ultra-light h boson regions respectively. The values of mN must be

relatively light, compared to the normal seesaw mechanism, since mh, given in

(6.9) automatically places a limit on how large the heavy neutrinos can be. This

is because mh has to be positive, whilst mH (5.5) is independent of the inclusion

of neutrinos in the model and remains less than a TeV, see the lower panel of
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Figure 5.2.

The masses of the other scalars, H and J and the RG scale Λ are not greatly

affected by the inclusion of neutrinos. As expected J remains massless, whilst

as we have just mentioned mH does not explicitly rely on the neutrino masses

masses, see (5.5). However, the inclusion of hN in the β functions and the one-

loop effective potential coefficient β, will decrease the allowed range of quartic

coupling parameter space as hN increases and consequently the allowed range of

mH will decrease, but its overall value will not be affected. The influence of the

Majorana neutrino Yukawa coupling hN on the RG scale Λ is not significant for

the heavier h case as we find the maximum value of Λ which respects the LEP2

constraint for this case is Λmax ≈ 464 GeV. In the ultra-light case, Λ is constrained

to take values less than about a TeV by applying the constraint α ≤ 1.

The experimental significance of the inclusion of right-handed neutrinos is

strongly λ1,2,3(Λ) and hN(Λ) coupling dependent. For example if mh > 2mN

then the scalars h and H develop new decay channels such as h→ (νiNj , NiNj)

and H → (νiNj, NiNj) [44]. However if mN > mh the heavy neutrinos can decay

via N → hν. Due to the strong λ1,2,3(Λ) and hN (Λ) coupling dependence, a

complete analysis of the effects of the heavy neutrinos is beyond the scope of this

work.

The phenomenology of the U(1) invariant MSISM with a Type II flat direction

and right-handed neutrinos does not change from that of the no-neutrino case in

Section 5.1. There is still no massive stable scalar particle that could play the role

of the cold DM and the inclusion of right-handed neutrinos does not change the

UV behaviour of the model which still develops a Landau pole far below MGUT

and MPlanck. For this reason, we turn our attention to the U(1) non-invariant

MSISM with a Type II flat direction that minimally realises maximal SCPV

which does not contain these weaknesses.
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6.2 Neutrinos in the Minimal U(1) Non-Invariant

Type II Flat Direction with Maximal SCPV

In this section we consider the effect of including right-handed neutrinos in the

U(1) non-invariant Type II flat direction that minimally realises maximal SCPV

which was presented and discussed for the no-neutrino scenario in Section 5.2.

The minimisation of the flat direction leads to the requirement that ϕσ = ϕJ for

maximal SCPV. Applying this to the heavy Majorana neutrino mass matrix mM

(6.3, 6.5) gives

mM =
ϕσ√

2

[
(1 + i)hN + (1 − i) h̃N†

]
. (6.10)

Since the Majorana Yukawa couplings, hN and h̃N , can contain a large number of

independent parameters, we will not consider the complete neutrino Lagrangian

(6.1) but will extend the symmetries already present in the tree-level potential

to the neutrino sector. The tree-level potential for this scenario contains two

symmetries of importance: CP invariance and the parity symmetry σ ↔ J ,

however, it is not possible for the neutrino sector to respect both these symmetries

simultaneously without requiring hN = h̃N = 0. Therefore, we shall apply each

symmetry separately and investigate two different variations of the model. In the

first variant, we assume that both hN and h̃N are real, i.e. there are no sources

of explicit CP violation in neutrino Yukawa sector. The second variant applies

the parity symmetry σ ↔ J .

6.2.1 The CP Symmetric Scenario

Under CP invariance all the couplings of the theory must be real, including the

new Majorana Yukawa couplings hN
ij and h̃N

ij . Working in the basis where mM

is real and diagonal, we obtain the constraint: hN = h̃N . Implementing these
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constraints on the neutrino mass matrices (6.3, 6.5) gives,

mν = − 1

2

√
−λ3(Λ)

λ1(Λ)
vφ hν (hN)−1 hνT , mN =

√
λ1(Λ)

−λ3(Λ)
vφ hN , (6.11)

where we have used (5.12) to write them in terms of the SM VEV vφ. For simplic-

ity we assume three degenerate heavy neutrinos, implying hN = hN13×3, where

the coupling parameter hN has to be hN < 2.60 to be perturbative at the RG

scale Λ, i.e. β
hN (Λ) ≤ 13×3. Requiring that the coupling remains perturbative

to the GUT or Planck scales gives the upper limits hN ≤ 0.52 and hN ≤ 0.47,

respectively.

We have previously shown in the no-neutrino case presented in Section 5.2,

that the scalar sector can be expressed in terms of three independent theoretical

parameters, namely λ1(Λ), λ2(Λ) and λ3(Λ), with λ6(Λ) = 1
2

(
λ2(Λ) − λ2

3
(Λ)

λ1(Λ)

)

using (5.12). Including right-handed neutrinos in a CP invariant way provides

a fourth independent theoretical parameter; hN . Due to the large number of

parameters we have decided to investigate three viable benchmark cases where

we have fixed the values of λ2(Λ) and λ3(Λ). We consider the following three

cases:

Case A : λ2(Λ) = 0.1 , λ3(Λ) = −0.01 ,

Case B : λ2(Λ) = 0.1 , λ3(Λ) = −0.005 ,

Case C : λ2(Λ) = 0.05 , λ3(Λ) = −0.005 . (6.12)

These values have been chosen so that they respect the tight theoretical con-

straints,

• That all four independent couplings remain perturbative up to the Planck

scale, i.e. βλ1,2,3,6
(MPlanck) ≤ 1 and β

hN (MPlanck) ≤ 13×3;

• The tree-level potential and one-loop effective potential are BFB up to the

Planck scale which requires λ1(MPlanck) > 0, λ2(MPlanck)−2λ6(MPlanck) > 0,
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λ3(MPlanck) < 0 and β > 0;

• The V 1−loop
eff coefficient α ≤ 1 so that the perturbative GW approach can

be applied.

The tightest constraints are found to come from;

βλ1
(MPlanck) ≤ 1 , λ1(MPlanck) > 0 ,

λ2(MPlanck) − 2λ6(MPlanck) > 0 , β > 0 , (6.13)

and α ≤ 0. In our numerical analysis we also apply the experimental LEP2

constraint i.e. we apply the LEP2 Higgs mass limit to mh given in (6.14). We

have verified that even with the addition of the heavy neutrinos the oblique

parameters continue to lie within their respective 95% CL limits δSexp, δTexp and

δUexp and provide no constraints on the theoretically permitted region.

Once again the influence of including the heavy neutrinos has a observable

effect on the mass of the scalar h, explicitly

mh =
1√

8πvφ

√
−λ3(Λ)

λ1(Λ) − λ3(Λ)

√√√√m4
H1

+m4
H2

+ 6m4
W + 3m4

Z − 12m4
t − 4

3∑

i=1

m4
Ni ,

(6.14)

where mH1,2
are given in (5.16) and mNi are the three degenerate heavy neutrino

masses given in (6.11). In Figure 6.3, we present the dependence of the h boson

mass on the Majorana neutrino Yukawa coupling hN(Λ), for the three cases A,

B and C given in (6.12). The area between the black lines is allowed by the

considerations given in (6.13) where β > 0 forms the tighter constraint in cases A

and C whilst λ2(MPlanck) − 2λ6(MPlanck) > 0 is tighter in case B. The constraint

α ≤ 1 only occurs within the theoretically permitted region in case B and is

represented by the red α = 1 line and above which is excluded. For case A

and C, the α = 1 line is above the allowed region and has not been displayed.

The region below the grey dashed LEP line is excluded by the LEP2 constraint.
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Figure 6.3: The scalar mass mh as a function of hN (Λ) in the U(1) non-invariant
MSISM with a Type II flat direction that minimally realises maximal SCPV and
includes CP symmetric right-handed neutrinos. The three panels represent the
three different cases A (top panel), B (middle panel) and C (lower panel), as
defined in (6.12). The area between the black lines show the regions which corre-
spond to imposing the theoretical constraints given in (6.13) where β > 0 forms
the tighter constraint in cases A and C whilst λ2(MPlanck) − 2λ6(MPlanck) > 0 is
tighter in case B. The area above the red α = 1 line in case B is excluded. The
area below the grey dashed LEP line is excluded by LEP2 constraint. The grey
shaded areas correspond to the regions allowed by theory and experiment.
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As a consequence, the grey shaded areas correspond to the regions which are

allowed by the theoretical considerations, the LEP2 constraint and the oblique

parameters. The presence of the right-handed neutrinos does not greatly affect

mh, except when hN approaches its maximum allowed value which reduces the

prediction for mh, as shown in Figure 6.3. The other scalar masses, mH1,2
, are

not greatly affected by the inclusion of neutrinos, since they are independent of

hN at the tree level. However, the inclusion of hN in the β functions will reduce

the permitted parameter space and in-turn reduce the range the masses can take.

In Figure 6.4 we display the dependence of the heavy neutrino masses mN on

the Majorana neutrino Yukawa coupling hN (Λ) for the three benchmark scenarios

listed in (6.12). Once again the areas between the black lines are permitted by the

theoretical considerations given in (6.13) and the area above the red α = 1 line in

case B is excluded. The area below the grey dashed LEP line is excluded by LEP2

constraint, leaving the grey shaded area as the region permitted by theoretical

and experimental constraints. Comparing the three cases A, B and C, we observe

that if λ3(Λ) decreases or λ2(Λ) increases, both the upper limits on mN and hN

increase. From Figure 5.4, we see that if λ2(Λ) increases then λ3(Λ) also needs

to increase to remain within the theoretical and LEP2 constraint. This means

we can not simultaneously decrease λ3(Λ) and increase λ2(Λ) whilst remaining

within the theoretical constraints of (6.13) and α ≤ 1. We assume the maximal

values of mN and hN do not vary significantly from the values given in case B and

from this benchmark scenario we can then derive approximate upper limits on

the values of mN and hN . Thus, from the middle panel of Figure 6.4, we observe

that the heavy Majorana neutrinos can generically have masses up to TeV scale,

i.e. mN
<∼ 1 TeV, and hN must remain relatively small in order for the one-loop

effective potential to be BFB, i.e. hN <∼ 0.3.

The only weakness of the CP invariant scenario is that the would-be DM

candidate, the H2 boson, is no longer stable, since it can decay to neutrinos. The

rate of decay is strongly coupling size dependent and so no further investigation
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Figure 6.4: The heavy neutrino mass mN as a function of hN(Λ) in the U(1)
non-invariant MSISM with a Type II flat direction that minimally realises maxi-
mal SCPV and includes CP symmetric right-handed neutrinos for the three cases
A, B and C defined in (6.12). The area between the black lines show the re-
gions corresponding to the constraints: βλ1

(MPlanck) < 1, λ1(MPlanck) > 0 and
λ2(MPlanck) − 2λ6(MPlanck) > 0 in case B or β > 0 in cases A and C. The region
above the red α = 1 line is excluded and below the grey dashed LEP line is ex-
cluded by LEP2 constraint. This leaves the grey shaded areas which are permitted
by both theoretical and experimental constraints.
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has been performed. The decay of the H2 boson is a consequence of the violation

of the parity symmetry, σ ↔ J , in the Majorana neutrino Yukawa sector. In

the following section we consider extending the parity symmetry to the neutrino

sector so that it would then act on the complete Lagrangian of the MSISM.

6.2.2 The σ ↔ J Symmetric Scenario

Of the two symmetries that the U(1) non-invariant MSISM with a Type II flat

direction which minimally realises maximal SCPV possesses, CP and σ ↔ J ,

the latter could be said to be the more phenomenologically important. This is

because under the action of this symmetry, the scalar field H2 as given in (5.17)

is odd: H2 → −H2, whilst h and H1 are even. This implies that H2 must always

appear as H2
2 to preserve the parity and so is a stable particle. This parity

symmetry remains unbroken after the EWSSB and additionally since ϕσ = ϕJ

to realise maximal SCPV, H2 has no VEV. Thus H2 is a massive stable scalar

particle which could play the role of cold DM in the Universe.

Extending the parity symmetry σ ↔ J to the neutrino sector requires that

hN = −ih̃N†. Since the H2 boson is odd under the parity, it can not interact

with the neutrinos without the parity breaking and so will remain a massive stable

particle even after the inclusion of neutrinos. Given the relation hN = −ih̃N†,

the light and heavy neutrino mass matrices (6.3, 6.5) become

mν = −1

4

√
−λ3(Λ)

λ1(Λ)
vφ hν(RehN)−1 hνT , mN = 2

√
λ1(Λ)

−λ3(Λ)
vφ RehN ,

(6.15)

where we have used (5.12) to write the masses in terms of the SM VEV vφ

and to work in the basis in which mM is real and diagonal we require that

RehN = −Im hN . Once again we assume three degenerate heavy neutrinos,

implying RehN = RehN13×3, where the coupling parameter RehN < 2.06 to be

perturbative at the RG scale Λ, i.e. βhN (Λ) ≤ 13×3, and less than 0.37 or 0.33

to remain perturbative up to the GUT or Planck scale respectively.
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Similar to the CP invariant scenario, the σ ↔ J symmetric case also depends

on four independent theoretical parameters; λ1(Λ), λ2(Λ), λ3(Λ) and RehN with

λ6(Λ) = 1
2

(
λ2(Λ) − λ2

3
(Λ)

λ1(Λ)

)
using (5.12). Due to the large number of parame-

ters we use the same three benchmark cases as the CP invariant scenario, given

in (6.12) which respect the tight theoretical constraints listed previously. The

tightest constraints in this case are determined from

βλ1
(MPlanck) ≤ 1 , λ1(MPlanck) > 0 , β > 0 , (6.16)

and α ≤ 0. In the numerical analysis we again apply the experimental LEP2

constraint i.e we apply the LEP2 Higgs mass limit in an identical fashion to

the no-neutrino case on mh. We have verified that even with the addition of the

heavy neutrinos the oblique parameters continue to lie within their respective 95%

CL limits δSexp, δTexp and δUexp and provide no constraints on the theoretically

permitted region.

In Figure 6.5 we show the dependence of the h boson mass, given in (6.14)

where mNi are now given in (6.15), on the Majorana neutrino Yukawa coupling

RehN(Λ), for the three cases A, B and C defined in (6.12). The area enclosed by

the black lines is theoretically favoured by the perturbative and BFB conditions

given in (6.16). The area above the red α = 1 line is disfavoured, whilst the area

above the grey dashed LEP lines correspond to the regions which are permitted

by the LEP2 constraint. The grey shaded regions are theoretically and experi-

mentally permitted. From Figure 6.5, we observe that the h boson mass has a

similar range of values as the CP symmetric scenario discussed in the previous

section.

In Figure 6.6 we display the allowed parameter space of the degenerate right-

handed neutrino Majorana mass mN and RehN(Λ), for the three different cases

A, B and C. As before, we consider the following theoretical conditions given

in (6.16) and α ≤ 1. The theoretically favoured regions are those enclosed by

the black βλ1
= 1, λ1 = 0 and β = 0 lines and below the red α = 1 line.
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Figure 6.5: The scalar mass mh as a function of RehN (Λ) in the U(1) non-
invariant MSISM with a Type II flat direction that minimally realises maximal
SCPV and includes a σ ↔ J parity symmetric right-handed neutrino sector.
Cases A (top panel), B (middle panel) and C (lower panel) are defined in (6.12).
The area between the black lines correspond to regions allowed by the theoretical
constraints (6.16). The region above the red α = 1 line in case B is excluded.
The area below the grey dashed LEP line is excluded by LEP2 constraint so that
the grey shaded areas correspond to the regions allowed by both theory, the LEP2
constraint and the oblique parameters.
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Figure 6.6: The heavy neutrino mass mN as a function of RehN(Λ) in the U(1)
non-invariant MSISM with a Type II flat direction that minimally realises maxi-
mal SCPV and includes a σ ↔ J parity symmetric right-handed neutrino sector.
The three panels represent the three different cases A (top panel), B (middle panel)
and C (lower panel), as defined in (6.12). The area between the black lines show
the regions which satisfy: βλ1

(MPlanck) < 1, λ1(MPlanck) > 0 and β > 0. The
regions above the red α = 1 line and below the grey dashed LEP line are excluded
by the respective limits. The grey shaded areas correspond to the regions which
respect both the theoretical and the LEP2 constraints.
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The grey shaded areas correspond to the regions which are permitted by theo-

retical constraints, the LEP2 constraint and the oblique parameters. In all the

three benchmark scenarios considered, the heavy Majorana neutrino mass scale

mN stays below the TeV scale and the value of RehN(Λ) is constrained to be:

RehN <∼ 0.15.

In summary, the U(1) non-invariant MSISM with a Type II flat direction which

minimally realises maximal SCPV and preserves the σ ↔ J parity in the neutrino

sector has a number of physically interesting properties. Firstly, it maintains the

parity symmetry, such that the H2 boson remains a stable particle even after

the inclusion of right-handed neutrinos and so H2 could play the role of cold

DM in the Universe. Secondly, it can implement an electroweak seesaw mecha-

nism which naturally provides small neutrino masses. Thirdly, it contains a new

source of spontaneous CP violation, thereby enabling the model with the ability

to consider addressing the problem of the baryon asymmetry in the Universe.

Fourthly, the model successfully passes all obvious experimental constraints from

LEP2 Higgs mass limit and other electroweak precision data, whilst the scalar

H1 lies in the region close to the Tevatron excluded region. Finally, there exists a

significant region of the theoretical parameter space within which the model can

stay perturbative up to Planck scale.
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Chapter 7

Conclusions

In this thesis we have presented a thorough and systematic investigation of the

Minimal Scale Invariant extension of the Standard Model for a number of rep-

resentative scenarios along two of its three classified types of flat direction. The

MSISM is an extension of the Standard Model that includes an additional com-

plex singlet scalar field S and is classically scale invariant. Quantum corrections

explicitly break the scale invariance, and their interplay with the quartic cou-

plings can be used to trigger electroweak symmetry breaking. The SI SM suffers

from a number of issues, however the inclusion of a complex singlet scalar results

in a perturbative and phenomenologically viable theory.

To study the EWSSB of the MSISM we employed the perturbative approach

of GW [21]. To this end, we calculated the full one-loop effective potential of the

MSISM and determined a complete classification of the flat directions that can

occur in the classical scalar potential of the MSISM. We have found that the flat

directions can be classified into three major categories: Type I, Type II and Type

III. The Type I flat direction is characterised by the singlet scalar S having a zero

VEV at tree-level, whereas the Type II flat direction is defined by non-zero VEVs

for both fields, S and the SM Higgs doublet Φ. The third type of flat direction,

Type III, requires the VEV of Φ to be zero at tree-level, however this makes it

difficult to naturally realise EWSSB without the need to introduce unnaturally
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large hierarchies between the scalar potential quartic couplings, or between the

VEVs of the Φ and S fields. Therefore, our analysis has focused on scenarios of

the Type I or Type II flat directions.

For each of the two types of flat directions we considered two different sce-

narios, a U(1) invariant scenario, in which the scalar field S is invariant under

a change of phase, and a scenario where the U(1) invariance has been dropped.

In these scenarios we determine the permitted quartic coupling parameter space,

using both theoretical and experimental constraints, and apply these limits to

make numerical predictions of the scalar mass spectrum and the RG scale Λ.

The theoretical constraints are derived by keeping the quartic couplings pertur-

bative, for which we calculate the one-loop β functions of the pertinent couplings

of the MSISM, and also keeping the potential BFB. The experimental constraints

include the direct Higgs boson searches at LEP2 and the Tevatron, as well as phe-

nomenological limits from electroweak precision data. We find that for all the

considered scenarios the scalar masses and the RG scale Λ remain below the TeV

scale, with Λ normally just higher than the EW scale.

We have found that the general Type I flat direction is perturbative only up to

the EW scale and exhibits a Landau pole at energy scales ∼ 104 GeV. Likewise,

we have found that the U(1) invariant Type II flat direction develops a Landau

pole at energy scales ∼ 106 GeV. In this respect, our results are in qualitative

agreement with [23]. Moving away from the constraint of U(1) invariance, we have

explicitly demonstrated that a minimal U(1) non-invariant MSISM with a Type II

flat direction which realises maximal SCPV can stay perturbative up to the Planck

scale. This is of particular importance for suggesting that the gauge hierarchy

problem is removed in this case. In [14, 15, 16] it is argued that the quadratic

divergences in any SI theory are just spurious effects of the regularisation scheme

provided the regularisation scheme respects the classical symmetries of the local

classical action, to which scale invariance must be promoted. A further two

requirements are made in [16]; that the theory has no intermediate scales between
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the EW and the Planck scales and that the running couplings have neither Landau

poles nor instabilities before the Planck scale. The minimal U(1) non-invariant

MSISM with a Type II flat direction which realises maximal SCPV respects all

these constraints.

In addition, we have discussed the phenomenological implications of the Type

I and Type II flat directions, in particular, whether they realise explicit or sponta-

neous CP violation, contain neutrino masses or provide dark matter candidates.

The key features of the different flat directions have been summarised in Ta-

ble 3.1. We decided to investigate the inclusion of right-handed neutrinos to the

MSISM in more detail, for the main reason that if the very small light neutrino

masses were generated through the seesaw mechanism, then the corresponding

heavy neutrinos could have a large impact on the one-loop effective potential,

the one-loop β functions and the oblique parameters. The seesaw mechanism can

only be realised in a SI way in the Type II flat direction. Our analysis shows that

the additional heavy Majorana neutrino masses mN cannot be much higher than

the TeV scale.

The scenario which satisfies all the above requirements is the minimal U(1)

non-invariant Type II scenario which maximally realises SCPV. It can naturally

incorporate small neutrino masses via the seesaw mechanism and, provided it

preserves the parity symmetry between the real and imaginary fields of the com-

plex scalar S in the neutrino sector, produces a massive stable scalar dark matter

candidate. An important feature of this model is that it can remain perturbative

up to the Planck scale. As mentioned above, it can be argued that last property,

along with the classical scale invariance, can potentially solve the gauge hierarchy

problem for this model.

There are several issues which are beyond the scope of this thesis, but which

need to be studied in greater detail. We have not discussed either the DM can-

didates or the CP violation in great detail, and further investigation into both

areas of phenomenology is required. Additionally although we have discussed it,
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a fully detailed investigation into how these scenarios could be detected at the

LHC or future colliders also needs to be considered.

104



Appendix A

Derivation of the Ward Identity

for Scale Invariance

In this appendix we present the derivation of the WI for scale invariance from

Equation (2.6) to Equation (2.8). To clearly show the derivation we shall consider

a single real field only, to expand to a theory containing complex fields simply

include the hermitian conjugate of every term and for theories with multiple fields

just sum over all the fields.

Equation (2.6) can be rewritten in terms of only one variable, x, which we

will then drop for notational simplicity

δS[Φ(x)] =

∫
d4y

[
δ
(
∂µΦ(y)

) δ

δ
(
∂µΦ(y)

) + δΦ(y)
δ

δΦ(y)

] ∫
d4xL[Φ(x)]

=

∫
d4y d4x

[
δ
(
∂µΦ(y)

) δ

δ
(
∂µΦ(y)

) + δΦ(y)
δ

δΦ(y)

]
L[Φ(x)] δ(x− y)

=

∫
d4x

[
δ
(
∂µΦ(x)

) δ

δ
(
∂µΦ(x)

) + δΦ(x)
δ

δΦ(x)

]
L[Φ(x)] . (A.1)

The first term on the right-hand side of the above equation can be replaced by

105



the simple manipulation

δ
(
∂µΦ

) δ

δ
(
∂µΦ

) =
(
∂µδΦ

) δ

δ
(
∂µΦ

)

= ∂µ

[
δΦ

δ

δ
(
∂µΦ

)
]
− δΦ

(
∂µ

δ

δ
(
∂µΦ

)
)
, (A.2)

which gives

δS[Φ] =

∫
d4x

[
∂µ

[
δΦ

δL[Φ]

δ
(
∂µΦ

)
]

+ δΦ

{
δL[Φ]

δΦ
−
(
∂µ

δL[Φ]

δ
(
∂µΦ

)
)}]

. (A.3)

The last two terms which are encased in the curly brackets amount to the Euler-

Lagrange equation and are equal to zero. In the first term we may replace δΦ by

the specific variation due to the scale transformation given in (2.7). Applying ∂µ

on the various terms gives

δS[Φ] = ǫ

∫
d4x

[[
a(∂µΦ) + (∂µx

ν)(∂νΦ) + xν(∂µ∂νφ)
] δL[Φ]

δ
(
∂µΦ

)

+
[
aΦ + xν∂νΦ

](
∂µ

δL[Φ]

δ
(
∂µΦ

)
)]

. (A.4)

Using the Euler-Lagrange equation on the last bracket, i.e. ∂µ

(
δL[Φ]

δ
(

∂µΦ
)
)

= δL[Φ]
δΦ

and noting ∂µx
ν = δν

µ we can rewrite the above equation as

δS[Φ] = ǫ

∫
d4x

[
(a+ 1)(∂µΦ)

δL[Φ]

δ
(
∂µΦ

) + aΦ
δL[Φ]

δΦ

+xν

(
∂νΦ

δL[Φ]

δΦ
+ (∂µ∂νΦ)

δL[Φ]

δ
(
∂µΦ

)
)]

. (A.5)
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The last term can be simplified using the chain rule and some simple manipula-

tion,

xν

(
∂νΦ

δL[Φ]

δΦ
+ (∂µ∂νΦ)

δL[Φ]

δ
(
∂µΦ

)
)

= xν
[ ∂Φ
∂xν

∂

∂Φ
+
∂
(
∂µΦ

)

∂xν

∂

∂
(
∂µΦ

)
]
L[Φ]

= xν

[
∂

∂xν
L[Φ]

]

=
∂

∂xν

[
xνL[Φ]

]
− L[Φ]

∂

∂xν
xν

= ∂ν (xνL[Φ]) − 4L[Φ] . (A.6)

Substituting this into (A.5) gives

δS[Φ] = ǫ

∫
d4x

[
(a+1)(∂µΦ)

δL[Φ]

δ
(
∂µΦ

) +aΦ
δL[Φ]

δΦ
−4L[Φ]+∂ν (xνL[Φ])

]
(A.7)

which is identical to (2.8) except for the last term. The last term can be removed

to give (2.8) by using Stokes theorem

∫

V

d4x ∂ν (xνL[Φ]) =

∫

Σ

dA nν (xνL[Φ]) (A.8)

where a finite volume V is bounded by the surface Σ, dA is the surface element and

nν is the outward normal to the surface. This is a boundary term and therefore

vanishes on field configurations that go to zero sufficiently fast at infinity.
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Appendix B

The Yukawa and Gauge Sectors

of the MSISM

In this appendix we briefly review the gauge-invariant, gauge-fixing and Faddeev-

Popov sectors of the MSISM Lagrangian (3.1). These terms closely resemble those

of the SM which has been reviewed extensively in the literature, for example see

[1, 2, 3]. In this brief exposition, we introduce the notation and determine the

gauge-dependent masses and couplings that enter our calculations for the effective

potential and the electroweak oblique parameters.

B.1 The Gauge-Invariant Lagrangian

The gauge-invariant part of the MSISM Lagrangian (3.1) can be written as

Linv = − 1

4
Ga

µνG
a,µν − 1

4
F i

µνF
i,µν − 1

4
BµνB

µν

+ ψ̄iγµDµψ + (DµΦ)†(DµΦ) + (∂µS
∗)(∂µS)

−
(

hu
ijQ̄iLΦ̃ujR + hd

ijQ̄iLΦdjR + he
ijL̄iLΦejR + h.c

)
. (B.1)
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Field SU(3)c SU(2)L U(1)Y

QiL =

(
ui

di

)

L

3 2 1
3

uiR 3 1 4
3

diR 3 1 −2
3

LiL =

(
ν0

i

ei

)

L

1 2 -1

eiR 1 1 -2

Φ =

(
G+

1√
2
(φ+ iG)

)
1 2 1

S = 1√
2
(σ + iJ) 1 1 0

Table B.1: The SU(3)c, SU(2)L and U(1)Y charge assignments for the scalar and
fermion fields of the MSISM.

The field strength tensors of the SU(3)c, SU(2)L and U(1)Y gauge fields Ga
µ (with

a = 1, . . . , 8), Ai
µ (with i = 1, 2, 3) and Bµ are respectively

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν ,

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gεijkAj

µA
k
ν ,

Bµν = ∂µBν − ∂νBµ , (B.2)

where gs, g and g′ are the corresponding SU(3)c, SU(2)L and U(1)Y gauge cou-

plings, fabc are the SU(3)c structure constants and εijk is the Levi-Civita symbol;

a totally antisymmetric tensor.

The covariant derivative is defined as

Dµ = ∂µ − igs
λa

2
Ga

µ − ig
τ i

2
Ai

µ − i
Y

2
g′Bµ , (B.3)
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where λa (τ i) are the Gell-Mann (Pauli) matrices and Y is the U(1)Y weak hyper-

charge of the various fields. The SU(3)c, SU(2)L and U(1)Y charge assignments

for the scalars and fermions fields are given in Table B.1.

After EWSSB, in which SU(2)L ×U(1)Y → U(1)EM, the massless SU(2)L and

U(1)Y gauge bosons can be replaced by the physical gauge bosons: three massive

gauge bosons,

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) , Zµ = cos θWA

3
µ − sin θWBµ (B.4)

and a fourth massless combination Aµ = sin θWA
3
µ+cos θWBµ, which corresponds

to the gauge boson of the remaining U(1)EM gauge group. The Weinberg angle or

weak mixing angle, θW , is defined through cos2 θW = g2

g2+g′2
. EWSSB also gives

rise to two-particle mixing terms between the Goldstones bosons and the gauge

bosons. For practical calculations it is more convenient to eliminate these two-

particle mixing terms by choosing a gauge-fixing scheme in which they naturally

cancel, see Section B.2.

In (B.1), we have used ψ to collectively represent all the fermions of the model

ψ = {QiL, uiR, diR, LiL, eiR} (B.5)

where the subscripts L and R denote the left- and right-handed chiralities of

the fermions, ψL,R = 1
2
(1 ∓ γ5)ψ. Each type of fermion has three generations,

represented by i = 1, 2, 3. Explicitly,

ui = (u, c, t) , di = (d, s, b) , ei = (e, µ, τ) , νi = (νe, νµ, ντ ) . (B.6)

The 3×3 matrices hu,d,e
ij contain the Yukawa couplings for the SM up- and down-

type quarks and charged leptons respectively.

Finally, in (B.1), we have denoted the hypercharge conjugate field of the Higgs

doublet Φ as Φ̃ = iτ 2Φ∗.
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B.2 The Gauge-Fixing and Faddeev-Popov La-

grangians

In a gauge theory with EWSSB, such as the MSISM, one has to specify a gauge-

fixing scheme in order to eliminate the unphysical degrees of freedom from the

gauge fields (which result from the gauge invariance). A convenient gauge-fixing

scheme, which also removes the tree-level mixing terms between the Goldstone

and gauge bosons, is the Rξ class of gauges [45]. Adopting this scheme, we can

write the gauge fixing Lagrangian as follows:

LGF = − 1

2ξ

[
(∂µG

aµ)2
]2

− 1

2ξ

[
∂µA

iµ + igξ
(
Φ† τ

i

2
〈Φ〉 − 〈Φ〉† τ

i

2
Φ
)]2

− 1

2ξ

[
∂µB

µ + ig′
ξ

2

(
Φ†〈Φ〉 − 〈Φ〉†Φ

)]2
(B.7)

where we have linearly decomposed the neutral component of Φ about its one-loop

induced VEV, Φ + 〈Φ〉, where

〈Φ〉 =


 0

vφ√
2


 . (B.8)

At the minimum we require vφ to equal the SM VEV, vφ = vSM = 246 GeV. The

Goldstone bosons obtain gauge-dependent mass contributions given by

m2
G± =

1

4
g2ξv2

φ , m2
G =

1

4
(g2 + g

′2)ξv2
φ . (B.9)

Denoting the SU(3)c, SU(2)L and U(1)Y ghost fields as ηa (a = 1, ..., 8), ωi

(i = 1, 2, 3) and χ, the induced Faddeev–Popov Lagrangian is

LFP = − η̄a∂µ(∂µδac − gsf
abcGbµ)ηc + (ω†

i , χ
†)



 Mij Mi

Mj M







 ωj

χ



 (B.10)
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where

Mij = −
[
∂µ(δij∂µ − gǫijkA

k
µ) + g2ξ

(1

2
〈Φ〉†〈Φ〉δij + Φ† τjτi

4
〈Φ〉

+ 〈Φ〉† τiτj
4

Φ
)]

Mi = − gg′

2
ξ
[
〈Φ〉†τi〈Φ〉 + Φ† τi

2
〈Φ〉 + 〈Φ〉† τi

2
Φ
]

Mij = −
[
∂µ∂µ +

g′2

2
ξ
(
2〈Φ〉†〈Φ〉 + Φ†〈Φ〉 + 〈Φ〉†Φ

)]
. (B.11)

The ghosts also gain gauge-dependent mass eigenvalues;

m2
ω±

=
1

4
g2ξv2

φ , m2
ωZ

=
1

4
(g2 + g′2)ξv2

φ , m2
ωA

= 0 , m2
ηa = 0 ,

(B.12)

where ω± = 1√
2
(ω1∓iω2), ωZ = cos θWω3−sin θWχ and ωA = sin θWω3+cos θWχ.

We should note that after EWSSB, the ξ-dependent mass contributions appear

in the one-loop effective potential V 1−loop
eff . However, when evaluated along the

flat direction they cancel and leave V 1−loop
eff gauge-invariant, for more details,

see Appendix C. In the same context, we also note that the ξ-dependent mass

contributions to the Goldstone bosons (B.9) contribute to the electroweak oblique

parameters, S, T and U , which are conventionally calculated in the Feynman-’t

Hooft gauge, ξ = 1, for more details, see Appendix E. However, since the one-loop

anomalous dimensions and β functions can be computed in the symmetric phase

of the theory, the ξ-dependent mass contributions do not influence them.
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Appendix C

The One-Loop Effective Potential

To calculate the one-loop effective potential of the MSISM, we use the Feynman

path integral method developed in [46]. The alternative approach of [20], which

requires the summation of an infinite set of Feynman vacuum diagrams, would

have been an almost impossible task in the MSISM due to the two-particle scalar

mixing terms, see (C.10). Using the Feynman path integral approach, the one-

loop effective potential is determined from the functional expression [46, 47]

V 1−loop
eff = − Cs

i~

2

(
Tr lnHϕ1ϕ2

(ϕc) − Tr lnHϕ1ϕ2
(0)
)
, (C.1)

where ϕ denotes the fields of the theory, which for the MSISM are

{Φ, S, Ai
µ, Bµ, ω±, ωZ , ωA, η

a, ui, di, ei, νi, Ni},

and Hϕ1ϕ2
is the second derivative of the classical action S =

∫
d4xL with respect

to two fields of the theory, i.e.

Hϕ1ϕ2
(ϕc) =

δ2S

δϕ1(x1)δϕ2(x2)

∣∣∣∣
ϕ=ϕc

. (C.2)

The classical fields ϕc of the theory are defined such that for a vanishing source

term, J(x) = 0, they equal the expectation value of the field ϕ. In (C.1), the
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factor Cs takes the values, Cs = +1 for real fields obeying Bose–Einstein statistics,

Cs = −1 for real fields with Fermi–Dirac statistics, and if the field is complex

there is an additional factor of 2, e.g Cs = 2 for the complex scalars Φ and S.

Finally, the trace Tr in (C.1) acts over all space and internal degrees of freedom.

To calculate V 1−loop
eff , we use the more practical representation of (C.1)

V 1−loop
eff = − Cs

i

2

∫ 1

0

dxTr

[
Hϕ1ϕ2

(ϕc) − Hϕ1ϕ2
(0)

x (Hϕ1ϕ2
(ϕc) − Hϕ1ϕ2

(0)) + Hϕ1ϕ2
(0)

]
, (C.3)

where we have used the relation
∫ 1

0
dx A

Ax+B
= ln(A + B) − lnB. Performing

a Fourier transform to a momentum space of n = 4 − 2ε dimension, the above

expression becomes

V 1−loop
eff = − Cs

i

2

∫ 1

0

dx

∫
dnk

(2π)n
tr

[
Hϕ1ϕ2

(ϕc) − Hϕ1ϕ2
(0)

x (Hϕ1ϕ2
(ϕc) − Hϕ1ϕ2

(0)) + Hϕ1ϕ2
(0)

]

(C.4)

where tr now symbolises the trace over the internal degrees of freedom only, e.g.

over the polarisations of the gauge fields, the spinor components of the fermions

or over any matrices, such as the Yukawa coupling matrices.

The one-loop effective potential of the MSISM can now be calculated by in-

dividually applying (C.4) to the different field types; scalars, gauge bosons (GB),

ghosts, charged fermions (CF) and neutrinos (N), i.e.

V 1−loop
eff = V 1−loop

eff (Scalar) + V 1−loop
eff (GB) + V 1−loop

eff (Ghost)

+ V 1−loop
eff (CF) + V 1−loop

eff (N) . (C.5)

C.1 The Scalar Contribution

The numerous interactions between the scalar fields Φ and S given in V tree (3.2)

makes determination of the scalar contribution to (C.5) a non-trivial calculation.

Considering the scalar fields only, Hϕ1ϕ2
(ϕc), as defined in (C.2), is the 6 × 6
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matrix 


HΦ†Φ HΦ†Φ† HΦ†S HΦ†S∗

HΦΦ HΦΦ† HΦS HΦS∗

HS∗Φ HS∗Φ† HS∗S HS∗S∗

HSΦ HSΦ† HSS HSS∗




. (C.6)

Since Φ is a doublet whilst S is a singlet, we observe that HΦ†Φ, HΦ†Φ† , HΦΦ and

HΦΦ† are 2× 2 matrices, HSS, HSS∗, HS∗S and HS∗S∗ are complex numbers, and

the remaining entries, e.g. HΦS, HΦS∗ etc. are two-dimensional complex vectors.

This internal matrix structure must be preserved throughout the calculation, par-

ticularly when determining the matrix [x (Hϕ1ϕ2
(ϕc) −Hϕ1ϕ2

(0)) + Hϕ1ϕ2
(0)]−1.

Taking this into account, the scalar contribution is found to be

V 1−loop
eff (Scalar) =

1

64π2

[
3∑

i=1

M4
Hi

(
− 1

ε
− 3

2
+ ln

M2
Hi

µ̄2

)

+ 2M4
G±

(
− 1

ε
− 3

2
+ ln

M2
G±

µ̄2

)
+ M4

G

(
− 1

ε
− 3

2
+ ln

M2
G

µ̄2

)]
, (C.7)

where ln µ̄2 = −γ + ln 4πµ2, γ ≈ 0.5772 is the Euler–Mascheroni constant and µ

is ’t-Hooft’s renormalisation scale. The Goldstone mass terms in (C.7) are given

by

M2
G = M2

G± =
1

2
λ1φ

2 +
1

2
σ2(λ3 +λ4 +λ∗4) +

1

2
J2(λ3 −λ4 −λ∗4) + iσJ(λ4 −λ∗4) .

(C.8)

Along the flat direction the Goldstone mass terms vanish because of (3.12), how-

ever, after EWSSB they obtain additional ξ-dependent contributions through the

gauge fixing terms [cf. (B.9)].

The masses M2
H1,2,3

appearing in (C.7) correspond to the eigenvalues of the

matrix

M2
S =




M2
φ Mφσ MφJ

Mφσ M2
σ MσJ

MφJ MσJ M2
J


 , (C.9)
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where

M2
φ =

3

2
λ1φ

2 +
1

2
(λ3 + λ4 + λ∗4)σ

2 + i(λ4 − λ∗4)σJ

+
1

2
(λ3 − λ4 − λ∗4)J

2 ,

M2
σ =

1

2
(λ3 + λ4 + λ∗4)φ

2 +
3

2
(λ2 + 2λ5 + 2λ∗5 + λ6 + λ∗6)σ

2

+ 3i(λ5 − λ∗5 + λ6 − λ∗6)σJ +
1

2
(λ2 − 3λ6 − 3λ∗6)J

2 ,

M2
J =

1

2
(λ3 − λ4 − λ∗4)φ

2 +
1

2
(λ2 − 3λ6 − 3λ∗6)σ

2

+ 3i(λ5 − λ∗5 − λ6 + λ∗6)σJ +
3

2
(λ2 − 2λ5 − 2λ∗5 + λ6 + λ∗6)J

2 ,

Mφσ = φ
[
(λ3 + λ4 + λ∗4)σ + i(λ4 − λ∗4)J

]
,

MσJ = i

[
1

2
(λ4 − λ∗4)φ

2 +
3

2
(λ5 − λ∗5 + λ6 − λ∗6)σ

2

− i(λ2 − 3λ6 − 3λ∗6)σJ +
3

2
(λ5 − λ∗5 − λ6 + λ∗6)J

2

]
,

MφJ = φ
[
i(λ4 − λ∗4)σ + (λ3 − λ4 − λ∗4)J

]
. (C.10)

We note that along the flat direction one of the eigenvalues of the matrix (C.9) will

always vanish as it corresponds to the pseudo-Goldstone boson of scale invariance

h.
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C.2 The Gauge Boson Contribution

Calculated in the Rξ gauge, the gauge-boson contribution in (C.5) reads:

V 1−loop
eff (GB) =

1

64π2

[
6M4

W

(
− 1

ε
− 5

6
+ ln

M2
W

µ̄2

)

+ 3M4
Z

(
− 1

ε
− 5

6
+ ln

M2
Z

µ̄2

)
+ 2ξ2M4

W

(
− 1

ε
− 3

2
+ ln

ξM2
W

µ̄2

)

+ ξ2M4
Z

(
− 1

ε
− 3

2
+ ln

ξM2
Z

µ̄2

)]
, (C.11)

where

M2
W =

g2

4
φ2 , M2

Z =
g2 + g′2

4
φ2 . (C.12)

C.3 The Ghost Contribution

Evaluated in the same class of Rξ gauges, the ghost contribution after EWSSB

is given by

V 1−loop
eff (Ghost) = − 2

64π2

[
2M4

ω±

(
− 1

ε
− 3

2
+ ln

M2
ω±

µ̄2

)

+M4
ωZ

(
− 1

ε
− 3

2
+ ln

M2
ωZ

µ̄2

)]
, (C.13)

where M2
ω±

= ξM2
W and M2

ωZ
= ξM2

Z are the field-dependent ghost masses.

C.4 The Charged Fermion Contribution

The charged fermion contribution to the effective potential (C.5) reads:

V 1−loop
eff (CF) = − 4

64π2

[
3

3∑

i=1

M4
ui

(
− 1

ε
− 1 + ln

M2
ui

µ̄2

)

+ 3

3∑

i=1

M4
di

(
− 1

ε
− 1 + ln

M2
di

µ̄2

)
+

3∑

i=1

M4
ei

(
− 1

ε
− 1 + ln

M2
ei

µ̄2

)]
, (C.14)
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where M2
fi (f = u, d, e) are the eigenvalues of the background φ-dependent

squared mass matrix for the f -type fermion: 1
2
(hf†hf )φ2. The factor 3 in front

of the up-type and down-type quark contributions is an SU(3)c colour factor.

C.5 The Neutrino Contribution

Extending the MSISM with right-handed neutrinos to obtain a set of light νi

and heavy Ni Majorana neutrinos, gives rise to additional contributions to the

one-loop effective potential (C.5)

V 1−loop
eff (N) = − 2

64π2

{
Tr

[
(MνM

†
ν)

2

(
− 1

ε
− 1 + ln

MνM
†
ν

µ̄2

)]

+ Tr

[
(MNM†

N )2

(
− 1

ε
− 1 + ln

MNM†
N

µ̄2

)]}
, (C.15)

where Mν is the light-neutrino mass matrix,

Mν =
1

2
φ2 hν M−1

N hνT , (C.16)

and MN is the respective heavy-neutrino mass matrix,

MN =
1√
2

[
σ(hN + h̃N†) + iJ(hN − h̃N†)

]
. (C.17)

Finally, we shall make an important remark regarding the gauge-dependence of

the one-loop effective potential. In general V 1−loop
eff is gauge dependent through

(C.11) and, after EWSSB, through (C.13) and the Goldstone ξ-dependent mass

terms in (C.7). It is known that the effective potential becomes gauge-independent

when evaluated at local extrema [48, 49]. As a consistency check, we have inde-

pendently verified that the ξ-dependent terms due to the gauge, Goldstone and

ghost contributions cancel against each other in the one-loop effective potential

(C.5) when evaluated along the flat directions as well as at the minimum.
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Appendix D

The One-Loop Anomalous

Dimensions and β Functions

In this appendix, we present the one-loop anomalous dimensions of the fields and

the one-loop β functions of the couplings of the MSISM. For completeness we

also review the approach used to determine them. This approach is compatible

with dimensional regularisation [17], the MS renormalisation scheme [35] and the

Rξ class gauges [45], which have been used through this analysis of the MSISM.

D.1 Formal Analysis

To calculate the one-loop anomalous dimensions and β functions, we need to

determine the one-loop wavefunction and coupling constant renormalisation con-

stants. To do this, we use the displacement operator formalism, or D-formalism

for short, that was developed in [50] as an alternative approach which enables

one to systematically perform renormalisation to all orders in perturbation theory.

Since it is not a common approach, we shall briefly review its main features.

In the D-formalism the renormalised one-particle irreducible n-point correla-

tion functions IΓϕn are related to the unrenormalised or bare ones IΓ0
ϕn through
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the relation

ϕn IΓϕn(λ,m2, ξ;µ) = eD
(
ϕn IΓ0

ϕn(λ,m2, ξ;µ, ε)
)
, (D.1)

where D is the displacement operator that takes the form

D = δϕ
∂

∂ϕ
+ δλ

∂

∂λ
+ δm2 ∂

∂m2
+ δξ

∂

∂ξ
, (D.2)

with ϕ denoting all the fields of the theory, λ all the couplings (gauge, Yukawa and

quartic couplings), m2 all the squared masses and ξ is the gauge fixing parameter.

Additionally, the parameter shifts δϕ, δλ etc. are defined as

δϕ = ϕ0 − ϕ = (Z1/2
ϕ − 1)ϕ , δm2 = (m0)2 − m2 = (Zm2 − 1)m2 ,

δλ = λ0 − λ = (Zλ − 1)λ , δξ = ξ0 − ξ = (Zξ − 1)ξ . (D.3)

We have used the notation that all bare elements are denoted with a superscript

0 and all renormalised ones are left un-annotated.

Since (D.1) is an all-order result, we may expand it to any given order using

perturbation theory. Performing a loopwise expansion of the operator eD gives

eD = 1 + D(1) +
(
D(2) +

1

2
(D(1))2

)
+ . . . , (D.4)

where the superscript (n) on D denotes the loop order, such that

D(n) = δϕ(n) ∂

∂ϕ
+ δλ(n) ∂

∂λ
+ (δm2)(n) ∂

∂m2
+ δξ(n) ∂

∂ξ
. (D.5)

Correspondingly, the parameter shifts δϕ(n), δλ(n) etc are defined loop-wise as

δϕ(n) = Z
1

2
(n)

ϕ ϕ , δλ(n) = Z
(n)
λ λ ,

(δm2)(n) = Z
(n)
m2m

2 , δξ(n) = Z
(n)
ξ ξ . (D.6)
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Applying the D-formalism to one-loop, we have

ϕnIΓ
(1)
ϕn(λ,m2, ξ;µ) = D(1)

(
ϕnIΓ

0(0)
ϕn (λ,m2, ξ;µ)

)
+ϕnIΓ

0(1)
ϕn (λ,m2, ξ;µ, ε) . (D.7)

Rearranging the above equation and using (D.5) and (D.6), we obtain an explicit

relation to calculate the one-loop wavefunction and coupling constant renormal-

isation constants, Z
(1)
ϕ and Z

(1)
λ of the MSISM:

−ϕnIΓ
0(1)

ϕn (λ, ξ;µ, ε) =

[
1

2
ϕZ(1)

ϕ

∂

∂ϕ
+ λZ

(1)
λ

∂

∂λ
+ ξZ

(1)
ξ

∂

∂ξ

](
ϕnIΓ

0(0)
ϕn (λ, ξ;µ)

)

(D.8)

where the bar indicates that only the infinite part of the corresponding bare

one-particle irreducible n-point correlation function IΓ0
ϕn should be considered.

Having obtained the one-loop wavefunction and coupling constant renormal-

isations using (D.8), we may compute the one-loop anomalous dimensions γϕ of

the fields and the βλ functions of the couplings as follows:

γϕ ≡ −µ
d lnϕ

dµ

∣∣∣
ε→0

= −1

2
lim
ε→0

∑

λi

ε dλi
λi

∂

∂λi
Z(1)

ϕ ,

βλi
≡ µ

dλi

dµ

∣∣∣
ε→0

= λi lim
ε→0

∑

λj

ε dλj
λj

∂

∂λj

Z
(1)
λi

, (D.9)

where ε dλ is the tree-level scaling dimension of the generic coupling λ in n = 4−2ε

dimensions, with dλi
= 2 for the scalar quartic couplings, dg = dh = 1 for the

gauge and Yukawa couplings and dξ = 0 for the gauge-fixing parameter. The

relations given in (D.9) are based on the derivation presented in [51] where we have

applied the fact that the bare coupling constants are related to their renormalised

parameters through

λ0
i = µdλi

εZλi
λi = µdλi

ε(1 + Z
(1)
λi

+ ...)λi, (D.10)
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where we have loopwise expanded Zλi
. Note that the contribution to Zλi

at n-

loop is a function of order ε−n, Zn
k = O(1/εn). Similarly, Zϕ can be expanded

loop-wise as Zϕ = 1 + Z
(1)
ϕ + ..., where again the contribution at n-loop is a

function of order ǫ−n, Zn
ϕ = O(1/ǫn).

D.2 The One-Loop Anomalous Dimensions and

β Functions of the MSISM

We calculate the one-loop anomalous dimensions and β functions of the MSISM in

the Rξ gauge using dimensional regularisation in the MS renormalisation scheme.

By employing (D.8) and (D.9) in the symmetric phase of the theory i.e. before

EWSSB, we obtain the following anomalous dimensions of the fields

γΦ =
1

(4π)2

[
1

4
(ξ − 3)(3g2 + g′2) + T1

]
,

γS =
1

(4π)2

1

2
T2 ,

γuL
=

1

(4π)2

[
1

2

(
huhu† + hdhd†

)
+ ξ
(4

3
g2

s +
3

4
g2 +

1

36
g′2
)

1

]
,

γuR
=

1

(4π)2

[
hu†hu +

4

9
ξ
(
3g2

s + g′2
)

1

]
,

γdL
=

1

(4π)2

[
1

2

(
huhu† + hdhd†

)
+ ξ
(4

3
g2

s +
3

4
g2 +

1

36
g′2
)

1

]
,

γdR
=

1

(4π)2

[
hd†hd +

1

9
ξ
(
12g2

s + g′2
)

1

]
,
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γν0

L
=

1

(4π)2

[
1

2

(
hehe† + hνhν†

)
+
ξ

4

(
3g2 + g′2

)
1

]
,

γν0C
L

=
1

(4π)2

[
1

2

(
he∗heT + hν∗hνT

)
+
ξ

4

(
3g2 + g′2

)
1

]
,

γν0

R
=

1

(4π)2

(
hν†hν +

1

2
hN†hN +

1

2
h̃N h̃N†

)
,

γν0C
R

=
1

(4π)2

(
hνThν∗ +

1

2
hNhN† +

1

2
h̃N†h̃N

)
, (D.11)

where T1 = Tr
(
3huhu†+3hdhd†+hehe†+hνhν†

)
and T2 = Tr

(
hN†hN + h̃N†h̃N

)
.

Notice that (γν0

L
)∗ = γν0C

L
and (γν0

R
)∗ = γν0C

R
, where we have used hN = hNT and

h̃N = h̃NT , which is a consequence of the Majorana constraint on the left-handed

and right-handed neutrinos, ν0
iL and ν0

iR.

Correspondingly, the one-loop β functions of the scalar-potential quartic cou-

plings are

βλ1
=

1

8π2

[
6λ2

1 + λ2
3 + 4λ4λ

∗
4 +

3

8

(
3g4 + 2g2g′2 + g′4

)
− T3

−λ1

(
3

2

(
3g2 + g′2

)
− 2T1

)]
,

βλ2
=

1

8π2

[
5λ2

2 + 2λ2
3 + 4λ4λ

∗
4 + 54λ5λ

∗
5 + 36λ6λ

∗
6 − Tr

(
hNhN†hNhN†

)

− 2Tr
(
h̃N h̃N†hN†hN

)
− 2Tr

(
h̃N†h̃NhNhN†

)

−Tr
(
h̃N†h̃N h̃N†h̃N

)
+ λ2T2

]
,

βλ3
=

1

8π2

[
3λ1λ3 + 2λ2λ3 + 2λ2

3 + 8λ4λ
∗
4 + 6λ4λ

∗
5 + 6λ5λ

∗
4

− 2Tr
(
hN†hNhν†hν

)
− 2Tr

(
h̃N h̃N†hν†hν

)

−λ3

(
3

4

(
3g2 + g′2

)
− T1 −

1

2
T2

)]
,
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βλ4
=

1

8π2

[
3λ1λ4 + λ2λ4 + 4λ3λ4 + 3λ3λ5 + 6λ∗4λ6 − 2Tr

(
h̃NhNhν†hν

)

−λ4

(
3

4

(
3g2 + g′2

)
− T1 −

1

2
T2

)]
,

βλ5
=

1

8π2

[
9λ2λ5 + 2λ3λ4 + 18λ∗5λ6 − Tr

(
h̃N†h̃NhN h̃N

)

−Tr
(
hNhN†hN h̃N

)
+ λ5T2

]
,

βλ6
=

1

8π2

[
6λ2λ6 + 2λ2

4 + 9λ2
5 − Tr

(
h̃NhN h̃NhN

)
+ λ6T2

]
, (D.12)

where T3 = Tr
(
6huhu†huhu†+6hdhd†hdhd†+2hehe†hehe†+2hνhν†hνhν†

)
. Note

that the one-loop β functions of the complex conjugate quartic couplings, e.g. the

λ∗4 coupling, are given by βλ∗
4

= (βλ4
)∗ etc.

For the one-loop β functions of the SU(3)c, SU(2)L and U(1)Y gauge couplings,

we use the established results

βgs = − 1

8π2

7

2
g3

s , βg = − 1

8π2

19

12
g3 , βg′ =

1

8π2

41

12
g′3 . (D.13)

We also present the known one-loop β functions of the Yukawa couplings

β
hu =

1

8π2

[
−17

24
g′2 − 9

8
g2 − 4g2

s +
1

2
T1 +

3

4

(
huhu† − hdhd†)

]
hu ,

β
hd =

1

8π2

[
− 5

24
g′2 − 9

8
g2 − 4g2

s +
1

2
T1 +

3

4

(
hdhd† − huhu†)

]
hd ,

βhe =
1

8π2

[
−15

8
g′2 − 9

2
g2 +

1

2
T1 +

3

4

(
hehe† − hνhν†)

]
he . (D.14)

Finally, the one-loop β functions of the Dirac and Majorana neutrino Yukawa

124



couplings are calculated to be

β
h̃N =

1

8π2

[
h̃N
(5

4
hNhN† +

1

4
hÑ†hÑ +

1

2
hνThν∗

)

+
(5

4
hN†hN +

1

4
h̃N h̃N† +

1

2
hν†hν

)
h̃N +

1

4
h̃NT2

]
,

β
hN =

1

8π2

[
hN
(5

4
h̃N h̃N† +

1

4
hN†hN +

1

2
hν†hν

)

+
(5

4
h̃N†h̃N +

1

4
hNhN† +

1

2
hνT hν∗

)
hN +

1

4
hNT2

]
,

β
hν =

1

8π2

[
hν
(
− 3

8
g′2 − 9

8
g2 +

1

2
T1

)
+

3

4

(
hνhν† − hehe†

)
hν

+
1

4
hν
(
hN†hN + h̃N h̃N†

)]
. (D.15)

The renormalisability of V 1−loop
eff can be verified by using the one-loop anoma-

lous dimensions of the scalar fields and the β functions of the λ quartic couplings.

Specifically, the renormalised potential V = V tree + V 1−loop
eff should be UV finite

i.e. contain no 1/ε terms. In the MS renormalisation scheme [35], the one-loop

UV counter-terms for the fields and coupling constants are explicitly given by

δϕ(1) = Z(1) 1/2
ϕ ϕ = −1

2

(
1

ε
− γ + ln 4π

)
γϕϕ ,

δλ(1) = Z
(1)
λ λ =

1

2

(
1

ε
− γ + ln 4π

)
βλ . (D.16)

Taking these relations into account, the one-loop MSISM effective potential

125



can be renormalised in the MS scheme and its complete analytic form is given by

V 1−loop
eff =

1

64π2

{
2M4

G±

(
−3

2
+ ln

M2
G±

µ2

)
+M4

G

(
−3

2
+ ln

M2
G

µ2

)

+

3∑

i=1

m4
Hi

(
−3

2
+ ln

m2
Hi

µ2

)
+ 6M4

W

(
−5

6
+ ln

M2
W

µ2

)

+ 3M4
Z

(
−5

6
+ ln

M2
Z

µ2

)
+ 2ξ2M4

W

(
−3

2
+ ln

ξM2
W

µ2

)

+ ξ2M4
Z

(
−3

2
+ ln

ξM2
Z

µ2

)
− 4M4

ω±

(
−3

2
+ ln

M2
ω±

µ̄2

)

− 2M4
ωZ

(
−3

2
+ ln

M2
ωZ

µ̄2

)
− 12

3∑

i=1

M4
ui

(
−1 + ln

M2
ui

µ2

)

− 12

3∑

i=1

M4
di

(
−1 + ln

M2
di

µ2

)
− 4

3∑

i=1

M4
ei

(
−1 + ln

M2
ei

µ2

)

− 2Tr

[
(MνM

†
ν)

2

(
−1 + ln

MνM
†
ν

µ2

)]

− 2Tr

[
(MNM†

N)2

(
− 1 + ln

MNM†
N

µ2

)]}
, (D.17)

where the mass terms are defined in Appendices B and C. In general, like the

unrenormalised V 1−loop
eff given in Appendix C, the one-loop renormalised effective

potential is gauge dependent through the ξ-dependent Goldstone boson masses

MG± and MG, the ξ-dependent contributions from the W± and Z bosons and

their respective ghost fields masses Mω±
and MωZ

. However, along a stationary

flat direction, where µ → Λ, the ξ-dependent terms cancel against each other.

Hence, the complete one-loop renormalised effective potential becomes gauge in-

dependent along the flat direction, and consequently at the minimum too.

126



Appendix E

The Oblique Parameters

Following the formalism and notation of [32], the electroweak oblique parameters

S, T and U are defined as

αem S = 4e2
[
Π′

33(0) − Π′
3Q(0)

]
,

αem T =
e2

sin2 θw cos2 θwm2
Z

[
Π11(0) − Π33(0)

]
,

αem U = 4e2
[
Π′

11(0) − Π′
33(0)

]
, (E.1)

where e is the electric charge, αem = e2/(4π) is the electromagnetic fine structure

constant and θw is the Weinberg or weak mixing angle. The vacuum polarisation

amplitudes are decomposed as follows:

iΠµν
XY (q2) = igµνΠXY (q2) + (qµqνterms) , (E.2)

where

ΠXY (q2) = ΠXY (0) + q2Π′
XY (q2) , (E.3)
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and XY = {11, 22, 33, 3Q,QQ}. The one-particle irreducible self-energies of the

A, W± and Z gauge bosons are related to the vacuum polarisations through

ΠAA = e2ΠQQ , ΠWW =
e2

sin2 θw

Π11 ,

ΠZA =
e2

cos θw sin θw

(
Π3Q − sin2 θwΠQQ

)
,

ΠZZ =
e2

cos2 θw sin2 θw

(
Π33 − 2 sin2 θwΠ3Q + sin4 θwΠQQ

)
. (E.4)

Noting the sin2 θw dependence of Π33, Π3Q and ΠQQ in ΠZZ , the S, T and U

parameters given in (E.1) can be determined by calculating just two vacuum

polarisation amplitudes: ΠZZ and ΠWW .

Since we are interested in finding the difference between the electroweak

oblique parameters in the MSISM and the corresponding ones in the SM, i.e.

δP = PMSISM − PSM , (E.5)

where P = {S, T, U}, we need only calculate the contributions from fields which

differ between the two models. These differences arise in the scalar sector and,

if the MSISM contains right-handed neutrinos, the massive Majorana neutrino

sector. We shall consider each contribution separately.

E.1 The Scalar Contribution

The scalar sector of the SM and the MSISM differ by the latter containing an

additional complex singlet scalar S. However, since S does not interact with

the gauge bosons, it can not contribute to the WW and ZZ self-energies or

electroweak oblique parameters. This implies that the difference between the SM

and the MSISM contributions to the oblique parameters comes entirely from the

definition of the CP-even part of the Φ doublet φ. In the SM φ = HSM , whilst,

in the MSISM, φ is generically linearly composed of the mass eigenstates h and
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µ ν

φ

G/G±
p

µ ν

φ

Z/W±
p µ ν

φ

p

Figure E.1: The generic Feynman diagrams of the φ contributions to the WW
and ZZ self-energies.

H1,2:

φ = ghh+ gH1
H1 + gH2

H2 (E.6)

where the coupling sum rule requires g2
h + g2

H1
+ g2

H2
= 1. The shift in the oblique

parameters δP (E.5) due to the scalar sector can thus be written as

δP = g2
hP̃ (mh) + g2

H1
P̃ (mH1

) + g2
H2
P̃ (mH2

) − P̃ (mHSM
) , (E.7)

where P̃ (m) is the scalar contribution to the oblique parameters from the sum

of the three Feynman diagrams for a scalar φ = {HSM, h,H1,2} of mass m, given

in Figure E.1. To simplify the calculations we have assumed the SM coupling

of the scalars and gauge bosons when calculating the Feynman diagrams. So,

to obtain the correct contributions from h and H1,2 in (E.7), we multiply their

contributions by g2
h and g2

H1,2
respectively, which gives the correct modified gauge

coupling constants.

Explicitly, the three shifts in the oblique parameters are calculated to be

S̃(m) =
1

12π

[
− 1

ǫ
− 1

2
+

m4(m2 − 3m2
Z)

(m2 −m2
Z)3

ln

(
m2

µ̄2

)

+
m4

Z(3m2 −m2
Z)

(m2 −m2
Z)3

ln

(
m2

Z

µ̄2

)
− 5m4 − 22m2m2

Z + 5m4
Z

6 (m2 −m2
Z)2

]
,
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T̃ (m) =
3

16π sin2 θw cos2 θwm2
Z

[(
1

ǫ
+ 1

)
(m2

Z −m2
W )

+
m2m2

W

m2 −m2
W

ln

(
m2

µ̄2

)
− m2m2

Z

m2 −m2
Z

ln

(
m2

µ̄2

)

− m4
W

m2 −m2
W

ln

(
m2

W

µ̄2

)
+

m4
Z

m2 −m2
Z

ln

(
m2

Z

µ̄2

) ]
,

Ũ(m) =
1

12π

[
m4(m2 − 3m2

W )

(m2 −m2
W )3

ln

(
m2

µ̄2

)
− m4(m2 − 3m2

Z)

(m2 −m2
Z)3

ln

(
m2

µ̄2

)

+
m4

W (3m2 −m2
W )

(m2 −m2
W )3

ln

(
m2

W

µ̄2
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+

m4
Z(m2

Z − 3m2)

(m2 −m2
Z)3

ln

(
m2

Z

µ̄2

)

− 5m4 − 22m2m2
W + 5m4

W

6 (m2 −m2
W )2

+
5m4 − 22m2m2

Z + 5m4
Z

6 (m2 −m2
Z)2

]
, (E.8)

where we have applied the standard convention and calculated the electroweak

oblique parameters in the Feynman-’t Hooft ξ = 1 gauge, in which mG = mZ and

mG± = mW±. Moreover, it is important to note that δS, δT and δU are UV finite

and independent of µ̄, which can easily be checked by means of the coupling sum

rule.

E.2 The Neutrino Contribution

The inclusion of right handed neutrinos in the MSISM provides another contri-

bution to the electroweak oblique parameters from the light and heavy Majorana

neutrinos, ν1,2,3 and N1,2,3 respectively. However, these contributions are sup-

pressed, either by the smallness of the light neutrino masses or because they are

proportional to Tr (hν hν †)2, i.e. they are suppressed by the fourth power of the

small neutrino Yukawa couplings. Therefore, compared to the dominant scalar-

loop effects on the S, T and U parameters, the neutrino contributions can be

safely neglected.
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E.3 Experimental Values

Since the neutrino contribution is negligible compared to the scalar contribution,

the shifts in the electroweak oblique parameters δS, δT and δU are determined

from (E.7) and (E.8). To obtain constraints on the values of the parameters of

the MSISM from the oblique parameters, the theoretical relations for δS, δT and

δU are equated with their experimental values. The experimental values δSexp,

δTexp and δUexp are presented in [6] as

δSexp = −0.10 ± 0.10 (−0.08) ,

δTexp = −0.08 ± 0.11 (+0.09) ,

δUexp = 0.15 ± 0.11 (+0.01) , (E.9)

where the first uncertainty is evaluated by assuming that mref
HSM

= 117 GeV,

whilst the second one, given in parenthesis, should be added to the first to give

the uncertainty for assuming mref
HSM

= 300 GeV. Since the LEP2 Higgs mass limit

as presented in Fig. 10(a) of Ref. [9] is at 95% C.L, we adjust the experimental

limits on δSexp, δTexp and δUexp to give a corresponding 95% CL interval. The

following 95% CL interval limits have been implemented throughout our analysis:

−0.296 < δSexp < 0.096 ,

−0.296 < δTexp < 0.136 ,

−0.066 < δUexp < 0.366 . (E.10)

For clarity, we have chosen the Higgs mass reference value, mref
HSM

= 117 GeV,

even though the derived constraints on the electroweak oblique parameters are

independent of the choice of mref
HSM

.
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