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ABSTRACT     
 

The onset of a ferroresonance phenomenon in power systems is commonly caused 

by the reconfiguration of a circuit into the one consisting of capacitances in series and 

interacting with transformers. The reconfiguration can be due to switching operations of 

de-energisation or the occurrence of a fault. Sustained ferroresonance without immediate 

mitigation measures can cause the transformers to stay in a state of saturation leading to 

excessive flux migrating to transformer tanks via internal accessories. The symptom of 

such an event can be unwanted humming noises being generated but the real threatening 

implication is the possible overheating which can result in premature ageing and failures.  

The main objective of this thesis is to determine the accurate models for 

transformers, transmission lines, circuit breakers and cables under transient studies, 

particularly for ferroresonance. The modeling accuracy is validated on a particular 400/275 

kV transmission system by comparing the field test recorded voltage and current 

waveforms with the simulation results obtained using the models. In addition, a second 

case study involving another 400/275 kV transmission system with two transformers is 

performed to investigate the likelihood of the occurrence of sustained fundamental 

frequency ferroresonance mode and a possible quenching mechanism using the 13 kV 

tertiary connected reactor. A sensitivity study on transmission line lengths was also carried 

out to determine the probability function of occurrence of various ferroresonance modes. 

To reproduce the sustained fundamental and the subharmonic ferroresonance modes, the 

simulation studies revealed that three main power system components which are involved 

in ferroresonance, i.e. the circuit breaker, the transmission line and the transformer, can be 

modeled using time-controlled switch, the PI, Bergeron or Marti line model, and the 

BCTRAN+ or HYBRID transformer model. Any combination of the above component 

models can be employed to accurately simulate the ferroresonance system circuit.  

Simulation studies also revealed that the key circuit parameter to initiate 

transformer ferroresonance in a transmission system is the circuit-to-circuit capacitance of 

a double-circuit overhead line. The extensive simulation studies also suggested that the 

ferroresonance phenomena are far more complex and sensitive to the minor changes of 

system parameters and circuit breaker operations. Adding with the non-linearity of 

transformer core characteristics, repeatability is not always guaranteed for simulation and 

experimental  studies.   All  simulation  studies  are  carried  out  using  an  electromagnetic  

transient program, called ATPDraw.
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CHAPTER 1CHAPTER 1CHAPTER 1CHAPTER 1    

111...   III NNNTTTRRROOODDDUUUCCCTTTIII OOONNN   

 

1.1 Introduction  

Power system is considered to be the most sophisticated network which consists of 

electrical, mechanical, electronic and control hardware designed, built and operated by 

electrical engineers. The function of a power system is to deliver electrical energy as 

economically as possible with minimum environmental impact such as reduction in carbon 

dioxide (CO2) emission. In addition, the transfer of electrical energy to the load centers via 

transmission and distribution systems are achieved with maximum efficiency and optimum 

reliability at nominal voltage and frequency. In view of this, the establishment of the 

system is considered to be the most expensive in terms of capital investment, in 

comparison with other systems, such as, communication, gas, water, sewage etc.  

Nowadays, because of technological advancement, industrial globalization and continuous 

increasing levels of network integrations, the grid system is increasingly vulnerable and 

sensitive to system disturbances. Such events may be due to switching activities (i.e. ON 

and OFF) of loads, or as a result of component switching such as reactor switching, the 

energisation and de-energisation of system components for commissioning and 

maintenance purposes. Other sources of switching events are the switching off of 

protection zones after the occurrence of short-circuit, or a lightning stroke [1] impinging to 

the nearest high-voltage transmission line. For these reasons, the systems are never 

operated in a continuous steady state condition, it is a system consisting of a mixture of 

normal operating and transient states. Yet, the duration of the transient state in a system is 

not significant as compared to the steady state operating time. There are some instances 

that this transient can subject system components to excessive stresses due to overvoltage 

and overcurrent. Thus, premature aging of component insulation structures can happen and 

sometimes they can finally develop into an extreme stage of breakdown. In some cases, 

this effect may become ecologically most intrusive in terms of thermal, chemical and 

potentially radiological pollution. Another adverse impact is the widespread of problems in 
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a system, which may disable a component, trip off a plant, or cause power outage in 

hospitals or in a city hence halting some businesses.     

Transient events are due to the attended power system parameters such as resistance, 

inductance and capacitance of transmission line, transformer, cable, capacitive shunt 

reactors, inductive shunt reactors etc. Owing to such parameters and the adding up of 

capacitive and inductive components into the integrated power system, the frequency range 

of transient phenomena can extend from DC to several MHz [2]. Depending on the 

frequency range the types of transient events are classified into high- and low-frequency 

transients. 

The nature of high frequency transient mainly depends on the load and the status of circuit 

breaker when separating its contacts close to a current zero passage [1]. High frequency 

oscillation will occur if re-ignition takes place between the separated contacts of a circuit 

breaker, that is when the transient recovery voltage (TRV) exceeds the breakdown voltage 

of the contact gap.  

Depending on the circuit configuration, the large number of various sources of 

capacitances in the network and certain sequence of switching events, a low frequency 

transient known as ferroresonance can exhibit in the system. The word ferroresonance 

means the resonanance between the network parameters with ferromagnetic material, 

particularly with the presence of transformers working at no-load condition.  

1.2 Background of Ferroresonance 

Linear resonance only occurs in the circuit of Figure 1.1 as an example, consisting of a 

series connected resistor, inductor and capacitor when the source is tuned to the natural 

frequency of the circuit. The capacitive and inductive reactances of the circuit are identical 

at the resonance frequency as given by: 

 

    
1

2
Rf

LCπ
=   (Hz) 
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Figure 1.1:  Linear resonance circuit 

The voltages appearing across the inductor, L and capacitor, C in this condition can reach 

several times of the source voltage. Figure 1.2 shows the characteristics of the capacitor 

voltage, the inductor voltage and the supply current when the main supply frequency is 

varied from 20 Hz up to 600 Hz. At resonance, the graph shows that the voltage across the 

inductor and capacitor reaches their peak values when the natural frequency of the system 

is tuned to about 400 Hz. This condition also suggests that both the VL  and Vc exceed the 

main supply voltage. Furthermore, the current in the circuit is at its maximum because the 

impedance of the circuit is minimum, merely resistive.  

 

Figure 1.2:  Characteristic of Vc, VL, I and Es at resonance 

The linear circuit of Figure 1.1 when subjected to resonance condition produces an 

expected and repeatable response to the applied source voltage. Sinusoidal voltages appear 

across any points in the circuit without any distortion. 
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In contrast, things are not quite the same in a nonlinear series circuit as what happened in 

the linear series resonance. The linear inductor of Figure 1.1 is replaced by a nonlinear 

inductor (ferromagnetic material). An example of ferromagnetic material is a transformer 

core. The series connection consists of an alternating source (ES), a resistor (R), a capacitor 

(C) and a nonlinear inductor (Lm) as shown in Figure 1.3, which is referred to as 

ferroresonance circuit.   

 

Figure 1.3:  Ferroresonant circuit 

In the linear circuit, resonance condition occurs at only one frequency with a fixed value of 

L and C. On the other hand, the nonlinear circuit can exhibit multiple values of inductances 

when the core is driven into saturation therefore this implies that there is a wide range of 

capacitances that can potentially leads to ferroresonance at a given frequency [3] which is 

shown in Figure 1.4.     

 

Figure 1.4:  E-I characteristic of ferroresonance circuit 
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Ferroresonance can exhibit more than one steady state responses for a set of given system 

parameter values [4]. Damaging overvoltages and overcurrents can be induced into a 

system due to ferroresonance.  

The comparison between the linear and ferroresonance is shown in Table 1.1. 

Table 1.1:  Comparison between linear resonance and ferroresonance 

Network System 
Parameters 

Resonance  Response 

Linear 
circuit 

Resistance, 
capacitance, 
inductor 

Resonance occurs at one 
frequency when the source 
frequency is varied.      

Only one sinusoidal steady 
state overvoltage and 
overcurrent occurs.   

Nonlinear 
circuit 

Resistance, 
capacitance, 
nonlinear inductor 
(ferromagnetic 
material) 

Ferroresonance occurs at a 
given frequency when one 
of the saturated core 
inductances matches with 
the capacitance of the 
network.  

Several steady state 
overvoltages and 
overcurrents can occur. 

1.3 Types of Ferroresonance Modes  

In the previous section, the distinctive difference between the linear resonance and 

ferroresonance has been described. The fundamental elements involved in the 

ferroresonance circuit are a resistance, a capacitance and a nonlinear inductor. The 

development of the ferroresonance circuit taking place in the power system is mostly due 

to the reconfiguration of a particular circuit caused by switching events. Immediately after 

the switching event, initial transient overvoltage will firstly occur and this is followed by 

the next phase of the transient where the system may arrive at a more steady condition. 

Due to the non-linearity of the ferroresonance circuit, there can be several steady state 

ferroresonance responses randomly [5-14] induced into a system. Basically, there are four 

types of steady-state responses a ferroresonance circuit can possibly have: they are the 

fundamental mode, subharmonic mode, quasi-periodic mode and chaotic mode. Each of 

the classifications and its characteristics are depicted in Figure 1.5 to Figure 1.8 [4]. FFT 

and Poincarè map are normally employed to analyse the types of ferroresonance modes.  

1.3.1 Fundamental Mode 

The periodic response has the same period, T as the power system. The frequency 

spectrum of the signals consists of fundamental frequency component as the dominant one 
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followed by decreasing contents of 3rd, 5th, 7th and nth odd harmonic. In addition, this type 

of response can also be identified by using the stroboscopic diagram of Figure 1.5 (c) 

which is also known as Poincarè plot, which can be obtained by simultaneously sampling 

of voltage, v and current, i at the fundamental frequency.  Detailed explanation on this plot 

can be referred in the following section.       

 

Figure 1.5:  Fundamental mode  

1.3.2 Subharmonic Mode 

This type of ferroresonance signals has a period which is multiple of the source period, nT. 

The fundamental mode of ferroresonance is normally called a Period-1 (i.e. f0/1 Hz) 

ferroresonance and a ferroresonance with a sub-multiple of the power system frequency is 

called a Period-n (i.e. f0/n Hz) ferroresonance. Alternatively, the frequency contents are 

described having a spectrum of frequencies equal to f0/n with f0 denoting the fundamental 

frequency and n is an integer. With this signal, there are n points exist in the stroboscopic 

diagram which signifies predominant of fundamental frequency component with 

decreasing harmonic contents at other frequencies. 

 

Figure 1.6:  Subharmonic mode  

   (a) Periodic signal                       (b) Frequency spectrum      (c) Stroboscopic diagram 

      (a) Periodic signal                 (b) Frequency spectrum        (c) Stroboscopic diagram 
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1.3.3 Quasi-periodic Mode 

This kind of signal is not periodic. The frequency contents in the signal are discontinuous 

in the frequency spectrum, whose frequencies are defined as:  nf1+mf2 (where n and m are 

integers and f1/f2 an irrational real number). This type of response displays a feature 

employing a close cycle of dotted points on the stroboscopic plot. The set of points (closed 

curve) in the diagram is called an attractor to which all close by orbits will asympotate as 

t→  ∞, that is, in the steady state [73]. 

 

Figure 1.7:  Quasi-periodic mode  

1.3.4 Chaotic Mode 

This mode has a signal exhibiting non-periodic with a continuous frequency spectrum i.e. 

it is not cancelled for any frequency. The stroboscopic plot consists of n points surrounding 

an area known as the strange attractor which appears to skip around randomly. 

 

Figure 1.8:  Chaotic mode  

The simulation model in [11] reported 3 types of ferroresonance modes which have  

occurred in a circuit  consisting of a voltage transformer (VT) located at a 275 kV 

substation.  

  (a) Periodic signal                       (b) Frequency spectrum     (c) Stroboscopic diagram 

   (a) Periodic signal                   (b) Frequency spectrum        (c) Stroboscopic diagram 
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� Sustained Fundamental Frequency Ferroresonance Mode (Period-1) 

The periodic waveform induced was a sustained fundamental frequency ferroresonance 

which is shown in Figure 1.9. The magnitude of the response has reached 2 p.u. Since the 

sustained ferroresonant signal was initiated after the transient period therefore the starting 

point of the signal was obtained at t=90.00 s.         

 

Figure 1.9:  Time signal  

In this study, tools such as power spectrum, Poincarè map and Phase-plane diagram have 

been employed to identify the type of ferroresonance response. The power spectrum of 

Figure 1.10 suggests that the response mainly consists of fundamental component (50 Hz) 

with the presence of high frequency components.  

 

Figure 1.10:  Power spectrum  

The Poincarè plot of Figure 1.11 reveals that there is only one dot displayed on the 

diagram. The meaning of this is that it is a Period-1 response corresponds to the sampling 

frequency of 50 Hz.   

 

Figure 1.11:  Poincarè plot  
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Alternative way of identifying the type of ferroresonance mode is to use a Phase-plane plot. 

Normally it is a plot of transformer voltage versus flux-linkage.    

 

Figure 1.12:  Phase-plane diagram  

A phase-plane diagram provides an indication of the waveform periodicity since periodic 

signals follow a closed-loop trajectory. One closed-loop means that a fundamental 

frequency periodic signal; two closed-loops for a signal period twice the source period, and 

so on. The phase-plane diagram (i.e. voltage versus flux-linkage) of this response is shown 

in Figure 1.12. The orbit shown encompasses a time interval of only one period of 

excitation. The structure of the phase-plane diagram consists of only one major repeatedly 

loop for each phase which provides an indication of a fundamental frequency signal. Note 

that the phase-plot has been normalized. 

� Subharmonic Ferroresonance Mode 

Figure 1.13 shows the voltage waveform of the subharmonic mode induced across the 

transformer. 

 

Figure 1.13:  Time signal  

The frequency spectrum of Figure 1.14 corresponds to the voltage waveform of Figure 

1.13. The frequency that appears first is the 25 Hz followed by a sharp peak at 50 Hz.   
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Figure 1.14:  Power spectrum  

The Poincarè plot of Figure 1.15 suggests that the voltage waveform is a Period-2 

ferroresonance because there are two points on the diagram.    

 

 

 

Figure 1.15:  Poincarè plot  

The Phase-plane diagram of Figure 1.16 shows that there are two closed-loops indicating 

for a signal period twice the source period. 

 

Figure 1.16:  Phase-plane diagram  

� Chaotic Ferroresonance Mode 

The voltage waveform of Figure 1.17 shows there is no indication of periodicity. The 

50 25 
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frequency spectrum of the signal reveals that there is a broad continuous frequency 

spectrum with a strong 50 Hz component (Figure 1.18).  

 

Figure 1.17:  Time signal  

 

Figure 1.18:  Power spectrum  

A random of scattered set of dotted points can be seen of the Poincarè plot of Figure 1.19 

and the trajectory of the phase-plane diagram of Figure 1.20 suggests that there is no 

indication of repeating.   

 

Figure 1.19:  Poincarè plot  

 
 

Figure 1.20:  Phase-plane diagram  
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1.4 Effect of Ferroresonance on Power Systems 

In the preceding section, the characteristics and features of each of the four distinctive 

ferroresonance modes have been highlighted. The impacts due to ferroresonance can cause 

undesirable effects on power system components. The implications of such phenomena 

experienced in [7, 14-16] have been reported. They are summarised as follows: 

• [15] described that a 420-kV peak and distorted sustained fundamental mode 

ferroresonance waveform has been induced in C-phase 1000 MVA, 525/241.5-kV 

wye-connected bank of autotransformers. The consequences following the event 

were as follows: Nine minutes later, the gas accumulation alarm relay operated on 

the C-phase transformer. Arcing of C-phase switch was much more severe than 

that of the other two phases. No sign of damage although a smell of burnt 

insulation was reported. However, the gas analysis reported a significant amount 

of hydrogen, carbon dioxide and monoxide.         

• Ferroresonance experienced in [14] was due to the switching events that have 

been carried out during the commissioning of a new 400-kV substation. It was 

reported that two voltage transformers (VT) terminating into the system had been 

driven into a sustained fundamental frequency ferroresonance of 2 p.u. The 

adverse impact upon the initiation of this phenomenon was that a very loud 

humming noise generated from the affected voltage transformer, heard by the 

local operator.   

• In 1995, [16] reported that one of the buses in the station was disconnected from 

service for the purpose of commissioning the replaced circuit breaker and current 

transformers. At the same time, work on maintenance and trip testing were also 

carried out. After the switching operations, the potential transformers which were 

connected at the de-energised bus were energised by the adjacent live busbar, via 

the circuit breakers’ grading capacitors. Following the switching events, a 

sustained fundamental frequency ferroresonance has been induced into the system. 

As a result, the response has caused an explosion to the potential transformer. The 

catastrophically failure was due to the excessive current in the primary winding of 

the affected potential transformer. 
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• [7] reported that the Station Service Transformer (SST) ferroresonance has been 

occurred at the 12-kV substation. The incident was due to the switching 

operations by firstly opening the circuit breaker and then the disconnector switch 

located at the riser pole surge arrester. The first ferroresonance test without 

arrestor installation has induced both the 3rd subharmonic and chaotic modes. As a 

result, the affected transformer creating loud noises like sound of crack and race 

engine. While for the second test, with the arrester, a sustained fundamental mode 

has been generated and thus has caused the explosion of riser pole arrester. The 

physical impact of the explosion has caused the ground lead of the disconnector 

explodes and the ruptures of the polymer housing.  

It has been addressed from the above that the trigger mechanism of ferroresonance is 

switching events that reconfigure a circuit into ferroresonance circuit. In addition, the 

literatures presented in [3, 17, 18] documented that the existence of the phenomena can 

also result in any of the following symptom(s): 

- Inappropriate time operation of protective devices and interference of 

control operation [3, 4, 18]. 

- Electrical equipment damage due to thermal effect or insulation 

breakdown and internal transformer heating triggering of the Bucholtz 

relay [3, 4, 18]. 

- Arcing across open phase switches or over surge arresters, particularly 

the use of the gapless ZnO [14]. 

- Premature ageing of equipment insulation structures [17]. 

Owing to the above consequences and symptoms, mitigation measures of ferroresonance 

are therefore necessary in order for the system to operate in a healthy environment.  

1.5 Mitigation of Ferroresonance  

The initiation of ferroresonance phenomena can cause distorted overvoltages and 

overcurrents to be induced into a system. The outcomes of this event have been highlighted 

in section 1.4 which are considered to be catastrophic when it occurs. There are generally 

two main ways of preventing the occurrence of ferroresonance [3, 4, 17]. 
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� Avoid any switching operations that will reconfigure a circuit into a sudden 

inclusion of capacitance connected in series with transformer with no or light load 

condition [17].   

 

� Provide damping of ferroresonance by introducing losses (i.e. load resistance) into 

the affected transformer. In other words, there is not sufficient energy supplied by 

the source to sustain the response [3, 4, 17]. 

1.6 Motivation  

A survey paying attention onto the modeling of power system components for 

ferroresonance simulation study has been highlighted in the literature review in Chapter 2. 

It is shown that the main objective of developing the simulation models focused on 

validation of the models using the field test ferroresonance waveforms, then the use of the 

simulation tools to analyse the types of ferroresonant modes and finally performing the 

mitigation studies of ferroresonance. One of the main problems that ferroresonance studies 

employing digital simulation programs face is the lack of definitive criterion on how each 

of the power system components should be modeled. There is lacking of detailed 

guidelines on how the power system components such as the voltage source, transformer, 

transmission line, cable and circuit breaker should be modeled for ferroresonance studies. 

In addition, step-by-step systematic approaches of selecting an appropriate simulation 

model are still not explained in the literatures. Therefore, the motivation devoted in this 

thesis is directed towards achieving the following objectives: 

� To provide a better understanding about the technical requirements on each of the 

power system components necessary for the development of simulation models for 

ferroresonance study.  

� To provide a set of modeling guidelines required for choosing any of the available 

models. 

� To identify the types of models suitable for the simulation studies required in this 

thesis. 
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To achieve the above objectives, a simulation model has been built on a 400/275 kV sub-

transmission system undergone ferroresonance tests. Verification of the simulation results 

with the field test recordings have been performed, particularly the 50 Hz fundamental and 

16.67 Hz subharmonic mode ferroresonance. 

Based on the reasonable matching between the simulation and the field test recording 

waveforms, the modeling techniques which have been developed are then applied for the 

ferroresonance study of 400/275 kV sub-transmission system with the aim of assessing 

whether there is any likelihood of 50 Hz sustained fundamental frequency mode which can 

be initiated in the system, and also investigating an effective switch-in shunt reactor 

connected at the 13 kV tertiary winding for quenching purpose. 

1.7 Methodology  

The undesirable effects of ferroresonance phenomena subjected to power system 

components have been highlighted in section 1.4. Building a realistic model that would 

satisfactorily model such a transient event, employed either one of the following methods 

(1) analytical approach (2) analog simulation approach (3) real field test approach (4) 

laboratory measurement approach and (5) digital computer program approach. 

Power system transient represented by analytical approach is difficult because of lengthy 

mathematical equations involved in arriving at the solutions required. Using analog 

simulators such as Transient Network Analyser (TNA) [19], the miniature approach of 

characterising power system model is rather expensive and requires floor areas to 

accommodate the equipment. Real network testing performed in the field is considered to 

be impractical at the design stage of a power system network. In view of those, a computer 

simulation program is therefore preferred as compared to the previous approaches. In this 

project, a graphical user interface (GUI) with a mouse-driven approach software called 

ATPDraw is employed. In this program, the users can develop the simulation models of 

digital representation of the power circuit under study, by simply choosing the build-in 

predefined components.  

To develop a complete simulation model in ATPDraw, a block diagram as shown in 

Figure 1.21 is firstly drawn up outlining the approach which should be followed for 

simulation studies.  
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Figure 1.21:  Outline of modeling methodology 

As seen from the above figure, the initial step (STEP 1) before diving into the modeling of 

power system components is to obtain the detailed circuit configuration, description on 

how ferroresonance is initiated and finally the recorded field waveforms. From the 

phenomenon description the types of switching events and their relevant frequency range 

of interest are then identified (STEP 2), according to the document published by the 

CIGRE [20]. This is followed by STEP 3, check listing whether the types of power 

components in the circuit are available as the build-in predefined components in the 

simulation software. If it is found that the predefined components are readily available then 

the next stage is to study their theoretical background as well as its limitations for our 

purpose. In addition, the data required for the predefined components need to be carefully 

selected, which could be either the design parameters, typical values or test reports. More 

information in this matter can be obtained from utility/manufacturer involved in the project. 

A new model is sometimes necessary to build if it is found that the predefined component 
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cannot serve the modeling requirements. Once the new or the predefined components have 

been developed, the next phase is to conduct validation and simulation studies. Once each 

of the developed simulation model has been tested or checked accordingly, then they are 

integrated into the actual circuit configuration. The simulation results are then compared 

with the actual field recorded waveform for validation. The process is then repeated if it is 

found out that the comparisons do not match what are expected.  

Once the developed simulation model has been verified, the next stage of the simulation 

study can be scenario studies or sensitivity studies, aimed for in advance forecasting the 

consequences of switching operations of a power system network and planning for 

protection schemes. As an example, designing and evaluations of damping and quenching 

devices and to determine the thermal withstand capability of the devices can be parts of the 

study.             

1.8 Thesis structure 

There are seven chapters in this thesis. Overall they can be divided into four sections. 

Chapter 1 and 2 consist of the background; the objectives, the motivation, the methodology 

and literature review. Chapter 3 mainly concerns with exploring and understanding the 

behaviour of ferroresonance phenomenon and this leads into chapter 4 looking into 

modeling aspects of circuit breakers, transformers and transmission lines. The final stage 

of the project i.e. the development of two simulation models for two practical case 

scenarios, is covered in Chapter 5 and Chapter 6, followed by highlighting the contribution 

of the work and the work for future research.      

Chapter 1:  Introduction 

In the first chapter, an overview of power system network and the introduction of the 

aspects of ferroresonance in terms of its occurrence, configuration, responses, impact and 

mitigation are introduced. In addition, the motivation together with the objective and the 

methodology of the projected are defined in this chapter.  
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Chapter 2:  Literature Review 

In this chapter, five different types of technology for time domain modeling ferroresonance, 

particularly the way that the components are taken into consideration are reviewed.  Their 

advantages and disadvantages are emphased and compared with computer simulation 

program approach. The main issues encountered in modeling the real case system are 

highlighted here.      

Chapter 3:  Single-Phase Ferroresonance – A Case Study  

The main aims of this chapter are twofold by considering an existing real case scenario 

including a single-phase equivalent transformer model connected to the circuit breaker 

including its grading capacitor and the influence of shunt capacitor of busbar. The first aim 

is to look into the influence of the core-loss and the degrees of core saturations.  The 

second one is to investigate on how the initiation of fundamental and subharmonic mode 

ferroresonance can occur when being affected by both the grading capacitor and the shunt 

capacitor.  

Chapter 4:  System Component Models for Ferroresonance                                

This chapter concentrates on the modeling aspects of the power system component 

available in ATPDraw suitable for the study of ferroresonance, particularly looking into 

the circuit breaker, the transformers and the transmission lines. Each predefined model in 

ATPDraw is reviewed to determine the suitability for ferroresonance study.  

Chapter 5:  Modeling of 400 kV Thorpe-Marsh/Brinsworth System 

There are two main objectives covered in this chapter; firstly the validation of the 

developed predefined models and secondly identifying the key parameter responsible for 

the occurrence of ferroresonance. For the first objective, finding out the suitability of the 

predefined models is carried out by modeling a real test case on the Thorpe-

Marsh/Brinsworth system. The only way to find out the correctness of the modeled 

component is to compare the simulation results with the real field test recording results, in 

terms of 3-phase voltages and currents for both the Period-1 and Period-3 ferroresonance. 

An attempt in improving the deviation from the real measurement results is also conducted. 
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The second objective is to identify which parameter in the transmission system is the key 

parameter to cause ferroresonance to occur. Three components are believed to dominant 

the influence of ferroresonance; they are the transformer’s coupling capacitor, the cable 

capacitors and the transmission line coupling capacitors. The transmission line is modeled 

as a lumped element in PI representation. The way to find out their influence is by 

simulating the system stage by stage without firstly including the transformer’s coupling 

capacitors and then secondly simulating the system without the presence of cable 

capacitance, and finally looking into the individual capacitors of the line.  

Chapter 6:  Modeling of 400 kV Iron-Action/Melksham System  

Following the modeling experiences which are gained from Chapter 5, modeling of 

another real case system “Iron-Acton/Melksham system” is carried out in this chapter. The 

system is believed to have potential risk of initiating Period-1 ferroresonance because of 

the complex arrangement of the mesh-corner substation. The inquiry from National Grid is 

to evaluate the system whether there is any likelihood of occurrence Period-1 

ferroresonance. If it does, a mitigation measure by employing a shunt reactor connected to 

the 13 kV winding is suggested to switch-in. The power rating of shunt reactor is chosen 

according to a series of evaluations so that the ferroresonance is effectively suppressed 

without any failure. In addition, sensitivity study on transmission line lengths is also 

carried out to determine the probability function of occurrence of various ferroresonance 

modes. 

Chapter 7:   Conclusion and Future work 

In this last chapter, the conclusion for each chapter is drawn along with the papers 

published as a result of this work. The contribution towards the users about this work and 

finally the room for future work is highlighted.   
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CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2    

222...   LLL III TTTEEERRRAAATTTUUURRREEE   RRREEEVVVIII EEEWWW   

   

2.1 Introduction  

This chapter presents a survey of different approaches for power system ferroresonance 

study, particularly looking into the modeling aspects of each of the component in the 

integrated power system. The most appropriate “Fit for Purpose” way of modeling a power 

system network is firstly comparing the simulation results with the recorded field test 

results. If the simulation results are beyond expectation then there is work to be done to 

rectify the problems in terms of individual components modelling for justifications.           

There are five different approaches for the study of ferroresonance in the literatures which 

have been identified and they are explained as follows.  

2.2 Analytical Approach  

A substantial amount of analytical work has been presented in the literature employing 

various mathematical methods to study ferroresonance in power systems. The following 

presents some of the work which has been found in [10-12, 21-24].  

A series of paper published by Emin and Milicevic [10-12, 21, 22] investigated a circuit 

configuration as shown in Figure 2.1 where ferroresonance incidence was induced onto the 

100 VA voltage transformer situated in London. The circuit was reconfigured into a 

ferroresonance circuit due to the opening of the circuit breaker and disconnector 2 leaving 

the transformer connected to the supply via the grading capacitor of the circuit breaker.  
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Figure 2.1:  Section of a typical double-busbar 275 kV substation [12] 

Following the switching events, the circuit of Figure 2.1 was then represented by its single-

phase equivalent circuit of Figure 2.2 consisting of a voltage source connected to a voltage 

transformer with core losses (R), via grading capacitor (Cseries) and phase-to-earth 

capacitance (Cshunt).  

 

Figure 2.2:  Section of a typical double-busbar 275 kV substation [11] 

The transformer core characteristic was represented by a single-valued 7th order 

polynomial 7i a bλ λ= + where 3.24a =  and 0.41b = . The mathematical representation of 

the circuit of Figure 2.2 is expressed by the following differential equation, 
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Where i=  transformer current, λ = transformer flux-linkage, V= voltage across transformer, 

E = voltgae of the source and ω = frequency of the voltage source. 

Cshunt 

Transformer 
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The solutions to the system equations were solved by using a Runge-Kutta-Fehlberg 

algorithm. The aim of developing the simulation model was to study how the losses would 

affect the initiation of ferroresonance. With the loss reduced to about mid way (R = 275 

kV/120 W) of the rated one (R = 275 kV/250 W), a fundamental frequency ferroresonant 

mode has been induced into the system. When the loss reduced further to R = 275 kV/99 W, 

a subharmonic mode of 25 Hz was exhibited. However, when the loss was unrealistically 

varied to 8 W, the voltage signal with stochastic manner has been produced.              

The paper written by Mozaffari, Henschel and Soudack [23, 25] studied a typical system 

of Figure 2.3 that can result in the occurrence of ferroresonance. The configuration of the 

system consisted of a 25 MVA, 110/44/4 kV three-phase autotransformer connecting to a 

100 km length transmission line which included the line-to-line and the line-to-ground 

capacitances. The secondary side of the transformer is assumed to be connected at no-

loaded or light-load condition. In addition the delta tertiary winding side is assumed to be 

open-circuited.  

 

Figure 2.3:  Model for ferroresonance circuit including line capacitance [25]  

 

Figure 2.4:  Circuit that feeds the disconnected coil [25] 

The way the system has been reconfigured into ferroresonance condition is to open one of 

the phase conductors via a switch as can be seen from the diagram and its simplified circuit 

is shown in Figure 2.4. This circuit is then further simplified by applying a Thevenin’s 
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theorem by considering node 3 as the Thevenin’s terminals with respect to ground, with 

the assumption that V1 = V2. Then the Thevenin’s equivalent capacitance and voltage are 

 2g mC C C= +  and 1 2
m

g m

C
E V

C C
=

+
 (2.3) 

Finally the single-phase Thevenin’s equivalent circuit can be represented as shown in 

Figure 2.5 and it was modeled by using the second order flux-linkage differential equation.  

 ( ) ( )
2

2
1 1

cosn
s s

d d
a b E t

RC dt Cdt

φ φ φ φ ω ω+ + + =  (2.4) 

 

 

Figure 2.5:  Basic ferroresonance circuit [25] 

Where Cg = line-to-ground capacitor, Cm = line-to-line capacitor, C = Thevenin’s 

capacitance, V1 = supply voltage at line 1, φ = flux in the transformer core, ωs = power 

frequency and E = supply voltage of the source.  

 

The objective of the study was to investigate the influence of magnetisation core behavior 

with nth order polynomial with n varying from 5 and 11 when the transformer is subjected 

to ferroresonance. Moreover, the effects of varying the magnitude of the supply voltage (E) 

and core losses were also studied. The solutions to the problems were carried out by using 

fourth-order Runge-Kutta method. The effects of varying the magnitude of the supply 

voltage, E while keeping the transformer losses and transmission line length unchanged for 

the degree of saturation n = 5 and 11 are presented as shown in the Bifurcation diagrams of  

Figure 2.6. Note that a Bifurcation diagram is a plot of the magnitudes taken from a family 

of Poincarè plot versus the parameters of the system being varied. In this case, the 

parameter being varied is the magnitude of the supply voltage, E with an aim to predict the 

different types of ferroresonance modes. Two degree of saturation with n=5 and 11 are 

investigated to see their differences in terms of inducing types of ferroresonance modes. 
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Table 2.1 shows the detailed parameters the system stands for when such study was carried 

out and the results from the calculations are shown in Figure 2.6 with the top one 

represents n=5 and the bottom is n=11.       

   Table 2.1:  Effects of supply voltage, E on ferroresonance 
Degree of 
saturation 

(n) 

Transformer 
losses 

Transmission 
line length 

Supply 
voltage 

(E) 
Observations 

5 
Figure 2.6 

 (Top diagram) 

11 

1%  
(R = 48.4 kΩ) 

100 km 
0.1875 p.u 

to  
7.5 p.u Figure 2.6 

(Bottom diagram) 
 

 

Figure 2.6:  Bifurcation diagrams- Top:  n = 5, Bottom:  n = 11 [23] 

The results of Figure 2.6 show that both saturations exhibited single-value area which 

indicates Period-1, dual value for Period-2 etc. One observation in the diagrams is that 

subharmonic plays an important role before the occurrence of chaotic mode. The study also 

suggested that different degrees of saturations of the transformer core characteristics have a 

significant impact of inducing different types of ferroresonance modes. In the study of 

varying the magnetising losses, it was found that Period-1 ferroresonance exists for n = 11 

with the losses of 1%. The onset of Period-2 and Period-4 ferroresonance occurred when 

the losses was reduced further. However, the onset of chaotic mode occurred when the 

Period-1 mode 

Period-2 mode 
Chaotic mode 
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losses is further below 0.0004%. On the other hand when n = 5 with the losses of 0.0005%, 

Period-1 mode has been exhibited.    

Tsao [24] published a paper in 2006 describing the power outage which occurred at the 

station was considered to be the most severe incident in the history of Taiwan. The cause 

of the catastrophic event is explained by referring to the single-line diagram of the 

Maanshan Nuclear Power Station (MNPS) depicted in Figure 2.7.  Note that the shaded 

and the white boxes in the diagram represent the close and open states of the circuit 

breakers. 

 

Figure 2.7:  Distribution system of 4.16 kV essential bus at MNPS [24] 

The initial cause of the outage was due to the accumulation of salt pollution over the 

insulator of the 345 kV transmission line. As a result of that, it was reported that more than 

20 flashovers had occurred on the transmission line. This incident had eventually caused 

widespread problems of creating 23 switching surges and failure of two generators. One 

particular problem of interest was the flashover of the 345 kV transmission line #4 

resulting in the gas circuit breaker at the Lung Chung substation tripped spontaneously, 

leaving the gas circuit breaker, 3520 and 3530 failed to trip because of the fault current 

cannot be detected. The outcome of this event has thus reconfigured part of the circuit 

(marked in red line of Figure 2.7) into an island system of Figure 2.8. Because of that, 

ferroresonance was then induced into the system and hence causing system outage.            

Lung Chung 
substation 
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Figure 2.8:  Island system at MNPS [24] 

As can be seen in Figure 2.8, there were no voltage sources attached into the system and 

how could ferroresonance be possible to occur? The generating effect took place when the 

Reactor Coolanr Pump (RCP) motors have been interacted with the 127 km transmission 

line’s coupling capacitances. Hence, the motor acts like an induction generator. Owing to 

that, the system thus reconfigured into a circuit consisting of voltage source, transformer 

and transmission line’s capacitances, which are considered to be the main interaction 

components for ferroresonance condition. The ferroresonance condition circuit for the 

island system is shown in Figure 2.9.   

 

Figure 2.9:  Ferroresonance condition - Island system at MNPS 

The sequence of event in the system is shown in Figure 2.10. Initially at time t0 to t1, a 

flashover to ground had occurred at phase B and during that time the gas circuit breaker at 

Lung Chung substation had tripped but the ones from the supply side (i.e. 3520 and 3530) 

failed to trip thus reconfigured part of the network including the 127 km transmission line 

into islanding. In between t1 and t2, the overvoltage was produced from the generating 

effect due to the interaction between RCP motor and the transmission line coupling 

capacitances but the amplitude had been cut-off by the arrester to 1.4 per-units. Between t2 

and t3, the phase A to phase B flashover and then to ground occurred due to the 
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overvoltage thus all the four 4.16 kV bus tripped off because of under-voltage protection. 

This is followed by in between t3 and t4, two of the three 13.8 kV buses (consists of RCP 

and several motors) tripped, also due to under-voltage protection.  

 

Figure 2.10:  Oscillogram at the MNPS 345 kV switchyard [24] 

In between t4 and t5, ferroresonance oscillation occurred due to the remaining 13.8 kV bus 

acting as generating effect interacting with the transformer and line coupling capacitance. 

The overvoltage was then clipped-off to 1.4 per-units by the arrester connected at the high 

voltage side of the transformer. During that instant, the overvoltage directly attacked the 

bushing of the air circuit breaker (#17) and it was found that the power-side connection 

end was badly destroyed. The cause of the damage was due to the cumulative effect of 

premature aging of the insulation as the breaker had been in service for 24 years. At the t5 

and t6 interval, flashover occurred again at phase B due to the salt smog which is 4 km 

away from MNPS switchyard. Finally at t6, the remaining of the RCP on the 13.8 kV bus 

tripped and the incident ended.               

Following the occurrence of islanding part of the network and the consequences as 

mentioned above, the root cause of the problem was investigated by modeling the network 

using mathematical equations. The mathematical expression to represent the power 

transformer is given as 

 
1 1 1 11 12 1

2 2 2 21 22 2

0

0
t t t t t t

t t t t t t

V R I L L Id

V R I L L Idt

         
= +         

         
 (2.5) 

Where V1t, V2t = primary and secondary terminal voltages, I1t, I2t = primary and secondary 

currents, R1t, R2t = resistance at primary and secondary windings, L11t, L22t = self 

inductance at primary and secondary windings, L12t, L21t = mutual inductance between 

primar and secondary windings. 
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 For the voltage equation to model an induction motor is expressed as 

 
0 0

0 0
sm sm sm ssm srm sm srm sm

rm
rm rm rm rsm rrm rm rsm rm

V R I L L I G Id

V R I L L I G Idt
ω             

= + +             
             

 (2.6) 

where Vsm =  stator voltage, Vrm = rotor volatage, Rsm = resistance of stator, Rrm = resistance 

of rotor, Lsm = inductance of stator, Lrm = inductance of rotor, ωrm = rotor speed, G = 

rotational performance of a rotational machine, called rotational inductance matrix.  

The transmission line was modeled by connecting several equal PI sections in series to 

represent an approximate distributed line parameter. Then each of the models is combined 

to form a multi-machine interconnected system equation. Then, Runge-Kutta numerical 

and step-length integration method was employed to solve the set of first order differential 

equations.  

The analytical method employed in the above literatures has the advantages of studying the 

parameters which influence the initiation of different ferroresonant modes. In addition, the 

boundaries between safe and ferroresonance regions can also be performed to determine 

the margins of parameters, which are required for system planning stage. However, the 

major drawbacks are that the circuit model is over simplified, and the mathematical 

equations involved are complex and require large computation time. In addition, its 

drawback is that the switching operations and the associated transient stage can not be 

considered. 

2.3 Analog Simulation Approach  

There are a number of analogue simulation approaches which have been employed to 

represent power systems for ferroresonance studies. The use of Electronic Differential 

Analyser (EDA), Analog Computer (ANACOM) and Transient Network Analyser (TNA) 

are among the miniature setups which have been considered in the past. 

A paper published by Dolan [15] in 1972 documented a ferroresonance event of 1000 

MVA 525/241.5 kV, 60 Hz Y-connected bank auto transformers, sited at the Big Eddy 

substation near Dallas, Oregon. The affected transformer in the substation connects to a 

transmission system as shown in Figure 2.11. The network consists of a 30.5 km un-

transposed transmission line connected between John Day and Big Eddy substation. The 
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phase ‘c’ of the John Day/Big Eddy line is run in parallel with phase ‘a’ of the line towards 

Oregon City. The distance between the two adjacent phases is 30.5 m apart. In 1969, the 

John Day/Big Eddy line had been isolated for maintenance purpose. The usual procedure 

to de-energise the John Day/Big Eddy line is to firstly open the high voltage side (525 kV) 

circuit breaker at John Day and then follow by opening the 230-kV breaker at Big Eddy 

substation. Ferroresonance path as marked in the dotted line is developed as shown in 

Figure 2.12.  

 

Figure 2.11:  The Big Eddy and John Day transmission system [15] 

 

Figure 2.12:  The Big Eddy/John Day system including coupling capacitances [15] 
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Following the occurrence of ferroresonance incidence, an analog simulator employed an 

Electronic Differential Analyser (EDA) was then used to investigate the cause of the 

phenomenon and the method to mitigate it. The equivalent representation of the affected 

system of Figure 2.11 was shown in Figure 2.13 in the EDA equipment. 

 

Figure 2.13:  Equivalent circuit of Big Eddy and John Day 525/241.5 kV system [15] 

The core characteristic of the transformer was represented by two slopes to account for the 

saturation curve. The iron loss was represented by a shunt resistor however the copper loss 

was not taken into consideration. As the exact core characteristic such as the knee point 

and the two slopes were unknown therefore the way it was determined was to carry out 

repeatedly variation of saturation curve until a sustained fundamental ferroresonance has 

been found. Once the miniature model has been setup then ferroresonance study is 

performed. The outcomes from the experiment are explained as follows: 

(1) It was found that ferroresonance has been damped out when a closed delta 

connection was employed. 

(2) Ferroresonance suppression has been found to speed up when a suitable value of 

resistor is connected in series with the delta-connected windings. 

A paper presented in 1959 by Karlicek and Taylor [26] described a ferroresonance study 

by considering a typical connection of potential transformer for ground fault protection 

arrangement as shown in Figure 2.14.  
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Figure 2.14:  Typical connection of potential transformer used in a ground-fault detector 
scheme on 3-phase 3-wire ungrounded power system [26] 

The circuit consists of three potential transformers configured into wye-ground broken-

delta. The three lamps that are connected at the delta side are used as an indication for 

detecting the occurrence of any ground faults. In addition, the voltage relay (CV) 

connected at this winding is used for alarm triggering and breaker tripping. Under 

switching operations or arcing ground fault condition, unbalanced voltage occurred hence 

ferroresonance can be initiated between the nonlinear impedance of the transformer and the 

capacitance-to-ground of the circuit. In view of this, an analog computer called ANACOM 

was used to investigate the ferroresonance study and its mitigation measures. The analog 

simulation model was represented as shown in Figure 2.15.      

 

Figure 2.15:  Anacom circuit to represent circuit of Figure 2.5 [26] 

As can be seen from the figure, the adjustable lumped capacitance, Co represents the 

distributed capacitance to ground of the power system and the source inductance by Ls. The 
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saturable toroids connected in parallel with high magnetising reactance, and in series 

connection with linear inductor, Lac are used to model the three potential transformers. The 

saturable toroids are used to represent flux switches. For a low voltage (i.e. flux) then the 

magnetising inductance is connected in parallel with Lm. For saturation region, the 

inductance of the toroids is small hence shorting Lm. LAC are used to serve as adjusting the 

equivalent saturated or air-cored inductance. With this approach, the saturation curve for 

various transformers can be determined. The way to initiate ferroresonant oscillation was 

to firstly energise the circuit by closing the switch, SL and then this is followed by 

momentary closing and opening the grounding switch, SG. The resistance, RB connected at 

the broken delta was used to damp out ferroresonance.    

Papers published by Hopkison in [27, 28] presented his study on the initiation of 

ferroresonance under the event of single-phase switching of distribution transformer bank. 

Figure 2.16 shows the circuit which consists of a three-phase source, single-phase 

switching, an overhead line and a 3-phase transformer in wye-delta configuration.  

 

Figure 2.16:  Possible ferroresonance circuit [27] 

The transmission line of the system was represented by only its capacitances which include 

the ground capacitance, C0 while the phase-to-phase capacitance was modeled as C1-C0, 

where C1 and C0 are the positive-sequence and zero-sequence capacitance respectively. It 

was assumed that the rest of the components such as the impedance (resistance and the 

inductance) of the line were negligible as compared to the capacitances.  

 

The objectives of modeling the system were to determine the influence of various kVA 

ratings of transformers and voltage levels on ferroresonance. In addition, a number of 

practical ways of preventing ferroresonance were also investigated. In order to conduct 
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these studies, the system of Figure 2.16 was modeled in Transient Network Analyser (TNA) 

as shown in Figure 2.17.   

 

Figure 2.17:  Three-phase equivalent system [28] 

Modeling of transformer core was based on the voltage versus exciting current curve. The 

capacitances of winding terminals and ground (core and tank) were taken into 

consideration. These capacitances were determined based on geometrical relations using 

field theory. The conclusions are summarised as follows: 

(1) Various kVA transformer ratings and voltage levels:  results clearly showed that the 

lower kVA transformer ratings at the higher voltage levels are highly susceptible to 

encounter overvoltages.    

(2) Several possible remedies: 

- Grounding the neutral:  resulted with normal steady-state with no 

overvoltages. 

-  Opening one corner of delta:  resulted maximum overvoltages of twice the 

normal. 

- Grounding the neutral of delta:  resulted no overvoltages. 

- Using delta-delta connection:  resulted of 1.6 p.u of normal voltage from 

one phase energised. 

- Connecting the bank open-wye-open-delta:  resulted with no overvoltages. 

- Connecting shunt capacitors from each phase to ground:  resulted 

overvoltages as high as more than 4 p.u. 
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- Using neutral resistor:  resulted no overvoltages if an appropriate value of 

the resistor is selected. 

- Using resistive load connected across each delta:  resulted no overvoltages 

if an appropriate value of the resistor is selected. 

The employment of analog simulators such as the Electronic Differential Analyser (EDA), 

the Analog Computer (ANACOM) and the Transient Network Analyser (TNA) for 

ferroresonance study have their advantages and disadvantages. It offers great flexibility in 

representing the power system into a scaled down real circuit. This approach also provides 

better personal health and safe environment for testing, when we considered only low 

voltage and current magnitudes are used in the experiments. However, the major 

drawbacks are that the analog equipment required costly maintenance (calibration, 

replacement of ageing or faulty components) and also required large laboratory floor space 

to accommodate the equipment.       

2.4 Real Field Test Approach  

Real power system components such as transformers, transmission lines, circuit breakers, 

disconnectors, cables have been employed in existing circuit configurations for 

ferroresonance study. [29] reported the ways they carried out the ferroresonance tests.     

Based on the technical report TR-3N documented in [29], a ferroresonant test was carried 

out in one of the National Grids’ 400 kV transmission systems. The main aim of the test 

was to evaluate the breaking capability of two types of disconnector designs to break the 

ferroresonant current. The system consists of the circuit configuration as shown in Figure 

5.1, in Chapter 5. 

Prior to the test, the disconnector X303 at Thorpe Marsh 400 kV substation was kept open, 

the circuit breaker T10 at the Brinsworth 275 kV substation was kept open and all 

disconnectors and circuit breaker X420 are in service. The way the circuit subjected to the 

trigger of ferroresonance was to carry out point-on-wave (POW) switching using circuit 

breaker X420 at Brinsworth 400 kV substation. The opening of the X420 circuit breaker 

has thus energised the 1000 MVA power transformer via the transmission line’s coupling 

capacitances. From the tests, a subharmonic mode ferroresonance of 162/3 Hz has been 
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triggered at +3 ms POW, showing the disconnector current and busbar voltage of 50 Apeak 

(Y-phase) and 100 kVpeak (Y-phase) respectively. In addition, a grumbling noise was 

reported from the affected transformer. In contrast to the onset of fundamental mode, the 

initiation was triggered at +11 ms POW, hence the induced current and voltage was 200 

Apeak (Y-phase) and 300 kVpeak (Y-phase) respectively. Furthermore, a much louder 

grumbling noise has been generated from the transformer which can be heard at a distance 

of 50 m from the transformer. The voltage and current waveforms of both the modes are 

shown in Figure 5.2 and 5.3 in Chapter 5.           

Both the phenomena have been successfully quenched by using the disconnectors however 

little arc has been observed for the subharmonic mode which can be seen in Figure 2.18. 

On the other hand, much more intense arc has been viewed for the fundamental mode 

which can be seen in Figure 2.19. One interesting point which has been noted here in this 

ferroresonant test is that when a second test was carried out by setting to +11 ms POW, the 

same switching angle at which fundamental mode was previously successfully triggered. 

However, ferroresonance failed to onset in the second test, not even the present of 

subharmonic mode ferroresonance. This clearly indicates that the onset of ferroresonance 

is difficult to predict.     

 

Figure 2.18:  Subharmonic mode 
ferroresonance quenching [29] 

Figure 2.19:  Fundamental mode 
ferroresonance quenching [29] 

 

Real field ferroresonance tests employed in the existing power circuit configurations 

provide an advantage of including sophisticated and complex inherent elements of the full 

scale power components, without any circuit simplification. However, the major 

drawbacks are that the power components are put in a greater risk exposed to overvoltage 

which could cause a premature ageing and a possible catastrophic failure. In addition, the 
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generation of harmonic signals from the tests can also cause problem to other neighboring 

systems.    

2.5 Laboratory Measurement Approach  

In this section, the study of ferroresonance used a simple low or medium voltage circuit to 

carry out experiments in laboratory. Ferroresonance study using this method has been 

found in the literatures [30, 31]. 

A laboratory work performed by Young [30] was to investigate the ferroresonance 

occurred in cable feed transformers. The laboratory setup for the circuit is shown in Figure 

2.20 consisting of cable connected to a three-phase, 13 kV pad-mount distribution 

transformer. The transformer was energised via the three single-phase switches (denoted as 

load break cut-out) connected to the 13 kV grounded source. The cable was modeled by 

using capacitor modules connected at the terminal of the transformer.    

 

Figure 2.20:  Laboratory setup [30] 

The main aims of the laboratory set up were to investigate the influence of the following 

parameters on ferroresonance: (1) Transformer primary winding in delta, wye-ground, 

wye-ungrounded, and T connections, (2) The energisation and de-energisation of the 

transformer via switch (3) Cable lengths ranging from 100 to 5000 feet and (4) The 

damping resistance was varied from 0 to 4 % of the transformer rating. After the tests, the 

results were reported as follows: 

• Ferroresonance overvoltages are more likely to occur when the test transformer was 

connected at no-load, for cable length of more than 100 feet.   
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• It has been recorded that the magnitudes of 2 to 4 p.u have been reached for the 

sustained voltage and up to 4 p.u for the transient voltage for delta and ungrounded 

wye-connected primary winding. On the other hand, the T-connected primary 

winding also produced the similar magnitudes for the sustained one but a  

magnitude as high as 9 p.u has been reached for the transient overvoltages.    

• There has been no overvoltage produced following the single-phase switching of 

the test transformer employing the grounded-wye connection at the primary 

winding.   

• The load of up to 4% of rated transformer power rating connected at the secondary 

side of the transformer was found to be effective in damping transient overvoltage. 

In addition, the probability for the sustained and transient voltages was found to be 

less likely to occur. 

• The employment of the three-phase switching can eliminate the occurrence of 

ferroresonance.  

• It has been observed that the T-connected winding transformer has provided a more 

likelihood for the occurrence of ferroresonance as compared to the delta and wye 

connections.  

Another ferroresonance study based on laboratory was carried out by Roy in [31] . The 

way of the ferroresonance initiation in a 3-phase system of Figure 2.21 was to close one of 

the three switches, leaving the others open. The interaction between the circuit components 

which represents single-phase ferroresonance can be seen on the dotted line of Figure 2.21. 
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Figure 2.21:  Transformer banks in series with capacitive impedance [31] 

The single-phase circuit which has been set up for ferroresonance study is shown in Figure 

2.22. The circuit consists of two single-phase transformer namely T-I and T-III connected 

in series with capacitor (C3) acting as the capacitance from phase-to-ground.  

 

Figure 2.22:  Transformers in series with capacitor (C3) for line model [31] 

The type of ferroresonance studies which have been performed is described in the 

following. Firstly, to observe how the circuit response to ferroresonance when the supply 

voltage is allowed to vary, with or without stored charge in the capacitor. Secondly, the 
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study with supply voltage fixed at 100% of the rated transformer with negative stored 

charges presents in the capacitor. Thirdly, the study of mitigation of ferroresonance by 

using damping resistor connected at the secondary side of the transformer. Finally, an 

interruption of short-circuit study was conducted by overloading the system with low 

resistance connected at the secondary side of the transformer. The results from the 

experiment are explained as follows:   

(1)  Supply voltage is varied: 

       -  Capacitor without stored charge:  Resulted no ferroresonance when the supply is 

80% of the rated value of transformer. Sustained ferroresonance of 5.8 p.u occurred when 

the supply is 100% of the rated value of transformer.  

      -   Capacitor with negative stored charge:  It has resulted in a situation where capacitor 

voltage increased asymmetrically with positive value and approaching to a damaging 

voltage of 7.44 p.u.   

      -   Capacitor with positive stored charge: This has resulted in the capacitor voltage 

being increased asymmetrically with negative amplitude of -7.31 p.u.   

 

(2)  Mitigation of ferroresonance by using damping resistor connected at the secondary 

side of the transformer    

      - Initial stored charge = 0 V, applied voltage = 92% of rated transformer:  Initially, 

the ferroresonance has damped out when a load is applied at the secondary winding of the 

transformer but it reoccurs again when the load is removed from the transformer.       

      -  Initial stored charge = positive, applied voltage = 92% of rated transformer:  Even 

with the presence of the initial positive charge in the capacitor, the damping resistor will 

still be able to provide the damping effect. However, ferroresonance again re-built after 

removal of the resistor from the transformer.   

 

(3) Interruption of short-circuit study by overloading the system with low resistance 

connected at the secondary side of the transformer 

       - A transient overvoltage of 4.11 p.u peak and then a sustained steady state voltage of 

3.04 p.u have been noted before the fault has been interrupted. A sustained ferroresonance 
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with voltage amplitude reached up to 6.02 p.u. has been induced when the low resistance 

load has been removed form the transformer. 

Ferroresonance tests based on small scale laboratory setup have an advantage of studying 

the characteristics of ferroresonance of low-voltage equipment in a realistic manner.    

2.6 Digital Computer Program Approach  

An abundance of digital computer programs had employed for ferroresonance study. Some 

of which quoted from the literature in [13, 14, 16] can be referred in the following section. 

Papers published by Escudero  [13, 14] reported that a ferroresonance incident had 

occurred in the 400 kV substation consisting of the circuit arrangement as shown in Figure 

2.23. The cause of the phenomenon was due to the switching events that have been carried 

out for commissioning of the new 400 kV substation.      

 

Figure 2.23:  400 kV line bay [13, 14] 

The commissioning of the system of Figure 2.23 was conducted as follows: the 

energisation of the VT’s from the 400 kV busbar by disconnecting the line disconnector 

(DL) and then de-energised the VT’s by opening the circuit breaker (CB). The effect after 

the switching events has thus reconfigured the circuit into ferroresonance condition 

involving the interaction between the circuit breaker’s grading capacitor and the two 

voltage transformers. 

Following the occurrence of ferroresonance as mentioned above and the failure of the 

damping resistor to suppress ferroresonance, an ATP/EMTP simulation package was 

Damping resistor of 0.5 Ω connected in closed delta 
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employed to investigate the phenomena and to assess the mitigation alternative. The 

complete simulation model is shown in Figure 2.24. 

 

Figure 2.24:  ATPDraw representation of 400 kV substation [14] 

The voltage transformer was modeled with three single-phase transformer models using 

the BCTRAN+. The core characteristic of the transformer was externally modeled by using 

non-linear inductors with its saturation λ-i characteristic derived from SATURA 

supporting routine. The required data to convert into λ-i characteristic is obtained from the 

open-circuit test data given by the manufacturer. The hysteretic characteristic of the core 

was not taken into consideration because its measurement was not available for the type of 

transformer under study. The iron-losses were simply modeled by resistors.  

An agreement between the recorded test measurement and simulation results was firstly 

obtained to justify the model before the key factors that influence the ferroresonance were 

analysed. The study was to investigate the types of ferroresonance modes when the length 

of busbar substation was varied, which corresponds to the capacitance value of busbar, 

with the grading capacitance kept unchanged. In addition, the safe operating area of busbar 

length was also identified. The results from the simulation studies are presented as follows: 

For busbar substation capacitances:   

(1) 10 pF - 100 pF and 950 pF - 2320 pF:   No ferroresonance has been identified for 

these ranges of capacitances. Normal steady-state responses have not been observed from 

the simulations. 
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(2) 110 pF - 950 pF:  Sustained fundamental mode ferroresonance have been induced 

with its amplitude reached up to 2.p.u.  

(3) 2320 pF:  Subharmonic mode with Period-7 has been induced into the system. The 

frequency of the phenomenon is 7.1 Hz. 

(4) 2590 pF:  In this case, the system responded to chaotic mode for about 4 seconds 

until it jumps into the normal steady-state 50 Hz response.  

A paper published by Jacobson [16] investigated a severely damaged wound potential 

transformer caused by a sustained fundamental ferroresonance. The affected transformer is 

connected to the Dorsey bus which has the bus configuration as shown in  

Figure 2.25. 

 

Figure 2.25:  Dorsey bus configuration prior to explosion of potential transformer [16] 

For the commission work and maintenance, Bus A2 was removed by opening the 

corresponding circuit breakers (shaded box of Figure 2.25) connected along side of Bus A2. 

After the switching events, one of the potential transformers (i.e. V13F) had undergone a 

disastrous failure and eventually exploded. The cause of the incidence can be clearly 

explained by referring to the diagram of Figure 2.26.  
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Figure 2.26:  Dorsey bus configuration with grading capacitors (Cg) 

The root cause of the problem was the existence of parallel connection of the grading 

capacitors of circuit breakers connected along bus A2 and B2 when the circuit breakers 

were open. The effect of this switching occasion has eventually reconfigured the Dorsey 

bus system into a ferroresonance condition consisting of the source, capacitance and 

transformers.  

In view of the problem, a simulation model of Figure 2.27 using EMTP had been 

employed to duplicate the cause of the ferroresonance and also to investigate the best 

possible mitigation alternatives to rectify the problem. The system includes station service 

transformer (SST), two potential transformers (PT1 and PT2), equivalent grading 

capacitance of circuit breaker, bus capacitance between bus B2 and A2, and voltage source.  

 

Figure 2.27:  EMTP model – Main circuit components [16] 

A strong equivalent source impedance has been employed to model the Dorsey bus 

terminal. The a.c filter is switched in at bus B2 and is used to assess its effectiveness of 
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mitigating ferroresonance. The capacitances of the buses (i.e. bus B2 and A2) are also 

taken into consideration by referring to the geometry dimension of Figure 2.28. 

 

Figure 2.28:  EMTP model – Bus model [16] 

The 4-kVA potential transformers (PT1 and PT2) were modeled by considering core losses, 

winding resistance and excitation current with the circuit represented as shown in Figure 

2.29. The iron losses have been represented by a constant resistance. The core 

characteristics of the transformers were modeled based on the manufacturer’s data but the 

air-core (fully saturated) inductance of 62 H was assumed because it provides the 

ferroresonance response which is close to the field recording waveform.     

 

Figure 2.29:  EMTP model – PT model [16] 

On the other hand, the 10 MVA station service transformer (SST) was modeled based on 

the previous parameters taking into consideration of positive sequence impedance, core 

losses and the saturation characteristic. The air-core inductance has been provided by the 

manufacturer however the saturation curve is determined by applying extrapolation 

technique.  

Once the ferroresonance response from the simulation is validated with the field recording 

one, ferroresonance study was then performed by considering the following 

recommendations: 



Chapter 2                                                                                                    Literature Review 

- 60 - 

(1) The study showed that the service station transformer (SST) has enough losses to 

damp out the occurrence of ferroresonance but this occurred at the grading 

capacitance of up to 4000 pF. 

(2) A damping resistor of 200 Ω/phase was connected at the secondary side of SST to 

prevent this phenomenon if the grading capacitance has reach up to 7500 pF 

following circuit breakers upgrades. 

Ferroresonance study employing digital simulation programs is considered to be 

inexpensive, maintenance free, does not required large floor space area, less time 

consuming and free from dangerous voltages and currents. However, one of the major 

disadvantages this approach encountered is that the true characteristic of the power 

components are difficult to fully and comprehensively represented in one of the 

predefined simulation models.     

2.7 Summary  

Five different approaches have been developed to study ferroresonance in the power 

system over many years. Each method has its own advantages and disadvantages and may 

be suitable at the time of its development. Table 2.2 summaries the advantages and 

disadvantages of each of the approaches. 

 Table 2.2:  Advantages and disadvantages of each of the modeling approaches  
Approach Advantages Disadvantages 
Analytical method - studying the parameters 

influence the initiation of 
different ferroresonant 
modes 
- the boundaries between 
safe and ferroresonant 
regions can be performed. 
 

- circuit over simplified 
- involves complex 
mathematical equations 
- requires large computation 
time 

Analog simulation - offers great  flexibility in 
representing the scaled down 
real circuit 
 

- costly maintenance 
- requires large floor space to 
accommodate the equipment 

Real field test - including sophisticated and 
complex full scale power 
components without any 
circuit simplification. 

- power components are put in 
a greater risk exposed to 
overvoltages and overcurrents 
- premature ageing and a 
possible catastrophic failure 
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Laboratory 
measurement 

- studying the characteristics 
of ferroresonance of low-
voltage equipment in a 
realistic manner 

  

Digital computer 
program 

- inexpensive, maintenance 
free, does not required large 
floor area, less time 
consuming 
- free from dangerous 
overvoltages and 
overcurrents 

- power system components are 
difficult to fully and 
comprehensively represented 
in a predefined simulation 
model alone.  

. 

In view of the computation power of modern computer and well-developed power system 

transient softwares, the current approach used in this thesis is to carry out simulation 

studies for understanding the network transients performance, to aid network design and to 

analyse the failure causes in the existing system. 
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CHAPTER 3 CHAPTER 3 CHAPTER 3 CHAPTER 3     

333...   SSSIII NNNGGGLLL EEE---PPPHHHAAASSSEEE   FFFEEERRRRRROOORRREEESSSOOONNNAAANNNCCCEEE   –––   AAA   CCCAAASSSEEE   
SSSTTTUUUDDDYYY      

   

3.1 Introduction  

Ferroresonance has been identified as a nonlinear event which can cause damaging of 

power system equipment as a result of exhibiting overvoltages and overcurrents. In view of 

this, power network must function beyond the boundary of ferroresonant regions, and in 

addition minimise the likelihood of occurrence of such response when planning of 

expansion of network takes place. In order to achieve this, a comprehensive understanding 

of such phenomenon is essential for power system engineers, that is by looking into the 

variations of system parameters and transformer parameters which are known to directly 

influence ferroresonance response so as to gain a better understanding about its behaviour. 

As an initial stage of the current study, a single-phase ferroresonance equivalent circuit 

employing a potential transformer (PT) quoted in [16] is used as a case study. The studies 

aim to achieve the goals as follows: 

(1) Identification of ferroresonant modes such as sustained fundamental, quasi-

subharmonic, subharmonic and chaotic modes by varying both the grading and shunt 

capacitances for both high and low core nonlinearity characteristics. 

(2) Suppression of sustained fundamental ferroresonant mode by having variation of 

core-losses introduced into the transformer core characteristic. 

(3) Recognising the key parameters for providing initiation and sustainability of 

ferroresonance, particularly the sustained fundamental mode.      
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3.2 Single-Phase Circuit Configuration  

Figure 3.1 shows the equivalent circuit of the studied potential transformer under load 

connected condition and the corresponding circuit arrangement.  

 

 

Figure 3.1:  Single-phase ferroresonance circuit [16] 

The primary side of the transformer is connected in series with a voltage source and a 

circuit breaker consisting of its grading capacitance (Cg). In addition, a ground capacitance 

(Cs) is also connected at the primary side of the transformer. The transformer includes 

primary and secondary winding resistance (r1 and r2) and leakage inductances (L1 and L2). 

The magnetising characteristic of this transformer is modeled by a nonlinear inductor (Lm), 

connected in parallel with a resistance (Rm) representing the core-losses. The secondary 

side of the transformer is connected with burden impedance, Zb. This impedance is 

considered to be enormous if it is reflected to the primary side of the transformer and thus 

be much greater than the core impedance, which can be ignored. In view of this, the circuit 

under study has achieved the ferroresonance condition of interaction between capacitance 

and nonlinear inductor.  

 

The magnetic behaviour of the transformer core is represented by a true non-linear 

inductor (Lm) to model the saturation effect which has the flux-linkage versus current 

characteristic as shown in Figure 3.2.  
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Figure 3.2:  Magnetising characteristic [16] 

With the parallel connection of both Rm and nonlinear inductance, Lm, the core 

characteristic of the transformer which now includes both the Rm and nonlinear Lm is 

depicted as shown in Figure 3.3. 

 

Figure 3.3:  Core characteristic 
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3.3 ATPDraw Model 

The circuit shown in Figure 3.3 is represented in detail using ATPDraw as shown in Figure 

3.4. The value of the grading capacitance, Cg is 5061 pF and the ground capacitance, Cs is 

10450 pF when the circuit is inducing a steady state ferroresonance response, following the 

opening of the circuit breaker, CB.  

 

Figure 3.4:  ATPDraw representation of Figure 3.1 

Since the circuit of Figure 3.4 will be employed for ferroresonance study throughout this 

chapter, it is important to make sure that the developed simulation model in ATPDraw is 

correctly representative. In order to achieve this, the verification between the voltage 

waveform generated from ATPDraw and field recording waveforms have to  agree with 

each other. The voltage waveform across the transformer produced from the simulation 

and the field recording are depicted in Figure 3.5.  

    

 

Figure 3.5:  Top- Field recording waveform [16], bottom – simulation 
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Figure 3.5 shows both the field recording and simulation voltage waveforms, the shape and 

amplitude for the steady state voltage waveform were regenerated with reasonably good 

accuracy. However, the distinctive difference between them is the shape of the transient 

oscillatory voltage prior to steady state and the time for this voltage to settle down into the 

steady state. The figure shows that the field result takes longer time to reach steady state as 

compared with the simulation one. The transition from transient to steady-state response is 

random when the core operates around the knee area with the influence of system 

parameters. Exact matching between them is impossible to replicate, the main reasons are 

the ground capacitance that has been used in the simulation model is not exact, i.e. the 

influence by stray parameters cannot be accurately determined and validated, the 

magnetising characteristic (i.e. λ-i curve) cannot be modeled accurately and also the 

opening time of circuit breaker is not taken into consideration.   

 

Figure 3.6:  FFT plot 

The frequency spectrum of the steady-state part voltage of Figure 3.5 is shown in Figure 

3.6, which is known as the sustained fundamental ferroresonant mode or it is sometimes 

referred to as Period-1 response. It resonates at 60 Hz frequency with a sustainable 

amplitude of 1.41 per unit. The magnitude of this kind is the one which can cause major 

concern to power system components. In addition, the frequency content of the sustained 

resonant voltage as shown in the FFT plot of Figure 3.6 mainly consists of the fundamental 

frequency component as well as the existence of higher order frequency components such 

as the 3rd and the 5th, 7th and 9th harmonics.    

0 60 120 180 240 300 360 420 480 540 600 660
0

0.2

0.4

0.6

0.8

1

frequency (Hz)

P
ow

er
 s

pe
ct

ru
m

 (
pe

r-
un

it)



Chapter 3                                                      Single-Phase Ferroresonance – A Case Study 

- 67 - 

3.4 Sensitivity Study on System Parameters 

The main aim of this section is to provide the basis for interpreting various ferroresonant 

modes by carrying out the sensitivity studies of both the system and the transformer 

parameters. The following assumptions are made to facilitate the analysis: (1) There is no 

residual flux in the core at the time the circuit is energised (2) There is no initial charge on 

the capacitor (3) The circuit breaker (CB) is commanded to open at the current zero with 

current interruption as shown in Figure 3.7, where two operating events are simulated 

when the circuit breaker is open at t = 0.0137 seconds and 0.145 seconds, respectively. 

Once the breaker current is interrupted, the circuit can be either energised via the grading 

capacitance at the point of a positive or negative peak voltage. Note that the influence of 

residual flux and initial stored charge play an important role on the onset of ferroresonance 

as these parameters provide the initial condition which is sensitive to ferroresonant circuit. 

In addition, the current breaking time of circuit breaker in the simulation will also affect 

the onset of ferroresonance as it provides a different initial condition everytime the breaker 

operates.    

 

Figure 3.7:  Top - Current interrupted at first current zero, Bottom – second current zero 

The current waveforms of Figure 3.7 have been generated according to the base values of 

parameters as defined in Figure 3.1. The waveforms suggest that the circuit is purely 

capacitive because the current waveform leads the supply voltage by 90o.  
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3.4.1 Grading Capacitance (Cg) 

Circuit breakers employing series-connected interrupting chambers are served for the 

purpose of providing better breaking capability. The use of the grading capacitor connected 

across the chamber is to provide improvement of balance of voltage distribution across the 

chambers in a series arrangement [32]. In spite of their usefulness, this capacitance on the 

other hand can produce the likelihood of occurrence of ferroresonance phenomena.  

In order to look into the effect of this capacitance on the circuit, let us look at a wider view 

by having the grading capacitance, Cg varied from 1000 pF up to 8000 pF, against a wide 

spectrum of ground capacitance, Cs spreading from 1000 pF up to 10,450 pF. The result of 

the findings is presented as shown in Figure 3.8 showing the x-axis being the grading 

capacitance while the y-axis represents the ground capacitance. The small circle represents 

the types of responses that have been induced, with the blue representing the subharmonic 

mode and the red one the sustained fundamental mode. The one without any indication in 

the figure is when the system has been responded to a normal state, that is the final steady 

state which is characterised by either a 60 Hz sinusoidal with reduced amplitude.   

 

Figure 3.8:  Overall system responses to change of grading capacitances 
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A glimpse on Figure 3.8 shows that there is a boundary region where the fundamental 

mode, subharmonic mode and normal state operated. Fundamental and subharmonic modes 

are more likely to occur below and above Boundary 1 and 2 respectively, while the normal 

state is operated in between the two boundaries. The result suggests that sustained 

fundamental mode ferroresonance (i.e. Period-1) is more prone to occur as the grading 

capacitances is increased against the ground capacitances. In fact, the most influence range 

is from 4000 pF to 8000 pF because this response is able to be induced widely for the 

whole range of ground capacitance (as shown in broken red line). On the other hand, 

subharmonic mode has also been induced but this occurs for the lowest value of grading 

capacitance (1000 pF), against the highest values of ground capacitances (8000 pF to 

10450 pF). The one without the ground capacitance (Cs) shows that Period-1 can still exist.  

3.4.2 Ground Capacitance (Cs) 

The ground capacitance is mainly due to the bushing, busbar and winding to the tank or 

core, for example, the capacitances exhibit between the busbar-to-ground with air as an 

insulation medium. Now, let us look at how the system responses to ferroresonance if the 

ground capacitance, Cs is varied from 1000 pF up to 10,450 pF, for a wide range of grading 

capacitances (1000 pF to 8000 pF). The overall result of the findings is presented as shown 

in Figure 3.9.  

 

Figure 3.9:  Overall system responses to change of capacitances  

            Legend:     - Subharmonic mode               - Fundamental mode 

Grading capacitance, Cg (pF) 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 10450 Without 
Cs Ground capacitance, Cs (pF) 

Boundary 1 

Boundary 2 



Chapter 3                                                      Single-Phase Ferroresonance – A Case Study 

- 70 - 

The overall scaterred diagram of Figure 3.9 shows that both the subharmonic mode and the 

fundamental mode have been induced in the system but they are operated within the 

boundary regions as shown in the diagram, as indicated as Boundary 1 and Boundary 2.     

 

From the result, it can be seen that fundamental mode ferroresonance is more pronounce 

for the grading capacitance working in the range of 1000 pF to 4000 pF against the whole 

range of ground capacitances (as indicated in broken green line). However, its occurrence 

becomes less likely to occur as the ground capacitance is increased further, against the 

lower part of the grading capacitance. A border line marked as Boundary 2 in the diagram 

is used to indicate the limit where Period-1 occurs. Despite of this, the occurrence of 

subharmonic modes begins to show up for the highest part of ground capacitance but this 

only happened against the lowest value of grading capacitance of 1000 pF. The operating 

limit for the occurrence of subharmonic mode is marked as Boundary 1. In between the 

two boundaries, is a region where normal state occurs in the system. In contrast, it is also 

found that the fundamental mode ferroresonance is still able to be initiated into the system 

even without the presence of ground capacitance but its occurrence is more likely at the 

lower range of grading capacitances from 1000 pF to 2000 pF. The time-domain voltage 

waveforms of different kinds are shown in Figure 3.10. 
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Figure 3.10:  Time-domain voltage waveforms 

The frequency contents of the sustained steady-state voltage waveforms of Figure 3.10 are 

analysed by using FFT,  
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Figure 3.11:  FFT plots of the time-domian voltage waveforms of Figure 3.10 

The characteristics of the FFT plots corresponding to the voltage waveforms of Figure 3.10 

are explained as follows: 

 (1)  Voltage waveform with Cg = 1000 pF, Cs = 8000 pF     

The FFT plot shows that the corresponding voltage waveform is dominated by a 20 Hz 
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 (2)  Voltage waveform with Cg = 1000 pF, Cs = 9000 pF     

The signal has a strong influence of 20 Hz frequency component and superimposed by 

33.25 Hz frequency component. This signal is still referred to as period-3 ferroresonance. 

 (3)  Voltage waveform with Cg =1000 pF, Cs = 10,000 pF     

The FFT plot shows that the signal consists of only 20 Hz frequency without any other 

frequency contents. It is a purely period-3 ferroresonance signal.  

 (4)  Voltage waveform with Cg =2000 pF, Cs = 7000 pF     

The signal shows a repeatable oscillation with the existence of 6.67 Hz and with a strong 

influence of 60 Hz frequency component. This signal is referred to as Period-9 

ferroresonance of 6.67 Hz subharmonic mode.  

 (5)  Voltage waveform with Cg = 8000 pF, Cs = 5000 pF     

The steady-state resonance voltage is 1.61 per-units which is higher than the system 

amplitude. This signal mainly consists of a strong influence of 60 Hz frequency component 

followed by the 3rd and 5th higher order harmonics. This phenomenon is referred to as 

Period-1 ferroresonance or sustained fundamental ferroresonance.  

3.4.3 Magnetising Resistance (Rm) 

The main function of transformer magnetic core is to provide magnetic flux for the 

development of transformer action such as to facilitate step-up or step-down of voltages. In 

this study the core-losses of the transformer is represented by a linear resistance.    

The main aim of this study is to investigate the influence of core-losses on ferroresonance, 

by varying the value of the magnetising resistance, Rm over three different values. In this 

case the base value of 92 MΩ is varied to 10 MΩ and 5 MΩ. The magnetising plot for each 

resistance is shown in Figure 3.12 with the narrow loss per-cycle corresponds to the 

magnetising resistance of 92 MΩ and the one with the widest loss is for the resistance of 5 

MΩ.  
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Figure 3.12:  Core-losses for Rm = 92 MΩ, 10 MΩ and 5 MΩ 

The study is carried out by assuming that Cg = 4500 pF and Cs = 10450 pF. The voltage 

waveforms across the transformer are recorded as shown in Figure 3.13. 
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Initially, with low loss i.e. Rm = 92 MΩ, Period-1 ferroresonance is induced into the 

system which can be seen in the top diagram of Figure 3.13.  As the loss is increased by 

having Rm = 10 MΩ, the result shows that the transient part takes longer time to settle 

down, with resonance being damped.  However, when the loss is further increased to Rm = 

5 MΩ, Period-1 ferroresonance is damped more effectively and ceases to develop. This 

study suggests that ferroresonance can be damped by using core material with  larger loss 

per cycle, such as soft steel core material.   

3.5 Influence of Core Nonlinearity on Ferroresonance 

The core characteristic employed in the previous study has a level of nonlinearity as 

indicated in red line of Figure 3.14.   

 

Figure 3.14:  Core characteristics 
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3.5.1 Grading Capacitance (Cg) 

Similar to the previous case study, the grading capacitance is varied from 1000 pF up to 

8000 pF, with a range of ground capacitances from 10000 pF to 10,450 pF. The result from 

the simulations is presented in Figure 3.15. With this type of core characteristic, the results 

suggest that there is more likelihood that subharmonic mode can be induced into the 

system, particularly a strong influence of Period-3 ferroresonance. In contrary, other type 

of response such as chaotic mode has also been identified, but its occurrence is at higher 

value of grading capacitance.  

 

Figure 3.15:  Overall responses of the influence of capacitances 
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One interesting observation from the plot is that when the system is operated at Cg = 5000 

pF and Cs = 8000 pF, it responded to the chaotic mode when the breaker current is 

interrupted at negative peak voltage. On the other hand, the system also responded to 

subharmonic mode when the current is interrupted at positive peak voltage.   

3.5.2 Ground Capacitance (Cs) 

Similar to the previous characteristic, the overall responses subject to this type of core 

characteristic is presented as shown in Figure 3.16 with a plot of grading capacitance 

versus ground capacitance varying over a wide range.  

 

Figure 3.16:  Overall responses of the influence of capacitances 
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(3) Without exception, Period-1 ferroresonance will also occur without the ground 

capacitance connected to the system but this only happened at the lower value of 

grading capacitance. 

(4) Chaotic mode and normal state is operated within the region between Boundary 1 

and Boundary 2 but chaotic mode is more pronounced at higher range of ground 

capacitance. 

The time-domain waveforms and their corresponding FFT plots are shown in Figure 3.17 

and 3.18 respectively.  
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Figure 3.17:  Time-domain voltage waveforms 
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Figure 3.18:  FFT plot of the time-domain waveforms of Figure 3.17 

The characteristics of the FFT plots corresponding to the voltage waveforms are explained 

as follows: 

(1)  Voltage waveform with Cg = 1000 pF, Cs = 7000 pF 

The FFT plot shows that there is a strong nomination of a 20 Hz frequency component 

contained in the signal which is called a Period-3 or a 20 Hz subharmonic ferroresonance. 

 (2)  Voltage waveform with Cg = 2000 pF, Cs = 9000 pF     

The response shows repeatable oscillation of 8.5 Hz with the strong influence of 60 Hz 

frequency component. This signal is called a 8.5 Hz subharmonic mode or a Period-7 

ferroresonance.  

 (3)  Voltage waveform with Cg = 3000 pF, Cs = 8000 pF     

The FFT plot shows that the signal consists of strong influence of 20 Hz frequency, 

therefore it can be considered as a Period-3 or 20 Hz subharmonic ferroresonance.  

 (4)  Voltage waveform with Cg = 3000 pF, Cs = 9000 pF     

This type of signal is Period-3 or 20 Hz subharmonic mode because the signal contains 

mainly the 20 Hz frequency component. 

 (5)  Voltage waveform with Cg = 8000 pF, Cs = 9000 pF     

The time-domain waveform shows that the amplitude is randomly varied with time, 

oscillating at different frequencies. The FFT plot suggests that there is evidence of 

continuous frequency spectrum spreading in the region of 20 Hz and 60 Hz. This type of 

signal is categorised as chaotic mode.  
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 (6)  Voltage waveform with Cg = 8000 pF, Cs = 5000 pF     

The sustained amplitude of this signal is 1.45 per-unit which is higher than the system 

voltage amplitude. The content of this signal is mainly 60 Hz followed by higher odd order 

harmonic of 180 Hz. The phenomenon is referred to as Period-1 ferroresonance or 

sustained fundamental ferroresonance.  

3.6 Comparison between Low and High Core Nonlinearity  

In the previous sections, the study of ferroresonance accounts for the variation of both the 

grading and ground capacitances and the degrees of core nonlinearity have been carried out. 

For comparison between the two characteristics, they are then presented as shown in 

Figure 3.19.     
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Figure 3.19:  Top:  High core nonlinearity, Bottom:  Low core nonlinearity 

3.7 Analysis and Discussion  

From Figure 3.19, it can be seen that both types of core nonlinearities have a great 

influence on the occurrence of a Period-1 ferroresonance when the value of the grading 

capacitance is increased. The main reason can be explained by a graphical diagram of 

Figure 3.21. The equation of the ferroresonance circuit of is given as 
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Figure 3.20:  Single-phase ferroresonance circuit 

 

Figure 3.21:  Graphical view of ferroresonance 
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point where VC is greater than VLm which corresponds to the ferroresonance conditions 

charaterised by flux densities beyond the design value of the transformer, and a large 

excitation current. Point B, which is in the first quadrant, is unstable. The instability of this 

point can be seen by increasing the source voltage (EThev.) by a small amount follows a 

current decrease which is not possible. Therefore a mathematic solution at this point does 

not exist [24]. 

Moreover, the presence of the grading capacitance suggests that core characteristic with 

high nonlinearity has a high probability of inducing sustained ferroresonance as compared 

to the low one. The reason is because of core characteristic with high degree of 

nonlinearity has an approximate constant saturable slope (see Figure 3.22) which can cause 

the core to be driven into deep saturation if there is only a small increase of voltage 

impinging upon the transformer.  

 

Figure 3.22:  Top-High core nonlinearity, Bottom-Low core nonlinearity 
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The sustained ferroresonance voltage of Figure 3.23 has a magnitude of 1.40 per-unit 

which has an increase of voltage of 40%. This change of voltage will over-excite the 

transformer and then pushes the core into profound saturation therefore withdrawing a high 

peaky current from the system (bottom diagram of Figure 3.23). The sustained amplitude 

oscillates between point A and A’ along the magnetising characteristic of Figure 3.22, 

marked in red.  

 

Figure 3.23:  Top-Voltage waveform, Bottom-Current waveform 

In contrary, the employment of low degree of core nonlinearity has generated totally 

different types of voltage and current responses as shown in Figure 3.24.  

 

Figure 3.24:  Top-Voltage waveform, Bottom-Current waveform 
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The results show that low current Period-3 ferroresonance has been induced into the 

system. This observation suggests that the transformer has been working around the knee 

point i.e. at point B of the core characteristic as marked in blue of Figure 3.25. Since the 

response oscillates between point B and B’ at a rate of 20 Hz, therefore core characteristic 

with this kind requires larger change of voltage in order for the transformer to induce 

Period-1 ferroresonance. The reason that the transformer operating around the knee point 

when it is impinged by a subharmonic mode response can be explained as follows.         

Dividing equation (3.1) by frequency, ω then it becomes 

 ( ) . .
2

. Thev C Thev
Lm

E V E I
V F I

C
ω

ω ω ω ω
= = + = +  (3.2) 

then 

 ( ) .
2

ThevE I
F I

Cω ω
= +  (3.3) 

 
Equation (3.3) represents the straight line marked in blue and green of Figure 3.25, but the 

position and the gradient of the line changes greatly with frequency [43]. For high 

frequency at ω1, the gradient of the line is less steep therefore intersects the magnetising 

characteristic on the negative branch at point A. On the other hand, with lower frequency, 

ω2 the gradient of the line is steeper as indicated in blue line hence crossing at point B 

against the magnetising characteristic.  

 

Figure 3.25:  Effect of frequency on magnetic characteristic 
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Lower frequency such as the response having the characteristic of subharmonic mode is 

more likely to operate around the knee point region of the core characteristic, inducing low 

current in magnitude.  

3.8 Summary 

Two case studies employing two different types core of characteristics to investigate how 

the grading and ground capacitances can influence the types of ferroresonant modes have 

been performed in the preceding sections. The comparison between the two is summarised 

as shown in Table 3.1. 

Table 3.1:  Comparison between high and low core nonlinearity 
Types of responses Core characteristic 

Fundamental mode  Subharmonic mode Chaotic mode 
    
(A) High 
Nonlinearity  

   

 - More likely to    
  occur at high Cg 

-  Less likely to  
    occur 
-  Prone at high Cs &  
   low Cg 

-  Not available 

(B) Low Nonlinearity     
 - Less likely to occur 

- More likely at 
  high Cg but limited 
  at higher range of  
  Cs 

-  More likely to  
   occur 
-  Likely at high  
   Cs & low Cg 

- Likely to occur 
- More likely to   
  occur at high Cs & 
  high Cg 

In summary, Period-1 ferroresonance is more susceptible to occur for core characteristic 

with high degree of nonlinearity as compared to the low one, covering a wide range of 

grading capacitances against ground capacitances. However, this type of core characteristic 

has a less likelihood of initiating subharmonic mode. In fact the occurrence of this 

subharmonic response is only limited at high value of grading capacitance against low 

value of ground capacitance. Other type of response such as chaotic mode has not occurred 

for high degree nonlinear core characteristic. 

One of the main observations throughout this study is that the ground capacitance has in 

effect provided a wider range of grading capacitance for Period-1 to be more frequently 

occur, particularly for the core characteristic with high degree of nonlinearity. The grading 

capacitance on the other hand acts as a key parameter for the initiation of ferroresonance. 
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This is because Period-1 response is still able to be induced without the presence of the 

ground capacitance. 

In contrast, core characteristic employing low degree of nonlinearity has a less chance for 

the Period-1 ferroresonance to occur. Instead this type of response occurs in a confined 

range of high ground capacitance against high value of grading capacitance. Subsequently, 

it is more pronounced for subharmonic mode to be induced, confining at high ground 

capacitance and low value of grading capacitances. Furthermore, chaotic mode can also be 

exhibited but restricted around high ground and grading capacitances.  

The overall study from the above can thus provide an overall glimpse on how a system 

network responds to ferroresonance for the variation of the following parameters; the 

grading capacitance, the ground capacitance, the core-losses and the use of different degree 

of nonlinearity of core characteristics. 
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CHAPTER 4 CHAPTER 4 CHAPTER 4 CHAPTER 4     

444...   SSSYYYSSSTTTEEEMMM    CCCOOOMMM PPPOOONNNEEENNNTTT   MMM OOODDDEEELLL SSS   FFFOOORRR   
FFFEEERRRRRROOORRREEESSSOOONNNAAANNNCCCEEE   

   

4.1 Introduction  

In the preceding chapter, the study of a single-phase ferroresonance circuit has been carried 

out to investigate the fundamental behaviours of the phenomenon when the parameters are 

varied.  

One of the main aims of this thesis is to determine the best possible predefined models in 

ATPDraw so that each of the components can be suitably represented for modeling the real 

case circuit which has experienced ferroresonance. It is therefore the objective of this 

chapter to firstly introduce the technical aspects of the power system components, and to 

identify the best possible model for the study of ferroresonance that are available in 

ATPDraw. As ferroresonance is classified as a low frequency transient, much attention is 

then concentrated on the circuit breaker, the transmission line and the power transformer 

which are concerned. The criteria to be used for determining the suitability of each of the 

predefined models are taken in relation to the modeling guidance proposed by CIGRE and 

are explained accordingly.  

4.2 400-kV Circuit Breaker 

A circuit breaker is a mechanical switching device, regardless of its location in the power 

system network, it is required for controlling purposes by switching a circuit in, by 

carrying load currents and by switching a circuit off under manual or automatic 

supervision. In its simplistic term, the main function of the circuit breaker is to act as a 

switch capable of making, carrying, and breaking currents under the normal and abnormal 

conditions.  

There are five basic types of switch models [44] available in ATPDraw namely:  the time-

controlled switch, the gap switch, diode switch, the thyristor switch and the measuring 

switch. The only one relevant to the circuit breaker is the time-controlled switch which is 
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an ideal switch that can be employed for opening and closing operations. The way in which 

it is operated is explained by referring to Figure 4.1. 

 

(a)  Current going through zero (b)  Current less than current margin, Imargin 
 

Figure 4.1:  Circuit breaker opening criteria  

(a)  No current margin (Imargin= 0) 

If the circuit breaker is assumed to have no current margin and it is commanded to open at 

Topen, the breaker will not open if t <Topen. However, it will open as soon as the current 

goes through zero by detecting changes in current sign when t >Topen. Once the current is 

interrupted successfully, the breaker will remain open. The detailed switching process is 

shown in Figure 4.1(a).  Note that Topen  is the idealized time commanding the opening of 

the circuit breaker before full current interruption, simply for simulation purpose. 

(b)  With current margin (Imargin≠ 0) 

With current margin (Imargin) defined as a value which is less than the peak current, the 

breaker will open if the current is within the region of predefined current margin as soon as 

the breaker is commanded to open (i.e. t>Topen). The detailed switching process is shown 

in Figure 4.1(b). Imargin is actually the current chopping which relates to real circuit breaker 

operation.  

From the above, the criterion employed by the time-controlled switch to command the 

opening of the circuit breaker considers ideal breaking action without taking account of arc 

and restrike characteristics. Are these characteristics really needed and what level of model 

complexity for a circuit breaker is required for ferroresonance study?  For ferroresonance 

study, the circuit breaker with its simplistic form is sufficient because of the following: 
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• In respect to the Thorpe-Marsh/Brinsworth system, prior to the reconfiguration of the 

system the current passing through the circuit breaker involved the line charging 

current and the current for the affected power transformer (SGT1) which is at no-load 

with a small cable charging current at the secondary. Therefore, modeling circuit 

breaker with its arc mechanism is not required as this is only applicable for high 

current interruption such as a short-circuit current. 

• Circuit breaker’s restrike characteristic representation is normally employed in a 

situation where high frequency current interruption of breaker occurs, typically in a 

frequency range from 10 kHz up to 3 MHz [2, 45, 46]. Therefore, modeling to 

account for this behaviour is not required as ferroresonance is a low frequency 

phenomenon which has a range of frequency from 0.1 Hz up to 1 kHz [45]. Indeed, 

50 Hz and 16.67 Hz ferroresonance have been induced in the Thorpe-

Marsh/Brinsworth system [47].  

In addition to the above, the model criteria as described in Table 4.1 [45] have not 

recommended any but the mechanical pole spread under the category of the Low 

Frequency Transient to which ferroresonance falls into.    

Table 4.1:  Modeling guidelines for circuit breakers proposed by CIGRE WG 33-02  

OPERATION 
Low Frequency 

Transient 
Slow Front 
Transient 

Fast-Front 
Transient 

Very Fast-Front 
Transient 

C l o s i n g 
Mechanical pole 
spread 

Important Very important Negligible Negligible 

Prestrikes (decrease of 
sparkover voltage 
versus time) 

Negligible Important Important Very important 

O p e n i n g 
High current 
interruption (arc 
equation) 

Important only 
for interruption 

capability studies 

Important only for 
interruption 

capability studies 

Negligible Negligible 

Current chopping (arc 
instability) 

Negligible Important only for 
interruption of small 
inductive currents 

Important only for 
interruption of 
small inductive 

currents 

Negligible 

Restrike characteristic 
(increase of sparkover 
voltage versus time) 

Negligible Important only for 
interruption of small 
inductive currents 

Very important Very important 

High frequency 
current interuption 

Negligible Important only for 
interruption of small 
inductive currents 

Very important Very important 

It is therefore suggested that for modeling circuit breaker’s opening operation, 3-phase 

time-controlled switches are employed in ferroresonance study.  
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4.3 Power Transformer 

Electrical power produced from generation stations has to be delivered over a long distance 

for consumption. To enable a large amount of power to be transmitted through small 

conductors while keeping the losses small the use of very high transmission voltages is 

required. Therefore, a step-up transformer is employed to increase the voltage to a very 

high level. In the distribution level, the high voltages are then step-down for distribution to 

customers.   

Transformers are considered to be one of the most universal components employed in 

power transmission and distribution networks. Their complex structures mainly consist of 

electromagnetic circuits. They are operating in a linear region of their magnetic 

characteristic, drawing transformation of steady state sinusoidal voltages and currents. 

However, there are instances the operating linear region is breached when the transformer 

is subjected to the influence of an abnormal event. This incident could eventually lead to 

one of the low frequency transient events, a phenomenon known as ferroresonance. 

High peaky current will be drawn from the system once transformers are impinged upon by 

ferroresonance. In view of this, transformers are constrained in their performance by the 

magnetic flux limitations of the core. Core materials cannot support infinite magnetic flux 

densities:  they tend to “saturate” at a certain level, meaning that further increases in 

magnetic field force (m.m.f) do not result in proportional increases in magnetic field flux 

(Φ). In this regard, the transformer cores become nonlinear and they have to be modeled 

correctly to characterise saturation effect. Saturation effect introduces distortion of the 

excitation current when the cores are under the influence of nonlinearity.  

In modeling the nonlinear core of transformer, core saturation effect can be represented by 

either a single-value curve alone or with loss to account for major hysteresis curve. Both 

representations are studied to differentiate their variations in generating the excitation 

currents. In addition, the harmonic contents of the excitation currents operating along the 

core characteristic are also studied.   

Two mathematical approaches based on [35, 48, 49] are used to characteristic core 

saturation; they are the single-value curve (without loss) and the major hysteresis curve 

(with loss), and each of them is presented in the following section. 
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4.3.1 The Anhysteretic Curve  

The anhysteretic curve is the core characteristic without taking any loss into account and it 

is represented by the dotted curve labelled as ‘gob’ which is situated in the first and third 

quadrants of λ-i plane of Figure 4.2. The curve is also called the “true saturation part” or 

“single-value curve”, which gives the relationship between peak values of flux linkage (λ) 

and peak values of magnetising current (i). This curve is represented by a nonlinear 

inductance, Lm. 

 

Figure 4.2:  Hysteresis loop 

The curve is represented by a pth order polynomial which has the following form: 

 
 p

mi A Bλ λ= +      (4.1) 
 
where p = 1, 3, 5 . . . and the exponent p depends on the degree of saturation. 

The core characteristic of a 1000 MVA, 400 kV/275 kV/13 kV derived from equation (4.1) 

is shown in Figure 4.3, where p = 27. 
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Figure 4.3:  λ-i characteristic derived from im=Aλ+Bλp 

With a sinusoidal voltage e1 applied to the transformer, the flux linkage will be sinusoidal 

in nature and it is given as 

 ( )tsinm ωλλ =  (4.2) 

Substitute (4.2) into (4.1) and rearranging, the following is obtained: 

 ( ) ( )sin sin
p

m m mi A t B tλ ω λ ω= +        (4.3) 

With the exponent, p = 27, then the expansion of sin27(ωt) is carried out using Bromwich  

formula (4.4) [50] of, 
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Where sinx α=  

The outcome of the expansion reveals as the following:- 
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where the constants are found to be: 

b = 67108864; a1 = 20058300; a3 = 17383860; a5 = 13037895; a7 = 8436285; a9 = 4686825; 

a11 = 2220075; a13 = 888030; a15 = 296010; a17 = 80730; a19 = 17550; a21 = 2925; a23 = 351; 

a25 = 27; a27 = 1; 

Substituting (4.5) into (4.3) 

 ( )

1 3 5

7 9 11

13 15 17

19 21 23

25 27

sin( ) sin(3 ) sin(5 )

sin(7 ) sin(9 ) sin(11 )
1

'sin ' sin(13 ) sin(15 ) sin(17 )

sin(19 ) sin(21 ) sin(23 )

sin(25 ) sin(27 )

m

a t a t a t

a t a t a t

i A t B a t a t a t
b

a t a t a t

a t a t

ω ω ω
ω ω ω

ω ω ω ω
ω ω ω
ω ω

− + 
 − + − 
 = + + − +
 

− + − 
+ − 

 
 
 
 
 
 
 

  

 (4.6) 

Where ' mA Aλ= , 27' mB Bλ=   

Finally, the general equation of magnetising current in the time domain without the 

hysteresis effect is derived as, 

 

 

( ) ( )1 3 5 7 9

11 13 15 17

19 21 23 25 27

ˆ ˆ ˆ ˆ ˆsin sin 3 sin(5 ) sin(7 ) sin(9 )

ˆ ˆ ˆsin(11 ) sin(13 ) sin(15 ) sin(17 )

ˆ ˆ ˆ ˆ ˆsin(19 ) sin(21 ) sin(23 ) sin(25 ) sin(27 )

mi I t I t I t I t I t

I t I t I t a t

I t I t I t I t I t

ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω

= + + + +

+ + + +

+ + + + +

 
(4.7) 
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ˆ '
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27
ˆ a
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b
= −  

The magnetising current, im together with its harmonic contents up to 27th can be plotted 

using MATLAB. The magnetising currents, im operating along the core λ-i characteristic 

labeled as A, B, C, D and E of Figure 4.4 are studied.  
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Figure 4.4:  λ-i characteristic 

The magnetising currents operating at points A, B, C, D and E along the core characteristic 

of Figure 4.5 are depicted accordingly as shown in Figure 4.5 to Figure 4.9.  

 

 
 

 
Figure 4.5:  Generated current waveform at operating point A 
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Figure 4.6:  Generated current waveform at operating point B 

 

Figure 4.7:  Generated current waveform at operating point C 

 

Figure 4.8:  Generated current waveform at operating point D 
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Figure 4.9:  Generated current waveform at operating point E 

Operating point A lies in the linear region of the λ-i characteristic as shown in Figure 4.5. 

The magnetising current is expected to be in sinusoidal fashion. Core operating at this 

point has its magnetising current equal to the fundamental component with all other 

harmonics negligible in amplitudes.  

Operating point B is in the actual operating point i.e. near the knee point, the magnetising 

current is not sinusoidal but slightly distorted in shape because the amplitudes of the 3rd, 

5th and 7th harmonic contents are very small but are present in the magnetising current.   

Operating point C is slightly above the knee point. The magnetising current is not 

sinusoidal but peaky in shape as a result of introducing higher amplitudes of the harmonic 
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Operating point D is at the middle of the core characteristic. The current waveform 

becomes much more peaky in shape. The magnitudes of the harmonic contents increase 

further causing the relative reduction in the magnitude of fundamental current.   

Operating point E is in the deep saturation region of the λ-i characteristic, the 

magnetising current generated is high in magnitude and peaky in shape as a result of higher 
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4.3.2 Hysteresis Curve   

Based on the investigation from the preceding section, the magnetising branch can be 

represented by a non-linear inductance, Lm which is used to characterise the saturation 

effect without hysteresis effect.   

In order to represent saturation with hysteresis effect (i.e. hysteresis loop) in the core, a 

parameter called a loss function is introduced in Figure 4.10 by drawing a distance of ‘ae’ 

in the hysteresis loop. This corresponds to adding a resistor, RC connected in parallel with 

the nonlinear inductor, Lm. Base on [33], the loss function is given as, 

 

Figure 4.10:  Single-phase equivalent circuit with dynamic components 

 ( )f λɺ  where 
d

dt

λλ =ɺ        (4.8) 

Incorporating the loss function to the true saturation characteristic, the mathematical 

expression for the hysteresis loop is 

 ( )p
oi A B fλ λ λ= + + ɺ       (4.9) 

The loss function which represents the loss part is approximately determined by a qth even 

order polynomial and it is expressed as  

 ( )
q

d d
f C D
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λ λλ
  = +  
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The total no-load current is 

 

o m h

q
p

i i i

d d
A B C D

dt dt

λ λλ λ

= +

   = + + +       

      (4.11) 

where im is the magnetising current due to magnetic core inductance, and ih is the resistive  

current due to hysteresis loss. 

The flux linkage is expressed as ( )sinm tλ λ ω= , then ( )cosm

d
t

dt

λ λ ω ω=  and substituting 

into (4.11) then 

( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( )

1

1

sin sin cos cos

'sin 'sin 'cos 'cos

o m h

p q

m m m m

P q

i i i

A t B t C t D t

A t B t C t D t

λ ω λ ω λ ω ω λ ω ω

ω ω ω ω

+

+

= +

= + + +              

   = + + +   

 (4.12) 

where ' mA Aλ= , ' p
mB Bλ= , ' mC Cλ ω= , 1' ( )q

mD D λ ω +=   

The true saturation characteristic is approximated by 27th order polynomial and the loss 

part ( )f λɺ  is approximated by the qth order polynomial which will be determined by curve 

fitting using the power loss equation. The area of the hysteresis loop which determines the 

power loss per cycle is given as 

( )

( ) ( ) ( ){ } ( )
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C t d t D t d t

π

π

π

π π

ω
π

ω ω ω ω
π

ω ω ω
π

ω ω ω ω
π

+

+

+

 =  

 = +    

 = + 

 
= + 

 

∫

∫

∫

∫ ∫

 

 

 

(4.13) 

For the first term, since ( )2 1
cos cos 2 1

2
θ θ= +    and solving it yields, 

 

 



Chapter 4                                                    System Component Models for Ferroresonance 

- 101 - 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( )

2 2
2

0 0

2

0

2

'
: 'cos cos 2 1

2 2 2

' 1
sin 2

2 2 2

' 2

2 2

'

2

2

m m

m

m

m

m

V V C
First term C t d t t d t

V C
t t

V C

C V

CV

π π

π

ω ω ω ω
π π

ω ω
π

π
π

= +  

 = +  

=

=

=

∫ ∫

 

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )
( )( )

2 2
2 '

0 0

2
1

2
0

2

2

'
: 'cos cos
2 2

' 1 1
cos sin

2

' 1

2

1 3 5 ...
2

2 2 4 ...

q nm m

nm
n

m
n

q
m

V V D
Second term D t d t D t d t

V D n
t t I

n n

V D n
I

n

n n nDV

n n n

π π

π

ω ω ω ω
π π

ω ω
π

π

π
π

+

−
−

−

+

=

− = +  

− =   

 − − −
= × − − 

∫ ∫

 

                       where 2n q= + , ( ) ( )
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ω ω−
− = ∫  
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2

0
0

0

cos 2I t d t
π

ω ω π= =∫  

Finally, the general core loss is expressed as,  

( ) ( ) ( )( )( )
( ) ( )( ) ( )( )

2
2 1 1 3 5 7 ...

2 2 2 4 6 ...
qm

losses m

q q q q qCV
P DV

q q q q q
+  + − − − −

= +  + − − − 
 (4.14) 

To confirm the correctness of equation (4.14), an example is carried out by deriving the 

power equation without using equation (4.14). It is assumed that in a modern transformer, 

the true saturation characteristic is approximated by a fifth order polynomial and the loss 

part ( )f λɺ  approximation by the cubic order, i.e. p = 5 and q = 2. Then, 
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 (4.15) 

For the first term, since ( )2 1
cos cos 2 1

2
θ θ= +    and solving yields, 
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Finally, the core-loss is expressed as,  
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m m
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∫ ∫
 (4.16) 

 

The power-loss which has been derived in equation (4.16) is proved to be mathematically 

correct with the power loss equation (4.14) by using the previous assumptions of  p=5 and 

q=2 then  
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which is the same as equation (4.16) 
 

As can be seen from the power-loss equation, the core loss is dependent on the voltage 

across the transformer. C and D are constants that need to be obtained by curve fitting over 

the open-circuit test data of the transformer.  

 

Figure 4.11:  Power-loss data and curve fit curve 

Once all the constants have been determined, the next step is to develop a saturation 

characteristic with hysteresis effect (i.e. the hysteresis loop) based on equation (4.12). Then 
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 (4.17) 

where ' mA Aλ= , ' p
mB Bλ= , ' mC Cλ ω= , 1' ( )q

mD D λ ω +=  

Expanding the above equation using p = 27 and q = 2, 
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 (4.18) 

Rearranging in the fundamental of sin(ωt) and cos(ωt), and the third harmonics of sin(3ωt) 

and cos(3ωt) terms yields, 
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(4.19) 

Using MATLAB, the single-value with loss characteristic as shown in Figure 4.12 is 

determined using equation (4.19) and ( )sinm tλ λ ω= .     
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Figure 4.12:  Effect of introducing the loss function 

With the effect of the hysteresis, the currents operating at points as labeled similarly in the 

previous study i.e. A, B, C, D and E along the curve are plotted as shown in Figure 4.13 to 

Figure 4.17.  

 
Figure 4.13:  With loss function - current waveform at point A 
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Figure 4.14:  With loss function - current waveform at point B 

 

 

Figure 4.15:  With loss function - current waveform at point C  

 

 

Figure 4.16:  With loss function - current waveform at point D 
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Figure 4.17:  With loss function - current waveform at point E 

The current waveforms as shown in Figure 4.13 to Figure 4.17 suggest that there is an 

influence of the loss on the shape of the current waveform, particularly around the knee 

point region. A comparison between the anhysteretic and the hysteresis curves is taken in 

Figure 4.18 when the core is operating at point C. 

 

 

Figure 4.18:  Comparison between loss and without loss – around knee region 
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Figure 4.19:  Comparison between loss and without loss – deep saturation 

Figure 4.19 suggests that similar current amplitudes and shapes have been produced by 

both the cases with and without loss when the core is driven into deep saturation.  

In view of the above, it is therefore suggested that the participation of the loss in modeling 

the core is necessary as ferroresonance can induce the subharmonic modes which are 

believed to operate around the knee region of the core characteristic. However, for the 

generation of high peaky current such as the one in the fundamental mode (Period-1), the 

loss can be disregarded and the core can be represented by only a single-value nonlinear 

inductor.       

Now, let us look at the types of predefined transformer models which are offered in 

ATPDraw for the study of ferroresonance.  

4.3.3 Transformer Models for Ferroresonance Study 

   The characteristics of power transformers can be complex when they are subjected to 

transient phenomena because of their complicated structure which account for the 

variations of magnetic core behaviour and windings. In view of this, detailed modeling of 

power transformer to account for such factors is difficult to achieve therefore CIGRE WG 

33-02 [51] have come up with four groups of classifications aimed for providing the types 

of transformer model valid for a specific frequency range of transient phenomena. The 

classifications are shown in Table 4.2. 
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Table 4.2:  CIGRE modeling recommendation for power transformer  

Parameter/Effect Low Frequency 
Transients 

Slow Front 
Transients 

Fast Front 
Transients 

Very Fast 
Front 
Transients 

Short-circuit 
impedance Very important Very important Important Negligible 

Saturation Very important Very important(1) Negligible Negligible 

Iron Losses Important(2) Important Negligible Negligible 

Eddy Current Very important Important Negligible Negligible 

Capacitive 
coupling Negligible Important Very important Very important 

(1) Only for transformer energisation phenomena, otherwise important 
(2) Only for resonance phenomena 

As ferroresonance is having a frequency range varying from 0.1 Hz to 1 kHz [20] which 

falls under the category of low frequency transients, the parameters/effect which have been 

highlighted in Table 4.2 are necessary to be taken into account when modeling a power 

transformer for ferroresonance study.  

Two types of predefined transformer models in ATPDraw have been taken into 

consideration for ferroresonance. They are namely the BCTRAN+ and the HYBRID 

transformer models. The detailed representations of each of the models are explained in the 

following sections. 

4.3.3.1 BCTRAN+ Transformer Model  

BCTRAN transformer model [44, 52-56] can be found in the component selection menu of 

the Main window in ATPDraw. The derivation of the matrix is supported by the BCTRAN 

supporting routine in EMTP which required both the open- and short-circuit test data, at 

rated frequency. The routine supports transformers with two or three windings, configuring 

in either wye, delta or auto connection and as well as supporting all possible phase shifts.    

The formulation to describe a steady state single-phase multi-winding transformer is 

represented by a linear branch impedance matrix which has the following form, 
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1 11 12 1 1

2 21 22 2 2

1 2

. . .

. . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

N

N

N N N NN N

V Z Z Z I

V Z Z Z I

V Z Z Z I

     
     
     
     

=     
     
     
     
          

 

 
 

(4.20) 

For a three-phase transformer, the formulation can be extended by replacing any element 

of [Z] in equation (4.20) by a 3 × 3 submatrix of 

s m m

m s m

m m s

Z Z Z

Z Z Z

Z Z Z

 
 
 
  

 (4.21) 

where Zs = the self-impedance of a phase and Zm  is the mutual impedance among phases. 

For transient solution such as ferroresonance, equation (4.20) is represented by the 

following matrix equation,  

1 1
1 11 12 1 1 11 12 1 11 12 1 1

2 21 22 2 2 21 22 2 21 22 2 2

1 2 1 2 1 2

. . .

. . .

. . . . . . . . . . . . . . .

. . .

N N N

N N N

N N N NN N N N NN N N NN

i L L L v L L L R R R i

i L L L v L L L R R R id

dt

i L L L v L L L R R R

− −
         
         
         = +
         
         
                   Ni

 
 
 
 
 
  

 
(4.22) 

where [L] is the inductance matrix, [R] is the resistance matrix, [v] is a vector of terminal 

voltages, and [i] is the current vector. 

The complete transformer models for either 2- or 3-winding configuration employing 

BCTRAN, with an externally connected simplistic nonlinear inductive core element are 

shown in Figure 4.20 and Figure 4.21 respectively. This model is named BCTRAN+ 

transformer model. 

 

Figure 4.20:  BCTRAN+ model for 2 winding transformer 
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Figure 4.21:  BCTRAN+ model for 3-winding transformer 

The data from both the open- and short-circuited test are employed to calculate the model 

parameters. In order to employ the BCTRAN+ model to represent both the magnetic core 

saturation and losses, the core effects are omitted in the BCTRAN model and replaced by 

external nonlinear elements. This element is connected to the winding close to the 

magnetic core of the transformer. 

4.3.3.2 HYBRID Transformer Model  

[54, 57] described that the drawback of the BCTRAN+ model as not being able to include 

core nonlinearities to account for deep saturation. Since it can only be modeled externally, 

multi-limb topology effect on nonlinear core cannot be represented. In view of the 

limitation, a new transformer model known as HYBRID was then developed where its core 

representation is derived based on the principle of duality. 

 

The principle is based on the duality between magnetic and electrical circuits, which was 

originally developed by Cherry [58] in 1949. When making calculations on an electrical 

circuit especially involving both transformers and electric components, it is frequently 

desirable to remove the transformers and replaced them by electric components connected 

to their terminals. With the use of the Principle of Duality, the transformer magnetic circuit 

can be converted to its equivalent electric circuit, which is then used to model transformers 

in an electrical circuit.  

For the purpose of understanding, a three-phase, three-limbed core-type auto-transformer 

with its tertiary (T), common (C) and series (S) winding configurations as shown in Figure 
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4.22 is considered. The HV winding consists of series connection of the common and 

series windings while the LV winding is the common winding itself.  

 
Figure 4.22:  Three-phase three-limbed core-type auto-transformer 

The way the leakage fluxes are distributed are based on the assumption that not all of the 

fluxes stay in the core and a small amount will leak out into the airgap between the 

windings. The fluxes named as ΦR, ΦY, ΦB and the leakage fluxes marked as ΦLT, ΦTC, 

ΦCs are distributed in the main limbs and between the three windings respectively, as 

shown in Figure 4.22.  

 

The next stage is to derive the equivalent magnetic circuit [59] of the core representation 

which is shown in Figure 4.23 and then the graphical method of applying the Principle of 

Duality over the magnetic circuit is carried out.  
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Figure 4.23:  Equivalent magnetic circuit 

 

 

Figure 4.24:  Applying Principle of Duality 

In the interior of each mesh (loop) of Figure 4.24, a point is given namely a, b, c to l. These 

points will form the junction points of the new equivalent electric circuit. Each of these 

points to its neighbour only needs to be joined (see the dotted line). These points become 

the nodes of the electric circuit and the complete circuit is drawn as shown in Figure 4.25.  
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Figure 4.25:  Electrical equivalent of core and flux leakages model 

HYBRID model consists of the following four main sections which need to be determined 

in order for a complete transformer to be represented. They are the leakage inductance, the 

resistances, the capacitances and the core. 
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The leakages fluxes between the windings are represented by linear inductance as LCS, LTC 
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 (2) Resistances 

The ways the winding resistances are represented in the model are to be added externally at 

the terminals of the transformer. Moreover, the resistances can be optionally presented as 

frequency dependent which is derived from the Foster circuit. A Foster circuit [51, 59] is 

used to represent the resistance of the winding which varies with the frequency of the 

current, i.e. the change of resistance of the winding due to the skin effects. Skin effect is 

due to the non-uniformly distribution of current in the winding conductor; as frequency 

increases, more current flows near the surface of conductor which will increase its 

resistance. 

(3) Capacitances 

External and internal coupling capacitive effects of the transformer are taken into 

consideration in the HYBRID model, they include   

- Capacitances between windings:  primary-to-ground, secondary-to-ground, 

primary-to-secondary, tertiary-to-ground, secondary-to-tertiary and tertiary-to-

primary.  

- Capacitances between phases performed at primary, secondary and tertiary:  Red-

to-yellow phase, yellow-to-blue phase and blue-to-red phase. 

 (4) Core 

The core model is developed by fitting the measured excitation currents and losses. The 

user can specify 9 points on the magnetising characteristic to define the air-core for the 

transformer.  

There are three different sources of data that the HYBRID model can rely on, they are  

• Design parameters – Winding and core geometries and material properties.   

• Test report – Standard open- and short-circuited test data from the manufacturers.  

• Typical values - Typical values based on transformer ratings which can be found in 

text books. However, care needs to be taken since both design and material 

properties have changed a lot for the past decades. 
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The differences between the BCTRAN+ and the HYBRID models have been addressed in 

previous sections. Let us look at whether each of the representation is able to meet the 

criteria proposed by CIGRE as listed in Table 4.3 for the study of ferroresonance.  

   Table 4.3:  Comparison between BCTRAN+ and HYBRID models  
Parameter/Effect Low Frequency Transients BCTRAN+ HYBRID 

Short-circuit impedance Very important √√√√ √√√√ 

Saturation Very important √√√√ √√√√ 

Iron Losses Important(2) √√√√ √√√√ 

Eddy Current Very important √√√√ √√√√ 

Capacitive coupling Negligible √√√√ √√√√ 

(1) Short-Circuit Impedance  

The way the short-circuit impedance being modeled in both the BCTRAN+ and HYBRID 

models is based on the short-circuit test carried out on the transformer alone. These data 

are available from the test report produced by the manufacturer. The main aim of this test 

is to represent the resistance and inductance of the transformer windings.  

(2) Saturation 

Detailed analysis concerning the saturations of transformer has been covered in the 

previous section. The ways both the BCTRAN+ and HYBRID models deal with the 

saturation effect are explained in the following section. 

- BCTRAN+ model 

The way the core is being modeled in BCTRAN+ can be referred to Figure 4.26. This 

model is based on the open-circuit test data of 90%, 100% and 110% and then converted 

into λ-i characteristic using the supporting routine “SATURA” [44, 51]. The core is then 

represented by three non-linear inductors connected in delta which are connected 

externally at the tertiary terminals of the BCTRAN+ model.  
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Figure 4.26:  Modeling of core in BCTRAN+ 

The three points which have been converted into λ-i characteristic are not sufficient for the 

study of ferroresonance therefore deep saturation points to represent air-core is necessary 

such that peaky current can be drawn from the transformer. The way to determine the air-

core is by using the following equation, 

pi A Bλ λ= +  (4.23) 

- HYBRID model 

The core model is developed internally by fitting the 90%, 100% and 110% data from the 

open-circuit test result based on the following Frolich equation [59], 

H
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The flux-linkage versus current characteristics of the leg, yoke and outer leg using the 

following two equations [59] based on core cross-sectional area and core length can be 

determined, 

BANλ = and 
Hl

i
N

=   (4.25) 

where N is the number of turns of the inner winding, A is the cross section of the core, and 

l is the length of the core.  

The air-core point is determined internally via the selection of 9 points of the core 

characteristic.  

(3) Iron-losses 

In BCTRAN+, the core loss is represented by dynamic loss which is based on the 90%, 

100% and 110% open-circuited test data.  

On the other hand, the way the HYBRID represents the loss, Rc consists of the hysteresis 

loss, RH eddy current loss, RE and anomalous loss, RA. The loss is dynamic which is based 

on the 90%, 100% and 110% data. The loss representation [57] is shown in Figure 4.27. 

 

Figure 4.27:  Each limb of core  

(4) Eddy current  

Basically, iron-loss consists of hysteresis and eddy current losses therefore both 

BCTRAN+ and HYBRID model have taken eddy current loss into consideration.  
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4.4 Transmission Line 

Transmission lines are an important connection or link in power systems for delivering 

electrical energy. Electricity transmission is either by overhead lines or by underground 

cables. Overhead lines are of bare conductors made of aluminium with a steel core for 

strength. The bare conductors are supported on insulators made of porcelain or glass which 

are fixed to steel lattice towers. All steel lattice towers use suspension insulators. Three 

phase conductors comprise a single circuit of a three-phase system.  

On the other hand, some transient phenomena such as short-circuits (e.g. single-line to 

ground fault, two-phase-to-ground fault, three-phase to ground fault and line-to-line fault), 

and lightning impulse are originated in the line. Others are due to switching events in 

substations creating switching surges which propagates along the lines to other substations. 

The transmission line when subjected to these phenomena behaves differently because 

each transient event has its own frequency contents.  

4.4.1 Transmission Line Models in ATP-EMTP 

There are two classifications of line models [60] which have been readily employed in the 

ATPDraw and they are shown in Table 4.4.  

       Table 4.4:  Line models available in ATPDraw 
Time-domain models in ATP-EMTP 

Distributed-parameter model Line 
models Lump-parameter 

model Constant 
parameter 

Frequency- dependent 
parameter 

PI √√√√ - - 
Bergeron  - √√√√ - 
JMarti - - √√√√ 
Semlyen - - √√√√ 
Noda - - √√√√ 

Some applications and limitations of each of the model have are explained in the following 

sections.  
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4.4.1.1 Lump-Parameter Model  

The lumped-parameter model is represented by the PI circuit which is the simplest version 

to represent a transmission line. Basically, the PI circuit is based on the lumped-parameter 

configuration consisting of a series impedance and two shunt capacitive admittances [61, 

62]. Its representation is shown in Figure 4.28. 

 

Figure 4.28:  Transmission line represents by lumped PI circuit  

Transmission lines modeled by lumped parameters (PI) are sufficient for steady state  

power flow calculations or applications [46] because the values of the lumped elements are 

accurate around the fundamental frequency. 

In order to approximate the distributed character of a long transmission line, a number of 

sectionalised short PI sections is required, however, this results in longer computation time 

and less accuracy [63]. PI model is only suitable for transient studies when one needs to 

save the time so the simulation time step (∆t) can be greater than the travelling-wave time 

(τ) of the transmission line which needs to be modeled [63]. PI circuit is not generally the 

best model for transient studies because the distributed-parameter model based on 

travelling-wave solutions is faster and more accurate [44].  

4.4.1.2 Distributed-Parameter Model 

Transmission lines represented by distributed-parameter models are the most efficient and 

accurate because the calculations are based on travelling-wave theory. The parameters of a 

long transmission line are considered to be evenly distributed and they are not treated as 

lumped elements. Bergeron, J.Marti, Semlyen and Noda line models are all the 

representation in the distributed-parameter manner.  
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(1) The Constant-Parameter Model   

The first distributed-parameter line model employed in the ATP-EMTP is the constant-

parameter model which is known as the Bergeron model [64]. It is a constant frequency 

method, which is derived from the distributed LC parameter based on the traveling wave 

theory, with lumped resistance (losses) [44]. Initially, the line is modeled by assuming it is 

lossless with L and C elements taken into consideration. This is shown in Figure 4.29. 

 
 

Figure 4.29:  Distributed parameter of transmission line 

The observer leaves node m at time (t τ− ) must still be the same when arrives at node k at 

time t  and vice versa, then  

( ) ( ) ( ) ( ). .m c mk k c kmv t Z i t v t Z i tτ τ− + − = + −  (4.26) 

 

( ) ( ) ( ) ( ). .k c km m c mkv t Z i t v t Z i tτ τ− + − = + −  (4.27) 
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i t v t I t

Z
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Then finally the single-phase transmission line is modeled as shown in Figure 4.30. 
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Figure 4.30:  Lossless representation of transmission line  

In order to gain the usefulness of the travelling wave theory for transient studies, losses are 

then introduced into the lossless line by simply lumping resistance, R in three places along 

the line. This is carried out by firstly dividing the line into 2 sections and then placing R/4 

at both ends of each line [44]. The constant-parameter model (i.e. the Bergeron model) 

represented in time domain simulation is shown in Figure 4.31. 

The transmission line’s equations at the sending and receiving-ends are given by the 

following equations 
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Figure 4.31:  Bergeron transmission line model  
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in voltage and current at one end of the line will appear at the other end until a period τ has 

passed.  

Like the PI model, the Bergeron model is also a good choice for simulation studies around 

the fundamental frequency such as relay studies, load flow, etc. Moreover, it also provides 

better accuracy if the signal of interest is oscillated near the frequency to which the 

parameters are calculated and involving positive sequence conditions [63]. The 

impedances of the line at other frequencies are taken into consideration except that the 

losses do not change.  

However, this model is not adequate to represent a line for a wide range of frequencies that 

are contained in the response during transient conditions [65]. In addition to that, the 

lumped resistance is not suitable for high frequencies because it is not frequency-

dependent [67]. In addition to that, higher harmonic magnification is produced as a result 

of distorted waveshapes and exaggerated amplitudes [67].  

(2) The Frequency-Dependent Parameter Model 

Semlyen model was one of the first frequency-dependent line models and it is the oldest  

model employed in ATP-EMTP.   

The frequency-dependent model considered here is the Marti model. The line is treated as 

lossy which is represented by R, G, L and C elements of Figure 4.30. The frequency 

domain of the matrix equation of the two port network for a long transmission line is given 

as [44, 66]: 

      
( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )
( )

cosh sinh

1
sinh cosh

c
k m

km mk
c

l Z l
V V

l lI I
Z

γ ω γ
ω ω

γ γω ω
ω

 
    =     −     

 (4.28) 

 

where characteristic impedance, ( )c
Z

Z
Y

ω = , propagation constant, ( ) .Z Yγ ω = , series 

impedance, ( )Z R j Lω ω= + , and shunt admittance, ( )Y G j Cω ω= + . 

By subtracting ( )cZ ω  multiplies the second row from the first row of equation (4.28), then 

                  ( ) ( ) ( ) ( ) ( ) ( ). . . l
k c km m c mkV Z I V Z I e γω ω ω ω ω ω −− = +    
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ). . .k c km m c mkV Z I V Z I Aω ω ω ω ω ω ω− = +    (4.29) 

                 ( ) ( )
( )

( )
( ) ( ) ( ).k m

km mk
c c

V V
I I A

Z Z

ω ω
ω ω ω

ω ω
 

= − + 
 

 

Similarly for end line at node m , 

                 ( ) ( ) ( ) ( ) ( ) ( ). . . l
m c mk k c kmV Z I V Z I e γω ω ω ω ω ω −− = +    

 ( ) ( ) ( ) ( ) ( ) ( ) ( ). . .m c mk k c kmV Z I V Z I Aω ω ω ω ω ω ω− = +    (4.30) 
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Z Z
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ω ω
 

= − + 
 

 

 

              where ( ) ( ) .j ll l j lA e e e eα βγ α βω − +− − −= = =  

Equation (4.29) and (4.30) are very similar to Bergeron’s method where the expression 

[ ]V ZI+  is encountered when leaving node m, after having been multiplied with a 

propagation factor of ( ) lA e γω −= , and this is also applied for node k. This is very similar 

to Bergeron’s equation for the distortionless line, except that the factor of le γ−  is added 

into equation (4.18) and (4.19). These equations are in the frequency domain rather than in 

the time domain as in Bergeron method. The frequency domain of transmission line model 

is shown in Figure 4.32. 

 
 

Figure 4.32:  Frequency dependent transmission line model  
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where ( ) ( )
( ) ( ) ( )' .m

k mk
c

V
I I A

Z

ω
ω ω ω
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= + 
 

, ( ) ( )
( ) ( ) ( )' .k

m km
c

V
I I A

Z

ω
ω ω ω

ω
 

= + 
 

,  

          ( ) lA e γω −=  

Since time domain solutions are required in the EMTP simulation, therefore the frequency 

domain of Equation (4.31) and (4.32) are then converted into the time domain by using the 

convolution integral. 

Let, 

    ( ) ( ) ( ) ( ).k k c kmB V Z Iω ω ω ω= − , ( ) ( ) ( ) ( ).m m c mkB V Z Iω ω ω ω= −  

    ( ) ( ) ( ) ( ).m m c mkF V Z Iω ω ω ω= + , ( ) ( ) ( ) ( ).k k c kmF V Z Iω ω ω ω= +  

Equation (4.31) and (4.32) become 

 ( ) ( ) ( ).k mB F Aω ω ω=  (4.33) 

 ( ) ( ) ( ).m kB F Aω ω ω=  (4.34) 

Applying convolution integral to equation (4.33) and (4.34) then,  

( ) ( ).mF Aω ω  ⇔⇔⇔⇔ ( ) ( ) ( )
t

m mf a t f t u a u du
τ

⊗ = −∫  

( ) ( ).kF Aω ω  ⇔⇔⇔⇔ ( ) ( ) ( )
t

k kf a t f t u a u du
τ

⊗ = −∫  

However, the above method involves lengthy process of evaluating the convolution 

integral therefore an alternative approximate approach i.e. a rational function suggested by 

Marti [66] is best to approximate ( ) lA e γω −=  which has the following term, 

 ( ) ( ) 1 2

1 2

. . .s l sm
approx

m

kk k
A s e e

s p s p s p
γ τ− − 

= = + + + + + + 
 (4.35) 

Then in time-domain form as  

     ( ) ( ) ( ) ( )1 min 2 min min

1 2 . . . mp t p t p t
approx mA t k e k e k eτ τ τ− − − − − −= + + +   for mint τ≥  

                 
   0=     for mint τ≤  
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Similar method is also applied to the characteristic impedance ( )cZ ω as shown in Figure 

4.33. Foster-I R-C network representation was employed to account for frequency-

dependence of the characteristic impedance.  

 
 

Figure 4.33:  Frequency dependent transmission line model  

Using the rational function, the characteristic impedance ( )cZ ω is approximated as  

( ) 1 2
0

1 2

. . . n
c approx

n

kk k
Z s k

s p s p s p− = + + + +
+ + +

  which corresponds to the  

R-C network of Figure 4.33, with  

  0 0R k= , i
i

i

k
R

p
=  and 

1
i

i

C
k

= , 1,2, . . .i n=   

This line is accurate to model over a wide range of frequencies from d.c (0 Hz) up to 1 

MHz [65]. However, this model has the similar step size constraint as the Bergeron model.  

4.4.2 Literature Review of Transmission Line Model for Ferroresonance 

There are a number of literatures in which transmission line models are used for 

ferroresonance studies, some of which are described briefly as follows: 

[7] explained that a catastrophic failure of riser pole arrestor occurred when switching 

operation of disconnector in a 12 kV distribution feeder connected to a station service 
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transformer has been carried out. The simulation study is modeled using ATP-EMTP. For 

the component modeling, the overhead line has been modeled as PI model.  

[68] mentioned that ferroresonance occurred when a no-load transformer was energised by 

adjacent live line via capacitive coupling of the double-circuit transmission line. In the 

simulation model, the transposed transmission line has been modeled by using a frequency 

dependent line model.  

[24] described that a blackout event has occurred at their nuclear power station because of 

ferroresonant overvoltages being induced into the system. The aim of building a simulation 

model of the affected system is to determine if the simulation results matched with the 

actual recording results such that the root cause of the problem can be investigated. The 

transmission line was modeled by connecting several identical PI divisions to represent an 

approximate model of distributed parameter line.   

[5] explained the modeling work which has been performed to validate the actual 

ferroresonance field measurements. The transmission line involved in the system is a 

double-circuit with un-transposed configuration. The type of line modeled in ATP-EMTP 

has been based on a Bergeron model.  

Paper on ‘Modeling and Analysis Guidelines for Slow Transients-Part III:  The Study of 

Ferroresonance’ [69] quoted that either the distributed line or the cascaded PI model for 

long line can be employed for ferroresonance study.   

There is no specific type of line model which has been proposed or suggested for 

ferroresonance study after surveying some of the literatures. Therefore assessment 

procedure has been developed to evaluate the type of line model that is suitable for 

ferroresonance study. 

4.4.3 Handling of Simulation Time, ∆∆∆∆t 

It is important to choose the correct simulation time step before a simulation case study is 

carried out in ATPDraw to avoid simulation errors. Therefore, the main aim of this section 

is to aid users to handle the simulation time-step i.e. ∆t when either the lumped- or the 

distributed-parameter transmission lines is chosen for ferroresonance study. A flowchart as 

shown in Figure 4.34 has been setup for this purpose. 
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Figure 4.34:  Flowchart for transmission line general rule 

STEP 1:   

Before any simulation is carried out, it is important to firstly identify the frequency range 

of interest. In the case of ferroresonance, a frequency range from 0.1 Hz to 1 kHz which 

falls under the category of the Low Frequency Oscillation is suitable. Therefore fmax. = 1 

kHz 

STEP 2:   

Secondly, it is important to select an appropriate time step (∆t) for generating good and 

accurate results. As a general rule, the simulation time step is, 
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 100t∆ ≤ µs 
         

If a lumped-parameter such as the PI model is used then ∆t = 100 µs is sufficient for the 

simulation.  

STEP 3:   

However, if a distributed-parameter is employed, a check of the following is necessary. 

 

 

 

Next, the travelling time, τ along the line needs to be determined. The travelling time is 

given as  

Travelling time, 
l

c
τ =  (s)   

where l  = the line length (m) and c= the speed of light, 83 10×  m/s  

In our case study for the Brinsworth system, the transmission line length is 37 km then the 

travelling time, τ is calculated as 123 µs which is greater than 100t∆ ≤  µs. Then the next 

test is to check whether it lies within the 10 and 10000 range and this is presented in the 

following table.     

 

 

Is 
∆t < travelling time, 

τ? 

No 

Yes 

Stop 

Is   
10 ≤ (τ/∆t) ≤ 10000 

? 

No 

Yes 

÷÷÷÷ N  
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Simulation 
time step, 

t∆  (s) 

Propagation 
time, τ (s) Is τ > t∆ ? Ratio of 

t

τ
∆

 

 
Is   

10 ≤ (τ/∆t) ≤ 10000 ? 
  

100 µs Yes 1 Not Acceptable 
10 µs Yes 12.33 Acceptable 
1 µs 

123 µs 
Yes 123.33 Acceptable 

A change in the voltage and current at one end of the transmission line will not appear at 

the other end if ∆t is greater than τ. Therefore, simulation time-step of either 10 µs or 1 µs 

can be preferred 

4.4 Summary 

In this chapter, the technical aspects of the component models suitable for the study of 

ferroresonance have been discussed. One of the most important aspects of modeling power 

system components for ferroresonance is to identify the frequency range of interest so that 

the parameters are being modeled correctly. Three components which are involved in 

ferroresonance are circuit breakers, transformers and  transmission lines. The criteria in 

modeling each of the components are explained as follows: 

- Circuit breaker 

As the occurrence of ferroresonance is mainly due to switching events this component has 

therefore to be considered. Opening/closing of circuit breakers involved transients, i.e. a 

change of energy takes place and then transient voltages and currents are distributed into a 

system. The way the circuit breaker is modeled for ferroresonance can be based on the 

simplistic representation without taking into account of high current interruption, current 

chopping, restrike characteristic. The reason is that ferroresonance involves only low 

frequency and low current transients. 

- Power transformer        

The parameters such as the saturation effect, the short-circuit impedance, the iron-loss and 

the eddy current have to be taken into consideration so that the simulation model can 

correctly represent the low frequency transients. Two predefined transformer models, the 

BCTRAN+ and the HYBRID have been looked into to see whether they are capable for 

ferroresonance study. The review suggests that both models are able to feature the criteria 
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(parameter/effect) for low frequency transients, hence for ferroresonance. In addition 

BCTRAN+ and HYBRID models are valid for up to 2 kHz and 5 kHz respectively. The 

only difference between the two is the way in which the core is taken into consideration.  

- Transmission line        

Again, frequency range of interest needs to be determined so that a proper predefined 

model can be used. The three predefined models, the PI, Bergeron and the Marti are 

considered to be adequate for modeling ferroresonance. For a short-line up to less than 50 

km, a PI model is considered to be adequate for ferroresonance. Bergeron model is a 

constant frequency method, based on traveling wave theory, and can also be used for 

ferroresonance study. On the other hand, transmission line represented by the J. Marti 

model can also be used for ferroresonance study because the parameters of the line are 

frequency-dependent which can cover up to 1 MHz. 
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CHAPTER 5 CHAPTER 5 CHAPTER 5 CHAPTER 5     

555...   MMM OOODDDEEELLL III NNNGGG   OOOFFF   444000000   KKK VVV   TTTHHHOOORRRPPPEEE---   
MMM AAARRRSSSHHH///BBBRRRIII NNNSSSWWWOOORRRTTTHHH   SSSYYYSSSTTTEEEMMM    

   

5.1 Introduction 

In chapter 4, the technical aspects of transformer saturation have been explained. The 

predefined transformer models in ATPDraw which meet the criteria i.e. the 

parameters/effects for the study of low frequency transients proposed by CIGRE have been 

identified. In addition, the differences between the BCTARN+ and the HYBRID models 

have also been discussed in terms of the way how the core characteristic has been modeled.  

On the other hand, different types of predefined transmission line models such as the PI, 

Bergeron and Marti models have also been introduced. The suitability of each of the model 

for ferroresonance study is also highlighted.  

 As much attention has been given to the predefined models as mentioned above, this 

chapter is allocated with the following aims:  

(1) To model the 400 kV Thorpe-Marsh/Brinsworh transmission system, 

(2) To validate the transmission line models and power transformers models. 

(3) To determine the best possible power system component models, particularly the 

power transformer and the transmission line models available in ATPDraw that can 

be used to accurately represent a power system for the study of ferroresonance.  

5.2 Description of the Transmission System 

The overall circuit configuration of Thorpe-Marsh/Brinsworth 400 kV system [29] is 

shown in Figure 5.1 where ferroresonance tests have been carried out. The circuit consists 

of mesh corner substation, a 37 km double-circuit transmission line, Point-on-wave (POW) 

circuit breaker (X420), two power transformers (SGT1 and SGT2), 170 m cable and load. 



Chapter 5                                       Modeling of 400 kV Thorpe-Marsh/Brinsworth System 

- 134 - 

 
 

Figure 5.1:  Thorpe-Marsh/Brinsworth system  

Prior to the test, disconnector (X303) was open, and Mesh corner 3 was restored to service 

at the Thorpe Marsh 400 kV substation. At the Brinsworth 275 kV substation, circuit 

breaker (T10) was also open. Moreover, all other disconnectors and circuit breaker (X420) 

are in service. When testing, the initiation of ferroresonance may occur as a result of 

opening circuit breaker X420 (Point-on-wave switch).  

There have been two types of ferroresonance modes exhibited at the 400 kV side of  

transformer (SGT1) following the switching events. There are the sustained fundamental 

frequency ferroresonance and the 16.67 Hz subharmonic ferroresonance. The 3-phase 

voltages and currents for both the cases are depicted as shown in Figure 5.2 and Figure 5.3 

respectively. 

The 3-phase ferroresonance voltage and current waveforms of Figure 5.2 have a frequency 

of 162/3 Hz. The recorded field test voltages and currents impinged upon the 400 kV side of 

the transformer were found to be having peak voltages of approximately +100 kV and -50 

kV for R-phase voltage, +100 kV and -100 kV for Y-phase voltage, and +50 kV and -50 

kV for B-phase voltage.  On the other hand the peak currents are:  +50 A and -50 A for R-

phase, +50 A and -45 A for Y-phase, and +45 A and -45 A for B-phase. It has been 

reported that the implication of the initiation of the subharmonic mode ferroresonance has 

caused the affected transformer to generate a distinct grumbling noise, which can be heard 

by all the staff on site [29].  
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Field test recording of Period-3 ferroresonance 

 (1) 3-phase voltage waveforms 
 

 
 
 (2) 3-phase current waveforms 
 

 
 

Figure 5.2:  Period-3 ferroresonance 

On the other hand, the sustained fundamental frequency ferroresonance induced into the 

system exhibits the voltage and current waveforms as shown in Figure 5.3. 
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Field test recording of Period-1 ferroresonance  

(1) 3-phase voltage waveforms 
 

 
 
(2) 3-phase current waveforms 
 

 
 

Figure 5.3:  Period-1 ferroresonance    

The peak voltage and peak current magnitudes recorded from the field test were depicted 

in Figure 5.3:  ±200 kV for the R-phase voltage, ±300 kV for the Y-phase voltage and 

±180 kV for the B-phase voltage. The 3-phase currents are ±200 A. The consequence of 

such phenomenon has resulted the affected transformer to generate a much louder 
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grumbling sound which can be heard by the staff on site a distance of 50 m away from the 

transformer. In addition, the ferroresonance detection protection which was installed at the 

Brinsworth substation has not functioned correctly.          

5.3 Identification of the Origin of Ferroresonance Phenomenon 

The cause of the onset of ferroresonance is the switching event that circuit breaker (X420) 

is opened. It is evident that this phenomenon occurs when Circuit 1 is energised by the 

adjacent live line (Circuit 2) via the transmission line’s coupling capacitance as a result of 

opening circuit breaker (X420). The initiation of ferroresonance path is indicated by the 

dotted line of Figure 5.4 where the power transformer (SGT1) is interacted with the 

transmission line’s coupling capacitor when supplied by the 400 kV mesh corner source.      

Network 1 shows in Figure 5.4 acts as the voltage source, however, Network 2 is 

considered to be the key circuit because of its components being interacted with each other 

exhibiting ferroresonance phenomenon following the point-on-wave opening of the circuit 

breaker (X420).  

 

 
 

Figure 5.4:  Thorpe-Marsh/Brinsworth system  

5.4 Modeling of the Transmission System 

With Network 1 acting as a voltage source, the circuit of Figure 5.4 can therefore be 

deduced into a more simplified circuit as depicted in Figure 5.5.  
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Figure 5.5:  Modeling of (a) source impedance (b) load 

In order to represent a strong system at the 400 kV substation at Thorpe Marsh, an infinite 

bus with an assumed fault level of 20 GVA is used. The load connected at the Brinsworth 

275 kV side is assumed to draw 30% of 1000 MVA rating, at 80% of power factor. In 

addition, the stray capacitance to ground of the busbar at both the 400 kV substation is also 

taken into consideration and its value was estimated at around 10 pF/m [12]. The 

representation of the equivalent source is presented as shown in Figure 5.5. 

5.4.1 Modeling of the Circuit Breakers 

Detailed time-controlled switch models employed in ATPDraw have been highlighted in 

Chapter 4. In addition, the reasons why a simplistic model can be used for ferroresonance 
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study is also explained. The time-controlled switch with no current margin is used 

throughout this study. 

5.4.1.1 Opening of Circuit Breaker at Six Current Zero Crossing  

For a single-phase switch, the current interruption takes place twice within a cycle of 

sinusoidal signal. However, for three-phase currents the interruptions can occur six times 

within a cycle as indicated in the dotted line frame of Figure 5.6.  

 

Figure 5.6:  Six current zero crossing within a cycle 

Figure 5.6 shows that there are six zones of pre-zero current crossing within a cycle of the 

3-phase currents. If the switch is commanded to open within zone, Z11, the contact of 

phase yellow will open first, followed by phase red and finally phase blue. The complete 

sequence of opening the contact corresponding to each zone within the first cycle is shown 

in   Table 5.1.  

    Table 5.1:  Sequence of circuit breaker opening in each phase 
Sequence of contact opening at   Circuit Breaker 

operations Red phase  Yellow phase Blue phase 
Z11 Second opening First opening Third opening 
Z12 First opening Third opening Second opening 
Z13 Third opening Second opening First opening 
Z14 Second opening First opening Third opening 
Z15 First opening Third opening Second opening F

irs
t c

yc
le

 

Z16 Third opening Second opening First opening 

In the simulation, the circuit breaker is commanded to open within each zone as indicated 

in Figure 5.6. The time of opening the circuit breaker in each zone within the respective 

cycle are shown in Table 5.2. For example, if the circuit breaker is commanded to open at 
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2.0153 s at zone Z11 within the 1st cycle, the circuit breaker will not open instantly, instead 

it waits until the first current zero crossing takes place which occurs at phase yellow, 

follows by current interruptions at red and blue phases.    

Table 5.2:  Switching time to command the circuit breaker to open 
1st cycle 

 Z11 Z12 Z13 Z14 Z15 Z16 
Time to command 
CB to open 

2.0153 s 2.0181 s 2.0219 s 2.0254 s 2.0283 s 2.0319 s 

2nd cycle 
 Z21 Z22 Z23 Z24 Z25 Z26 
Time to command 
CB to open 

2.0353 s 2.0381 s 2.0419 s 2.0454 s 2.0483 s 2.0519 s 

3rd cycle 
 Z31 Z32 Z33 Z34 Z35 Z36 
Time to command 
CB to open 

2.0553 s 2.0581 s 2.0619 s 2.0654 s 2.0683 s 2.0719 s 

 
Occasionally, the simulations to reproduce the expected waveforms cannot be extended for 

more than three cycles due to the fact that the initial three-phase currents and voltages at 

the point of current interruption of each phase are not repetitive from one cycle to another 

cycle which can be seen in Table 5.3. Although the differences of the initial conditions are 

small, they determine the initial stored energy in the capacitive and inductive components 

of the ferroresonant circuit, therefore affect the transient ferroresonant voltages and 

currents. As we have known, the transient ferroresonance can develop into sustained 

ferroresonance sometimes and also can decay down into zero.  

Table 5.3:  Sequence of circuit breaker opening in each phase 
1st Cycle 

Current  
Z11 Z12 Z13 Z14 Z15 Z16 

Red 
phase 

34.083 A 
(1.6143E5 V) 

Interrupted at 
2.0198 s 

(3.2033E5 V) 

-39.647 A 
(1.2435E5 V) 

-33 929 A 
(-1.6318E5 V) 

Interrupted at 
2.0298 s 

(-3.2041E5 V) 

39.682 A 
(-1.2342E5 V) 

Yellow 
phase 

Interrupted at 
2.0167 s 

(-3.2194E5 V) 

41.222 A 
(-1.8287E5 V) 

40.362 A 
(1.9468E5 V) 

Interrupted at 
2.0268 s 

(3.2193E5 V) 

-41.301 A 
(1.8204E5 V) 

-40.253 A 
(-1.9548E5 V) 

Blue 
phase 

-36.731 A 
(1.6137E5 V) 

-42.151 A 
(-1.373E5 V) 

Interrupted at 
2.0238 s 

(-3.1986E5 V) 

36.912 A 
(-1.5961E5 V) 

42.092 A 
(1.3821E5 V) 

Interrupted at 
2.0338 s 

3.1974E5 V) 

2nd Cycle 
Current  

Z21 Z22 Z23 Z24 Z25 Z26 
Red 

phase 
34.602 A 

(1.5528E5 V) 

Interrupted at 
2.0398 s 

(3.2056E5 V) 

-39.718 A 
(1.2249E5 V) 

-33.696 A 
(-1.6578E5 V) 

Interrupted at 
2.0498 s 

(-3.2063E5 V) 

39.807 A 
(-1.2062E5 V 

Yellow 
phase 

Interrupted at 
2.0367 s 

(-3.2188E5 V) 

41.518 A 
(-1.8036E5 V) 

40.139 A 
(1.9628E5 V) 

Interrupted at 
2.0468 s 

(3.2189E5 V) 

-41.599 A 
(1.7953E5 V) 

-39.976 A 
(-1.9788E5 V) 

Blue 
phase 

-36.157 A 
(1.6746E5) 

-42.021 A 
(-1.4004E5 V) 

Interrupted at 
2.0438 s 

(-3.1961E5 V) 

37.147 A 
(-1.5697E5 V) 

41.967 A 
(1.4095E5 V) 

Interrupted at 
2.0538 s 

(3.1934E5 V) 

                                                                   
                                                             Continue… 
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3rd Cycle 

Current  
Z31 Z32 Z33 Z34 Z35 Z36 

Red 
phase 

34.383 A 
(1.5793E5 V) 

Interrupted at 
2.0598 s 

(3.1998E5 V) 

-39.433 A 
(1.2899E5 V) 

-33.473 A 
(-1.6836E5 V) 

Interrupted at 
2.0698 s 

(-3.1008E5 V) 

39.526 A 
(-1.2714E5 V) 

Yellow 
phase 

Interrupted at 
2.0567 s 

(-3.2193E5 V) 

40.884 A 
(-1.8618E5 V) 

40.801 A 
(1.9062E5 V) 

Interrupted at 
2.0668 s 

(3.2182E5 V) 

-40.97 A 
(1.8536E5 V) 

-40.639 A 
(-1.9225E5 V) 

Blue 
phase 

-36.416 A 
(1.6486E5 V) 

-42.36 A 
(-1.3362E5 V) 

Interrupted at 
2.0638 s 

(-3.2044E5 V) 

37.363 A 
(-1.5431E5 V) 

42.31 A 
(1.3454E5 V) 

Interrupted at 
2.0738 s 

(3.2022E5 V) 

5.4.2 Modeling of 170 m Cable  

The cables which are connected at the 275 kV side of both the SGT1 and SGT4 

transformers are 170 m in length and they can be modeled simplistically as a passive 

capacitor. The values of the capacitance can be determined by referring to the technical 

cable book [70] as:  275 kV cable:  C = 0.04352 µF. 

5.4.3 Modeling of the Double-Circuit Transmission Line 

The tower design of the line [47] connected between the Thorpe-Marsh and Brinsworth 

substations is shown in Figure 5.7. Other conductor parameters can be referred to 

Appendix A.  

 

 
 

Figure 5.7:  Physical dimensions of the transmission line  

Earth 

Ground surface 

12.16 m 

18.25 m 

24.34 m 

30.88 m 

R1 R2 

4.03 m 4.03 m 

Y1 Y2 
4.26 m 4.26 m 

B1 
B2 

4.57 m 4.57 m 

50 cm 

Circuit 1  Circuit 2  Radius of conductors: 
Earth conductor = 9.765 mm  
Phase conductor = 18.63 mm  
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The line is modeled in ATPDraw using the integrated LCC object according to the 

available physical dimensions and parameters.  

Since the main aim of this chapter is to determine the best possible model for 

ferroresonance study, therefore, three different types of approaches are put into test to 

determine their suitability for the purpose.  

5.4.3.1 Lumped Parameter Model 

Detailed description about the lumped parameter, particularly the PI model has been 

highlighted in the previous chapter. The double-circuit transmission line is modeled in this 

representation and the next stage of verifying and checking is shown in Appendix B.  

5.4.3.2 Distributed Parameter 

Other than the line being modeled in lumped representation, two alternative approaches 

based on distributed parameter are also considered with an aim to determine the best 

possible model, the Bergeron and J. Marti models. The detailed of each of them have been 

explained in the previous chapter.  

5.4.4 Modeling of Transformers SGT1 and SGT4 

Two power transformers are involved in the transmission system but only SGT1 is affected 

by ferroresonance therefore it is modeled by using both BCTRAN+ and HYBRID models 

with an aim to determine the best possible model. On the other hand, SGT4 is not affected 

by ferroresonance therefore it is only modeled as a steady-state characteristic using 

BCTRAN. The open- and short-circuit test data obtained from the  test report supplying by 

the manufacturers [71] are shown in Table 5.4. The electrical specification of the SGT1 

transformer is 1000 MVA, 400/275/13 kV, Vector:  YNa0d11 (5 legs). Zero-sequence data 

are not available. 
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Table 5.4:  No-load loss data and load-loss data  
NO-LOAD LOSS on TERT. (60 MVA)  LOAD-LOSS on HV 

VOLTS  kWATTS 

% MEAN  R.M.S 
AMPS kWatts  VOLTS IMP AMPS At 20oC Corrected 

to 75oC 
   5.25  HV/LV @1000 MVA 

90 11700 11810 6.00  67127 16.78% 1444 1213.10 1383 
   7.28 

96.30 

  
   12.30  HV/TERT @ 60 MVA  

100 13000 13217 12.40  29141 7.29% 86.60 62.30 71.90 
   14.75 

127.90 
  

   55.20  LV/TERT @ 60 MVA  
110 14300 14903 54.30  16407 5.97% 126 66.10 77.30 

   56.80 
175.30 

  

The per-unit quantities which are required by both the BCTARN and HYBRID models are 

calculated as follows: 

(1) No-load calculation:   

 

90%:               
( )5.25 6 7.28

6.18
3exI

+ +
= = A (line current) 

3

6

3 11.81 10
( ) 6.18 100 0.01%

1000 10exI pu
× ×= × × =

×
 @1000 MVA 

 

100%:            
( )12.3 12.4 14.75

13.15
3exI

+ +
= = A (line current) 

3

6

3 13.22 10
( ) 13.15 100 0.03%

1000 10exI pu
× ×= × × =

×
  @ 1000 MVA 

 

110%:            
( )55.2 54.3 56.8

55.43
3exI

+ +
= = A (line current) 

3

6

3 14.90 10
55.43 100 0.14%

1000 10
IEXPOS

× ×= × × =
×

 @ 1000 MVA 

(2) Load loss calculation:   

( )
6

23

67127 1000 10
100 16.77%

3 1444 400 10
HV LVZ −

×= × =
× ×

@ 1000 MVA 

 

( )
6

23

29141 60 10
100 7.29%

3 86.6 400 10
HV TVZ −

×= × =
× ×

@ 60 MVA 
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( )
6

23

16407 60 10
100 5.97%

3 126 275 10
LV TVZ −

×= × =
× ×

@ 60 MVA 

Once all the data are entered into predefined models, they are then checked on whether 

they are able to reproduce the expected data. The open- and short-circuit simulation tests 

are performed on the model and the results are tabulated as shown in Table 5.5 and Table 

5.6.  

 Table 5.5:  Comparison of open-circuit test results between measured and BCTRAN and 
HYBRID models 

Measured BCTRAN HYBRID 
Vrms [kV] 

Irms [A]  P [kW]  Irms [A] P [kW] Irms [A]  P [kW] 
11.7 (90%) 6.180 96.30 6.15 100.21 6.35 99.40 

13 (100%) 13.15 127.90 11.77 123.68 10.36 124.12 

14.3 (110%) 55.43 175.30 46.41 149.50 58.83 151.30 
 
Table 5.6:  Comparison of load loss test results between measured and BCTRAN+ and 
HYBRID models 

Measured BCTRAN HYBRID 
Vrms [V] 

Irms [A]  P [kW]  Irms [A] P [kW] Irms [A]  P [kW] 
 

HV/LV @1000 MVA 
67127 1444 1383 1444.40 1443.50 1443.50 1383.30 

HV/TERT @ 60 MVA 
29141 86.6 71.90 86.55 72.50 86.55 71.84 

LV/TERT @ 60 MVA 
16407 126 77.30 125.89 77.66 125.89 77.23 

The results show that the data reproduced from the open- and short-circuited tests using 

both the BCTRAN and HYBRID models are generally in good agreement with the test 

reports although magnetizing current at 100% and iron loss at 110% for open-circuit tests 

are lower than the test results. This suggests that the predefined transformer models have 

been reasonably set up.  

Much attention has been allocated in this chapter aiming to determine the best possible 

power system component models available in ATPDraw that can be used to accurately 

represent a power system for the study of ferroresonance. The way the developed 

simulation model is recognised as the best possible model is by comparing the simulation 

results produced from all the listed combination in Table 5.7 with the field recording 
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waveforms. Particularly, comparisons have to be made for the three-phase sustained 

ferroresonant voltages and currents.  

        Table 5.7:  Combination of power transformer and transmission line models 
 Power Transformer model Transmission line model 
Case Study 1 BCTRAN+ PI 
Case Study 2 BCTRAN+ Bergeron 
Case Study 3 BCTRAN+ Marti 
   

Case Study 4 HYBRID PI  
Case Study 5 HYBRID Bergeron 
Case Study 6 HYBRID Marti 

 

5.5 Simulation of the Transmission System 

5.5.1 Case Study 1:  Transformer - BCTRAN+, Line - PI 

In this section, BCTRAN+ and PI models are employed to model the SGT1 power 

transformer and the 37 km double-circuit transmission line. The BCTRAN+ model 

required the core characteristic to be modeled as nonlinear inductor externally connected at 

the tertiary winding in a delta configuration. Externally delta-connected core characteristic 

employed by the BCTRAN+ model required the use of three nonlinear inductors, based on 

the 90%, 100% and 110% open circuit test data. These data are then converted into flux-

linkage, λ versus current, i characteristic using SATURA supporting routine [44] which is 

available in Appendix C.       

The three-point data for the SGT1 transformer indicated as real data are shown in Figure 

5.8 with the various converted core curves. However, this core representation which 

accounts for the saturation effect is not sufficient for the reproduction of the ferroresonant 

currents under the tests. The air-core (fully saturated) inductance is needed by curve fitting 

through the three points and extrapolating by using the nth order polynomial which has the 

following equation, 

 n
mi A Bλ λ= +      (5.1) 

where n = 1, 3, 5 . . . and the exponent n depends on the degree of saturation. 

With equation (5.1), a sensitivity study has been carried out by assessing the degrees of 

saturation from n=13 up to 27 in order to determine the best possible core characteristic. 
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The outcome from the evaluation suggests that the degree of saturation with n=27 is the 

best representation to be employed as the core characteristic for the BCTRAN+ 

transformer model. All the degrees of saturation are depicted in Figure 5.8.      

 

Figure 5.8:  Magnetising characteristic 

The simulation results employing this model are shown in Figure 5.9 to Figure 5.20. Note 

that the sustained ferroresonant waveforms obtained from the simulation are determined at 

a time after both the steady-state and transient parts have passed.    

3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 
 

Figure 5.9:  Period-1 voltage waveforms – Red phase 
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Figure 5.10:  Period-1 voltage waveforms – Yellow phase 
 

 
 

Figure 5.11:  Period-1 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded ±200 kV ±300 kV ±180 kV 

Simulations ±200 kV ±380 kV ±190 kV 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.7123 3.7623 3.8123 3.8623 3.9123 3.9623 4.0123 4.0623 4.1123[s]
-400

-200

0

200

400
[kV]

Simulation

Field Test Recording (kV) 

 
200  
400 

 
 
-400 

-200 

0 

 
 

 
(××××0.01 s) 

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 
(××××0.01 s) 

Field Test Recording (kV) 

 
200  
400 

 
 
-400 

0 

 
 

 
-200 

3.7123 3.7623 3.8123 3.8623 3.9123 3.9623 4.0123 4.0623 4.1123[s]
-400

-200

0

200

400
[kV]

Simulation



Chapter 5                                       Modeling of 400 kV Thorpe-Marsh/Brinsworth System 

- 148 - 

3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.12:  Period-1 current waveforms – Red phase 
   

 
 

Figure 5.13:  Period-1 current waveforms – Yellow phase 
 

 
 

Figure 5.14:  Period-1 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±200 A ±200 A ±200 A 

Simulations ±100 A ±200 A ±100 A 
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3-phase Subharmonic Mode Ferroresonance Voltages (Period-3)  

 
Figure 5.15:  Period-3 voltage waveforms – Red phase 

 

 
 

Figure 5.16:  Period-3 voltage waveforms – Yellow phase 
 

 
Figure 5.17:  Period-3 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
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3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

 
 

Figure 5.18:  Period-3 current waveforms – Red phase 
 

 
 

Figure 5.19:  Period-3 current waveforms – Yellow phase 
 

 
 

Figure 5.20:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
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5.5.2 Case Study 2:  Transformer - BCTRAN+, Line - BERGERON 

In Section 5.5.1, the transformer BCTRAN+ model employing various degrees of 

saturations with n=13, 15, 17, 19, 21, 23, 25 and 27 together with the PI transmission line 

model have been used in the simulation. In this section, the only change in the simulation 

model is that Bergeron transmission line model is considered. The results after a number of 

simulations are presented in Figure 5.21 to Figure 5.32.   

 

3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 
 

Figure 5.21:  Period-1 voltage waveforms – Red phase 
 

 
 

Figure 5.22:  Period-1 voltage waveforms – Yellow phase 
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Figure 5.23:  Period-1 voltage waveforms – Blue phase 
 
Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded ±200 kV ±300 kV ±180 kV 

Simulations ±190 kV ±360 kV ±200 kV 

3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.24:  Period-1 current waveforms – Red phase 
 

 
Figure 5.25:  Period-1 current waveforms – Yellow phase 
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Figure 5.26:  Period-1 current waveforms – Blue phase 

 
Comparison between the field recorded and simulation results are as follows: 

 
 R-phase current  Y-phase current B-phase current 

Field recorded ±200 A ±200 A ±200 A 
Simulations ±100 A ±200 A ±100 A 

 
3-phase Subharmonic Mode Ferroresonance voltages (Period-3)  

 
Figure 5.27:  Period-3 voltage waveforms – Red phase 

 

 
Figure 5.28:  Period-3 voltage waveforms – Yellow phase 
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Figure 5.29:  Period-3 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded +100 kV, -50 kV ±100 kV ±50 kV 

Simulations +80 kV, - 70kV ±110 kV ±48 kV 

3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

 
Figure 5.30:  Period-3 current waveforms – Red phase 

 

 
Figure 5.31:  Period-3 current waveforms – Yellow phase 
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Figure 5.32:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±50 A +50 A, -45 A ±45 A 

Simulations ±18 A +39 A, -32A ±19 A 

5.5.3 Case Study 3:  Transformer - BCTRAN+, Line – MARTI 

Transmission line models employing PI and Bergeron have been studied in the preceding 

sections. In this section, another distributed parameter line model which takes into account 

of frequency dependent loss has been used. The simulation results are presented in Figure 

5.33 to Figure 5.44.  

3-phase Fundamental Mode Ferroresonance Voltages (Period-1) 

 
 

Figure 5.33:  Period-1 voltage waveforms – Red phase 
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Figure 5.34:  Period-1 voltage waveforms – Yellow phase 
 

 

Figure 5.35:  Period-1 voltage waveforms – Yellow phase 
 
Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded ±200 kV ±300 kV ±180 kV 

Simulations ±200 kV ±375 kV ±180 kV 

3-phase Fundamental Mode Ferroresonance Currents (Period-1)  
 

 
 

Figure 5.36:  Period-1 current waveforms – Red phase 
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Figure 5.37:  Period-1 current waveforms – Yellow phase 

 
Figure 5.38:  Period-1 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±200 A ±200 A ±200 A 

Simulations ±90 A ±200 A ±90 A 

3-phase Subharmonic Mode Ferroresonance Voltages (Period-3)  

 
Figure 5.39:  Period-3 voltage waveforms – Red phase 
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Figure 5.40:  Period-3 voltage waveforms – Yellow phase 

 
 

Figure 5.41:  Period-3 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded +100 kV, -50 kV ±100 kV ±50 kV 

Simulations +75 kV, - 75kV ±110 kV ±49 kV 

3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

 
 

Figure 5.42:  Period-3 current waveforms – Red phase 
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Figure 5.43:  Period-3 current waveforms – Yellow phase 

 

Figure 5.44:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±50 A +50 A, -45 A ±45 A 

Simulations ±19 A +39 A, -32A ±19 A 
 

• Summary of Case Study 1, 2 and 3 

After evaluating the three case studies above, that is by using the BCTRAN+ transformer 

model with three different types of transmission line models, the simulation results show 

that each of them is equally able to produce both the Period-1 and Period-3 ferroresonance. 

From the results, a number of observations have been noted in order to replicate the field 

recording waveforms in terms of their three phase voltage/current magnitudes. They are 

commented as follows:   
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(1)  Period-1 ferroresonance 

 Case Study 1 Case Study 2 Case Study 3 
  

Voltage amplitude There is a similarity in the voltage magnitude produced by all the 

three case studies; no significant difference between them. 

Voltage waveshape 
 

All the three cases produce the same voltage pattern which is 

rectangular in shape but slight differences exist in the voltage ripple 

at both the positive and negative peak voltages. 

Current amplitude 
 

The current magnitudes are moderately similar. The results show that 

the magnitudes of both the red and the blue phases are only half of 

the field test recording ones. However, the magnitude produced by 

the yellow phase is most comparable to the recording. 

Current waveshape 
 
 

All the three cases are able to produce the peaky shape currents but  

slight deviations are in the magnitudes of current ripples which 

appear around the zero current magnitude of the waveforms.  

From the observation, it can be suggested that Case Study 1 which employed BCTRAN+ 

model for transformer and Pi model for the transmission line are most similar to the 

measured ones.  

(2)  Period-3 ferroresonance 

 Case Study 1 Case Study 2 Case Study 3 
    

Voltage amplitude The voltage magnitudes for all the three phases produced from all the 

cases are comparable to the real recording waveforms.   

Voltage waveshape 
 

All the three cases are able to reproduce almost the same patterns as 

the measured three phase voltage waveforms. However, the high 

frequency oscillatory ripple does not reproduce itself at the peak of 

the waveforms.  

Current amplitude 
 

In term of the current magnitudes, the simulation showed that both 

the simulated red and blue phases are about 60% less that the 

measured ones while the yellow phase is about 20% less. 

Current waveshape 
 
 

The currents are peaky in shape which match with the real ones but 

high frequency oscillatory ripples oscillation appearing around the 

zero current magnitudes are missing in the simulations.  
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From the observation, it suggested that the simulation results produced by Case Study 1 are 

most similar to the measured ones.  

In summary, it has been observed that all the three case studies have produced almost the 

similar characteristics to one and another. The magnitudes and waveshapes gained from 

the models are not distinctively different from one and another. In addition, they are able to 

replicate the real recording waveforms in a reasonable fashion for both the Period-1 and 

Period-3 ferroresonance. In view of the above, a decision to choose the best simulation 

model for the representation of the Brinsworth system on ferroresonance is difficult. 

Therefore, it has been decided that all the models are acceptable for the study of 

ferroresonance. The use of BCTRAN+ model to represent the power transformer and the 

employment of either the PI, the Bergeron or the J. Marti to model a transmission line can 

be taken.  

It has been found that modeling of core characteristic employing the BCTRAN+ model is 

time consuming because the limitation the predefined model has is such that the users 

needs to “trial and error” to pick up the best possible nonlinear inductor element, it is 

therefore decided to look into an alternative transformer model where its air-core (deep 

saturation) inductance of core characteristic can be determined via the build-in calculation.  

5.5.4 Case Study 4:  Transformer - HYBRID, Line – PI 

In this section, instead of using BCTRAN+, a HYBRID model is employed to represent 

the transformer where the core characteristic is modeled based on the principle of duality.  

Unlike the BCTRAN+ model, where the core characteristic has been evaluated via 

sensitivity study on different degrees of saturation in order for the simulation model to 

replicate the field test recording waveforms with good accuracy, the HYBRID model no 

longer requires such evaluation as this type of model is able to generate its own 

characteristic including the air-core inductance based on the build-in Frolich equation and 

core dimension embedded in itself.      

The results of simulations are shown in Figure 5.45 to Figure 5.56. 
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3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 
 

Figure 5.45:  Period-1 voltage waveforms – Red phase 
 

 
 

Figure 5.46:  Period-1 voltage waveforms – Yellow phase 

 
 

Figure 5.47:  Period-1 voltage waveforms – Blue phase 
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3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.48:  Period-1 current waveforms – Red phase 

 
 

Figure 5.49:  Period-1 current waveforms – Yellow phase 

 
 

Figure 5.50:  Period-1 current waveforms – Blue phase 
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3-phase Subharmonic Mode Ferroresonance Voltages (Period-3) 

 
Figure 5.51:  Period-3 voltage waveforms – Red phase 

 
 

Figure 5.52:  Period-3 voltage waveforms – Yellow phase 

 
 

Figure 5.53:  Period-3 voltage waveforms – Blue phase 
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3-phase Subharmonic Mode Ferroresonance Currents (Period-3) 

 

Figure 5.54:  Period-3 current waveforms – Red phase 

Figure 5.55:  Period-3 current waveforms – Yellow phase 

 

Figure 5.56:  Period-3 current waveforms – Blue phase 
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5.5.5 Case Study 5:  Transformer - HYBRID, Line – BERGERON 

To see if there are any changes by employing the Bergeron model for the representation of 

the transmission line, the transformer model is kept unchanged, still using the HYBRID 

model.    

The waveforms obtained from the simulations for both Period-1 and Period-3 

ferroresonance are shown in Figure 5.57 to Figure 5.68.  

3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 
 

Figure 5.57:  Period-1 voltage waveforms – Red phase 

 
 

Figure 5.58:  Period-1 voltage waveforms – Yellow phase 
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Figure 5.59:  Period-1 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded ±200 kV ±300 kV ±180 kV 

Simulations ±200 kV ±380 kV ±190 kV 
 

3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.60:  Period-1 current waveforms – Red phase 

 
 

Figure 5.61:  Period-1 current waveforms – Yellow phase 
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Figure 5.62:  Period-1 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±200 A ±200 A ±200 A 

Simulations ±90 A ±180 A ±90 A 

3-phase Subharmonic Mode Ferroresonance Voltages (Period-3)  

 
 

Figure 5.63:  Period-3 voltage waveforms – Red phase 

 
Figure 5.64:  Period-3 voltage waveforms – Yellow phase 
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Figure 5.65:  Period-3 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded +100 kV, -50 kV ±100 kV ±50 kV 

Simulations +75 kV, - 75kV ±100 kV ±48 kV 
 

3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

Figure 5.66:  Period-3 current waveforms – Red phase 

 
Figure 5.67:  Period-3 current waveforms – Yellow phase 
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Figure 5.68:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±50 A +50 A, -45 A ±45 A 

Simulations ±19 A +40 A, -40A ±19 A 
 

5.5.6 Case Study 6:  Transformer - HYBRID, Line – MARTI 

Finally, a frequency dependent Marti model is employed for the representation of the 

transmission line. Again, the transformer model is kept unchanged, using the HYBRID 

model.   The waveforms reproduced from the simulations for both Period-1 and Period-3 

ferroresonance are shown in Figure 5.69 to Figure 5.80.  

3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 
 

Figure 5.69:  Period-1 voltage waveforms – Red phase 
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Figure 5.70:  Period-1 voltage waveforms – Yellow phase 
 

 

Figure 5.71:  Period-1 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded ±200 kV ±300 kV ±180 kV 

Simulations ±175 kV ±375 kV ±190 kV 
 

3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.72:  Period-1 current waveforms – Red phase 
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Figure 5.73:  Period-1 current waveforms – Yellow phase 

 
Figure 5.74:  Period-1 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±200 A ±200 A ±200 A 

Simulations ±90 A ±180 A ±90 A 
 

3-phase Subharmonic Mode Ferroresonance Voltages (Period-3)  

 
Figure 5.75:  Period-3 voltage waveforms – Red phase 
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Figure 5.76:  Period-3 voltage waveforms – Yellow phase 

 
 

Figure 5.77:  Period-3 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded +100 kV, -50 kV ±100 kV ±50 kV 

Simulations +75 kV, - 75kV ±100 kV ±48 kV 
 

3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

Figure 5.78:  Period-3 current waveforms – Red phase 
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Figure 5.79:  Period-3 current waveforms – Yellow phase 
 

 
 

Figure 5.80:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase current  Y-phase current B-phase current 
Field recorded ±50 A +50 A, -45 A ±45 A 

Simulations ±19 A +38 A, -38A ±19 A 

• Summary of Case Study 4, 5 and 6 

In general, the simulation models developed based on all the case studies have been able to 

produce both the Period-1 and Period-3 ferroresonance. 

Some deviations have been identified in the waveforms reproduced from the simulation 

models when they are compared side by side with the test recording case ones and the 

difference are described in the following;      
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(1) Period-1 ferroresonance 

 Case Study 4 Case Study 5 Case Study 6 
    

Voltage amplitude 

 

Voltage waveshape 

 

Current amplitude  

Current waveshape 

The three-phase voltages and currents obtained from these three 

simulation models are not significantly different among them in 

terms of their amplitudes and waveshapes. However, by 

comparing with the real case ones, the current magnitudes are low 

for the red and blue phases. This is similar to the previous case 

studies employing the BCTRAN+ model. 

 (2) Period-3 ferroresonance 

 Case Study 4 Case Study 5 Case Study 6 
    

Voltage amplitude 

Voltage wave shape 

Current amplitude  

Current wave shape 

There are not a great deal of differences among the simulation 

results produced by the simulation models. Nevertheless, the only 

deviation when comparing to the test recordings are the low 

magnitudes of three-phase currents and the non-existence of high 

frequency voltage/current ripples. This is similar to the previous 

cases employing the BCTRAN+ model. 

Based on the simulation results, it has been observed that both the Period-1 and Period-3 

responses produced from each of the six simulation models are relatively similar to one 

and another, both in the voltage/current magnitudes and waveshapes. Moreover, the 

simulation have been able to replicate the field test recording waveforms in good 

agreement. 

After the evaluation of all the six simulation models, the following observations have been 

noticed; 

The occurrence of Period-1 and Period-3 ferroresonance is not repeatable from one cycle 

to another successive cycle upon the opening of circuit breaker. This behaviour occurs due 

to the fact that the initial voltages upon the interruption of current are different from one 

cycle to another and this suggests that there have been different values of initial conditions 
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being applied to the system. The system is triggered with different voltage points which 

can be sensitive for the initiation of different responses. This kind of behaviour has also 

been experienced by [13, 14] in which different steady state responses can be induced 

simply due to small changes in system parameters or initial conditions. In view of this 

behaviour, there have been a great deal of simulations being carried out in order for the 

system to be able to exhibit the type of required ferroresonant response. That is the reason 

that a large amount of simulations lasting for a few cycles are sometimes required for the 

determination of both the Period-1 and Period-3 responses. Furthermore, from the UK 

perspective as quoted in [72], the onset of this type of phenomena has been considered as 

random or stochastic which is dependent on system parameters. In addition, [11] 

mentioned that the nonlinear system of ferroresonance condition is extremely susceptible 

to changes in system parameters and initial conditions. The system can induce different 

responses upon a small change of system voltage, capacitance or losses. [17] described that 

ferroresonance phenomena relied on (1) the degree of  transformer’s residual flux, (2) the 

initial charge of the capacitive elements and (3) the point on the voltage wave. 

The major limitations that all the six simulation models have are explained as follows; 

 (1) Period-1 ferroresonance 

 Case Study 1, 2, 3, 4, 5 and 6 
Limitation  The magnitudes of the red and blue phase currents that have been reproduced 

from all the simulation models are only 50% of the measurement ones. 

 
(2) Period-3 ferroresonance 

 Case Study 1, 2, 3, 4, 5 and 6 
Limitation  The magnitudes of the three-phase currents reproduced from the simulation 

models are relatively small as compared to the real case ones. Furthermore, 

both the voltages and currents that have been reproduced do not contain any 

high frequency ripples as expected from the real ones.  

Due to the limitations of the simulation models therefore the next step is to improve one of 

the six models by looking into a possible way to modify the parameter of either the 

transformer or the transmission line models. The following questions arise before 

modification takes place.   

(1) Which simulation model out of six is the best choice to be employed for              

improvement?  
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(2) Which component model needs to be modified for improvement?  Is it the 

transformer or the  transmission line model? 

(3) Based on what criterion a parameter has been chosen for the purpose of model 

improvement? 

5.6 Improvement of the Simulation Model 

In the previous sections, six different types of simulation models have been assessed in 

order to determine the best model for the study of ferroresonance. The simulation results 

produced by each of them are comparable with one another, in terms of the voltage/current 

magnitudes and waveshapes. The deficiency that the simulation results have calls for 

improvement of the model so that such limitation can be removed.      

5.6.1 Selection of the Simulation Model 

There have been six possible predefined transformer and transmission line models that are 

qualified to be considered in modeling any circuits for the study of ferroresonance. Which 

model or case study is to be taken into consideration for the improvement? The selection of 

the best preference is explained as follows: 

Case 
Study 

Transformer 
+ 

Transmission line 
Observation 

1 BCTRAN+ 
+ 
PI 

2 BCTRAN+ 
+ 

Bergeron 

3 BCTRAN+ 
+ 

Marti 

 

Modeling of a transformer using the BCTRAN+ model 

requires additional effort on curve fitting through the 90%, 

100% and 110% of the core characteristic and then 

extrapolating into air-core inductance (deep saturation). In 

addition, a sensitivity study on the degree of saturation has 

to be carried out in order to select the best core 

representation for the study of ferroresonance. On the other 

hand, the transmission line based on PI representation is 

considered to be fairly accurate and simplistic which does 

not require any attention on defining the simulation time step 

to be less than the propagation time of the transmission line.  



Chapter 5                                       Modeling of 400 kV Thorpe-Marsh/Brinsworth System 

- 178 - 

4 HYBRID 
+ 
PI 

5 HYBRID 
+ 

Bergeron 

6 HYBRID 
+ 

J. Marti 

 
Representing a transformer employing the HYBRID model 

does not require the same attention as the way the 

BCTRAN+ model. Instead the core behaviour including its 

deep saturation has been internally dealt with based on the 

Frolich equation. The transmission line modeled in PI can be 

worthy taken into account as the reasons being given 

previously.   

 

In view of the above, Case Study 4 is considered to be the best option to be employed for 

improvements.  

 

The predefined component model that requires a great deal of attention in the simulation 

model is for the transformer instead of the transmission line; the reason is that its magnetic 

circuit has a greater influence on transient studies, particularly ferroresonance. The core 

characteristic that has been developed in the HYBRID model is determined according to 

the 90%, 100% and 110% open-circuit test data and then processed by the build-in Frolich 

equation for the flux-linkage/current relationship. This representation of determining the 

core characteristic is not fully correct when ferroresonance condition is considered, since 

the magnetic circuit of transformer under this condition fringes out into the air-gap for 

example passing through the metallic butt ends of the cores [43]. These air-fluxes passing 

through the air-gap has an effect of increasing the reluctance thus reducing the inductance 

of the effective core circuit.  

Since this type of core characteristic is not available and is impossible to obtain at the 

moment, therefore the way to deal with this shortfall is to modify the core characteristic. 

This is carried out by lowering down the 110% open-circuit test point and the outcome 

after the modification of the core characteristic is shown in Figure 5.81.         

It can be seen in Figure 5.81 that there is a down shift in the core characteristic after the 

110% point has been lowered down. This change suggests that there would be a small 

amount of increase in the magnetising current as expected; previously the current was at 

point ‘A’ and it is now at point ‘B’ after the modification takes place, the current at this 

point has been increased. In addition, there is also a slight change occurred for the outer-

leg and yoke relationships.   
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Figure 5.81:  Modified core characteristic 

The simulation results employing this type of modified core characteristic for both the 

Period-1 and Period-3 ferroresonance are presented in Figure 5.82 to Figure 5.93. 

3-phase Fundamental Mode Ferroresonance Voltages (Period-1)  

 

 
 

Figure 5.82:  Period-1 voltage waveforms – Red phase 
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Figure 5.83:  Period-1 voltage waveforms – Yellow phase 

 
 

Figure 5.84:  Period-1 voltage waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
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Simulations ±175 kV ±300 kV ±180 kV 
 

Simulations results show that there is slight improvement on the magnitude of the Y-phase 
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3-phase Fundamental Mode Ferroresonance Currents (Period-1)  

 
 

Figure 5.85:  Period-1 current waveforms – Red phase 

 
 

Figure 5.86:  Period-1 current waveforms – Yellow phase 

 
 

Figure 5.87:  Period-1 current waveforms – Blue phase 
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For the Period-1 ferroresonance, no improvement has been occurred on the current 

magnitude with this core characteristic; the reason is due to the fact that the deep saturation 

region has not been affected by the modified core characteristic.  

3-phase Subharmonic Mode Ferroresonance Voltages (Period-3)  

 
 

Figure 5.88:  Period-3 voltage waveforms – Red phase 

 
 

Figure 5.89:  Period-3 voltage waveforms – Yellow phase 

 
 

Figure 5.90:  Period-3 voltage waveforms – Blue phase 
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Comparison between the field recorded and simulation results are as follows: 
 

 R-phase voltage  Y-phase voltage B-phase voltage 
Field recorded +100 kV, -50 kV ±100 kV ±50 kV 

Simulations +75 kV, - 75kV ±100 kV ±48 kV 
 
Simulation results show that high frequency ripples have been introduced in all the 3-phase 

voltage waveforms. 

3-phase Subharmonic Mode Ferroresonance Currents (Period-3)  

Figure 5.91:  Period-3 current waveforms – Red phase 

 

Figure 5.92:  Period-3 current waveforms – Yellow phase 
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Figure 5.93:  Period-3 current waveforms – Blue phase 

Comparison between the field recorded and simulation results are as follows: 
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the occurrence of this phenomenon. The parameters that are likely to contribute to this type 

of phenomenon are listed as follows; 

(1) the coupling capacitances of the power transformer (SGT1) 

(2)  the 170 m length cable connected at the secondary side of the transformer (SGT1) 

(3) the coupling capacitances of the 37 km length double-circuit transmission line 

5.7.1 The Coupling Capacitances of the Power Transformer 

The effect from the coupling capacitances of the transformer on the occurrence of 

ferroresonance can be checked by removing them from the model; they are the primary-to-

ground capacitance, the secondary-to-ground capacitance, the tertiary-to-ground 

capacitance, the primary-to-secondary capacitance and finally the secondary-to-tertiary 

capacitance.    

Transformer coupling capacitance C (nF) 
Primary-to-ground capacitance (P-G) 4 
Secondary-to-ground capacitance (S-G) 0.5 
Tertiary-to-ground capacitance (T-G) 3 
Primary-to-secondary capacitance (P-S) 5 
Secondary-to-tertiary capacitance (S-T) 4 

After a number of simulations, it can be seen in Figure 5.94 that Period-1 ferroresonance 

has been induced into the system and this clearly suggests that the occurrence of the 

phenomenon does not depend on the coupling capacitances of the transformer. This means 

that the presence of the capacitances is as seen to be negligible which does not influence 

the interaction of exchanging the energy between the capacitances and the saturable core 

inductance.     

 

Similar characteristics of Period-1 ferroresonance have been reproduced under the 

assumption that the coupling capacitances of the transformer have been removed. The 

three-phase voltages show they are rectangular in shape with their ripple around the 

voltage peaks. Nevertheless, the currents are peaky in shape with a magnitude of about 200 

A peak.  
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Figure 5.94:  Period-1 - without transformer coupling capacitances 

5.7.2 The 170 m length Cable at the Secondary of the Transformer 
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Figure 5.95:  Period-1 - without cable 
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Figure 5.96:  Double-circuit transmission line structure 

Owing to the 12 phase conductors and an earth conductor, making up of 13 conductors that 

have been arranged over the single tower, the lumped elements of the series impedances 

and the coupling capacitances would consist of 13×13 matrices [44]. The complexity is 

simplified to 6×6 matrices by using the reduced method which can be seen in the following 

series impedance, 

     

1 1 1 1 1 1 1 1 2 1 2 1 2

1 1 1 1 1 1 1 1 2 1 2 1 2

1 1 1 1 1 1 1 1 2 1 2 1 2

2 2 1 2 1 2 1 2 2 2 2 2 2

2 2 1 2 1 2 1 2 2 2 2 2 2

2 2 1

R R R R Y R B R R R Y R B

Y Y R Y Y Y B Y R Y Y Y B

B B R B Y B B B R B Y B B

R R R R Y R B R R R Y R B

Y Y R Y Y Y B Y R Y Y Y B

B B R B

V Z Z Z Z Z Z

V Z Z Z Z Z Z

V Z Z Z Z Z Zd

V Z Z Z Z Z Zdx

V Z Z Z Z Z Z

V Z Z

 
 
 
 

− = 
 
 
 
  

1

1

1

2

2

2 1 2 1 2 2 2 2 2 2 2

R

Y

B

R

Y

Y B B B R B Y B B B

I

I

I

I

I

Z Z Z Z V

   
   
   
   
   
   
   
   
      

 (5.2) 

 

Similarly, the matrix reduction process is also applicable to the charge of the capacitances 

of the line as follows,  

The 6×6 matrix of the potential coefficients, 
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Finally,  
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With the capacitance matrix is given as [ ] [ ] 1
C P

−=    

As the capacitances of the line plays an important role for the occurrence of Period-1 

ferroresonance, it is therefore suggested that the lumped elements of Figure 5.97 are taken 

into consideration. 

 

Figure 5.97:  Transmission line’s lumped elements 
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The values of the equivalent impedances and the capacitances matrices which have been 

derived can be referred to Appendix A. 

The capacitance matrix is in nodal form which implies that the diagonal elements of Cii  is 

the sum of the capacitances per unit length between conductor i and all other conductors, 

and the off-diagonal elements of Cik = Cki is negative capacitance per unit length between 

conductor i and k. The following example illustrating how the ground capacitance CR1 is 

determined,  

Capacitance matrix C matrix (Farads for 37 km): 
3.7508E-07 -7.3581E-08 -2.3675E-08 -5.5176E-08 -2.6709E-08 -1.4231E-08 

-7.3581E-08 3.8735E-07 -7.0921E-08 -2.6709E-08 -2.3100E-08 -1.9884E-08 
-2.3675E-08 -7.0921E-08 3.9898E-07 -1.4231E-08 -1.9884E-08 -3.1545E-08 
-5.5176E-08 -2.6709E-08 -1.4231E-08 3.7508E-07 -7.3581E-08 -2.3675E-08 
-2.6709E-08 -2.3100E-08 -1.9884E-08 -7.3581E-08 3.8735E-07 -7.0921E-08 
-1.4231E-08 -1.9884E-08 -3.1545E-08 -2.3675E-08 -7.0921E-08 3.9898E-07 

From the definition the value of the shunt capacitance with respect to ground CR1 for 

Circuit 1 is obtained as, 

( )1 1 1 1 1 1 1 1 2 1 2 1 2R R R R Y R B R R R Y R BC C C C C C C= − + + + +  

( )1 1 1 1 1 1 1 1 2 1 2 1 2Y Y Y Y R Y B Y R Y Y Y BC C C C C C C= − + + + +  

( )1 1 1 1 1 1 1 1 2 1 2 1 2B B B B R B Y B R B Y B BC C C C C C C= − + + + +  

For Circuit 2,  

( )2 2 2 2 1 2 1 2 1 2 2 2 2R R R R R R Y R B R Y R BC C C C C C C= − + + + +  

( )2 2 2 2 1 2 1 2 1 2 2 2 2Y Y Y Y R Y Y Y B Y R Y BC C C C C C C= − + + + +  

( )2 2 2 2 1 2 1 2 1 2 2 2 2B B B B R B Y B B B R B YC C C C C C C= − + + + +  

On the other hand, the off-diagonal elements are used to represent the line-to-line 

capacitances and the circuit-to-circuit capacitances. 

For the series impedances of each of the circuit, the resistance and the inductance of the 

line are determined based on the diagonal elements. In addition mutual inductances of the 

lines are also taken into consideration. The impedance matrix can be referred in Appendix 

A. 

Finally, the double-circuit transmission line is then modeled by PI representation as shown 

in Figure 5.98. All the capacitance values at the left and right hand sides of the series 

impedances are divided by 2.  
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Figure 5.98:  Double-circuit transmission line’s lumped elements 

In order to validate the accuracy of the lumped representation, a frequency scan to measure 
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The results show that the impedances produced by the lumped model are similar to the 

ones produced by the build-in model and this suggests that the lumped model has been 

accurately developed based on the individual passive components such as resistors, 

inductors and capacitors. With the line being modeled by the individual resistance, 

inductance and capacitance elements, it is then the next task to investigate the key 

parameter which contributes to the occurrence of ferroresonance.            

From the simulations, it has been clearly shown that the model is equally capable to 

replicate the 3-phase voltage and current ferroresonant waveforms as the ones produced by 

the predefined models, either the PI, Bergeron or J. Marti. The waveforms are shown in 

Figure 5.100. 

 

 

Figure 5.100:  Period-1 ferroresonance - Top: Three-phase voltages, Bottom: Three-phase 
Currents 
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The results of simulation after removing the ground capacitance and the line-to-ground 

capacitance from the line are depicted in Figure 5.101 and Figure 5.102, respectively. 

 

 

Figure 5.101:  Predicted three-phase voltages and currents after ground capacitance 
removed from the line 

 

 
 

Figure 5.102:  Line-to-line capacitances removed from the line 
 

7.30 7.35 7.40 7.45 7.50 7.55 7.60 7.65 7.70[s]
-400

-200

0

200

400

[kV]

Period-1 Ferroresonance - Three-phase voltages

7.30 7.35 7.40 7.45 7.50 7.55 7.60 7.65 7.70[s]
-200

-100

0

100

200

[A]

Period-1 Ferroresonance - Three-phase currents

5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00[s]
-400

-200

0

200

400

[kV]

Period-1 Ferroresonance - Three-phase voltages

5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00[s]
-200

-100

0

100

200

[A]

Period-1 Ferroresonance - Three-phase currents



Chapter 5                                       Modeling of 400 kV Thorpe-Marsh/Brinsworth System 

- 194 - 

The results without the ground capacitances show that Period-1 ferroresonance still exists 

but there are some changes happened in both the voltage and current waveforms. For the 

voltage waveforms, it can be seen that the shapes around the voltage peak were affected 

when more capacitances were removed from the line. However, in the current perspective, 

it can be seen that the reduction of capacitance from the line has a significant effect of 

reducing the magnitude of the Period-1 ferroresonance current. In addition, the effect also 

introduces more harmonic contents into the system. This outcome is analysed by using 

FFT plots as shown in Figure 5.103.  

 
Figure 5.103:  FFT plots for the three cases 
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Figure 5.103 shows that the line without the presence of the shunt and line-to-line 

capacitances has the influence of introducing harmonics into the system.  

From the investigation, it has been found that each of the coupling capacitances of the line 

play an important role as a key parameter for the occurrence of Period-1 ferroresonance. 

Without the shunt and the line-to-line capacitances taking part in the line, the arrangement 

of the circuit-to-circuit capacitances are actually connected in series with the transformer. 

This study showed that the series arrangement of the capacitances and the transformer 

serve as a purpose of sustaining the amplitude of the three-phase voltages and currents. On 

the other hand, the studies without the shunt and the line-to-line capacitances has shown 

that there is a dramatic effect of reducing the amplitude of the ferroresonance currents, and 

this suggests that both of them are actually contributing to the current boosting of the 

phenomenon.                    

5.8 Summary 

The simulations involved in all the six case studies using both the BCTRAN+ and 

HYBRID transformer models combined with either PI, Bergeron or Marti transmission line 

model have been carried out. Out of all the six combinations of the simulation models have 

been developed, and the comparisons between the simulations and the field recording 

results draw the following observations; 

 (1)  A great deal of simulation attempts are required in order to reproduce the types of 

ferroresonance responses (Period-1 and Period-3) by the simulation models. The 

reason is because of the initial condition of the three-voltage waves after the current 

interruption are not repeatable from one cycle to another cycle.  

(2) Degree of saturation for the transformer core was chosen as n = 27 because the 

simulation results are comparable with the field recording waveforms.  

(3)  There is not single simulation model, out of the six models developed, can be regarded 

as the best. All of them are comparable and are equally capable to replicate both the 

Period-1 and Period-3 ferroresonance waveforms. However, the limitations of these 

models are that they are not able to match the current magnitudes of the red and blue 

phases of the Period-1 ferroresonance and also the three-phase currents of the Period-3 
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ferroresonance. In addition, there is no high frequency ripples appearing on both the 3-

phase voltages and currents.    

(4) All the six simulation models can be employed for the study of ferroresonance but one 

particular model i.e. modeling the transformer using HYBRID and the transmission 

line in PI has been preferred. 

(5) The preferred model is then further improved by modifying the core characteristic and 

the improved model is able to provide the high frequency ripples on the three-phase 

voltage and current waveforms for only the Period-3 ferroresonance. In addition to 

that, the magnitude of the yellow phase current has been drastically manifested.  

(6) Discrepancy between recorded and predicted current still exists for Red and Blue 

phases. One of the possible reasons could be due to the core characteristic used to 

model the transformer is not fully representative to account for the flux distribution 

into airgap and its fringing effect, particularly, in the case of deep saturation.  

However, the shapes (see waveform figures) match quite well between the simulation 

and the field recording waveforms.   

The observations on the key parameters that would influence the occurrence of the Period-

1 ferroresonance are explained as follows: 

(1) Both the transformer’s coupling capacitances and the cable capacitance do not provide 

any significant influence on the occurrence of the Period-1 ferroresonance. 

(2) From the investigation, all the coupling capacitances of the line have contributed 

individually to the occurrence of the phenomenon. The role of the circuit-to-circuit 

capacitances is to provide the sustainable amplitude of the ferroresonance while the 

rest provides the additional energy transfers from the line to the saturable core 

inductance.   
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CHAPTER 6 CHAPTER 6 CHAPTER 6 CHAPTER 6     

666...   MMM OOODDDEEELLL III NNNGGG   OOOFFF   444000000   KKK VVV   III RRROOONNN---AAACCCTTTOOONNN///MMM EEELLL KKK SSSHHHAAAMMM    
SSSYYYSSSTTTEEEMMM    

   

6.1 Introduction 

In the preceding chapter, modeling of power system components to represent a 400 kV 

transmission system was carried out. The simulation model which has been developed is 

able to reproduce both the Period-1 and Period-3 ferroresonance waveforms in good 

agreement with the field test recording waveforms.  

The aim of this chapter is to carry out a case study on a particular circuit configuration, 

regarding the likelihood of occurrence of sustained fundamental frequency (Period-1) 

ferroresonance. The study considered a complex arrangement including a mesh corner 

substation connected by overhead lines to a transformer feeder. The assessment upon the 

circuit is carried out by simulation studies using the ATPDraw. Since there are no field 

recording waveforms available for comparative verification, modeling of the individual 

components to represent the system are based of the criteria that have been obtained 

previously.     

In addition to evaluating the system, this chapter also investigates the effectiveness of 

mitigation measure to quench the intended ferroresonance by switching-in a 60 MVAR 

shunt reactor which is connected at the 13 kV tertiary winding.  

Furthermore, a sensitivity study on transmission line length is also carried out with an aim 

to find out the likelihood of occurrence of ferroresonance.  

6.2 Description of the Transmission System 

Figure 6.1 shows the single-line arrangement of one of the circuits on the National Grid 

transmission systems. The circuit arrangement which is believed to have a potential risk of 

inducing the Period-1 ferroresonance consists of a 33 km long double-circuit transmission 
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line connecting with two power transformers:  a 750 MVA, 400/275/13 kV (SGT5) and a 

180 MVA, 275/132 kV (SGT4). One unit is a transformer feeder and the other on the mesh 

corner.   

This study is based on National Grid enquiry to re-evaluate the existing Period-1 

ferroresonance mitigating methods on the Iron Acton/Melksham system. It is noted that the 

current standard practice in the case of ferroresonance occurrence, is to quench 

ferroresonance current through the opening of the line disconnectors labeled as L13 and 

H43, as identified diagrammatically in Figure 6.1. 

 

 

Figure 6.1:  Single-line diagram of Iron Acton/Melksham system 

Table 6.1 summarises the initial circuit conditions (normal operation), i.e. prior to 

ferroresonance occurrence. The circuit arrangement of the Iron Acton/Melksham system is 

likely to experience ferroresonance; the conditions needed to initiate this scenario are 

tabulated in Table 6.2. 

        Table 6.1:  Status of circuit-breakers and disconnectors for normal operation 
Iron Acton substation Melksham substation 

Circuit-breaker Switch Circuit-breaker Switch 
CB1 CB2 CB4 L12 H43 CB3 L13 L14 
close open close close close close Close close 

13 kV 

Shunt 
reactor 

60 MVA 

H43 
CB3 
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CB2 

L12 

Load 

Iron Acton 
275 kV 
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Substation 

Double-circuit line 

Circuit 1 

Circuit 2 

Load 

 

 

CB4 

SGT4 

 

 

 

L13 L14 
SGT5 
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  Table 6.2:  Status of circuit-breakers and disconnectors triggering ferroresonance 
Iron-Acton substation Melksham substation 

Circuit-breaker Switch 
Circuit-
breaker 

Switch 

CB1 CB2 CB4 L12 H43 CB3 L13 L14 

Remark 

open open open close close open close close 
SGT4 and SGT5 

experience 
ferroresonance  

 

The assessment of ferroresonance was carried out with the assumption that all the circuit 

breakers (i.e. CB1, CB3 and CB4) are simultaneously opened, CB2 has either already been 

opened or is tripped under the same protection scheme. The point to note is that although 

the circuit is tripped both transformers remain electrically connected to the overhead line 

and are therefore candidates for ferroresonance.  

6.3 Identify the Origin of Ferroresonance 

Conditioning the circuit of Figure 6.1 into ferroresonance state following the switching 

events of the three circuit breakers is identified, as a result, a ferroresonance path as 

indicated by the red line is shown in Figure 6.2 will involve the interaction between the 

double-circuit transmission line and the two power transformers, SGT4 and SGT5. From 

this event, there are two transient events that have been impinged upon the system; the first 

one is the opening of the three circuit breakers i.e. CB1, CB3 and CB4, and the second one 

is the energisation of Circuit 2 by adjacent live line (Circuit 1) via the transmission line’s 

coupling capacitances. 
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Figure 6.2:  Single-line diagram of Iron Acton/Melksham system 

It is expected that a similar type of Period-1 ferroresonance to the one that has been 

induced in the previous system network will occur upon this system arrangement. The 

reason is that the two circuits have been similarly energised via the transmission line’s 

coupling capacitances. In addition, the methods that both the circuits have been 

reconfigured into ferroresonance condition are also identical with each other.  

6.4 Modeling the Iron-Acton/Melksham System 

The main task in this section is to model the whole system such that the model can be used 

for the study of ferroresonance. In order to do that, each of the components that are 

involved in the circuit is firstly modeled and they are presented in the following sections. 

6.4.1 Modeling the Source Impedance and the Load  

Figure 6.3 shows the simplified single-line diagram of the Iron-Acton/Melksham system 

and the ways the source impedances and the load are determined. 
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Figure 6.3:  Modeling of the source impedance and the load 

The rest of the system connected at the mesh corners 3 and 4 of Figure 6.3 are then 

simplified by assuming that the substation has an infinite bus with a fault level of 20 GVA. 

Furthermore, this assumption is also applied to the Melksham 400 kV substation. The 

inductive reactance is calculated based on the voltage level at the bus-bar. Detailed 

calculations of the reactances at the two substations are shown in Figure 6.3. For the load 

impedances which are identified as Load 1 and Load 2, each of them is assumed to have a 

load of 500 MVA and 120 MVA with a power factor of 80%, respectively.  

6.4.2 Modeling the Circuit Breaker  

It has been mentioned that the evaluation of ferroresonance was carried out with the 

assumption that all the circuit breakers (i.e. CB1, CB3 and CB4) are simultaneously 

opened, CB2 is assumed to be open. In this case study the three circuit breakers are 

modeled by using the 3-phase time-controlled switches with no current margin, the same 

criterion applied to the circuit breaker of the Marsh Thorpe/Brinsworth system. 
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6.4.3 Modeling the Cable  

The cables which are connected at the primary side of SGT4 and at both sides (i.e. primary 

and secondary) of SGT5 are assumed to have a cable length of 500 m each. All of them are 

modeled as capacitor and the respective values are determined by referring to the technical 

cable data as [70]: 

 
SGT4:  275 kV cable, C = 0.128 µF 

                              400 kV cable, C = 0.1075 µF 
 

SGT5:  275 kV cable, C = 0.128 µF 

6.4.4   Modeling the 33 km Double-Circuit Transmission Line  

The double-circuit line connected between the Iron Acton and Melksham substations is 33 

km in length on L3/1 tower design. It can well be described as a short line; therefore the 

line can be represented by un-transposed configuration. The physical dimensions for the 

L3/1 tower are shown in Figure 6.4. Other relavant conductor parameters can be found in 

Appendix A [47].  

 
 

Figure 6.4:  Double-circuit transmission line physical dimensions 

Based on the transmission line’s physical dimensions and parameters which are available, 

it was modeled in ATPDraw using the integrated LCC objects and the mathematical 

approach to model the line is based on the travelling wave theory by using the Bergeron 
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model. To verify the line is accurately modeled, line parameters check, line parameters 

frequency check, transmission line model rules check and transmission line model length 

check are shown in Appendix D. 

6.4.5   Modeling of Power Transformers SGT4 and SGT5 

Two transformer models, BCTRAN and HYBRID have been discussed earlier. Since the 

HYBRID model required core dimensions of the transformer which is not available, the 

BCTRAN+ model is therefore employed. Both transformers SGT4 and SGT5 are modeled 

using BCTRAN+ [44] transformer model based on the open- and short-circuit test data. 

The open-circuit test (No-load test) was carried out at the 13 kV winding consisting of 

measured per-unit voltage, no-load current and power loss. The short-circuit test performed 

at the respective winding consists of measured impedances and power loss. The electrical 

specifications of both the transformers are described in Table 6.3 and Table 6.4. 

Table 6.3:  Open and short circuit test data for the 180 MVA rating transformer  
NO-LOAD LOSS on TERT. (30 MVA)  LOAD-LOSS on HV 

VOLTS  kWATTS 

% MEAN  R.M.S 
AMPS kWatts  VOLTS IMP AMPS At 

20oC 
Corrected 

to 75oC 
   4.15  HV/LV @180 MVA 

90 11700 11620 5.20  39730 14.40% 378 - 533.40 
   7.25 

68.05 

  
   7.15  HV/TERT @ 30 MVA  

100 13000 12960 8.10  32480 11.81% 63 - 57.00 
   11.50 

87.25 
  

   14.60  LV/TERT @ 30 MVA  
110 14300 14316 15.75  12750 9.66% 131.20 - 57.60 

   22.15 
113 

  

 
(1) No-load calculation:  
 

90%:               
( )4.15 5.20 7.25

5.53
3exI

+ +
= = A (line current) 

3

6

3 11.62 10
( ) 5.53 100 0.06%

180 10exI pu
× ×= × × =

×
 @180 MVA 

 

100%:            
( )7.15 8.1 11.5

8.92
3exI

+ +
= = A (line current) 

3

6

3 12.96 10
( ) 8.92 100 0.11%

180 10exI pu
× ×= × × =

×
@ 180 MVA 
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110%:            
( )14.6 15.75 22.15

17.50
3exI

+ +
= = A (line current) 

3

6

3 14.32 10
17.50 100 0.24%

180 10
IEXPOS

× ×= × × =
×

 @ 180 MVA 

(2) Load loss calculation:  

( )
6

23

39730 180 10
100 14.44

3 378 275 10
HV LVZ −

×= × =
× ×

% @ 180 MVA 

 

( )
6

23

32480 30 10
100 11.81

3 63 275 10
HV TVZ −

×= × =
× ×

% @ 30 MVA 

 

( )
6

23

12750 30 10
100 9.66

3 131.20 132 10
LV TVZ −

×= × =
× ×

% @ 30 MVA 

  Table 6.4:  Open and short circuit test data for the 750 MVA rating transformer 
NO-LOAD LOSS on TERT. (30 MVA)  LOAD-LOSS on HV 

VOLTS  kWATTS 

% MEAN  R.M.S 
AMPS kWatts  VOLTS IMP AMPS At 

20oC 
Corrected 

to 75oC 
   5.89  HV/LV @750 MVA 

90 11700 11716 5.22  47499 11.87% 1083 - 988.80 
   6.68 

55.97 

  
   6.04  HV/TERT @ 60 MVA  

100 13000 13021 5.09  27900 7.01% 86.18 - 104.30 
   6.96 

72.27 
  

   8.01  LV/TERT @ 60 MVA  
110 14300 14392 5.79  15070 5.46% 126.42 - 108.70 

   7.83 
102.34 

  

The required per-unit open-circuit test currents for each of the 90%, 100% and 110% are 

calculated as follows:   

(1) No-load calculation:  
 

90%:               
( )5.89 5.22 6.68

5.93
3exI

+ +
= = A (line current) 

3

6

3 11.72 10
( ) 5.93 100 0.016 %

750 10exI pu
× ×= × × =

×
@ 750 MVA 

 

100%:            
( )6.04 5.09 6.96

6.03
3exI

+ +
= = A (line current) 

3

6

3 13.02 10
( ) 6.03 100 0.018 %

750 10exI pu
× ×= × × =

×
@ 750 MVA 
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110%:            
( )8.01 5.79 7.83

7.21
3exI

+ +
= = A (line current) 

3

6

3 14.392 10
7.21 100 0.024 %

750 10
IEXPOS

× ×= × × =
×

 @ 750 MVA 

 
(2) Load loss calculation:  
 

( )
6

23

47499 750 10
100 11.87

3 1083 400 10
HV LVZ −

×= × =
× ×

% @ 750 MVA 

 

( )
6

23

27900 60 10
100 7.01

3 86.18 400 10
HV TVZ −

×= × =
× ×

% @ 60 MVA 

 

( )
6

23

15070 60 10
100 5.46

3 126.42 275 10
LV TVZ −

×= × =
× ×

% @ 60 MVA 

Once the transformer model has been developed, it is then verified with the real test data 

and the results of comparison are presented as shown in Table 6.5 and Table 6.8. The 

results suggest that the simulation values are comparable with the real measurement results 

in general, only the simulated power loss at 110% open-circuit test is lower than the 

measured one, indicating that core resistance is not well represented in BCTRAN+ for 

saturation or near to saturation region. .  

SGT4: 180 MVA 

                  Table 6.5:  Comparison of open-circuit test between measured and BCTRAN 
Measured BCTRAN 

Vrms [kV] 
Irms [A]  P [kW]  Irms [A] P [kW] 

11.7 (90%) 5.53 68.05 5.22 69.66 

13 (100%) 8.92 87.25 8.36 86.63 

14.3 (110%) 17.50 113 17.08 105.61 
 

      Table 6.6:  Comparison of short-circuit test between measured and BCTRAN 
Measured BCTRAN 

Vrms [V] 
Irms [A]  P [kW]  Irms [A] P [kW] 

 

HV/LV @180 MVA 
39730 378 533.40 379.14 536.91 

HV/TERT @ 30 MVA 
32480 63 57 63.02 57.80 

LV/TERT @ 30 MVA 
12750 131.2 57.6 131.28 58.417 
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SGT5: 750 MVA 

             Table 6.7:  Comparison of open-circuit test between measured and BCTRAN 
Measured BCTRAN 

Vrms [kV] 
Irms [A]  P [kW]  Irms [A] P [kW] 

11.7 (90%) 5.93 55.97 5.55 58.70 

13 (100%) 6.03 72.27 6.06 72.50 

14.3 (110%) 7.21 102.34 7.56 88.57 
                 

               Table 6.8:  Comparison of short-circuit test between measured and BCTRAN 
Measured BCTRAN 

Vrms [V] 
Irms [A]  P [kW]  Irms [A] P [kW] 

 

HV/LV @180 MVA 
47499 1083 988.8 1083 989.6 

HV/TERT @ 30 MVA 
27900 86.18 104.3 86.17 103.52 

LV/TERT @ 30 MVA 
15070 126.42 108.7 126.43 109.74 

The magnetic core of the transformer which accounts for saturation effect has been 

modeled externally connected via the tertiary winding. The saturation curves for SGT4 and 

SGT5 are derived according to the previous modeling technique and it is depicted in Figure 

6.5 and Figure 6.6. 

 
 

Figure 6.5:  Saturation curve for SGT4 

n = 27 
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Figure 6.6:  Saturation curve for SGT5 
 

The degree of saturation of the core characteristics for both the 180 MVA and the 750 

MVA transformers is chosen as n = 27. This level of saturation was used because the 

similar core saturation characteristic has been validated through ferroresonance study in 

Chapter 5.  

6.5 Simulation Results of Iron-Acton/Melksham System  

All the components in the system are modeled in detail, Figure 6.7 represents the complete 

simulation model.  

 

Figure 6.7:  Single-line diagram of transmission system 
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The model included a 33 km double-circuit transmission line, two 3-phase transformers 

with different ratings, circuit breakers, a shunt reactor and cables. The models are based on 

manufactures’ data sheets, test reports and other related information supplied by National 

Grid, UK.  

A total of 100 simulations were performed without the presence of switching-in of a 60 

MVA shunt reactor. Figure 6.8 shows the simulation result at the 275 kV side of 

transformers SGT4 and SGT5 when the circuit breakers CB1, CB3 and CB4 are 

simultaneously opened by protection at t = 0.546 seconds.    

 

Figure 6.8:  3-phase sustained voltage fundamental frequency ferroresonance 

At the instant when all the three circuit breakers are simultaneously opened, there is 

evidence of transient overvoltage occurring in the period between 0.546 seconds to 0.8 

seconds before locking into sustained steady-state fundamental frequency ferroresonance.  

Figure 6.9 shows the steady-state ferroresonance 3-phase voltages. The 3-phase voltage 

waveforms are rectangular in shape with the magnitude of the A-phase being twice of the 

magnitude of the B- and C- phases.   

 

Figure 6.9:  Sustained fundamental frequency ferroresonance (t=3.3 to 3.5 sec) 
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Figure 6.10 shows the corresponding 3-phase currents. At the instant of t = 0.546 seconds 

when all the three circuit breakers are simultaneously opened, there is a transient 

overcurrents occurring in the period between 0.546 seconds and 0.8 seconds.  

 

Figure 6.10:  3-phase sustained current fundamental frequency ferroresonance 

 

Figure 6.11:  Sustained fundamental frequency ferroresonance (t=3.3 to 3.5 sec) 

Figure 6.11 shows the steady-state ferroresonance circuit waveforms. The magnitude of the 

current waveform in Red-phase is much higher than Yellow-phase and Blue-phase of 

transformer SGT5. The waveshapes of the 3-phase currents are peaky in shape which 

signified that transformer SGT5 is operating in the saturation region.       

Circuit breaker pole scatter has not been considered in detail, but would be difficult to 

control in practice. 

A power spectrum of the voltage waveforms and phase-plane diagrams was created to 

assist classification of the observed ferroresonant mode. Figure 6.12 shows the frequency 

contents of the 3-phase voltages between 3 to 3.5 seconds, which mainly reveal the 

presence of fundamental frequency (50 Hz). Note that the power spectrum has been 

normalized.  
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Figure 6.12:  FFT plots 

A good and brief explanation about phase-plane diagram is presented in [14]. A phase-

plane diagram provides an indication of the waveform periodicity since periodic signals 

follow a closed-loop trajectory. One closed-loop means that a fundamental frequency 

periodic signal; two closed-loops for a signal period twice the source period, and so on.  

The phase-plane diagram (i.e. flux-linkage versus voltage) of this response is shown in 

Figure 6.13. The orbits shown encompass a time interval of only one period of excitation. 

The structure of the phase-plane diagram consists of only one major repeated loop for each 

phase which provides an indication of a fundamental frequency signal. Note that the phase-

plot has been normalized.      

 

Figure 6.13:  Phase plot of Period-1 ferroresonance 
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FFT and phase-plane diagrams are useful tools in recognising sustained fundamental 

frequency ferroresonance. However, if the response is random such as chaotic mode 

ferroresonance, then the construction of the Poincaré map [73] would be suitable for 

identification of the type of ferroresonant mode.  

If the ferroresonance is allowed to persist without any preventive measures, a catastrophic 

failure of transformer might occur.     

6.6 Mitigation of Ferroresonance by Switch-in Shunt Reactor  

Several mitigation measures have been proposed to prevent ferroresonance in the 

literatures. 

A good explanation about the employment of temporary insertion of damping resistors for 

voltage transformers is presented in [40]. The resistor connected in the secondary of a VT 

(voltage transformer) has been considered as a practical means to damp out ferroresonance. 

However, this requires ferroresonance to be determined at the design stage such that a 

device to detect the presence of ferroresonance is added and hence provide an automatic 

connection of the damping resistor as soon as the circuit breaker is opened. Besides, the 

selection of the most efficient damping resistor for optimum damping and the necessary 

connection time of the resistor need to be pre-determined.   

In terms of power transformers, a practical example presented in [13, 16] was the 

employment of a damping resistor connected across the secondary of the transformers. 

Alternative methods include the use of air-core reactor connected across the HV winding  

[13] and connected permanently at the bus [16]. The proper design of the switching 

operation to avoid power systems configuring into a ferroresonant condition [4] also 

provides the other mean of preventing ferroresonance from occurring.  

This study considers suppression of the sustained fundamental frequency ferroresonance 

by switching-in the shunt reactor connected across the 13 kV winding of SGT5. The reason 

that shunt reactor switching is considered in this study as a ferroresonance mitigation 

measure is the cost effectiveness, which is to use the existing installed reactor in the 

substation rather than purchasing new damping resistor. A sensitivity study has been 

carried out to identify the critical value of the shunt reactor in terms of reactor rating 



Chapter 6                                                           Modeling of Iron-Acton/Melksham System   

- 212 - 

(MVA value). Five values of shunt reactor ratings were analysed and the results of 

simulations are presented in Figure 6.14. 

 

Figure 6.14:  Suppression of ferroresonance using switch-in shunt reactors at t=1.5 sec 

Figure 6.14 shows the effects of suppressing the sustained ferroresonance using shunt 

reactor ratings of 1 MVAR, 5 MVAR, 10 MVAR, 30 MVAR and 60 MVAR. Values up to 

5 MVAR do not succeed in suppressing the ferroresonance as the ferroresonance is 

disturbed slightly when the reactor is switched-in and then tends to build up again. On the 

other hand, the 10 MVAR manages to damp out the ferroresonance but not effective, it 

generates repetitive oscillation. The only shunt reactor ratings which effectively suppress 

the ferroresonance are the 30 and 60 MVAR reactors and the later one has shown to be 

most effective in terms of a faster damping rate. It should be noted that the purpose of the 

shunt reactor is to control system voltage during periods of light system loading, so this 

technique would not be routinely available for ferroresonance alone. 

The five voltage waveforms of Figure 6.14 are the outcomes of damping out 

ferroresonance with switching-in of five different ratings of shunt reactors. The main 

reason that the 60 MVAR can provide highly effective damping is due to the fact that the 

presence of this shunt reactor provides the smallest linear inductance connected in parallel 

with the non-linear transformer core inductance (Figure 6.15). 
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Figure 6.15:  Core connected in parallel with shunt reactor characteristics 

As a result of that, the resonance condition of matching the equivalent coupling capacitive 

reactance and the core inductive reactance would be destroyed, and this change of 

inductive characteristic discontinues the maximum energy transferred between the network 

coupling capacitance and the transformer core inductance and eventually dissipates the 

energy into the resistive part of the system. The magnitude of the ferroresonance voltage 

could not be sustained and eventually dies out.  

6.7 Sensitivity Study of Double-Circuit Transmission Line 

The main aim of this section is to investigate the level of influence on ferroresonance by 

varying to the line length. With this knowledge, it is useful for system engineers to plan 

ahead the type of protection schemes with the known line length which is able to cause the 

onset of ferroresonance.    
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When the line length is varied from 5 km to 35 km in step of 5 km, a number of 

ferroresonant waveforms as shown in Figure 6.16 to Figure 6.17 have been observed. Both 

the 10 Hz and 162/3 Hz were observed when the line length is varied to 15, 20, 25, 30 and 

35 km. These responses consist of frequency components of f/5 and f/3 respectively. The 

chaotic response of Figure 6.18 was observed when the line length is at 30 km, it is a non-

periodic which appears to have an aspect of randomness in terms of its magnitude and 

frequency. The FFT plot revealed that the signal consists of continuous spectrum of 

frequency.   

 

Figure 6.16:  Top:  10 Hz subharmonic ferroresonant mode, Bottom:  FFT plot 
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Figure 6.17:  Top:  162/3 Hz subharmonic ferroresonant mode, Bottom:  FFT plot 
 
 

 

Figure 6.18:  Top:  Chaotic ferroresonant mode, Bottom:  FFT plot 



Chapter 6                                                           Modeling of Iron-Acton/Melksham System   

- 216 - 

The fundamental mode of Figure 6.8 is considered to be the most severe one as its 

sustained amplitude is the highest as compared to the other types of ferroresonant modes. 

This is due to that the maximum energy has been transferred between the transmission 

line’s coupling capacitance and the nonlinear inductance of the core. The transfer of energy 

without any damping can repeatedly drive the core into saturation for every cycle of the 

system frequency. Then excessive peaky current will be drawn from the system as a result 

of excessive flux migrates out of the core.  

A total of 700 simulations were carried out with the line length varied from 5 km to 35 km, 

in step of 5 km. For each incremental step, the circuit breakers (CB1, CB3 and CB4) are 

assumed open simultaneously, starting from 0.5 seconds up to 0.6 seconds, in step of 1 ms. 

The probability of occurrence for each of the ferroresonant mode was determined and the 

results are presented in Figure 6.19. 

 

Figure 6.19:  Probability of occurrence for different ferroresonant modes 

Figure 6.19 shows that several ferroresonant modes have been induced into the 

transmission system; there are the 10 Hz subharmonic mode, the 16.67 Hz subharmonic 

mode, the 50 Hz fundamental mode and the chaotic mode. The chart shows that none had 

happened for the line length of 5 km. However, the trend reveals that both types of 

subharmonic and fundamental modes are more pronounced when the line length is 

increased to 35 km but the trend is in stochastic fashion. The probabilities of 

ferroresonance occurrences are not directly proportional to the increased in the line length. 
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6.8 Summary 

Ferroresonance is a complex low-frequency transient phenomenon which may occur due to 

the interaction between network coupling capacitance and the nonlinear inductance of a 

transformer. In this case, the UK transmission network has provided an ideal configuration 

for ferroresonance to occur, when one circuit of the double-circuit transmission line is 

switched out but it continues to be energised through coupling capacitance between the 

double-circuit transmission lines.  

 

The ATP software has been employed to assess any likelihood of sustained fundamental 

frequency ferroresonance. The graphical simulation results presented in this chapter clearly 

show that ferroresonance can occur. However, the intended ferroresonance has been 

successfully and effectively damped by a switched-in shunt reactor.  

The onset of ferroresonance phenomenon in this case study is caused by the energisation of 

both transformers SGT4 and SGT5 which were capacitively coupled via adjacent live line 

when one of the double-circuit lines has been switched out. A number of ferroresonant 

modes have been induced; there are the 10 Hz subharmonic mode, the 162/3 Hz 

subharmonic mode, the chaotic mode and the 50 Hz fundamental mode. However, the 

statistically analysis shows that the probability of occurrence of a particular ferroresonant 

mode is random in nature as the line length is increased. Interestingly, ferroresonance is 

not likely to occur for the transmission line length of below 5 km. The reason is due to the 

fact that the circuit-to-circuit capacitances of the double-circuit line are not sufficiently 

large enough to cause the core working in the saturation region.  
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777...   CCCOOONNNCCCLLL UUUSSSIII OOONNN   AAANNNDDD   FFFUUUTTTUUURRREEE   WWWOOORRRKKK    

   

7.1 Conclusion 

The study begins by briefly outlining the main function of power system network and the 

status of the network due to the development of technological equipment, population 

growth and industrial globalisation. Along with network expansion and integration, serious 

concern has been raised on the occurrence of transient related events. The consequences of 

such event may be system breakdown and catastrophic failure of power system 

components such as arrestors, transformers etc.  

One of the transients which are likely to be caused by switching events is a low frequency 

transient, for example ferroresonance. Prior to the introduction of such a phenomenon, a 

linear resonance in a linear R, L and C circuit is firstly discussed, particularly the 

mechanism on how resonance can occur in a linear circuit. Then the differences between 

the linear resonance and ferroresonance are identified in terms of the system parameters, 

the condition for the occurrence of ferroresonance and the types of responses. Several 

ferroresonant modes can be identified and they are namely the fundamental mode, 

subharmonic mode, quasi-periodic mode and chaotic mode. In addition, the tools to 

identify these modes employing frequency spectrum (FFT), Poincaré map and phase-plane 

diagram have been presented. This is followed by looking into the implications of 

ferroresonance on a power system network, ranging from the mal-operation of protective 

device to insulation breakdown. Two general methods of mitigating ferroresonance have 

been discussed to avoid the system being put into stress.                 

Survey into different approaches on modeling of ferroresonance in terms of practical and 

simulation aspects has been carried out. There are five categories of ferroresonance studies 

which have been presented in the literatures; the analytical approach, the analog simulation 

approach, the real field test approach, the laboratory measurement approach and the digital 

computer program approach. The drawback of analytical approach is the complexity of the 

mathematical model to represent an over simplified circuit. The analog simulation and the 
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small scale laboratory approaches on the other hand do not truly represent all the 

characteristics of the real power network. In contrary, the real field test being carried out 

upon the power network will put the test components under stress and even in a dangerous 

position. Despite of the major advantages of computer simulation approach, the major 

drawback of employing computer simulation for modeling the power system network is the 

lack of definite explanation on modeling requirements in terms of selecting the suitable 

predefined models and validating the developed models. The only way to find out the 

validities of the developed models is to compare the simulation results with the field 

recording waveforms.          

Prior to the identification of the individual component model and hence the development 

of the simulation model for a real case scenario, one of the main aims of this study is to 

look into the influence of system parameters on a single-phase ferroresonant circuit. This 

includes (1) the study of the influence of magnetising resistance, Rm (2) the study of 

influence of degree of core saturations with each case in relation to the change of grading 

capacitor of circuit breaker and the ground capacitance. The studies from part (1) turned 

out to be that high core-loss has an ability to suppress the sustained Period-1 

ferroresonance as compared to low-loss iron core which is employed in modern 

transformers. On the other hand, the study from part (2) revealed the followings:  (a) high 

degree of core saturation – sustained fundamental mode is more likely to occur, however, 

subharmonic mode is more likely to happen at high value of shunt capacitor and low value 

of grading capacitor (b) low degree of core saturation - fundamental mode occurs at high 

value of grading capacitor but limited at higher range of shunt capacitor, however, 

subharmonic mode is more likely to occur at high value of shunt capacitor and low value 

of grading capacitor. Chaotic mode starts to occur with low degree of core saturation.        

The fundamental understanding upon the influence of system parameters on ferroresonance 

in a single-phase circuit has been described. Prior to the development of the simulation 

model for the real case three-phase power system network, the identification of the models 

of the circuit breakers, the transformers and the transmission lines in ATPDraw which are 

suitable for ferroresonance study is firstly carried out. The appropriateness of each of the 

predefined model is assessed by applying the criteria supported by CIGRE WG 3.02. In 

regards to the circuit breaker, a simplistic model based on current zero interruption has 

been found to be appropriate as the current study of ferroresonance is only focused on the 
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sustained responses, not the transient part. Next is the transformer model, as this device has 

a great influence on low frequency transients therefore the mathematical derivation of the 

saturation were carried out in order to understand the theoretical background. In addition, 

the influence of harmonic contents when the core operates in deep saturation is also studied. 

It is found that transformer representation for ferroresonance study required the following 

effect to be modeled: the saturation effect, the iron-losses, the eddy current and the 

hysteresis. Saturation effect is for the transformer to include the nonlinearity of core 

characteristic. Iron-loss is actually consists of hysteresis and eddy current losses, these 

losses are used to represent the ohmic loss in the iron core. On the other hand, the 

hysteresis loss is depending on the type of core material. Modern transformers usually 

employed low loss material aimed at improving the efficiency of the transformer. Two 

predefined transformer models in ATPDraw have been identified to provide these features:  

they are the BCTRAN+ and the HYBRID models. The main difference between the two is 

the way the core has been represented. On the other hand, for the transmission line, three 

predefined models in ATPDraw haven been considered: the PI model, the Bergeron model 

and Marti model. As the main aim is to determine the best possible model for 

ferroresonance study, the following combinations as shown in the table have been drawn 

up as case studies.  

 Power Transformer model Transmission line model 
Case Study 1 BCTRAN PI 
Case Study 2 BCTRAN Bergeron 
Case Study 3 BCTRAN Marti 
   

Case Study 4 HYBRID PI  
Case Study 5 HYBRID Bergeron 
Case Study 6 HYBRID Marti 

With each of the case as shown in the table, a simulation model was developed in 

ATPDraw to represent a real test scenario (Thorpe-Marsh/Brinsworth) with an aim to 

reproduce the 3-phase Period-1 and Period-3 ferroresonance matched with the field 

recording ones. The overall outcomes produced from the simulations for all the cases 

suggest that they are all able to match quite well. However, the magnitudes of the Period-1 

red-phase and the blue-phase currents were found to be 50% lower than the real test case. 

On the other hand for the Period-3 ferroresonance, the magnitudes of all the 3-phase 

currents are considerably smaller and in addition to that there is no ripple being introduced 

in both the voltage and current waveforms in the simulation results. Slight improvements 
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have been made to the simulation model, and the results suggest that only the Period-3 

ferroresonance has a slight improvement in terms of their current magnitude and the ripple. 

From the study, it is suggested that transmission line using PI model and transformer 

employed HYBRID model are the most suitable for ferroresonance study. The 

investigations into the key parameter that influence the occurrence of ferroresonance have 

been carried out. The study began by looking into the removal of the transformer coupling 

capacitance, and then followed by removing cable capacitance, the simulation results 

revealed that Period-1 ferroresonance still occurred. Further study is then carried out by 

representing the line in lumped parameter in PI representation and each of the coupling 

capacitances are then evaluated. The studies showed that the sustainable resonance is 

supported by the interaction between the series capacitance (i.e. the circuit-to-circuit 

capacitance) and the saturable core inductance. They in fact provide the resonance 

condition of matching the saturable core inductive reactances thus providing sustainable 

energy transfer. On the other hand, both the ground and line-to-line capacitors supply 

additional discharging currents to the core. 

Once the types of transmission line and the transformer model have been identified which 

are suitable for ferroresonance study, they are then employed to develop another case study 

on a National Grid transmission network with an aim to evaluate the likelihood of 

occurrence of Period-1 ferroresonance. From the simulation, it has been found that the 

Period-1 ferroresonance can be induced into the system. An effort was then carried out to 

suppress the phenomena by switching-in the shunt reactor which is connected at the 13 kV 

winding side. A series of different shunt reactor ratings have been evaluated and it was 

found that a 60 MVAR reactor is able to quench the phenomena in an effective way.  In 

addition, sensitivity study on transmission line length was also carried out and the 

simulation results suggests that sustained fundamental frequency ferroresonance will occur 

for the line length of 15, 20, 25, 30 and 35 km.      

7.2 Future Work 

The major achievement in this project is the identification of the circuit breaker, 

transformer and transmission line models which can be used for ferroresonance study.  

A simplistic time-controlled switch to represent a circuit breaker can be employed without 

considering the circuit breaker’s complex interruption characteristic if a sustained steady-
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state phenomenon is of interest. The predefined transformer models namely the BCTRAN+ 

and the HYBRID are equally capable of representing their saturation effect for the 

transformer magnetic core characteristic to account for ferroresonance events. The 

transmission line models employing both the lumped-parameter (i.e. the PI representation) 

and the distributed-parameter (i.e. the Bergeron and the Marti) models are able to represent 

the double-circuit line.  

 

However the predefined models may not be sufficiently accurate when they are used to 

represent the power system components, especially when differences are noticed as we 

compare the simulation results with the field test recordings. Further work can be done at 

the following aspects: 

I) The method for modeling the core of the transformer in the predefined model is 

based on the open-circuit test report using the 90%, 100% and 110% data. This type of 

core representation to account for saturation effect does not characterise the joint effect of 

the core when being driven into deep saturation. In fact, transformer driven into deep 

saturation may cause more flux distributed into air-gap which in effect will create different 

type of core characteristic which is different from the one extrapolated from the open-

circuit test result. Future work on self built transformer core models should be conducted 

based on real saturation test results. In the case that the deep saturation test results are not 

available, sensitivity studies should be done on the characteristics of the core with various 

degrees of deep saturation.  

 

II) For the transmission line model, either the PI, the Bergeron or the Marti models 

represents the reactance part of the line well, however the resistive losses are differently 

represented and their representation accuracy is hard to assess. For example, there is no 

loss in the PI representation, and some spurious oscillation can be seen in the transient 

simulation results. In view of this, future work should be focusing on how to accurately 

represent the resistive loss in the system and how the loss could affect the initiation of the 

ferroresonance phenomena.      

III) For the modeling of circuit breaker, the time-controlled switch may be suitable 

for the sustained steady-state ferroresonance, however, the detailed interruption 

characteristics such as the high frequency transient currents, the time lags of pole 
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operations and etc may not be fully represented at this stage and can be vital important for 

the detail studies of ferroresonance. Such detailed modeling of normal operations of circuit 

breakers may require further studies.    

 

Besides, the investigation of the initiation of different modes of ferroresonance is an area 

for the future work. The study can be to look into the stochastic manner of the 

ferroresonant circuit following the opening of the circuit breaker at different initial 

conditions, and to look into the onset conditions of different modes which are sensitive to 

system parameters. 
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APPENDIX BAPPENDIX BAPPENDIX BAPPENDIX B    

Appendix B1 – Lumped Parameter 

(1)  Line parameters check 

Firstly, the elements of the modeled line in ATPDraw such as the resistance, inductance and 

the capacitance are compared with the ones determined from MATLAB. The comparison 

between them is shown in Table B1 and Table B2 and the results suggest that both of them 

agreed well with each other.      

The equivalent of the lumped parameters of the 37 km un-transposed double-circuit 

transmission are derived by using the ‘LINE PARAMETERS’ supporting routine in ATP-

EMTP and validated by using MATLAB.  

Table B1:  Equivalent capacitance matrix in farads/km derived from ATP-EMTP 

1 1.0137E-08           
              
2 -1.9887E-09 1.0469E-08         
              
3 -6.3986E-10 -1.9168E-09 1.0783E-08       
              
4 -1.4912E-09 -7.2185E-10 -3.8463E-10 1.0137E-08     
              
5 -7.2185E-10 -6.2432E-10 -5.3740E-10 -1.9887E-09 1.0469E-08   
              
6 -3.8463E-10 -5.3740E-10 -8.5257E-10 -6.3986E-10 -1.9168E-09 1.0783E-08 

(a) capacitance matrix in farads/km for the system of equivalent phase conductors 
 
1 5.8718E-02           
  4.6352E-01           
              

2 3.6893E-02 5.7761E-02         
  1.7754E-01 4.8452E-01         
              
3 3.6721E-02 3.7009E-02 5.8483E-02       
  1.4427E-01 1.9684E-01 4.9292E-01       
              
4 3.7695E-02 3.6837E-02 3.6674E-02 5.8718E-02     
  1.4982E-01 1.3887E-01 1.3049E-01 4.6352E-01     
              
5 3.6837E-02 3.6683E-02 3.6932E-02 3.6893E-02 5.7761E-02   
  1.3887E-01 1.4759E-01 1.5142E-01 1.7754E-01 4.8452E-01   
              
6 3.6674E-02 3.6932E-02 3.7427E-02 3.6721E-02 3.7009E-02 5.8483E-02 
  1.3049E-01 1.5142E-01 1.7153E-01 1.4427E-01 1.9684E-01 4.9292E-01 

(b) Impedance matrix in ohms/km for the system of equivalent phase conductors 
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Equivalent Impedance and capacitance derive from MATLAB is shown in Table B2. 

 
Table B2:  Equivalent Impedance and capacitance derived from MATLAB 

1.0137E-08 -1.9889E-09 -6.4026E-10 -1.4913E-09 -7.2196E-10 -3.8303E-10 
-1.9889E-09 1.0468E-08 -1.9175E-09 -7.2207E-10 -6.2477E-10 -5.3351E-10 
-6.4026E-10 -1.9175E-09 1.0782E-08 -3.8507E-10 -5.3840E-10 -8.4472E-10 
-1.4913E-09 -7.2207E-10 -3.8507E-10 1.0137E-08 -1.9883E-09 -6.4010E-10 
-7.2196E-10 -6.2477E-10 -5.3840E-10 -1.9883E-09 1.0471E-08 -1.9216E-09 
-3.8303E-10 -5.3351E-10 -8.4472E-10 -6.4010E-10 -1.9216E-09 1.0782E-08 

(a) capacitance matrix in farads/km 

5.8700E-02 3.6800E-02 3.6700E-02 3.7700E-02 3.6800E-02 3.6600E-02 
3.6800E-02 5.7700E-02 3.7000E-02 3.6800E-02 3.6600E-02 3.6900E-02 
3.6700E-02 3.7000E-02 5.8500E-02 3.6700E-02 3.6900E-02 3.7400E-02 
3.7700E-02 3.6800E-02 3.6700E-02 5.8700E-02 3.6800E-02 3.6700E-02 
3.6800E-02 3.6600E-02 3.6900E-02 3.6800E-02 5.7700E-02 3.7000E-02 
3.6600E-02 3.6900E-02 3.7400E-02 3.6700E-02 3.7000E-02 5.8500E-02 

(b) Resistance matrix in ohms/km 

1.4754E-03 5.6609E-04 4.5958E-04 4.7685E-04 4.4292E-04 4.1527E-04 
5.6609E-04 1.5430E-03 6.2672E-04 4.4292E-04 4.7037E-04 4.8131E-04 
4.5958E-04 6.2672E-04 1.5688E-03 4.1565E-04 4.8203E-04 5.4456E-04 
4.7685E-04 4.4292E-04 4.1565E-04 1.4754E-03 5.6609E-04 4.5959E-04 
4.4292E-04 4.7037E-04 4.8203E-04 5.6609E-04 1.5430E-03 6.2715E-04 
4.1527E-04 4.8131E-04 5.4456E-04 4.5959E-04 6.2715E-04 1.5688E-03 

(c) Inductance matrix in ohms/km 

As can be seen from both Tables B1 and B2, the self and mutual impedances, and 

capacitances derived from both methods have shown a good agreement between each other.  

(2) Line parameters frequency scan check  

Here, the overview performance of the developed line model that is developed in the PI model 

is verified with the line model with an exact PI equivalent (baseline) as a function of 

frequency. The aim here is to check the parameters of the modeled line operating at a required 

specific frequency range are being modeled correctly. As ferroresonance is a low frequency 

phenomenon which has a frequency range from 0.1 Hz to 1 kHz, then the developed line is 

put into test by sweeping over a range of frequency from 1 Hz up to 10 kHz to see whether it 

is able to represent its parameters correctly for ferroresonance study. The outcomes of the 

frequency scans are shown in Figure B1 to Figure B6, displaying the positive-sequence 

impedance, the zero-sequence impedance and the mutual-sequence impedances with all the 

three phases, labelled as Red, Yellow and Blue phases. 
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PI model  

 
 

 
 

 
 

Figure B1:  Circuit 1:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 1: Positive Sequence Impedance - Blue Phase
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Circuit 1: Positive Sequence Impedance - Yellow Pha se
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Circuit 1: Positive Sequence Impedance - Red Phase
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Figure B2:  Circuit 2:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 2: Positive Sequence Impedance - Blue Phase
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Circuit 2: Positive Sequence Impedance - Yellow Pha se
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Circuit 2: Positive Sequence Impedance - Red Phase
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Figure B3:  Circuit 1:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 1: Zero Sequence Impedance - Blue Phase
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Circuit 1: Zero Sequence Impedance - Yellow Phase
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Circuit 1: Zero Sequence Impedance - Red Phase
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Figure B4:  Circuit 2:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 2: Zero Sequence Impedance - Blue Phase
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Circuit 2: Zero Sequence Impedance - Yellow Phase
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Circuit 2: Zero Sequence Impedance - Red Phase
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Figure B5:  Circuit 1:  Mutual sequence impedance for phase red, yellow and blue 
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Circuit 1: Mutual Sequence Impedance - Blue Phase

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

X: 1.17
Y: 0

%
 E

rr
or

 (
x1

00
0)

Log(frequency)

X: 1.69
Y: 0

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

Lo
g(

Im
pe

da
nc

e)
 

Circuit 1: Mutual Sequence Impedance - Yellow Phase
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Circuit 1: Mutual Sequence Impedance - Red Phase
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Figure B6:  Circuit 2:  Mutual sequence impedance for phase red, yellow and blue 

As it is expected that the line is able to model correctly for Period-1 and Periofd-3 therefore 

the percentage errors of the impedance reproduced by the modeled line at frequencies of 15 

Hz and 50 Hz are compared with the ones generated from the baseline model. The results are 

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

Lo
g(

Im
pe

da
nc

e)
 

Circuit 2: Mutual Sequence Impedance - Blue Phase
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Circuit 2: Mutual Sequence Impedance - Yellow Phase
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Circuit 2: Mutual Sequence Impedance - Red Phase
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presented in Table B3 suggest that the errors reproduced by the modeled line are relatively 

low and in good accuracy.   

    Table B3:  Percentage errors of modeled line in PI  
 Circuit 1 Circuit 2 
Baseline 
Exact PI 

Line 
 Red 

Line 
Yellow 

Line  
Blue 

Line  
Red 

Line 
Yellow 

Line 
 Blue 

Frequency 
(Hz) 

15 50 15 50 15 50 15 50 15 50 15 50 

 

Positive sequence 
(% Error) 

0 0 0 0 0 0 0 0 0 0 0 0 

Zero sequence 
(%Error) 

-3.3 0.5 -2.6 -0.2 -1.6 0.2 -3.3 -0.5 -2.6 -0.2 -1.6 0.2 

Mutual sequence 
(% Error) 

Modeled 
line in PI 

 

0 0 0 0 0 0 0 0 0 0 0 0 

Appendix B2 – Distributed Parameter 

Once the line has been setup accordingly in the predefined model, the next step is to verify the 

line such that it is accurately be represented for modeling of ferroresonance. Since 

experimental results are not available for comparing purposes, the way to deal with this is to 

carry out the line checks as follows; 

(1) Line parameters frequency scan check 

Similar to PI model, the performance of the developed line in Bergeron and J. Marti models 

are verified with the baseline as a function of frequency. Similar to the previous way, the 

results from the scans are presented as shown in Figure B7 to Figure B12 for Bergeron model 

and Figure B13 to Figure B18 for J. Marti model.  
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Bergeron model 

 
 

 
 

 

Figure B7:  Circuit 1:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 1: Positive Sequence Impedance - Blue Phase
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Circuit 1: Positive Sequence Impedance - Yellow Pha se
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Circuit 1: Positive Sequence Impedance - Red Phase
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Figure B8:  Circuit 2:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 2: Positive Sequence Impedance - Blue Phase
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Circuit 2: Positive Sequence Impedance - Yellow Pha se
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Circuit 2: Positive Sequence Impedance - Red Phase
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Figure B9:  Circuit 1:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 1: Zero Sequence Impedance - Blue Phase
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Circuit 1: Zero Sequence Impedance - Yellow Phase
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Circuit 1: Zero Sequence Impedance - Red Phase
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Figure B10:  Circuit 2:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 2: Zero Sequence Impedance - Blue Phase
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Circuit 2: Zero Sequence Impedance - Yellow Phase
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Circuit 2: Zero Sequence Impedance - Red Phase
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Figure B11:  Circuit 1:  Mutual sequence impedance for phase red, yellow and blue 
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Circuit 1: Mutual Sequence Impedance - Blue Phase
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Circuit 1: Mutual Sequence Impedance - Yellow Phase
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Circuit 1: Mutual Sequence Impedance - Red Phase

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

X: 1.17
Y: -0.00633

%
 E

rr
or

 (
x1

00
0)

Log(frequency)

X: 1.69
Y: -0.000138

Exact PI (Baseline)

Bergeron model



Appendices 

248 

 
 

 
 

 
 

 

Figure B12:  Circuit 2:  Mutual sequence impedance for phase red, yellow and blue 

Table B4 shows the percentage errors reproduced by the modeled line as compared with the 

baseline one.   
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Circuit 2: Mutual Sequence Impedance - Blue Phase
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Circuit 2: Mutual Sequence Impedance - Yellow Phase
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Circuit 2: Mutual Sequence Impedance - Red Phase
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Table B4:  Percentage errors of modeled line in Bergeron  
 Circuit 1 Circuit 2 
Baseline 
Exact PI 

Line 
 Red 

Line 
Yellow 

Line  
Blue 

Line  
Red 

Line 
Yellow 

Line 
 Blue 

Frequency 
(Hz) 

15 50 15 50 15 50 15 50 15 50 15 50 

 

Positive sequence 
(% Error) 

-1.6 1.6e-3 -9.3 0.09 9.6 0.006 -1.6 1.6e-3 -9.3 0.09 9.6 0.006 

Zero sequence 
(%Error) 

-7.2 -0.2 -3.6 -0.1 -0.9 -0.1 -7.2 -0.2 -3.6 -0.1 -0.9 -0.1 

Mutual sequence 
(% Error) 

Modeled 
line in  

Bergeron 
 

-6.3 -0.1 -3.6 -0.1 -1.7 -0.09 -7.7 -0.2 -2.6 -0.2 1.6 -0.1 
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J. Marti model 

 
 

 
 

 

Figure B13:  Circuit 1:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 1: Positive Sequence Impedance - Blue Phase
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Circuit 1: Positive Sequence Impedance - Yellow Pha se
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Circuit 1: Positive Sequence Impedance - Red Phase
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Figure B14:  Circuit 2:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 2: Positive Sequence Impedance - Yellow Pha se
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Circuit 2: Positive Sequence Impedance - Blue Phase
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Circuit 2: Positive Sequence Impedance - Red Phase
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Figure B15:  Circuit 1:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 1: Zero Sequence Impedance - Blue Phase
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Circuit 1: Zero Sequence Impedance - Yellow Phase
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Circuit 1: Zero Sequence Impedance - Red Phase
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Figure B16:  Circuit 2:  Zero sequence impedance for phase red, yellow and blue 
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Circuit 2: Zero Sequence Impedance - Blue Phase
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Circuit 2: Zero Sequence Impedance - Yellow Phase
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Circuit 2: Zero Sequence Impedance - Red Phase
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Figure B17:  Circuit 1:  Mutual sequence impedance for phase red, yellow and blue 
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Circuit 1: Mutual Sequence Impedance - Blue Phase
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Circuit 1: Mutual Sequence Impedance - Yellow Phase

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

X: 1.17
Y: -0.00515

%
 E

rr
or

 (
x1

00
0)

Log(frequency)

X: 1.69
Y: 0.0001335

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6
Lo

g(
Im

pe
da

nc
e)

 
Circuit 1: Mutual Sequence Impedance - Red Phase
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Figure B18:  Circuit 2:  Mutual sequence impedance for phase red, yellow and blue 
 

Table B5 shows the percentage errors reproduced by the modeled line as compared with the 

baseline one.   
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Circuit 2: Mutual Sequence Impedance - Blue Phase
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Circuit 2: Mutual Sequence Impedance - Yellow Phase
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Circuit 2: Mutual Sequence Impedance - Red Phase
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Table B5:  Percentage errors of modeled line in J. Marti  
 Circuit 1 Circuit 2 
Baseline 
Exact PI 

Line 
 Red 

Line 
Yellow 

Line  
Blue 

Line  
Red 

Line 
Yellow 

Line 
 Blue 

Frequency 
(Hz) 

15 50 15 50 15 50 15 50 15 50 15 50 

 

Positive sequence 
(% Error) 

-8.9 -3 -0.9 -1.3 12.8 5.3 -8.9 -3 -0.9 -1.3 12.8 5.3 

Zero sequence 
(%Error) 

-11.6 -1.9 -7 0.016 -3.2 2.2 -11.6 -1.9 -7 0.016 -3.2 2.2 

Mutual sequence 
(% Error) 

Modeled 
line in PI 

 

-9.9 -2.3 -5.2 -0.13 -2.6 1.5 -14.4 -1.2 -9.7 -0.2 -4.1 3.4 

(2) Transmission line model rules check [64] 

There are three criteria that the users must make sure to check when a predefined model based 

on Bergeron is employed to model a transmission line and they are listed as follows: 

i) Rule 1 - “If the parameters of the line such as the inductance and the capacitance 

are equal to zero, then it is not a line model”. 

ii)  Rule 2 - “The characteristic impedance of the transmission line, c
LZ C= (Ω) 

must lie within 200 Ω ≤ Zc ≤ 1000 Ω, otherwise the surge impedance of the line is 

not correct”. 

iii)  Rule 3 - “The propagation speed of the transmission line, 1v
LC

=  (m/s) must 

be within 250,000 km/s ≤ v ≤ 300,000 km/s, or else the speed of the line is not 

correct”. 

Now, let us see whether the developed line model can be classified as a valid line by assessing 

its characteristics to the three rules which have been described above. Rule 1 has been met 

because the parameters of the line are not zero and this can be seen in Table B1 and Table B2. 

The surge impedances and the velocities for the developed lines that are generated from the 

ATPDraw is shown in Table B6. 
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                 Table B6:  Surge impedance and velocity from Bergeron model 
Surge impedance 

Modal 
Mode 

Real 
 (ΩΩΩΩ) 

Imaginary 
(ΩΩΩΩ) 

Calculated 

cZ  

(ΩΩΩΩ) 

Velocity 
(km/s) 

1 8.0164E+02 -7.3601E+01 8.0501E+02 2.1241E+05 
2 3.5059E+02 -9.8551E+00 3.5073E+02 2.9107E+05 
3 3.4015E+02 -1.1975E+01 3.4036E+02 2.9370E+05 
4 2.9266E+02 -9.8378E+00 2.9282E+02 2.9555E+05 
5 2.6990E+02 -1.0037E+01 2.7008E+02 2.9542E+05 
6 2.5996E+02 -9.8378E+00 2.6014E+02 2.9531E+05 

From Table B6, Mode 1 is the ground mode which is normally less than the speed of light 

because of the wave propagates back through the ground conductor. On the other hand, the 

rest are the line-to-line modes which are normally have a travelling speed close to the speed 

of light.  

Therefore the modes which are required to take into consideration to meet Rule 2 and Rule 3 

are Mode 2 to Mode 6 of the modeled line. The results to meet Rule 2 and Rule 3 are 

presented in  Table B7 and these suggest that the line characteristic impedances and the speed 

of the travelling wave has been modeled correctly.        

   Table B7:  37 km modeled line applied to Rule 1, 2 and 3 – Bergeron model 
Rule 1  

L  and C = 0? 
37 km modeled 

line 
The line consists of all the parameters which can be referred to 

Table B1 and Table B2 
 

Rule 2 Rule 3 33 km modeled 
line  200 ΩΩΩΩ ≤≤≤≤ Zc ≤≤≤≤ 1000 ΩΩΩΩ 250,000 km/s ≤≤≤≤ v ≤≤≤≤ 300,000 km/s 

Mode 2 3.5073E+02 2.9107E+05 
Mode 3 3.4036E+02 2.9370E+05 
Mode 4 2.9282E+02 2.9555E+05 
Mode 5 2.7008E+02 2.9542E+05 
Mode 6 2.6014E+02 2.9107E+05 

Since there is no surge impedance and velocity of wave generated from the J. Marti model 

therefore an alternative way to check the line is to carry out the transmission line check as 

presented in the following section.  
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 (3) Transmission line model length check  

Lastly, the validation of the line is further checked by determining its line length via traveling 

wave approach. This is carried out by determining the time delay, td that is the time of the 

wave propagates from sending-end from point A to receiving-end at point C at the instant 

when the switch SW is closed, which is shown in Figure B55.  

 

Figure B55:  Wave propagation along the line 

The time delay, td is determined by using ATPDraw and it is shown in Table B8. The distance 

of the transmission line is obtained as 36.6 km, with the speed of light being 3×105 km/s. 

Therefore the line can be considered modeled correctly.   

                 Table B8:  Line distant obtained from travelling wave 
Modeled line Time delay (µµµµs) Distance (km) 

Bergeron 122 36.6 
J. Marti 122 36.6 
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APPENDIX CAPPENDIX CAPPENDIX CAPPENDIX C    

Determination of current-flux characteristic using supporting routine SATURA 

The input data-deck for the supporting routine SATURA has been developed which has the 

following Data Case. 

 

(a)  SATURA Supporting Routine 

 
(i) Per-unit base specification 
  
• FREQ:  frequency (in Hz) of the impressed sinusoidal voltage source. 

 
∴∴∴∴FREQ = 50 
 

• VBASE:  single-phase base voltage (in kV) on which the input break points are based. 
 
∴∴∴∴VBASE = 13 

 
• SBASE:  single-phase base power (in MVA) on which the input break points are  
                           based. 
 

∴∴∴∴SBASE = 60/3 = 20 
 

BEGIN NEW DATA CASE 
################################################################################ 
              Supporting Routine SATURA 
################################################################################ 
SATURATION 
$ERASE 
################################################################################ 
               Per-unit base specification 
################################################################################ 
         1         2         3         4         5         6         7         8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 
< FREQ ><VBASE ><SBASE ><IPUNCH><KTHIRD> 
 
################################################################################ 
              IR.M.S and VR.M.S Data 
################################################################################ 
         1         2         3         4         5         6         7         8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 
< IR.M.S (P.U) >< VR.M.S (P.U) > 
        
################################################################################ 
              Termination 
################################################################################ 
         1         2         3         4         5         6         7         8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 
            <  > 
            9999   
$PUNCH 
BLANK LINE ending saturation data 
BEGIN NEW DATA CASE 
BLANK LINE ENDING ALL CASES 
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• IPUNCH:  parameters controlling the punched card output of the derived (flux-
current) characteristic. 

 
IPUNCH = 0:  no curve will be punched; 
                = 1:  curve will be punched, provided the $PUNCH card is being  
                        specified  

 
∴∴∴∴IPUNCH  = 1 

 
• KTHIRD:  parameters controlling the type of output. 
 

KTHIRD = 0:  only first quadrant; 
                 = 1:  full curve (first- and third-quadrant output)  
                  

∴∴∴∴ KTHIRD = 0  
 
 
(ii) IR.M.S and VR.M.S data 
 
Values are in per-unit, based on the previously-specified single-phase based. 
 

 base
base

base

S
I

V
= , ( ) ( )

( )
RMS

RMS
base

I A
I pu

I A
= , ( ) ( )

( )
RMS

RMS
base

V kV
V pu

I kV
=  

 
 
(b) Transformer SGT1:  1000 MVA, 400/275/13 kV, Vector:  YNa0d11 (5 legs) 
 
                                          Table 1:  No-load loss data                           

NO-LOAD LOSS on TERT. (60 MVA) 
VOLTS 

% MEAN  R.M.S 
AMPS kWatts 

   5.25 
90 11700 11810 6.00 
   7.28 

96.3 

   12.30 
100 13000 13217 12.40 

   14.75 
127.9 

   55.2 
110 14300 14903 54.3 

   56.8 
175.3 

 
Where R.M.S Volts = excitation voltage (line-line value), AMPS = excitation current (RMS, 

three-phase values), kWatts = excitation loss (three-phase value) 
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At a first approximation, the RMS excitation current Iex,w in DELTA winding equals  
 

   ,
3
ex

ex w

I
I =  (harmonic neglected) 

 
Further, the RMS magnetizing current, Im,w in the DELTA is approximated by  
 

   
2

2
, , 3

ex
m w ex w

ex

P
I I

U

 
≈ −  

 
 

 
Where Uex = excitation voltage (RMS, line-line value) 
             Iex = excitation current (RMS, three-phase values) 
            Pex = excitation loss (three-phase value) 
 
Hence, the above measured Table reduces to following saturation characteristic: 
 

Irms(pu) Vrms(pu)  Current (A) Flux-linkage (Wb-T) 
1.5006E-03 9.0846E-01  3.2649E+00 5.3164E+01 
4.4674E-03 1.0167E+00  1.5849E+01 5.9498E+01 
2.0646E-02 1.1464E+00  7.3791E+01 6.7088E+01 

 
The corresponding output from the punch file looks as follows:   

 
 
 
 
 
 

C  <++++++>  Cards punched by support routine on  16-Mar-10  15:53:38  <++++++> 
C SATURATION 
C $ERASE 
C C ############################################################################ 
C C               Per-unit base specification 
C C ############################################################################ 
C C        1         2         3         4         5         6         7 
C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 
C C FREQ ><VBASE ><SBASE ><IPUNCH><KTHIRD> 
C 50           13.    20.      1       0 
C C ############################################################################ 
C C               IR.M.S and VR.M.S Data 
C C ############################################################################ 
C C        1         2         3         4         5         6         7 
C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 
C C IR.M.S (P.U) >< VR.M.S (P.U) > 
C       1.5006E-03      9.0846E-01 
C       4.4674E-03      1.0167E+00 
C       2.0646E-02      1.1464E+00 
C C ############################################################################ 
C C               Termination 
C C ############################################################################ 
C C        1         2         3         4         5         6         7 
C C 3456789012345678901234567890123456789012345678901234567890123456789012345678 
C C           <  > 
C             9999 
  3.26487519E+00  5.31635884E+01 
  1.58486260E+01  5.94978539E+01 
  7.37913599E+01  6.70879706E+01 
            9999 
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APPENDIX DAPPENDIX DAPPENDIX DAPPENDIX D 

(1) Line parameters check 

The equivalent of the lumped parameters of the 33 km un-transposed double-circuit 

transmission are derived by using the ‘LINE PARAMETERS’ supporting routine in ATP-

EMTP and validated by using MATLAB. The results of the capacitance and impedance 

matrices are presented as shown in Table D1 and Table D2. 

 

Table D1:  Equivalent capacitance matrix in farads/km derived from ATP-EMTP 

1 1.1068E-08      
        

2 -2.3598E-09 1.1563E-08     

        

3 -7.3718E-10 -2.2536E-09 1.1355E-08    
        

4 -1.7211E-09 -9.5576E-10 -4.0548E-10 1.1068E-08   
        

5 -9.5576E-10 -1.2594E-09 -8.1546E-10 -2.3598E-09 1.1563E-08  
        
6 -4.0548E-10 -8.1546E-10 -1.2339E-09 -7.3718E-10 -2.2536E-09 1.1355E-08 

(b) capacitance matrix in farads/km for the system of equivalent phase conductors 
 

1 6.1130E-02      
  4.4535E-01      
        
2 3.8924E-02 5.9265E-02     
  1.8902E-01 4.6750E-01     
        
3 3.8235E-02 3.7991E-02 5.8980E-02    
  1.5333E-01 2.0592E-01 4.8011E-01    
        
4 4.0118E-02 3.8898E-02 3.8209E-02 6.1130E-02   
  1.5977E-01 1.5630E-01 1.4075E-01 4.4535E-01   
        
5 3.8898E-02 3.8247E-02 3.7959E-02 3.8924E-02 5.9265E-02  
  1.5630E-01 1.7844E-01 1.7060E-01 1.8902E-01 4.6750E-01  
        
6 3.8209E-02 3.7959E-02 3.7956E-02 3.8235E-02 3.7991E-02 5.8980E-02 
  1.4075E-01 1.7060E-01 1.8662E-01 1.5333E-01 2.0592E-01 4.8011E-01 

(c)  Impedance matrix in ohms/km for the system of equivalent phase conductors 
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Equivalent Impedance and capacitance derive from MATLAB is shown in Table D2. 

Table D2:  Equivalent Impedance and capacitance derived from MATLAB 

1.1068E-08 -2.3598E-09 -7.3718E-10 -1.7211E-09 -9.5575E-10 -4.0548E-10 
-2.3598E-09 1.1563E-08 -2.2536E-09 -9.5575E-10 -1.2594E-09 -8.1546E-10 
-7.3718E-10 -2.2536E-09 1.1355E-08 -4.0548E-10 -8.1546E-10 -1.2339E-09 
-1.7211E-09 -9.5575E-10 -4.0548E-10 1.1068E-08 -2.3598E-09 -7.3718E-10 
-9.5575E-10 -1.2594E-09 -8.1546E-10 -2.3598E-09 1.1563E-08 -2.2536E-09 
-4.0548E-10 -8.1546E-10 -1.2339E-09 -7.3718E-10 -2.2536E-09 1.1355E-08 

(d) capacitance matrix in farads/km 

6.1200E-02 3.8900E-02 3.8300E-02 4.0200E-02 3.8900E-02 3.8200E-02 
3.8900E-02 5.9300E-02 3.8000E-02 3.8900E-02 3.8300E-02 3.8000E-02 
3.8300E-02 3.8000E-02 5.9000E-02 3.8200E-02 3.8000E-02 3.8000E-02 
4.0200E-02 3.8900E-02 3.8200E-02 6.1200E-02 3.8900E-02 3.8300E-02 
3.8900E-02 3.8300E-02 3.8000E-02 3.8900E-02 5.9300E-02 3.8000E-02 
3.8200E-02 3.8000E-02 3.8000E-02 3.8300E-02 3.8000E-02 5.9000E-02 

(e) Resistance matrix in ohms/km 

1.4177E-03 6.0169E-04 4.8801E-04 5.0864E-04 4.9751E-04 4.4793E-04 
6.0169E-04 1.4880E-03 6.5534E-04 4.9751E-04 5.6791E-04 5.4291E-04 
4.8801E-04 6.5534E-04 1.5281E-03 4.4793E-04 5.4291E-04 5.9384E-04 
5.0864E-04 4.9751E-04 4.4793E-04 1.4177E-03 6.0169E-04 4.8801E-04 
4.9751E-04 5.6791E-04 5.4291E-04 6.0169E-04 1.4880E-03 6.5534E-04 
4.4793E-04 5.4291E-04 5.9384E-04 4.8801E-04 6.5534E-04 1.5281E-03 

(f) Inductance matrix in ohms/km 

As can be seen from both Tables D1 and D2, the self and mutual impedances, and 

capacitances derived from both methods have shown a good agreement between each other.  

(2) Line parameters frequency scan check 

The outcomes of the frequency scans are depicted in Figure D1 to Figure D6, showing the 

positive-sequence impedance, the zero-sequence impedance and the mutual-sequence 

impedances with all the three phases. Those results suggest that the model is suitable for the 

study of the expected Period-1 ferroresonance because the parameters of developed model are 

able to fit well with the baseline exact PI equivalent at 50 Hz frequency, with very small 

percentage error.           
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Figure D1:  Circuit 1:  Positive sequence impedance for phase red, yellow and blue 
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Figure D2:  Circuit 2:  Positive sequence impedance for phase red, yellow and blue 
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Circuit 2: Positive Sequence Impedance - Blue Phase

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

X: 1.17
Y: 0.00953

%
 E

rr
or

 (
x1

00
0)

Log(frequency)

X: 1.69
Y: 4e-005

Exact PI (Baseline)

Bergeron model



Appendices 

266 

 
 

 

Figure D3:  Circuit 1:  Zero sequence impedance for phase red, yellow and blue 
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Figure D4:  Circuit 2:  Zero sequence impedance for phase red, yellow and blue 
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Figure D5:  Circuit 1:  Mutual sequence impedance for phase red, yellow and blue 
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Figure D6:  Circuit 2:  Mutual sequence impedance for phase red, yellow and blue 
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(3) Transmission line model rules check  

Rule 1 has been met because the parameters of the line are not zero and this can be seen in 

Table D1 and Table D2. The surge impedances and the velocities for the developed line 

model are determined as shown in Table D3. 

                 Table D3:  Data generated from the ATPDraw  
Surge impedance 

Modal 
Mode 

Real 
 (ΩΩΩΩ) 

Imaginary 
(ΩΩΩΩ) 

Calculated 

cZ  

(ΩΩΩΩ) 

Velocity 
(km/s) 

1 8.5350E+02 -7.8235E+01 8.5708E+02 2.1806E+05 
2 3.1775E+02 -1.0009E+01 3.1791E+02 2.9354E+05 
3 3.2310E+02 -1.2062E+01 3.2333E+02 2.9394E+05 
4 2.6212E+02 -9.7396E+00 2.6230E+02 2.9519E+05 
5 2.3210E+02 -9.7934E+00 2.3231E+02 2.9478E+05 
6 2.4466E+02 -9.9108E+00 2.4486E+02 2.9502E+05 

The results to meet Rule 2 and Rule 3 are presented in Table D4 and these suggest that the 

line characteristic impedances and the speeds of the travelling wave have been modeled 

correctly.        

   Table D4:  33 km modeled line applied to Rule 1, 2 and 3 
Rule 1  

L  and C = 0? 
33 km modeled 

line 
The line consists of all the parameters which can be referred to 

Table D1 and Table D2 
 

Rule 2 Rule 3 33 km modeled 
line  200 ΩΩΩΩ ≤≤≤≤ Zc ≤≤≤≤ 1000 ΩΩΩΩ 250,000 km/s ≤≤≤≤ v ≤≤≤≤ 300,000 km/s 

Mode 2 3.1791E+02 2.9354E+05 
Mode 3 3.2333E+02 2.9394E+05 
Mode 4 2.6230E+02 2.9519E+05 
Mode 5 2.3231E+02 2.9478E+05 
Mode 6 2.4486E+02 2.9502E+05 

(4) Transmission line model length check  

Lastly, the validation of the line is further checked by determining its line length via traveling 

wave approach. The simulation result of sending and receiving wave are shown in Figure D5. 

The time delay, td is determined by using ATPDraw as 111 µs and the line distance is 

obtained as 33.3 km. Therefore the line can be considered modeled correctly. 
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Figure D5:  Time delay of the two propagate waves 
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