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ABSTRACT 

It has been recognized that the evaporation process is one of the pivotal 

mechanisms driving thermo-acoustic instability in gas turbines and rockets in particular. 

In this regard, this study is principally focused on studying the evaporation process 

relevant to thermo-acoustic instability from three complementary viewpoints in an effort 

to contribute to an overall instability model driven primarily by evaporation in gas 

turbine combustors. Firstly, a state of the art LES algorithm is employed to validate an 

evaporation model to be employed in predictive modelling regarding combustion 

instabilities. Good agreement between the numerical predictions and experimental data 

is achieved. Additionally, transient sub-critical droplet evaporation is investigated 

numerically. In particular, a numerical method is proposed to capture the extremely 

important pressure-velocity-density coupling. Furthermore, the dynamic system 

nonlinear behaviour encountered in classical thermo-acoustic instability is investigated. 

The Poincaré map is adopted to analyse the stability of a simple non-autonomous 

system considering a harmonic oscillation behaviour for the combustion environment. 

The bifurcation diagram of a one-mode model is obtained where the analysis reveals a 

variety of chaotic behaviours for some select ranges of the bifurcation parameter. The 

bifurcation parameter and the corresponding period of a two-mode dynamic model are 

calculated using both analytical and numerical methods. The results computed by 
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different methods are in good agreement. In addition, the dependence of the bifurcation 

parameter and the period on all the relevant coefficients in the model is investigated in 

depth. Moreover, a discrete dynamic model accounting for both combustion and 

vaporization processes is developed.  In terms of different bifurcation parameters 

relevant to either combustion or evaporation, various bifurcation diagrams are 

presented. As part of the nonlinear characterization, the governing process Lyapunov 

exponent is calculated and employed to analyze the stability of the particular dynamic 

system. The study has shown conclusively that the evaporation process has a significant 

impact on the intensity and nonlinear behaviour of the system of interest, vis-à-vis a 

model accounting for only the gaseous combustion process. Furthermore, two particular 

nonlinear control methodologies are adopted to control the chaotic behaviour displayed 

by the particular aperiodic motions observed. These algorithms are intended to be 

implemented for control of combustion instability numerically and experimentally to 

provide a rational basis for some of the control methodologies employed in the 

literature. Finally, a state of the art neural network is employed to identify and predict 

the nonlinear behaviour inherent in combustion instability, and control the ensuing 

pressure oscillations. Essentially, the NARMAX model is implemented to capture 

nonlinear dynamics relating the input and output of the system of interest. The 

simulated results accord with the results reported. Moreover, a control system using the 

NARMA-L2 algorithm is developed. The simulation conclusively points to the fact that 

the amplitude of pressure oscillations can be attenuated to an acceptable level and the 

controller proposed may be implemented in a practical manner. 
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CHAPTER 1  

CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

The problem of thermo-acoustic instability in practice can occur in many different ways with 

liquid-fuelled gas turbine combustors, which is more likely as a consequence of the 

interaction between the combustion chamber acoustics and one or more processes 

related to liquid injection, primary atomization, secondary atomization, chemical 

kinetics, evaporation and liquid heating and mixing. If compensating influences to 

attenuate the resulting oscillations are relatively weak, unsteady motions in combustors 

may reach sufficient amplitude which can interfere with the proper operation of the 

system, have serious impact on behaviour and performance of engines and even cause 

the impairment of components of combustors. 
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In the past, thermo-acoustic instability has been investigated experimentally, 

analytically and computationally. It has been extensively appreciated that nonlinear 

behaviour inherent to this problem is the key to have an in-depth understanding of the 

potential mechanisms. In addition, it is of particular significance to delineate 

comprehensive mechanisms for thermo-acoustic instability, as the bifurcation behaviour 

and the multiplicity of solutions for a given nonlinear system are seldom considered in 

the currently employed experimental and numerical studies (CFD) carried out for 

thermo-acoustic instability. Therefore, it is extremely necessary to study the nonlinear 

behaviour associated with thermo-acoustic instability using tools that can explore the 

variation of certain parameters covering the entire operational conditions. Such 

considerations also pointed out by Culick (2006), enforce the notion that each numerical 

(CFD) simulation is, in general, only one particular case and it is, to some extent, 

difficult to generalize limited results to gain a fundamental understanding of thermo-

acoustic instability in totality. 

Furthermore, as pointed out by Sirignano and co-workers (1989; 1994; 1996), 

the vaporization of droplets is the key process in the driving mechanism for thermo-

acoustic instability in liquid fuelled gas turbine combustors and the simple steady state 

vaporization models routinely employed in the literature in the context of gas turbine 

combustion are not appropriate for use in the study of thermo-acoustic instability for 

vaporizing sprays, when the ambient is unsteady. Thus, the two-way coupling between 

the vaporization and acoustic fields for droplet should be paid more attention to. 

Moreover, as thermo-acoustic/combustion instability occurs, corresponding control 

methods should be employed to eliminate the interaction between heat released by 

reactions and acoustics in the combustion chamber. 
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1.2 Objective and Strategy 

It has been recognized that the evaporation process is one of the key 

mechanisms driving thermo-acoustic instability in gas turbines and rockets in particular, 

as pointed out by Sirignano and co-workers (1989; 1994; 1996; 1999). In this regard, 

this crucial process is investigated in a progress update manner in this thesis. 

Furthermore, this study is primarily focused on studying the evaporation process 

relevant to thermo-acoustic instability from three complementary viewpoints in an effort 

to contribute to an overall instability model driven primarily by evaporation in gas 

turbine combustors. In terms of the vaporization of a single droplet surrounded by hot 

air, a detailed numerical simulation in conjunction with the pressure-velocity-density 

coupling is developed to capture the two-way coupling between the evaporation process 

and pressure oscillations inherent in thermo-acoustic instability, whereas the influence 

of forced convection effects is neglected, but is taken into account in the nonlinear 

analysis that follows by incorporating velocity dependent terms in the perturbation 

energy field. Moreover, Large Eddy Simulations (LES) in conjunction with appropriate 

evaporation model are used to validate evaporation cases. Since the environment outside 

droplets is relatively stationary (free from oscillations and hence quasi-steady), it is 

justifiable to employ the energy balance and the Frössling correlation to obtain the 

droplet temperature and droplet radius in the classical manner without the benefit of a 

detailed model to account for the unsteady influences, which however are crucially 

important for an oscillating environment as pointed out previously. Hence for this 

simple hydrodynamic validation case, the two-way coupling mentioned above can be 

neglected. Furthermore, work on nonlinear/chaotic analysis is required to delineate the 

entire operational map of relevant parameters regarding the nonlinear behaviour 

associated with thermo-acoustic instability, an effort that has seldom been 
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attempted/accomplished in the past. As pointed out by Culick (2006), each numerical 

(CFD) simulation is, in general, only one particular case and it is, to some extent, 

difficult to generalize limited results to gain a fundamental understanding of thermo-

acoustic instability in totality. The evaporation model used here can physically represent 

the mass transfer between the droplets and the host fluid as a monopole sound source is 

a crucial driver of thermo-acoustic instability. Consequently, the variation of certain 

parameters covering the entire operational conditions can be explored by the dynamic 

model accounting for intricate coupling between combustion, evaporation and acoustics. 

Additionally, Poincaré map and bifurcation are adopted to demonstrate the nonlinear 

performance and Lyapunov exponents are calculated to reveal the stability of the 

system. Moreover, different control algorithms are proposed to control thermo-acoustic 

instability.  

1.3 Outline of the Thesis 

In this thesis, the work done is arranged into 8 chapters. Chapter 2 presents a 

review regarding the problem of thermo-acoustic/combustion instabilities, which covers 

most of the relevant mechanisms reported in the literature, providing the background of 

this research. 

Numerical simulations of liquid fuel injection, evaporation and mixing in a gas 

turbine combustion chamber are implemented using LES in Chapter 3. Validation of the 

numerical predictions is performed in comparison with the experimental data provided 

by Sommerfeld and Qiu (1998). This work is intended to validate the evaporation 

model, as a good primer for the future numerical studies on thermo-acoustic 

instabilities. 
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  Transient analyses of sub-critical evaporation of fuel droplet are presented in 

Chapter 4. A detailed numerical simulation is implemented and the numerical method of 

pressure-velocity-density coupling is developed to capture the two-way coupling 

between the evaporation process and pressure oscillations inherent in thermo-acoustic 

instabilities. 

Chapter 5 is concerned with the dynamic system nonlinear behaviour 

encountered in classical thermo-acoustic instability. The Poincaré map is adopted to 

analyze the stability of a simple non-autonomous system considering a harmonic 

oscillation behaviour for the combustion environment. The bifurcation diagram of a 

one-mode model is obtained. Moreover, the bifurcation parameter and the 

corresponding period of a two-mode dynamic model are calculated using both analytical 

and numerical methods. In addition, the dependence of the bifurcation parameter and 

the period on all the relevant coefficients in the model is investigated in depth.  

In Chapter 6, a discrete dynamic model accounting for both combustion and 

vaporization processes is developed. In terms of different bifurcation parameters 

relevant to either combustion or evaporation, various bifurcation diagrams are 

presented. Furthermore, the Lyapunov exponent is calculated and employed to analyze 

the stability of the particular dynamic system. In addition, two particular nonlinear 

control methodologies are employed to control the chaotic behaviour displayed by the 

particular aperiodic motions observed. These algorithms are intended to provide a basis 

for some of the control methodologies numerically and experimentally employed in 

thermo-acoustic instability. 
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In terms of a typical gas turbine combustor, a state of the art neural network is 

employed to identify and predict the nonlinear behaviour inherent in combustion 

instability, and control the ensuing pressure oscillations in Chapter 7. 

Finally, chapter 8 concludes the thesis with a summary regarding the results 

obtained. In addition, further work on the subject is put forward. 
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CHAPTER 2  

CHAPTER 2 

BACKGROUND 

 

2.1 Introduction 

In this chapter, a brief review regarding the prior studies of thermo-acoustic/combustion 

instabilities reported in the literature is presented to build up the background on the 

subject under concern. The following sections primarily cover discussions on the 

driving mechanisms, stability criteria, numerical simulations, nonlinear/chaotic 

behaviour, and control of thermo-acoustic/combustion instabilities, which may benefit 

understanding the complexity of the problem of interest. 

2.2 Mechanisms for Combustion Instabilities 

It is presently realized that the heat release from chemical reactions is the main 

source of energy driving unsteady flow oscillations and the energy needed to induce 

unsteady motions is an exceedingly small fraction of the heat release (Culick and 
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Fig.  2.1  Schematic Diagram of a Combustion System as a Feedback Amplifier 
 

Yang, 1992; Culick and Yang, 1995). Nevertheless, combustion instabilities may not be 

excited and/or sustained unless a certain dynamic condition between heat release 

fluctuations and acoustic pressure oscillations is satisfied in a combustion chamber as 

shown in Fig. 2.1, which was first identified by Lord Rayleigh (1945). In his book, The 

Theory of Sound, a clear physical interpretation of the interchange of energy between 

sound waves and unsteady heating in a Rijke tube is given as 

“If heat be periodically communicated to, and abstracted from, a mass of 

air vibrating (for example) in a cylinder bounded by a piston, the effect 

produced will depend upon the phase of the vibration at which the 

transfer of heat takes place. If heat be given to the air at the moment of 

greatest condensation, or be taken from it at the moment of greatest 

rarefaction, the vibration is encouraged. On the other hand, if heat be 

given at the moment of greatest rarefaction, or abstracted at the moment 

of greatest condensation, the vibration is discouraged.” (Rayleigh, 1945) 

which is the well-known Rayleigh criterion. It states that the amplitude of a sound wave 

will increase when heat is added in phase with its pressure perturbation, whereas the 

addition of heat out of phase with its pressure oscillation may attenuate the amplitude. 

Moreover, Chu (1965) proposed a generalized Rayleigh’s criterion in a comprehensive 

manner, considering the effect of boundary conditions and viscous dissipation in 
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addition to the exchange of energy between combustion and the acoustic waves.  In the 

case of a combustor of volume V bounded by the surface S demonstrated in Fig. 2.2, it 

may be written as (Crighton et al., 1992) 

Fig.  2.2  Combustion within a Resonator 
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where ε is the acoustic energy which contains the kinetic energy, εK, and potential 

energy, εP; ρ ′ and p′denote the perturbation in density and pressure, respectively; c0 

and ρ0 are the mean values of sound speed and density, respectively; Q′  represents the 

combustion rate per unit volume; γ is the ratio of specific heat , defined as the ratio of 

the heat capacity at constant pressure, Cp, to heat capacity at constant volume, Cv, viz., γ 

= Cp/Cv.  

The term of the left-hand side of Equation (2.1) represents the rate of change of 

the acoustic energy within a combustion chamber; the first term of the right-hand side 

denotes the interchange between the combustion and the acoustic waves, which is 

intended to rise in the case of p′ in phase with Q′ , as noted by Rayleigh (1945); the 

second term of the right-hand side denotes the loss of energy through the boundary, S; 

the last term is the loss of energy due to the viscous disspation. Equation (2.1) exhibits 
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that the acoustic energy will grow, if the energy gain from combustion is greater than 

the entire losses of energy across the bounding surface and/or by the viscous 

dissipation. Therefore, the amplitude of acoustic modes will increase as the sum of the 

righ-hand side of Eq. (3.6) is positive, viz.,  

( ) ( )∫∫∫ ′⋅∇−′−′′>′′
−

V
ij

S
ij

V
dVudSuupdVp

c
ττ

ρ

γ
Q

2
00

1
                    (2.3) 

where ( )⋅  denotes an average over one period of the acoustic oscillation. If this 

condition is satisfied, the thermo-acoustic/combustion instability consequently occurs. 

Furthermore, experimental and numerical findings have revealed that, during the growth 

of the amplitude of pressure perturbuation, the primary acoustic energy increases 

exponentially, and ultimately levels off at a certain limiting amplitude (defined as a 

limit cycle) owing to the nonlinear effects for a given system. In terms of some 

particular cases, the overshoot growth zone, in which the amplitude of pressure 

oscillation is slightly larger than the limit cycle amplitude, has been identified probably 

because of the inertia effect of the medium within the combustion chamber (Poinsot and 

Veynante, 2005). 

As far as liquid-fuelled gas turbine combustors are concerned, thermo-

acoustic/combustion instability can arise from various fundamental processes involved 

within a combustion chamber as summarized in Fig. 2.3. It was reported by Culick and 

Yang (1995) that the interactions between combustion chamber acoustics and one or 

more processes displayed in Fig. 2.3 may act as a mechanism for exciting and 

sustaining thermo-acoustic instability. Among candidate driving mechanisms, Sirignano 

et al. (1994) categorized three types of mechanisms. The first type is related to a 

combustion process which is rate controlling and has a characteristic time of the same 

order of the period of pressure oscillation, such as evaporation of droplets and chemical 

kinetics. The second type is associated with processes which may affect the 

characteristic time of some other rate-controlling process. An example of this type is 

atomization which has impact on the droplet distribution and, consequently, affects 

evaporation. The third type also has an indirect influence and may contribute to the 
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spatial distribution of the combustion, which could generate variations in the local 

response associated with the coupling with a particular mode of acoustics, for example, 

mixing and injection. 

  

Fig.  2.3  Schematic Summary of Processes in Liquid-Fuelled Combustors 
 

Particularly, in the past, the vaporization process, as one of the key factors 

driving thermo-acoustic instability, has been investigated by a number of researchers 

(Strahle, 1965; Harrje and Reardon, 1972; Culick, 1988; Tong and Sirignano, 1989; 

Sirignano et al., 1994; Duvvur, Chiang, Sirignano, 1996; Lei and Turan, 2009b). 

Compared with the other processes within combustion chamber, vaporization, in 

general, is the slowest, and hence may be the rate-controlling process, as argued by 

Sirignano et al. (1995). To understand the interaction of a vaporizing droplet with a 

surrounding oscillating field, transient droplet heating and vaporization have been 

studied by a number of researchers (Tong and Sirignano, 1989; Hsieh, Shuen and Yang, 

1991; Delplanque and Sirignano, 1993; Abramzon and Sirignano, 1989; Chiang and 

Sirignano, 1993; Duvvur et al., 1996). Recently, the effect of the oscillating gas 
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pressure and velocity on the evaporation rate of droplets was examined by Tong and 

Sirignano (1989) and it was revealed that, under certain circumstances, the 

vaporization-rate response function can be sufficient to induce combustion instability. 

More recently, using a detailed calculation of a single droplet surrounded by the 

oscillating field, Duvvur et al. (1996) concluded that for certain frequency ranges and 

initial droplet sizes, instabilities can arise in an evaporation-rate-controlled chamber 

owing to the vaporization process. Moreover, in terms of the vaporization process, a 

general Rayleigh criterion was evaluated by Sirignano and co-workers (Tong and 

Sirignano, 1989; Duvvur, Chiang and Sirignano, 1996). The growth and decay of the 

wave can be determined by the net in-phase or out-of-phase mass addition (Sirignano, 

1999). Therefore, the method involving modulations of the evaporation process for 

liquid fuels has been extensively employed to control combustion instability (Sattinger 

et al., 2000; Dowling and Morgans, 2005; Lee, Lubaarsky and Zinn, 2005; Paschereit 

and Gutmark, 2008). 

2.3 Acoustic Motions in Combustion Chambers 

Fig.  2.4  Acoustic Modes of a Cylindrical Chamber 
 

As mentioned above, combustion instabilities are, in general, characterized by 

the coupling between combustion processes and acoustic motions within a combustion 

chamber. In terms of a cylindrical chamber with length L and radius R as shown in Fig. 
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2.4, the corresponding acoustic modes (l, m, s) for each frequency are expressed as 

(Yang, Wicker and Yoon, 1995; Poinsot and Veynante, 2005) 
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where l, m and s represent the longitudinal, tangential and radial mode numbers, 

respectively; (r, θ, z) represent cylindrical coordinates; Jm is the Bessel function of order 

m; the values of βms are the roots of ( ) 0=′
msmJ πβ .  

Fig. 2.4 displays three types of acoustic modes in the chamber under 

consideration. Although there are, in nature, infinite acoustic modes existing in the 

chamber, just certain modes excited can interact with the combustion processes, a fact 

that has been recognized experimentally, numerically and analytically (Yang et al., 

1995; Huang et al., 2003; Huang and Yang, 2005; Culick, 2006). Furthermore, it should 

be noted that the mutual coupling between acoustic modes may occur and the acoustic 

energy can be transferred from lower modes to higher modes and vice versa owing to 

the nonlinear gasdynamics in a chamber, as reported by Ananthkrishnan et al. (2005).  

2.4 Numerical Simulations on Gas Turbine Combustors 

One of the challenging difficulties on combustion instability studies is that the 

vortices created during instabilities are generally never observed in stable regimes 

(Poinsot and Veynante, 2005). Therefore, appropriate numerical methods are required to 

capture large-scale vortices in reacting flows for combustion instabilities. In the past, a 

state of the art computational fluid dynamics (CFD) has been extensively employed for 

gas turbine combustion chambers (Baum and Levine, 1982, 1983, 1988; Lupoglazoff 
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and Vuillot, 1991; Menon and Jou, 1991; Wang, 1997; Kim, et al., 1999; Angelberger, 

Veynante and Egolfopoulos, 2000; Huang et al., 2003; Roux et al., 2005; Selle, Benoit 

et al., 2006; Selle, Lartigue et al., 2006; Menon and Patel, 2006; Martin et al., 2006; 

Schmitt, Poinsot et al., 2007). In particular, Large Eddy Simulations (LES) of reactive 

flows are utilized as a standard technique for understanding combustion instabilities, 

since LES can capture large-scale vortices in reacting flows and mimic the fine-scale 

turbulent structures indirectly by a subgrid model. In addition, because combustion 

instability mainly depends on very large scale structures, LES may perform better to 

characterize the dynamics of turbulent flame. 

Kim et al. (1999) investigated a swirl-stabilized gas turbine combustor flow, and 

a complex vortex shedding pattern with significant azimuthal structures was identified.  

The combustion dynamics in a lean-premixed swirl-stabilized gas-turbine combustor 

was reported by Huang et al. (2003). More recently, LES in conjunction with acoustic 

flame-acoustic modelling and the NSCBC (Navier-Stokes Characteristic Boundary 

Conditions) method was employed to predict combustion instability for premixed gas 

turbine combustors by Poinsot and co-workers (Selle et al., 2004; Roux et al., 2005; 

Selle, Benoit et al., 2006; Selle, Lartigue et al., 2006; Martin et al., 2006; Schmitt, 

Poinsot et al., 2007). However, in terms of the liquid-fuelled gas turbine combustors, 

few studies regarding thermo-acoustic/combustion instability have been reported due to 

the complicated processes particularly involving atomization and vaporization of the 

liquid fuel. In the past, more efforts on multiphase reacting flows have been made to 

validate the detailed processes within liquid-fuelled combustors, such as droplet 

dispersion, droplet evaporation, breakup etc. (Apt, Gorokhovski and Moin, 2003; Moin 

and Apte, 2006; Menon and Patel, 2006). 
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2.5 Nonlinear Behaviours of Combustion Instability 

As discussed in Section 2.2, there are various resulting performances involving 

the limit cycle emerged in gas turbine combustors, which may be stemmed from the 

nonlinear effects. Hence, it is primarily necessary to identify the nonlinear/chaotic 

behaviours inherent in thermo-acoustic/combustion instabilities. Historically, the 

analytical methods can be categorized into two groups characterized as linear analysis 

(Culick, 1961; Culick, 1963) and nonlinear analysis chronologically. In particular, the 

various nonlinear behaviours observed in combustion instability have been investigated 

experimentally, analytically and computationally by a number of authors (Culick, 

1976a, 1976b; Dubinkin et al., 1978; Levine and Baum; 1981; Yang, Kim and Culick, 

1988, 1990; Sterling, 1993; Huang et al., 2002; Ananthkrishnan et al., 2005; Lieuwen, 

2002; Lei and Turan, 2009a, 2009b). Culick (1976a, 1976b) put forward a second-order 

nonlinear dynamic model using the Galerkin method, which was extended to third-order 

by Yang et al. (Yang, Kim and Culick, 1987, 1988). This dynamic model is widely 

utilized to analyze the nonlinear behaviour inherent in combustion instability for a 

combustion chamber. The triggering conditions for the different modes in the chamber 

were given by Yang, Kim and Culick (1987, 1988, 1990). The bifurcation phenomena 

and the transitional process were reported by Sterling (1993). The limit cycle occurring 

in solid rocket motors was discussed using a numerical method by Levine and Baum 

(1981). The bifurcation occurring in a dump combustor was confirmed by experiments 

in literature (Lieuwen and Yang, 2005). More recently, to understand fully the 

underlying mechanisms relevant to combustion instability, nonlinear analyses have been 

employed in a more comprehensive manner (Dubinkin et al., 1978; Levine and Baum, 

1981; Sterling, 1993; Huang et al., 2002; Lieuwen, 2002; Ananthkrishnan et al., 2005). 

Huang et al. (2002) argued that the heat transfer coefficient between the wall and the 
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burned gas is an important bifurcation parameter for the combustion instability. 

Ananthkrishnan et al. (2005) stated the dependence of the inter-modal energy transfer 

on the relevant parameters and reported the existence of a Hopf bifurcation related to 

thermo-acoustic instability. The bifurcation behaviour of a flame in a combustion 

chamber was reported in the work (Dubinkin et al., 1978). The fractal dimension of the 

corresponding attractors associated with the acoustic modes participating in the pressure 

oscillations in a combustion chamber was outlined by Sterling (1993). Lei and Turan 

(2009a) identified the nonlinear/chaotic behaviour inherent in thermo-acoustic 

instability using dynamic models based on reasonable considerations. The hysteresis 

inherent to combustion instability was revealed in addition to other interesting 

phenomena. Moreover, a discrete dynamic model accounting for both combustion and 

vaporization processes was developed (Lei and Turan, 2009b).  In terms of the different 

bifurcation parameters related to combustion and/or evaporation, various bifurcation 

diagrams are correspondingly presented. In addition, the governing process Lyapunov 

exponent was calculated and employed to analyze the stability of the particular dynamic 

system. 

2.6 Control of Combustion Instabilities 

Fig.  2.5  Genetic System for Active Control of Combustion Instabilities 
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The generalized Rayleigh criterion given by Equation (2.3) in essence 

demonstrates the measurements taken to eliminate thermo-acoustic instability in terms 

of a certain system. Physically, the damping sources by the bounding surface and/or 

viscous dissipation should be enhanced and, alternatively, the interaction of combustion 

with acoustics, ∫ ′′
V

dVp Q , should be interrupted. In the past, to reverse this criterion, 

passive control and active control have been used (Tsien, 1952; Putnam, 1971; Lang, 

Poinsot et al., 1987; Bloxsidge et al., 1988; Culick 1988; Langhorne, Dowling and 

Hooper, 1990; Richards and Janus, 1998; Steele et al. 2000; Eldredge and Dowling 

2003; Richards et al. 2003; Dowling and Morgans, 2005; Coker, 2006; Conrad, Zinn et 

al., 2007; Morgans and Stow, 2007; Richards et al., 2007; Yi and Gutmark, 2008; 

Morgans and Annaswamy, 2008; Cohen et al., 2008). For passive control, the insertion 

of baffles within the combustor (Richards and Janus 1998; Steele et al., 2000) or the 

installation of Helmholtz resonators (Gysling et al., 2000; Bellucci et al., 2004), quarter 

wave tubes (Joshi et al., 1994), perforated plates, or acoustic liners (Eldredge and 

Dowling, 2003) was applied to attenuate thermo-acoustic instability. However, the 

problems associated with passive approaches are that they tend to be effective only over 

a limited range of operating conditions, they may be ineffective at the low frequencies 

at which some of the most damaging instabilities occur, and the changes of design 

involved are usually costly and time consuming, as pointed out by Dowling and 

Morgans (2005). Alternatively, active control of combustion instabilities has 

demonstrated more advantages in applicability and effectiveness. A genetic system of 

active control is given in Fig. 2.5 (Dowling and Morgans, 2005), in which an actuator is 

exerted to modify a certain system parameter according to a feedback signal measured, 

and the relationship between the measured signal and the signal used to drive the 

actuator is appropriately specified by the controller to decouple the interaction between 
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the unsteady heat release and acoustic waves (Langhorne, Dowling and Hooper, 1990; 

Richards et al., 2007; Yi and Gutmark, 2008). In particular, Lei and Turan (2010c) 

identified and predicted the nonlinear behaviour inherent in combustion instability and 

correspondingly developed a control system using a state of the art neural network. 
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CHAPTER 3  

CHAPTER 3 

MODELLING OF LIQUID FUEL INJECTION, 

EVAPORATION AND MIXING IN A GAS TURBINE 

COMBUSTION CHAMBER USING LES 

 

3.1 Introduction 

To obtain high-fidelity numerical solution of reacting flows associated with liquid-

fuelled gas turbine combustors, it is required to accurately capture momentum coupling, 

mass and energy interaction, subgrid-scale (SGS) modulation of turbulence, the 

resulting turbulent combustion processes, etc. As part of an effort to capture these 

phenomena mentioned above, the two-phase flow in a coaxial combustion chamber is 

studied. The primary objectives of this work are to have an in-depth understanding of 

the effectiveness and limitations of current state-of-art SGS models and evaporation 

model.  
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In the past, most numerical studies emphasized the particle-turbulence coupling 

in simplified geometries and the influences of gas-phase velocity fluctuations on the 

particle dispersion behaviour (Eaton and Fessler, 1994; Maxey and Patel, 2001; Apte et 

al., 2003). Here, these analyses, by taking advantage of the most recent modelling 

approach in conjunction with LES, are extended and validated to make this state-of-art 

framework feasible for more complex systems in the future work. 

3.2 Formulation 

3.2.1 Gas Phase LES Equations 

Generally, to obtain the governing equations employed for LES, the time-

dependent Navier-Stokes equations are filtered in either the Fourier (wave-number) 

space or configuration (physical) space (Pope, 2000; Poinsot and Veynante, 2005). The 

filtering operation can effectively eliminate eddies with the scales smaller than the filter 

width or grid spacing specified in the computations. In FLUENT (2006), the space 

filtering procedure is used and a filtered variable is defined as  

( ) ( ) Vd
V

V

∈′′′= ∫∫∫ xxxx ,
1~

φφ                                 (3.1) 

where V is the volume of a computational cell. The filter function, ( )xx ′,G , adopted here 

is  

( )
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Thus, the governing equations by filtering the instantaneous balance equations 

are obtained as: 
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where Vk,i is the i-component of the diffusion velocity Vk of species k; sm� , siF ,
� , skS ,

�  and 

skQ ,
�  represent the source terms in continuity, momentum, species and energy equations, 

respectively; 

� �

i

i

Dp p p
u

Dt t x

∂ ∂
= +
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�
                                         (3.7) 

and ijσ~ is the stress tensor due to molecular viscosity given as 
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In terms of filtered laminar diffusion fluxes for species and enthalpy, these molecular 

fluxes may be modelled through a gradient assumption, viz. 
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and the energy flux iq  is defined as 
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In addition, the subgrid terms representing the subgrid-scale stress tensor sgs

ijτ , the 

subgrid heat flux sgs

jsh , , the subgrid viscous work sgs

jT , the subgrid species mass fraction 

flux sgs

jkY ,  and the subgrid enthalpy flux sgs

jq , are respectively defined as 
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and the pressure-velocity term in Equation (3.7) is approximated by 
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Consequently, the Favre filtered Navier-Stokes equations for mass, momentum, species 

and energy may be rewritten as (Poinsot and Veynante, 2005) 
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It should be noted that in these filtered equations, the unresolved SGS terms 

involving sgs

ijτ , sgs

jsh , , sgs

jT , sgs

jkY ,  and sgs

jq  must be modelled to close the system of 

interest. 

3.2.2 SGS Fluxes Modelling 

This section is to provide the closure models regarding the unresolved SGS 

fluxes discussed above including SGS stresses �( )i j i j
u u u u− � � , SGS mass fraction 

fluxes �( )k j k j
Y u Y u− � � , SGS enthalpy fluxes �( )s j s j

h u h u− � �  and all the other SGS terms. 
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Wall-Adapting Local Eddy-Viscosity (WALE) Model 

In the past decades, considerable SGS models have been proposed. Among these 

models, the Smagorinsky-Lilly model (Smagorinsky, 1963; Lilly, 1966) is popular due 

to its simple formulation. To remove the uncertainties inherent in the Smagorinsky-Lilly 

Model in terms of the Smagorinsky coefficient, the Dynamic Smagorinsky-Lilly Model 

was developed by Germano et al. (1991). More recently, the Wall-Adapting Local 

Eddy-Viscosity (WALE) Model was proposed by Nicoud and Ducros (1999) and the 

Dynamic Kinetic Energy Model was developed by Kim and Menon (1995). In this 

work, WALE is employed to calculate the SGS viscosity. 

To calculate the subgrid-scale stresses resulting from the filtering operation, 

Boussinesq hypothesis (Hinze, 1975) is used 

ijtijkkij Sµδττ 2
3

1
−=−                                           (3.21) 

where µt is the subgrid-scale turbulent viscosity; τkk represents the isotropic part of the 

subgrid-scale stresses, which, in FLUENT, is added to the filtered static pressure term; 

δij is the Kronecker-delta function; ijS  is the rate-of-strain tensor for the resolved scale 

defined by 
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Furthermore, WALE may be employed to obtain the SGS viscosity shown in 

Equation (3.21), which takes into consideration both the effects of strain and rotation 

rates. Thus, the SGS viscosity is defined as 
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and Ls is the mixing length for subgrid scales computed using  

( )3
1

,min VCdL ws κ=                                           (3.25) 

in which κ is the von Kármán constant, d is the distance to the closest wall, Cw is the 

WALE constant, and V is the volume of the computational cell. 

 It should be noted that the true behaviour of the flow near the walls including 

transition effects and laminarization may be captured using WALE. The model 

constant, Cw, is specified to be 0.325 in order to consider both anisotropy and non-

homogeneity inherent in the turbulent flow, as pointed out by Nicoud and Ducros 

(1999). 

Unresolved Scalar Fluxes 

 The SGS mass fraction fluxes and the SGS heat fluxes are modelled using a 

gradient assumption given as (Poinsot and Veynante, 2005) 
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where Sct is the SGS turbulent Schmidt number and σt is the SGS turbulent Prandtl 

number. In addition, the other SGS terms including subgrid viscous work sgs

jT and the 

subgrid enthalpy fluxes sgs

jq  are neglected in FLUENT. 

3.2.3 Liquid Phase Treatment 

 To model the spray, the discrete phase model (DPM) is employed. Assuming 

that that each parcel has droplet particles with the same properties including droplet 

diameter, speed and temperature etc., the droplet parcels (groups of droplets) are tracked 

spatially and temporally using a Lagrangian formulation, in which the discrete phase 

and the continuous phase are coupled through source terms in the governing equations 

involving mass/species sources owing to evaporation, momentum source by the change 

of momentum of the phases, energy source due to heat transfer between two phases 

and/or the temperature variation through evaporation etc. Note that in this work, two-

way coupling is taken into consideration, which indicates that source terms of both 

liquid phase and gaseous phase are updated in the computation. 

Droplet Trajectory 

 To obtain the position of a parcel, one could explicitly integrate the parcel 

equation of motion 

∫
+

+=+ 11 n

n

t

t
p

n

p

n

p dtuxx                                          (3.28) 

where n

px  is the location of the parcel at previous time step, tn, and up is the 

instantaneous parcel velocity updated by integrating the force balance on the parcel, 

which is written in a Lagrangian reference frame as 



CHAPTER 3: MODEL OF LIQUID FUEL INJECTION, EVAPORATION AND MIXING USING LES 

 
 

48 

( )pD

p
F

dt

d
uu

u
−=                                               (3.29) 

where ( )
pDF uu − is the drag force per unit particle mass and  

24

Re18
2

dD

pp

D

C

d
F ⋅=

ρ

µ
                                             (3.30) 

in which u is the gas phase velocity obtained using the filtered LES velocity, µ is the 

molecular viscosity of the fluid, ρg is the gas density, ρp is the density of the particle, dp 

is the particle diameter, Red is the relative Reynolds number defined as  

µ

ρ uu −
=

ppg

d

d
Re                                              (3.31) 

and CD is the droplet drag coefficient calculated using 

[ ]
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24
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if
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C d                               (3.32) 

which have been validated to yield a good agreement with experimental results by 

Caraeni et al. (2000). Additionally, in this work, other forces including gravity are 

neglected in the similar manipulation done by Caraeni et al. (2000) and James et al. 

(2006). Moreover, to account for the effects of droplet distortion, a modification 

regarding the drag coefficient proposed by Liu et al. (1993) is used as 

( )yCC DD 632.21* +=                                       (3.33) 

where y is the droplet distortion, which is calculated in the same manner as the break-up 

process discussed later. Note that in the limit of no distortion, viz. y = 0, the drag 
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coefficient of a sphere will be obtained, whereas at maximum distortion, viz. y = 1, the 

drag coefficient corresponding to a disk will be obtained. 

Evaporation Model 

 The evaporation sub-model used in this work is based on the assumptions that 

the evaporation process may be regarded as representing single droplet evaporation and 

the droplets have homogeneous temperature and constant density. First of all, the 

droplet temperature is updated according to an energy balance related to the sensible 

heat change in the droplet and the convective and latent heat transfer between two 

phases, given as  

( ) dpd

p

p

d

lpp

p
QrTL

dt

dr
r

dt

dT
C

r
32

,

3

44
3

4
ππρ

π
=−                   (3.34) 

where Cp,l is the liquid specific heat and L(Td) is the latent heat of evaporation and Qd is 

the rate of heat conduction define using Ranz-Marshall correlation as 

( ) ( )
d

p

dgf

d Nu
r

TTT
Q

2

−⋅
=

α
                                    (3.35) 

where α(Tf) is the thermal diffusivity, Tf is the film temperature defined using “1/3” 

rule, Tf = Td + 1/3(Tg-Td), Tg and Td are the gas and the droplet temperature respectively, 

and Nud is the Nusselt number taken as 

3
1

2
1

PrRe6.00.2 dddNu +=                                         (3.36) 

in which Prd is the Prandtl number 

( ) ( )
( )

f

fgpfg

d
T

TCT

α

µ ,Pr =                                         (3.37) 
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where Cp,g is the gas specific heat at constant pressure and µg is the gas viscosity. Note 

that the enthalpies, liquid vapour pressure and other properties for the material of 

interest are specified to be temperature-dependent (Polling et al., 2001).  

In addition, the Frössling correlation is employed to obtain the droplet radius 

rate of change due to evaporation given as 

( )
Sh

r

BTD

dt

dr

pp

dfmgp

ρ

ρ

2
−=                                          (3.38) 

where Dm is the fuel diffusivity in the mixture, Bd is the mass transfer number and Sh is 

the Sherwood number, given respectively by 
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=
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                                                (3.39) 
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6002 dd SceRSh .. +=                                       (3.40) 

( )
( )
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fg

d
TD

T
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ρ

µ
=                                             (3.41) 

in which Yl is the fuel vapour mass fraction, Scd is the Schmidt number and s

lY  is the 

fuel mass fraction at the droplet surface obtained using Raoult’s law 
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where pv is the liquid vapour pressure and p is the ambient pressure; Wg and Wl are the 

molecular weights for liquid and gaseous phases, respectively. 
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Breakup Model 

Considering Webber number associated with this case of interest, the Taylor 

analogy breakup (TAB) model developed by Taylor (1963) and O'Rourke and Amsden 

(1987) is employed to model droplet break-up process. This method is based on 

Taylor’s analogy (Taylor, 1963) between an oscillating and distorting droplet and a 

spring mass system. The distortion equation is given as: 

dt

dy
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C
y
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dt
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2

2
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ρ

σ

ρ

ρ
−−=                     (3.43) 

where ur is the relative velocity of the droplet, R is the undisturbed droplet radius, and σ 

is the droplet surface tension, µp is the droplet viscosity; Ck, CF, Cd, and Cb are model 

constants, which in this work, are taken as 8.0, 1/3, 5.0 and 0.5, respectively, to match 

experiments (Lamb, 1945). Assuming the relative velocity is constant, one may obtain 

the solution of Equation (3.43) 
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where  
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22
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t p
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µ
=                                           (3.48) 

( )00 yy =                                              (3.49) 

( )
dt

dy

dt

dy 00 =                                            (3.50) 

in which We is the droplet Weber number and ω is the droplet oscillation frequency. In 

addition, breakup occurs, provided the following condition is satisfied 

1>+ AWec                                          (3.51) 

where A is the amplitude for an undamped oscillation defines as 

( )
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 In addition, the energy correlation between the energy of the parent droplet and 

the one of the child droplet is used to determine the size of the child droplets. The 

energy of the parent droplet was given by O'Rourke and Amsden (1987) as 
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where K is the ratio of the total energy in both distortion and oscillation to the energy in 

the fundamental mode, with the order of 10/3. The energy of the child droplet is 
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in which r32 is the Sauter mean radius of the droplet distribution. Equating the energy of 

the parent and child droplets and setting y = 1 and 3/8 rpρσω = , one may obtain the 

size of the child droplet 

( )







 −
++

=

120

56/

20

8
1

232
32

KdtdyrKy

r
r

p

σ

ρ
                            (3.55) 

According to mass conservation, the number of child droplets can be calculated by 

30
0









=

r

r
NN                                               (3.56) 

where r0 and N0 are the radius and the number of droplets at the previous time step, 

respectively. 

 In terms of the velocity of child droplets, it is assumed that a velocity component 

normal to the parent droplet velocity is imposed on the child droplets. Thus, the velocity 

of child droplets is give by 

dt

dy
rCCv bvchild =                                        (3.57) 

where Cv is a constant of order 1. 

Turbulent Dispersion of Droplets 

 The stochastic tracking model (random walk) is also employed to predict the 

dispersion of droplets owing to turbulence in the carrier fluid. In this approach, the 

effect of instantaneous turbulence velocity fluctuations on the droplet trajectories is 

taken into consideration through integrating the trajectory equations for individual 
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droplets along the droplet particle path. The droplet is assumed to interact with the 

carrier phase over the smaller of the eddy lifetime and the eddy crossing time, which are 

defined respectively as 

( )χτ logLe T−=                                              (3.58)  











−−=

r

e
cross

u

L

τ
ττ 1ln                                  (3.59) 

where χ is a uniform random number between 0 and 1 and TL is the integral time, which 

make use of the equivalent LES time scales for LES model in FLUENT;  τ is the droplet 

relaxation time and Le is the eddy length scale, |ur| is the magnitude of the relative 

velocity. 

 In terms of numerical methods employed for both gas phase and liquid phase, 

the details regarding temporal discretization, spatial discretization and pressure-velocity 

coupling etc. are provided in Appendix A. 

3.3 Results and Discussion 

3.3.1 Computation Domain and Flow conditions 

Simulations of a coaxial jet are preformed based on the experiments of 

Sommerfield and Qiu (1998) to validate the capability of LES in conjunction with 

evaporation model. Fig. 3.1 shows the computational domain, which primarily contains 

the chamber with a diameter of 200 mm and a length of 1500 mm and the annulus with 

the inner diameter of 40 mm, the outer diameter of 64 mm and the length of 100 mm. 

The grid adopted for flow simulations consists of about 3.2 million cells shown in Figs. 

3.2-3.3, validated to be grid-independent. The main parameters for different cases are 
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summarized in Table 3.1. In terms of the cold case, the heated air with the temperature 

of 373 K and the air mass flow rate of 29.0 g/s is introduced into the chamber through 

the annulus and the maximum air velocity is 18 m/s. For the hot case, droplets of 

isopropyl alcohol with the initial uniform temperature of 311 K are injected through the 

central wall region according to the measured size-velocity correlations and the total 

droplet mass flow rate in this case is 0.44 g/s. It should be pointed out that the droplet 

velocity-size correlations adopted may mimic a conical spray with a spray angle of 

around 60 degree. The Reynolds number at inlet annulus is about 2.116×104.  

To model the cases of interest numerically, the mass flow rate is specified at the 

inlet and a sufficiently long introduction section is defined to arrive at the fully 

developed flow into the chamber. In addition, the pressure outlet boundary conditions 

are specified at the outlet. It should be noted that the wall temperature profiles given by 

experiments (Sommerfeld and Qiu, 1998) are used, as shown in Fig. 3.4. The 

temperature-dependent relations regarding thermal properties of two phases involving 

heat capacity, viscosity and evaporation pressure etc. are employed, as given in 

Appendix B. 

 

Table 3.1  Flow Condition for the Single- and Two-Phase Flows 
 

Case 

Air Vol. 

Flow Rate 

(m
3
/s) 

Air Mass 

Flow Rate 

(g/s) 

Max. Air 

Velocity 

(m/s) 

Air 

Temp. 

(
0
C) 

Flow 

Reynolds 

Number 

Liquid mass 

Flow Rate 

(g/s) 

Liquid Temp. 

at Nozzle Exit 

(
0
C) 

Cold 

Case 
0.032 29.0 18.0 100.0 8,577.0 - - 

Hot 

Case 
0.031 28.3 18.0 100.0 8,309.0 0.44 34.0 
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Fig.  3.1  Geometrical View of Computation Domain 

 
 
 
 
 

Fig.  3.2  Axial-Coordinate Mesh 
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Fig.  3.3  Radial-Coordinate Mesh 

 
Fig.  3.4  Wall Temperature Profiles along the Axial Direction 

 

3.3.2 Numerical Predictions for the Cold Flow 

 In terms of the cold flow case, comparisons between the current numerical 

predictions and experimental data measured by Sommerfeld et al. (1998) are presented 

in Figs. 3.5-3.6. It can be seen in Figs. 3.5-3.6 that good agreements between 

calculations and experimental data regarding both axial mean velocity and axial rms 

velocity are achieved. Additionally, two recirculation zones built up in the flow field are 
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captured, as reported in experimental studies (Sommerfeld and Qiu, 1998). However, it 

should be noted that, in the central recirculation zone, the rms axial velocity is slightly 

under-predicted probably because of the SGS models used and/or measurement errors.  

Furthermore, the instantaneous contour of axial velocity in the symmetry plane, Y = 0, 

and the contours of mean axial velocity at different cross sections are shown in Figs. 3.7 

and 3.8, respectively, in which the recirculation regions are clearly visible. These results 

may reveal that the present simulation can capture the flow characteristics for the cold 

case and can be extended to the evaporation case. 
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Fig.  3.5  Comparison of Numerical Predictions and Experimental Measurements on Mean 
Axial Velocities 

 

 

Fig.  3.6  Comparison of Numerical Predictions and Experimental Measurements on rms Axial 
Velocities 
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Fig.  3.7  Instantaneous Axial Velocity for Cold Case 
 

 

 

Fig.  3.8  Mean Axial Velocity at Different Cross Sections  
(z = 0.025, 0.05, 0.1, 0.2, 0.3 and 0.4 m) 
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3.3.3 Numerical Predictions for the Hot Case 

 In terms of the hot case, comparisons between the current numerical predictions 

and experimental data measured by Sommerfeld et al. (1998) are presented in Figs. 3.9 -

3.11. It is seen in Figs. 3.9-3.11 that good agreements between calculations and 

experimental data in terms of mean axial velocity, rms axial velocity and droplet 

diameter obtained by averaging over the entire droplet size spectrum at each location 

are achieved. The profile of mean axial velocity at Z = 0.05m indicates two peaks 

associated to the hollow-cone spray. In particular, the recirculation regions developed 

downstream of the nozzle holder is properly captured, whereas, the axial velocity in the 

central recirculation is slightly under-predicted. Furthermore, the droplet diameter 

shown in Fig. 3.11 can display a characteristic profile related to a hollow-cone atomizer, 

in which the larger droplets appear near the edge of the spray and the smaller droplets 

exist in the core region. Moreover, the instantaneous axial velocity is presented in Fig. 

3.12. In addition, the contours on temperature and mass fraction of isopropyl alcohol in 

the symmetry plane, Y = 0, and the mass fraction of liquid phase at different locations 

are shown in Fig. 3.13, Fig. 3.14 and Fig. 3.15, respectively. 

It is seen that the current code could capture both the flow behaviour and 

droplets’ characteristics and, therefore, can be extended to cases of combustion 

instabilities in which evaporation of droplets is a rate-controlling factor in the further 

research. 
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Fig.  3.9  Comparison of Numerical Predictions and Experimental Measurements on Mean 
Axial Velocities 

 

 

 

Fig.  3.10  Comparison of Numerical Predictions and Experimental Measurements on Mean rms 
Axial Velocities 
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Fig.  3.11  Comparison of Numerical Predictions and Experimental Measurements on Droplet 
Diameter 

 

 

 

Fig.  3.12  Instantaneous Axial Velocity for Hot Case 
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Fig.  3.13  Contour of Temperature 

 

 

 

Fig.  3.14  Contour of Mass Fraction of Isopropyl Alcohol 
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Fig.  3.15  Mass Fraction of Isopropyl Alcohol at Different Locations 
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CHAPTER 4  

CHAPTER 4 

TRANSIENT ANALYSIS OF SUB-CRITICAL 

EVAPORATION OF FUEL DROPLET 

 

4.1 Introduction 

In this section, a brief description of the numerical vaporization model is presented to 

provide the context for the non-linear analysis that follows; furthermore, as emphasized 

emphatically by Sirignano and co-workers (1989; 1993; 1999), the simple steady state 

vaporization models routinely used in the literature in the context of gas turbine 

combustion and other less demanding applications are not appropriate for use in the 

study of thermo-acoustic instability for vaporizing sprays, when the ambient is 

unsteady. Thus, this section will highlight the important elements of the unsteady 

vaporization model, accounting at this point for the changing ambient conditions as 

forced by the acoustic field for a single stationary droplet. The numerical method of 

pressure-velocity-density coupling intended to capture the extremely important two-way 
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coupling between the vaporization and acoustic fields for the quasi-stationary droplet is 

developed.  

4.2 Formulation 

4.2.1 Mathematical Model 

A spherical droplet of pure liquid, initially at temperature T0 and radius R0, is 

suddenly subjected to a surrounding gas with high temperature and varying pressure as 

stated above. Classical Fick’s law is used in the species transport equation while 

ignoring heat fluxes due to the inter-diffusion and Dufour effects and viscous 

dissipation. With these assumptions, the governing conservation equations are given as 

(Sirignano, 1999): 

for the liquid phase, r<R(t)  

energy equation 
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for the gaseous phase, r>R(t) 

continuity equation 
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momentum equation 
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species equation 
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energy equation 
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where the subscript 1 denotes the fuel species and 2 represents air; subscript l indicates 

the liquid phase and subscript g denotes the gaseous phase. 

Considering the case of interest with moving boundaries, non-

dimensionalization was employed in this study so that the receding gas-liquid interface 

is stationary in the same manner used by Elperin and Krasovitov (2006). The following 

variables were defined as 
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where αl is thermal diffusivity of liquid, Tg, ∞ is the temperature at infinity and R0 is the 

initial diameter of droplet. 

Thus, the dimensionless governing equations can be rewritten as 

For the liquid phase, r < R(t)  
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where ( )τξ
α �

0R

x
V l
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For the gaseous phase, r > R(t) 

continuity equation 
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momentum equation 
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species equation 
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energy equation 
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4.2.2 Boundary Conditions 

The boundary conditions are: 
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At the droplet center: 
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As x→ ∞: 
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At the droplet surface, x = 1: 

temperature continuity 
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species conservation 
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In addition, the mass flux is balanced at the gas-liquid interface, viz., 
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which yields, 
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and 
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The mass fraction of vapour here depends on the saturation pressure and temperature, 

that is, 

( )
1111 ,

==
=

xsatsatx
TPmm                                    (4.17) 

4.2.3 Velocity-Pressure-Density Coupling 

In the past, the pressure field was generally calculated using the equation of state 

(Hubbard et al., 1975; Tong and Sirignano, 1989; Duvvur et al., 1996; Elperin and 

Krasovitov, 2006), which decouples the interaction of pressure with velocity. To 

capture the nature of evaporation relevant to the problem of interest, a numerical 

method for the pressure-velocity-density coupling is proposed in this work. The 

discretized continuity Equation (4.7) is given as 

*
0

**
1

mwe

nm

QQFFV +=++∆⋅
∆

−−

τ

ρρ
                                   (4.18) 

where * denotes that the mass conservation is not satisfied; *
eF and *

wF are the mass flux 

at the cell face e and w, respectively; Q0 indicates the source term without accounting 

for pressure correction and *
mQ denotes the imbalance which must be eliminated by a 

correction method; superscript m indicates the outer iteration for solving pressure-

velocity-density coupling. 
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For compressible flows, the mass flux depends on the velocity component normal to the 

cell face and the density. Thus, the mass flux correction is 

ρFFF v
′+′=′                                                (4.19) 

where the first term on the right hand side denotes the velocity correction and the 

second represents the density correction. In addition, the second-order term is neglected 

since it becomes zero more rapidly than the two terms under consideration. It is noted 

that these terms become zero when convergence is achieved. 

 The SIMPLE method (Ferziger and Perić, 2002) was used to approximate the 

mass flux correction associated with the velocity correction, given as 










∂

∂
′=′

x

p
vSFF vv ,,,,, ρξξ �                                        (4.20) 

where S is the cell surface area. 

 The second term in Equation (4.19) results from compressibility. Assuming the 

temperature is fixed for the outer iteration, one obtains 

pCp
p

T

′=′








∂

∂
≈′

ρ

ρ
ρ                                            (4.21) 

where the coefficient Cρ can be determined using the equation of state as, 

∑
=

⋅=








∂

∂
=

K

i i

iuT

M

mTRp
C

1

11ρ
ρ                                        (4.22) 

in which, in terms of the case of interest, K is 2. 

Therefore, the second term in the mass flux correction can be obtained as, 
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( )SvCFF ,,,,, ρξξ ρρρ
�′=′                                           (4.23) 

Substitution of Equations (4.20) and (4.23) into Equation (4.18) yields 

0* =+′+′+
∆

∆′
mwe

P QFF
V

τ

ρ
                                       (4.24) 

If Pρ ′  is expressed using Pp′  in the above equation, one can obtain an algebraic system 

of equations for the pressure correction 

*
mwweePP QpApApA −=′+′+′                                     (4.25) 

where AP, Ae and Aw are coefficients at cell centre, cell surface e and w, respectively and 

which yields the pressure correction that can be used for the outer iteration. 

4.2.4 Numerical Methods 

In this work, the finite volume method was used to solve Equations (4.6-4.10) 

numerically. The central differencing scheme with second-order accuracy was 

employed for the convective terms, whereas Crank-Nicolson scheme is used for the 

unsteady terms with second-order accuracy (Hubbard et al., 1975; Patankar, 1980). It is 

noted that the energy and species equations were solved initially and with the known 

temperature and mass fraction distributions, the mass equation was then dealt with. The 

above iterative procedure was continued until 50 10/1 −≤′′′′− mm �� . Finally, the 

momentum equation was solved with the pressure correction obtained. In this work, the 

initial conditions were given by constructing self-consistent reasonable polynomial 

distributions for the field variables. The initial surface temperature of droplet was 285 K 

and the ambient temperature was 600 K. The initial diameter of the droplet was 250 µm 

and the end of the computation domain was specified to be at 300 instantaneous droplet 
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radii. Additionally, a geometric mesh with points clustered near the droplet surface was 

used, and the mesh inside the droplet had 124 points with common ratio of 1.01, while 

776 points with common ratio of 1.012 were distributed along the gaseous phase. 

Different meshes regarding both phases were tested and the current mesh may satisfy 

that the predicted droplet lifetime with finer mesh changed by less than 3%. The 

calculations were terminated when R/R0<0.1. 

4.2.5 Thermo-physical Properties 

The properties of the liquid phase, n-Octane, were taken as constant, with ρl 

taken as 703.6 kg/m3, Cpl = 2420 J/(kg·K) and kl = 0.116 W/(m·K). For the gas phase, 

molecular weights of n-Octane and air were 114.13 and 29.87, respectively. The heat of 

vaporization was calculated by 

32335 3.858105287.5106913.210977.2ˆ ζζζ −×−×−×=fgh , J/kg 

where satPln=ζ . The thermophysical properties for the pure species were obtained 

from polynomials given by Turns (2000). The method of Wilke was used for viscosity 

and the thermal conductivity was obtained by the Wassiljewa equation (Poling et al., 

2001). The diffusion coefficient for the binary system was calculated from the 

Chapman-Enskog kinetic theory (Poling et al., 2001). 

4.3 Results and Discussion 

Different test cases were investigated for liquid phase and/or gaseous phase. 

Numerical results for a stationary n-Octane droplet evaporating in hot air environment 

are presented in Figs. 4.1-4.5. Fig. 4.1 shows the transient responses of droplet radius 

and surface temperature compared to the analytical solutions obtained by hydrodynamic 
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model and kinetic model discussed by Sazhin et al. (2004) and Sazhin (2006). It was 

found that the predicted results are in reasonable agreement with analytical solutions 

and their tendencies are very similar. Nevertheless, the differences on the surface 

temperature of droplet are relatively apparent and the resulting deviation is mostly 

caused by the quasi-steady assumptions and limitations associated with the analytical 

models. Generally, for analytical methods, the temperature gradient inside the droplet is 

neglected and the gaseous temperature distribution is not taken into consideration 

(Lefebvre, 1989; Sazhin, 2006). Furthermore, the intrinsic moving boundary of droplet 

captured by the current model can result in the artificial diffusion within analytical 

solutions, and the resulting evaporation time is correspondingly reduced, as shown in 

Fig. 4.1. It should be pointed out that the pressure field obtained by the method of 

pressure-velocity-density coupling can play an important role in the transient behaviour 

of droplet vaporization. Moreover, Fig. 4.1 also exhibits that the kinetic model can 

predict longer evaporation time in comparison with the hydrodynamic model as 

reported by Sazhin et al. (2004). Figs. 4.2-4.5 show the temperature, mass fraction, 

velocity distributions and temperature distribution of droplet at different normalized 

times, respectively. The resulting tendencies of these variables are in reasonable 

agreement with the results reported by Hubbard et al.(1975).  

In addition, it is noted that the model extensively employed in CFD simulations, 

denoted by dotted line in Fig. 4.1, is relatively inaccurate and not suitable for the study 

of thermo-acoustic/combustion instability in liquid-fuelled gas turbine combustors, 

although the advanced models detailedly reviewed and discussed by Sazhin (2006) are 

appreciated for most practical applications, and this study tends to extend the case of 

droplet vaporization accounting for both the convective heat transfer and the two-way 

coupling between vaporization and resulting acoustics in order to highlight the influence 

of the practical droplet vaporization process in an unstable combustion environment in 
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the further work. Furthermore, the interaction between the mass addition and pressure 

oscillations will be investigated further in detail, to provide a basis for an improved 

understanding of the characteristic nonlinear behaviour regarding droplet evaporation, 

as qualitatively discussed in the following section. 

 

 

Fig.  4.1  Transient Response of Normalized Droplet Radius and Surface Temperature 
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Fig.  4.2  Transient Mass Fraction Distribution at Different Normalized Time 
 
 
 
 

 
Fig.  4.3  Transient Temperature Distribution at Different Normalized Time 
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Fig.  4.4  Transient Velocity Distribution at Different Normalized Time 
  

 
 

 

Fig.  4.5  Transient Temperature Distribution of Liquid Phase at Different Normalized Time 
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CHAPTER 5   

CHAPTER 5 

NONLINEAR/CHAOTIC BEHAVIOUR IN THERMO-

ACOUSTIC INSTABILITY 

 

5.1 Introduction 

As discussed above, it is of paramount importance to pay attention to system 

nonlinearities in thermo-acoustic/combustion instability. In this chapter, nonlinear 

analyses covering both the one-mode dynamic model considering a harmonic behaviour 

for the combustion process and the two-mode model initially put forward by Yang et al. 

(1987, 1988) are carried out. In terms of the former model, the Poincaré map is adopted 

to study the stability of the simple system and the corresponding bifurcation behaviour 

is computed. For the latter dynamic model, the bifurcation parameter and the 

corresponding period at Hopf points are calculated in detail using both numerical and 

analytical methods. These are of particular significance regarding the delineation of 

comprehensive mechanisms for thermo-acoustic instability as, the bifurcation behaviour 
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and the multiplicity of solutions for a given nonlinear system are seldom considered in 

the currently employed experimental and numerical studies (CFD) carried out for 

thermo-acoustic instability. It makes sense to study the nonlinear behaviour inherent in 

thermo-acoustic instability using tools that can explore the variation of certain 

parameters covering the entire operational conditions. Such considerations, also pointed 

out by Culick (2006), enforce the notion that each numerical (CFD) simulation is, in 

general, only one particular case and it is, to some extent, difficult to generalize limited 

results to gain a fundamental understanding of thermo-acoustic instability in totality.  

5.2 Modelling of Thermo-acoustic Instability 

A methodology for the study of thermo-acoustic instabilities has been developed 

by Culick (1976a, 1976b) using the Galerkin method. The method employs a spectral 

representation of the unsteady velocity and pressure components in terms of the normal 

acoustic modes of the system. The sequential dynamic model associated with third-

order nonlinearities was derived by Yang (1987, 1988). It is not necessary to reproduce 

the details, however a brief framework will be provided as baseline reference. The 

conservation equations in terms of a two-phase mixture are given as, 

( ) Wu =⋅∇+
∂

∂
ρ

ρ

t
                                                  (5.1) 

F-uu
u

+∇=∇⋅+
∂

∂
p

t
ρρ                                              (5.2) 

Puu =∇⋅+⋅∇+
∂

∂
pp

t

p
γ                                              (5.3) 

where ρ, p and the vector u are the density, pressure and velocity, respectively. W 

represents the mass conversion rate of condensed phases to gas per unit volume, F is the 
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force of interaction of the gas with condensed phases, and P is the sum of the heat 

release associated with chemical reaction and the energy transfer between two phases. 

Here, the thermo-acoustic instability is mainly concerned with the representation and 

coupling of P which is expressed as, 

 ( )q1−= γP                                                       (5.4) 

in which q is the rate of heat addition and γ is the ratio of specific heats. 

Subsequently, the flow variables are decomposed into mean and time-varying parts, 

given by, 

( )x,tρρρ ′+=  

( )xuuu ,t′+=                                                    (5.5) 

( )x,tppp ′+=  

( )x,tqqq ′+=  

Substitution of Equation (5.5) into (5.1)-(5.3) yields the nonlinear wave equation, 

 hpa
t

p
=′∇−

∂

′∂ 22

2

2

                                               (5.6) 

where a is the sound speed, and h denotes the source term of wave equation. 

Taking the component p′∇  normal to the boundary, the corresponding boundary 

condition associated with Equation (5.6) is given as, 

fp −=′∇⋅n                                                    (5.7) 
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A solution for the time-varying pressure is expanded in terms of the orthogonal 

acoustics modes of the system, nψ , defined as an  eigenvalue problem, 

 022 =+∇ nnn k ψψ                                               (5.8) 

0=∇⋅ nψn                                                    (5.9) 

where kn=ωn/a is the wavenumber for the nth mode with the frequency ωn. the 

expansions of time-varying pressure and velocity are given as, 

( ) ( ) ( )∑=′
n

nn tptp xψx η,                                    (5.10a) 

( )
( )∑ ∇=′

n

n

n

n

k

t
u xψ

2γ

η�
                                      (5.10b) 

These expressions are substituted into Equation (5.6) which is then multiplied by ( )xψ n , 

whereas Equation (5.8) is multiplied by p′ . These two resulting equations are 

subtracted and integrated over the whole chamber volume. Using the orthogonal 

property of the acoustic modes, Green’s theorem and their boundary conditions, the set 

of ordinary differential equations for the amplitude of each mode is then obtained as, 

nnnn F=+ ηωη 2��                                               (5.11) 

where the forcing function Fn is  

( ) ( ) 







+−= ∫∫∫∫∫

Ω∂Ω

fdShdV
Ep

a
nn

n

n xψxψF
2

2

                      (5.12) 

and 
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( )dVE nn ∫∫∫
Ω

= xψ
22  

Yang et al. (1987) presented the simplified expression of Fn as, 
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where the coefficients associated with the acoustic wave motions are defined as, 

( )[ ]224222

22
4

4
jinji

ji

nij

nij kkkkk
kk

I
A γ

γ
−−+=                           (5.14a) 

( ) ( )2221
2 ji

nij

nij kka
I

B +−= γ
γ

                                 (5.14b) 

( )( ) 
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( )
∫∫∫
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−
= dV

E

ka
S jimn
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nijm ψψψψ
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6

1

γ

γ
                       (5.14d) 

∫∫∫
Ω

= dV
E

I jin

n

nij ψψψ
2

1
                                   (5.14e) 

and the source term related to heat release is, 

Vd
t

q

Ep
n

n

∫∫∫
Ω

∂

′∂−
= ψ

γ
2

1
Q                                    (5.14f) 
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It should be noted that Dni and Enj are related to linear processes of wave 

motions in a combustion chamber, whereas Anij, Bnij, Rnijm and Snijm are associated with 

the nonlinear processes governing the wave motion. The energy transfer between the 

acoustic modes is determined by these nonlinear terms in Equation (5.13), as argued by 

Ananthkrishnan et al. (2005). Nevertheless, phase heat transfer, such as evaporation and 

reactions, influence the nature of the term Q. 

5.3 One-mode Dynamic Model 

5.3.1 Formulation 

The Poincaré map is an extremely useful tool for describing the dynamics of 

different types of nonlinear oscillatory system behaviour. In particular, arguments based 

on the Poincaré map establish the stability conditions for periodic orbits (Seydl, 1994). 

In this test case, the Poincaré map is used to study the stability of a simple dynamic 

system. In terms of Equations (5.11) and (5.13), the one mode is governed via the 

nonlinear ordinary equation which is simplified, using the orthogonal property of the 

acoustic modes as 

Q+−−−−=+ 332
nnnnnnnnnninninnnnn SRED ηηηηηωη ����  

In terms of the combustion process and especially in the case of the Rijke tube, the 

mean rate of heat loss incorporating negligible fluctuations were assumed by McIntosh 

and Rylands (1996), whilst Heckl and Howe (2007) employed an appropriate Fourier 

series expansion for the process and pointed out a procedure whereby the above two 

approaches could be incorporated. However, in this study, to capture the inherent 

nonlinear characteristics pertaining to combustion instabilities and to provide a 

simplified albeit a generalized computational procedure, only a single domain Fourier 
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series expansion corresponding to one specific mode of acoustics in the chamber is used 

in the same manner as that of Sterling (1993). The particular expression is given by the 

following: 

( )ϕω +Γ= tccosQ  

where Γ, ωc and φ represent the amplitude, frequency and phase angle of heat-release 

oscillation. Thus, the one-mode dynamic model is obtained as 

( )φωηηηηηωη +Γ+−−−−=+ tSRED cnnnnnnnnnninninnnnn cos332 ����        (5.15) 

By introducing 

φωθ += tc: , nx η=:1  and nx η�=:2  

one can obtain a non-autonomous dynamic system written as, 

( )

c

xkxkxkxkx

xx

ωθ

θ

=

Γ++++=

=

�

�

�

cos3
23

3
1221102

21

                        (5.16) 

Here, the orthogonal property of harmonic functions is utilized and, as a result, the 

second-order nonlinear acoustics disappear. To simplify, consider the case of a tube 

with heat addition provided as previously discussed. Only the longitudinal modes are 

taken into consideration, and 

( )zknn cos=ψ , 
c

n

n
L

n
a

k
πω

== , ccn LSE 2
12 =  

where Sc and Lc are the cross sectional  area and the length of the combustion chamber 

respectively, and z denotes the longitudinal coordinate. For a general combustor 



CHAPTER 5: NONLINEAR/CHAOTIC BEHAVIOUR IN THERMO-ACOUSTIC INSTABILITY 

 
 

86 

chamber, the values of Sc and Lc are taken to be 0.6 m and 0.031 m2, as used in (Culick, 

1976a, 1976b). In addition, the ratio of specific heats, γ, is 1.23, the chamber 

temperature is 2000 K, and, correspondingly, the sound speed, a, is 849 m/s. Therefore, 

substitution of these parameters into Equation (5.14c) and (5.14d) yields, k2 = -

373494.7878; k3 = 0.16525. In terms of k0 and k1, the expressions were given by Culick 

and his colleague (Culick, 1976a, 1976b; Yang et al., 1987, 1988, 1990) as, 

nnk ωθ20 =  and nk ς21 =  

Taking the particular values of ζn, θn employed by Culick (1976a, 1976b) as -0.5 and 

3.0, respectively, one can obtain the following numerical values, 

k0 = 55.23 and k1 = -1.0 

Γ is adopted as the variable bifurcation parameter which physically represents the 

intensity of heat-release oscillation, and the corresponding angular velocity, ωc, is 1.5. 

The latter value is reasonable, in particular given the low-frequency nature of the 

combustion instability. 

Due to θ monotonically increasing, a Poincaré section Ω, that is necessarily 

intersected by any trajectory, can be set up as, 

( ){ }012, θθθ =×∈=Ω SRx                                       (5.17) 

with θ0 = 0, that is, the plane at t = 0.Therefore, the Poincaré map (stroboscopic map) is 

obtained by observing the state of the system (5.16) at discrete time instances as, 

c

c

n nTnt ==
ω

π2
:  , n =1, 2, … 

sampled at constant time intervals Tc. 
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In terms of the numerical integration of the dynamic system (5.16), a fourth 

order Runge-Kutta-Fehlberg method is employed by Mathews (1992). The bifurcation 

diagram is generated by using the second iterative method, which was adopted by 

Lynch (2005). The bifurcation parameter, Γ, is smoothly increased from 0 to 4.0 and 

then decreased back to zero. Note that the x1 and x2 are initially specified to comprise a 

random number field between 0 and 1, whereas for the case referring to decreasing Γ, 

the initial conditions are prescribed as the final results of the increase process. In 

addition, the appropriate integration time was specified to capture a duration as long as 

possible. 
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Fig.  5.1  A Gallery of Phase Portraits and Poincaré Maps for the Dynamic System 
(a) Γ = 0.652 (Forced period one); (b) Γ = 1.045 (Chaos); 

(c) Γ = 1.617 (Period-two subharmonic);(d) Γ =2.187 (Period-three subharmonic); 

(e) Γ = 2.669 (Forced period one); (f) Γ = 3.164 (Chaos) 
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5.3.2 Results and Discussion 

Fig. 5.1 shows a set of phase portraits along with their Poincaré map at different 

bifurcation parameter values, Γ. When Γ = 0.652, there exists a period-one solution for 

the system (see Fig. 5.1 (a)), incorporating a closed curve in the phase plane and a 

single point in the section at θ = 0. When Γ=1.045, the system becomes chaotic and on 

the Poincaré map, a strange attractor appears (see Fig. 5.1(b)). When Γ = 1.617, a 

period-two solution (subharmonic oscillations) appears and two intersection points are 

observed on the corresponding Poincaré map, while Γ = 2.187, a period-three solution 

(subharmonic oscillations) emerges. When Γ = 3.164, the system returns to a chaotic 

behaviour and when Γ assumes values of 3.4 and3.6, there appear period-one solutions 

again. 

 

Fig.  5.2  Bifurcation Diagram for the One-Mode Dynamic System 
(r is the distance of the point in the Poincaré map  from the origin and 

 Γ is the bifurcation parameter.) 
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Fig. 5.2 shows a bifurcation diagram as the bifurcation parameter is increased 

from 0 to 4.0 and then decreased back to zero. The vertical axis labelled r denotes the 

distance of the point in the Poincaré map from the origin (0, 0). The solid curve lying 

between 3.00 ≤Γ≤  is characterized by the steady-state behaviour. If Γ is approximately 

in the range of 0.5-0.6, 1.01-1.3, and 2.3-2.4, the system exhibits chaos. It is interesting 

to note that a period-three solution appears as Γ is about 2.187. Although the above is an 

idealized example displaying a marginally significant behaviour in terms of physical 

relevance, even this simple system model can provide an indication of the behaviour 

regarding the cascading of the energy produced by combustion to finally end up as 

acoustic energy. Furthermore, the energy-flow process displays an extreme sensitivity 

to initial conditions, especially regarding the amplitude of the combustion fluctuations. 

If the bifurcation parameter Γ, is held below 2.5, the system may sample a chaotic 

neighbourhood of the phase space after which it mainly returns to a periodic behaviour.  

 

Fig.  5.3  Hopf Bifurcation Illustrated in Branching Diagrams 
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5.4 Two-mode Dynamic Model 

The Hopf points play an extremely important role in nonlinear analysis, which 

connect a branch of equilibria and various periodic oscillations (Seydel, 1994), as 

shown in Fig. 5.3. This particular nonlinear analysis presented below is employed to 

study the Hopf points and the corresponding system behaviour existing in the 

neighbourhood of such points in detail. It was noticed that the Hopf bifurcation point, 

even for a steady state, has seldom been considered regarding the particular dynamic 

aspects of thermo-acoustic instability. Thus, it makes sense to identify and reveal the 

nature of the interchange between equilibrium state and periodic oscillations for the case 

of interest. 

5.4.1 Formulation 

(1) Analytical method  

In this section, following the method of Yang et al. (1987, 1988), the time-

varying amplitude ηn is defined as a function of An and Bn, 

( ) ( ) ( ) ( ) ( )ttBttAt nnnnn ωωη cossin +=                                 (5.18) 

and An and Bn are expressed as functions of the amplitude and phase, 

( ) ( )ttyA nnn ϕcos= , ( ) ( )ttyB nnn ϕsin=  

The combustion process employed in the paper was similar to that given by Yang et al. 

(1987), i.e., the model displays the appropriate sensitivity to pressure and velocity 

fluctuations. The nonlinear combustion response is given as, 
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[ ]uQQ ′+= vp f1  

where Qp is the heat release rate based on the linear pressure-coupled response, Q is the 

instantaneous heat release, and fv is the velocity-coupled response function. Substitution 

of this expression into Equation (5.11-13) yields, 

{ } [ ]∫∫ ′′+′
∂

∂
= dsupCpC

tE
F n

n

cn 212
ψ

ρ

γ
                           (5.19) 

in which, C1 and C2 are associated with the linear and nonlinear combustion process, 

given by Yang et al. (1987). 

Considering the two modes, substitution of Equations (5.18) and (5.19) into 

(5.11) yields the two-mode dynamic model, 

( ) 2
1121111,

1 , yyyy
dt

dy
y ξβαξ +−== yF                               (5.20a)   

( ) 212
2
1222,

2 4, yyyy
dt

dy
y ξβαξ ++== yF                           (5.20b) 

where y denotes the amplitude of pressure oscillation, and 

11 45

28
ω

π
ξ G=  

135
32

2 ξξ =  

2

2
2

2

nE

aCRL
G

γπ
=  

in which ξ1 and ξ2 result from the nonlinear combustion response, L and R denote the 

combustor length and diameter, respectively, and the dimensionless coefficient, G, was 
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defined to capture the influence of combustion processes and combustor chamber 

dimensions, as in the work (Yang et al., 1987). β is derived from the second-order 

nonlinear acoustics, defined as, 

18

1
ω

γ

γ
β

+
=  

and α1 and α2 are model coefficients, which are related to first-order nonlinear acoustics, 

defined as 

111 2

1
D−=α  

222 2

1
D−=α  

where, D11 and D22  are the coefficients in Equation of (5.15), which might be complex. 

Initially, one calculates the steady states, viz., 0=y� , to obtain,  

02
112111 =+− yyyy ξβα                                      (5.21a) 

04 212
2
122 =++ yyyy ξβα                                    (5.21b) 

Solving Equation (5.21a), the following results, 

0*
1 =y , or, 

1

1
*
2*

1
ξ

αβ −
=

y
y  

Correspondingly, Equation (5.21b) yields, 

0*
2 =y , or, 
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+

ξ
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ξ

αξ

ξ

βα
α

ξ

βξ

ξ

β
yy  

which leads to 

( ) ( ) ( )[ ]
( )













+
=

+

+−+±+−
=

β

ξα

ξξβ

ξξβααξαξαξαξα

*
111*

2

21
2

2

1

21
2

21
2

21122112*
1 42

4444

y
y

y

       (5.22a) 

or, 






=

=

0

0
*
2

*
1

y

y
                                                    (5.22b) 

The above results are in accord with those given by Yang et al. (1987). From Equation 

(5.20), one can derive the Jacobian matrix to check for stability, 










++

−+−
=

122221

11121

442

2

yyy

yyy

ξαξβ

βξβα
yJ                                 (5.23)  

For the trivial branch, substitution of Equation (5.22b) into (5.23) yields 









=

2

1

0

0

α

α
yJ  

Hence, considering the particular nature of the resulting solution, i.e., the criterion of 

stability to ensure that the real parts of all eigenvalues are negative, is given as, 

[ ] 0Re 1 <α  

[ ] 0Re 2 <α  
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Taking into account the physical meaning of y, it is reasonable to choose the ‘+’ sign in 

(5.22a).  Thus, for the nontrivial branch, substituting Equation (5.22a) into Equation 

(5.23), the following is obtained, 

( )














+
+

+

−

=
S

S
S

SS

22
112

1

4
4

2 ξα
β

ξαξ
β

βξ

yJ                               (5.24) 

where,  

( ) ( )[ ]
( )21

2

2

1
2

21
2

21122112

42

444
:

ξξβ

βααξαξαξαξα

+

−−++−
=S  

and 1ξλ = , as the branch parameter arising from combustion response, is incorporated 

in S. The eigenvalues µ are calculated via the determinant, 

( )
21

2

22
112

1

4
4

2
0 Λ+Λ+=

−+
+

+

−−

= µµ
µξα

β

ξαξ
β

βµξ

S
S

S

SS

            (5.25)                           

where  

( )2211 4: αξξ ++−=Λ SS  

and   

( ) ( )SS 1221
2

21
2

2 482: ξαξαξξβ +++=Λ  

At the Hopf bifurcation point, the characteristic polynomial has a pair of purely 

imaginary roots defined as χi± . Hence, the polynomial can be written as, 

( )22 χµ +±                                                     (5.26) 
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It is noted that the value of χ is still unknown. However, this can be obtained by 

equating the coefficients of the characteristic polynomial of Equations (5.25) and (5.26) 

as they are identical at the Hopf bifurcation points. In this regard, one obtains, 

04 221 =++ αξξ SS                                           (5.27a) 

( ) ( )SS 1221
2

21
22 482 ξαξαξξβχ +++=                           (5.27b) 

In addition, Equation (5.25) yields the eigenvalues as, 

2
1

2,1

∆±Λ−
=µ  

where 2
2
1 4Λ−Λ=∆ . 

Obviously, if 0≤∆ , the real part of the eigenvalues is, 

( )( )
2

Re 1
1

Λ
−=ξµ  

Thus, according to Hopf theorem, the corresponding non-degeneracy condition is, 

( )
0

01
1

1 ≠
=ξξ

ξ

ξ

d

Sd
                                           (5.28a) 

If 0>∆ , the real parts of the eigenvalues are obtained respectively, 

2
1

1

∆+Λ−
=µ  and 

2
1

2

∆−Λ−
=µ  

After some manipulations, the corresponding non-degeneracy condition is, 
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d
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                      (5.28b) 

Provided the above non-degeneracy condition, viz. Equation (5.28), is satisfied, the 

value of bifurcation parameter at the Hopf point is derived as, 

2

1

2

1

0

35

163
1 
















−

=

α

α

β
ξ                                          (5.29) 

where 163
128

2

12 >−

α
αα , and then the corresponding initial period of the ‘first’ periodic 

oscillation is given by, 

χ

π2
0 =T                                                  (5.30)  

Furthermore, it is interesting to note that if ∞→2α  and 12 αα > , one finds, 

β

α

α

β
ξ

α
=

















−

=
∞→

2

1

2

1

lim,0

35

163
1

lim
2

                            (5.31) 

(2) Numerical method 

The algorithm to compute the Hopf points adopts the method proposed in 

(Seydel, 1994; Roose et al., 19; Sohn et al., 2000). As mentioned above, the Hopf points 

are characterized by a pair of purely imaginary eigenvalues (defined as χi± ) of the 

Jacobian Jy(yo, ξo). In this respect, the equation written as, 
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( ) vvyJ 0y χξ i=0,                                                (5.32) 

holds for a nonzero complex vector v = h + ig. Substitution of this expression into 

Equation (5.29) yields two equations, 

ghJ y χ−=                                                   (5.33a) 

hgJ y χ=                                                     (5.33b) 

In order to normalize v, impose, for example, 

vk = 1 

Combining Equations (5.21) and (5.33), one obtains the governing system with (3×2+2) 

equations given as, 

( )
( )
( ) 0

1

,

,

,

=























−

−

+

k

k

g

h

hgyJ

ghyJ

yF

y

y

y

χξ

χξ

ξ

                                       (5.33) 

where k is an index, and, in general, one can pick any integer arbitrarily in the range 

21 ≤≤ k . In this study, k is taken to be 1. This system can be solved by adopting a 

routine nonlinear equation solver; here, Newton’s method is employed. The above 

numerical method to calculate Hopf points is widely utilized in heat and mass transfer 

computations including chemical reactions as reported in (He and Clavin, 1993; 

Kubíček and Holodniock, 1984; Roose and Hlaváček, 1983). 
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Fig.  5.4  Hopf Bifurcation vs. α2 under Different α1 

 

Fig.  5.5  Period at Hopf Points vs. α2 under Different α1 
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5.4.2 Results and Discussion 

Table 5.1 shows the bifurcation parameter and the corresponding period at Hopf 

points under different coefficients as resolved by numerical and analytical methods. It is 

revealed that the analytical results are in good agreement with numerical values and the 

analytical formulae, (5.29) and (5.30), are reasonable to adopt. The slight difference 

between them is due to truncation errors during the numerical computations. 

Fig. 5.4 shows that the values of bifurcation parameter at Hopf points vary with 

the co-efficient α2, for different α1. It is found that at a given α1, the bifurcation 

parameter at a Hopf point increases rapidly with decreasing α2 in the range from 0 to -

10 and then climbs gradually. Its limited value tends to 1 as  β = 1.0, as illustrated in 

Equation (5.31). At a given α2, it decreases with increase in α1, which can be anticipated 

in Equation (5.30) as well. Fig. 5.5 displays the dependence of the period at Hopf points 

on the coefficient α2, under different α1 values. It is seen that the period at Hopf points 

reduces sharply with decrease in α2 in the range of 0 to -10 and then decreases 

gradually. In addition, at a given α2, the period at Hopf points increases with decreasing 

of α1.  

Table 5.1  Comparison of Analytical and Numerical Results 
 

β = 1.0 Analytical Results Numerical Results 

α1 α2 ξ0 T0 ξ0 T0 

0.2 -0.8 0.67973980655870 10.90825618788190 0.67973980656 10.90825618800 

0.2 -0.6 0.62593214071185 13.30337193654330 0.62593214071 13.30337193700 

0.4 -2.0 0.71954949745653 4.64380806193062 0.71954949746 4.64380806190 

1.0 -10.0 0.82599104630559 1.08363591718134 0.82599104631 1.08363591720 

5.0 -20.0 0.67973980655870 0.43633024751528 0.67973980656 0.43633024752 

10.0 -40.0 0.67973980655870 0.21816512375764 0.67973980656 0.21816512376 
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As mentioned above, a Hopf bifurcation arises if a fixed point of a dynamical 

system loses stability as a pair of complex conjugate eigenvalues of the linearization 

around the fixed point cross the imaginary axis of the complex plane. Thus, it is 

expected to reveal the emergence of a limit cycle branching from the fixed point, which 

has been observed numerically and experimentally in terms of thermo-acoustic 

instability (Levine and Baum, 1981; Lieuwen, 2002). In this regard, the emergence of 

Hopf bifurcation might result in a limit cycle for the system of interest.  

5.5 Energy Transition between Acoustic Modes 

As pointed out in Section 2.3, there are infinite acoustic modes essentially 

existing in the combustion chamber. Thus, it is of paramount importance to identify the 

acoustic energy transited among modes. 

5.5.1 Formulation 

Neglecting the third-order effect since, as pointed out by Yang et al. (1995), the 

amplitudes and phases of each mode are slightly modified by third-order acoustics, the 

acoustic conservation equations for one-dimensional motions (Culick, 2006) are given 

as, 

  F
x

p

t

u
=

∂

′∂
+

∂

′∂
ρ                                                     (5.34a) 

P
x

u
p

t

p
=

∂

′∂
+

∂

′∂
γ                                                    (5.34b) 

where 

[ ]{ } { } [ ]{ }221 MMMF −−−=                                        (5.35a) 
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[ ]{ } { } Q′+−−= �

vC

R
ppP 21                                         (5.35b) 

[ ]{ }
x

u
uM

∂

′∂
= ρ1                                                  (5.35c) 

{ }
x

u
u

x

u
u

t

u
M

∂

′∂
′+

∂

′∂
′+

∂

′∂
′= ρρρ2                                (5.35d) 

[ ]{ }
x

u
uM

∂

′∂
′= ρ2                                                (5.35e) 

[ ]{ }
x

p
up

∂

′∂
=1                                                   (5.35f) 

{ }
x

u
p

x

p
up

∂

′∂
′+

∂

′∂
′= γ2                                         (5.35g) 

Combination of Equation (5.34a) and Equation (5.34b) yields, 

t

P

ax

F

t

p

ax

p

∂

∂
−

∂

∂
=

∂

′∂
−

∂

′∂
22

2

2

2 11
                                (5.36) 

Using Equation (5.10) and the properties associated with Green function given by 

Equations (5.8-9), one can obtain 

��� ���� ����� ���� ��

��

21

2

2

2

2 1

ℑℑ

∫∫ ∂

∂
−

∂

∂
=+

V

n

nV

n

n

nnn dVx
x

F

Ep

a
dVx

t

P

Ep
)()( ψψηωη            (5.37) 

In terms of a simplified case, viz., a Rijke tube shown in Fig. 5.6, only longitudinal 

modes in the chamber are considered and  

( )xkmm cos=ψ                                                    (5.38a) 
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L

m
km

π
=                                                           (5.38b) 

LSEn ⋅=
2

12                                                        (5.38c) 

where L is the length of Rijke tube and S is the cross-section area of the tube. 

Fig.  5.6  Sketch of a Rijke Tube 
 

Substituting Equation (5.35f) and Equation (5.35g) into the first term on the right side 

of Equation (5.37), one can obtain, 
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 (5.39) 

Substitutions of Equations (5.10a), (5.10b) and (5.38a) into Equation (5.39) yield, 
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by using the triangular relation and the orthogonal property given as 
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Similarly, substitutions of the Equations (5.35c), (5.35d) and (5.35e) into the second 

term on the right side of Equation (5.37) lead to 
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(5.41) 

Substituting Equations (5.35c), (5.35d) and (5.35e) into Equation (5.41), one can obtain, 
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Substitutions of Equations (5.39), (5.40a-e), (5.41) and (5.42a-f) into Equation (5.37) 

yield 
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where, 
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5.5.2 Results and Discussion 

Equation (5.43) can exhibit that the nonlinear coupling between acoustic modes 

exists and the energy can be transferred from lower modes to higher modes and vice 

versa, due to the nonlinear gasdynamics in the chamber. In terms of the first eight 

modes, the process of inter modal energy transfer is demonstrated in Table 5.2. The 

energy transferred from lower to higher modes is primarily due to the terms, ini −ηη ��   

and ini −ηη�� , whereas the terms ini +ηη �� and ini +ηη��  cause the reverse energy transfer from 

higher to lower modes. In addition, it should be noted that the differences between the 

current work and the discussion reported by Culick (1975) are the terms of ini −ηη��  and 

ini +ηη��  in Equation (5.43). However, with the assumption iii ηωη 2−≈��  in Culick’s work, 

ini −ηη  and ini +ηη should be correspondingly equivalent to ini −ηη  and ini +ηη . 

Furthermore, it is shown in Equation (5.43) that the nonlinear coupling between the 

acoustic modes can cause an energy cascade and limit cycle consequently occurs, as 

pointed out by Yang et al (1995). In general, energy feeds into the system by the linear 

process of the unstable modes and is transferred/dissipated by the nonlinear coupling. 

Moreover, the first term on the right hand of Equation (5.43) representing the 

combustion process also interact with modes implicitly as one of the sources of the nth 

oscillator associated with all the others modes, as discussed in Section 5.3.                                                                                                                 
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Table 5.2  Inter-modal Energy Transfers 
 

Mode Number Energy Transfer Up the Modes Reverse Energy Transfer 

1  12, 23, 34, 45, 56, 67, 78 

2 11 13, 24, 35, 46, 57, 68 

3 12, 21 14, 25, 36, 47, 58 

4 13, 22, 31 15, 26, 37, 48 

5 14, 23, 32, 41 16, 27, 38 

6 15, 24, 33, 42, 51 17, 28 

7 16, 25, 34, 43, 52, 61 18 

8 17, 26, 35, 44, 53, 62, 71  

Terms ini −ηη �� ; ini −ηη�� ( ini −ηη ) ini +ηη �� ; ini +ηη�� ( ini +ηη ) 

 

5.6 Conclusions 

In terms of the one-mode dynamic model, which includes a simple harmonic 

oscillatory behaviour for combustion, the system exhibits a variety of chaotic 

behaviours for some select range of the bifurcation parameter. These results are of 

significance to partially illustrate the emergence of the overshoot zone accompanying 

the linear zone and the nonlinear limit cycle discovered in pressure trajectory with time 

(Sterling, 1993). The formulae for the bifurcation parameter and the period at Hopf 

points are derived for the two-mode dynamic model. In the range from 0 to -10, the 

bifurcation parameter and the corresponding period at Hopf points vary rapidly. The 

limit value of the bifurcation parameter tends to be β, which is one of coefficients in the 

model. As mentioned in the above section, the Hopf points appear at the intersection 

between a branch of equilibria and a branch of periodic oscillations. In this regard, it 

makes sense to note that the Hopf point computations are important to reveal the 

bifurcation structure associated with the thermo-acoustic instability in a given system 

and might result in the occurrence of limit cycle. Moreover, in terms of a simplified 
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case, it is found in Equation (5.43) that the coupling and the resulting energy transfer 

between the acoustic modes are primarily caused by the nonlinear gasdynamics. 

Additionally, the nonlinear coupling between the acoustic modes can cause an energy 

cascade and limit cycle consequently occurs. The energy transferred from lower to 

higher modes results from the terms ini −ηη ��   and ini −ηη�� , whereas the terms ini +ηη �� and 

ini +ηη��  cause the reverse energy transfer from higher to lower modes.  

This study can be extended to complement CFD simulations. As the 

experimental method used by Lieuwen (2002) to study the impact of mean inlet velocity 

on the pressure oscillations in a premixed combustor, a certain parameter, such as the 

equivalence ratio, which potentially might play an important role in thermo-acoustic 

instability, is highlighted and a set of CFD simulations with a limited variation of this 

parameter are conducted. This is likely to achieve an in-depth understanding of thermo-

acoustic instability and obtain a typical transitional behaviour similar to the findings of 

nonlinearity/chaotic behaviour as exemplified in this work, even though the detailed 

CFD simulations are comparatively costly and computationally intensive. 
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CHAPTER 6  

CHAPTER 6 

NONLINEAR/CHAOTIC ANALYSIS, MODELLING 

AND CONTROL OF THERMO-ACOUSTIC 

INSTABILITIES DUE TO VAPORIZATION 

 

6.1 Introduction 

In this chapter, a discrete dynamic model is developed that accounts for both the 

combustion and the evaporation processes as distinct from models employing just the 

typical combustion description. In terms of different bifurcation parameters relevant to 

either combustion or evaporation, various bifurcation diagrams are presented. As part of 

the nonlinear characterization, the governing process Lyapunov exponent is calculated 

and employed to analyze the stability of the particular dynamic system. Furthermore, 

the OGY (Ott, Grebogi and Yorke, 1990) method and the minimum entropy control 

method to be described later are employed to control the chaotic performance of certain 
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a/periodic motion. These methods are intended to form a rational basis for 

active/passive control of combustion instability as reported in the literature.  

6.2 Formulation 

Based on the methodology developed by Culick (1976a; 1976b), a new model is 

developed, for simplicity, by neglecting body forces but accounting for heat release and 

mass transfer between the liquid phase and the gaseous phase. The governing 

conservation equations may be given as, 

Mass equation: 

( ) dW
t

=⋅∇+
∂

∂
uρ

ρ
                                              (6.1a) 

Momentum equation: 

dp
t

Fuu
u

=∇+∇⋅+
∂

∂
ρρ                                      (6.1b) 

Pressure equation: 

( ) ( ) ( )[ ]dvdgododd

v

TWCWeeQ
C

R
p

t

p
κγ ++−++−=⋅∇+

∂

∂
1,,

�Fuuu    (6.1c) 

where, ρ, u, p and T are the density, velocity vector, pressure and temperature of 

mixture, respectively; R is the mass average gas constant for the gas/droplets mixture; 

Wd is the rate of conversion of droplets to gas; Fd is the inter-force between droplets and 

gases; κ is the ratio of the mass of droplets to the mass of gas in a unit volume of 

combustion chamber, which is assumed to be a constant in both space and time (Culick, 

1976a; 1976b); eo,d and eo,g are stagnation internal energy of droples and stagnation 

internal energy of gases respectively; Q�  is heat release by reactions; eo and edo are the 

stagnation internal energy of gases and the stagnation internal energy of droplets, 

respectively; vC and pC  are specific heats of gas/droplets mixture at constant volume 
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and constant pressure respectively, )1/()( ,, κκ ++= dvgvv CCC and 

)1/()( ,, κκ ++= dpgpv CCC ; γ is the ratio of heat heats for the gas/droplets mixture, 

vp CC /=γ ; a is the average speed of sound for the mixture, TRa γ=2 . Additionally, 

when combustion occurs unsteadily in a low Mach number flow, the sources owing to 

combustion and evaporation processes are far larger than the sound resulted from the 

other source mechanisms, as pointed out by Dowling et al. (1992). Therefore, in terms 

of the case of interest in this work, it makes sense to neglect the momentum transfer 

term between the droplets and the host fluid demonstrated in Equation (6.1b) in order to 

specifically investigate the driving mechanisms related to combustion and evaporation 

of droplets to combustion instability. 

The variables in Equation (6.1) may be decomposed into the usual mean and 

fluctuating parts, written as, 

ρρρ ′+=  

uuu ′+=  

ppp ′+=  

TTT ′+=  

QQQ ′+= ���  

ddd WWW ′+=  

Substitution of these expressions into Equations (6.1a-c) yields the linearized equations 

as, 
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dW
t

′=′∇+
∂

′∂
uρ

ρ
                                               (6.2a) 

0=′∇+
∂

′∂
p

t

u
ρ                                                (6.2b) 

Mu ′=′∇+
∂

′∂

vC

R
p

t

p
γ                                          (6.2c) 

where the source term, M′ , is, 

( ) ( )[ ] dvodo WTCeeQ ′++−+′=′ κ1�M                              (6.3) 

Combination of Equation (6.2b) and Equation (6.2c) and rearrangement lead to, 

tC

R

t

p

a
p

v ∂

′∂
=

∂

′∂
−′∇

M
2

2

2

2 1
                                       (6.4) 

The solution of the above non-homogeneous wave Equation (6.4) is approximated via a 

combination of the normal modes in the combustion chamber with unknown time-

varying amplitudes, 

( ) ∑
∞→

=

=′
M

m

mm xtptxp
0

)()(, ψη                                         (6.5) 

Here, one can define a Green function written as, 

( ) ( )∑
∞

=

=
0

0
n

nn xAxxG ψ  

where ( )xnψ  satisfies the following properties, 

( ) 022 =+∇ nnn kx ψψ                                                (6.6) 
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mnnn

V

m EdVxx δ2)()( =∫ ψψ                                            (6.7) 

in which ∫=
V

n dVxE )(2 2

nψ  and with the boundary condition given as 

( ) 0ˆ =∇⋅ xnψn                                                     (6.8) 

Subtracting Equation (6.6) multiplied by p′  from Equation (6.4) multiplied by ( )xnψ , 

and then integrating over the entire volume, one obtains, 

[ ]

∫∫

∫∫

∂

′∂
−=′−

′∇−∇′−′∇

V

n

V

nn

V

n

V

nn

dV
t

xdVxpk

dVp
a

xdVxppx

M
ψψ

ψψψ

)()(

1
)()()(

2

2

2

22

 

According to the orthogonal property of ( )xnψ , this may be written as 

∫ ∂

′∂
=+

V

n

n

v

nnn dVx
tEp

CR
)(

/
2

2
ψ

M
ηωη��                                      (6.9) 

Thus, the pressure variations in a combustion chamber are dependent on a set of 

coupled oscillators which are driven by the heat release and mass addition integrals 

exemplified by the right-hand side of Equation (6.9). 

6.3 Extended Rayleigh Criterion and Nonlinear Models 

 A bifurcation diagram for the dynamic system given by Equation (6.9) can be 

obtained by observing the behaviour of the oscillation energy (Sterling, 1993). By 

multiplying Equation (6.9) by nη�  and integrating over one period, nn ωπτ /2= , of 

oscillation, the change of the oscillation energy over one period may be expressed, as, 
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{ }∫ ∫
+

′=∆ dVdt
Ep

CR
E n

t

t
n

n

v

n

n

ψM
τ

η�
2

/
                                     (6.10) 

where 
n

n
ω

π
τ

2
= . 

Using the assumptions that the amplitudes are slowly varying and the second derivative 

of η with respect to time is approximately nnηω 2− , which is used in the same manner as 

in that of Culick (1976a; 1976b; 1988; 1990; 2006), Yang et al. (1987; 1988; 1990), and 

Sterling (1993), the simplification of Equation (6.10) yields, 

{ }∫ ∫
+

′
−

=∆ dVdtp
Ep

E
nt

t
n

n

n

τγ
M

2

1
                                        (6.11) 

where, the time-dependent pressure of the n-th mode is given by, 

( ) ( )rψ nnn tpp η=  

 Equation (6.11) is the extended Rayleigh criterion which may be employed to 

examine the stability of the system under consideration. It indicates that if the energy 

and/or mass addition is in phase with the particular chamber acoustics, the acoustic 

energy may increase and, consequently, the wave may be amplified. Conversely, if they 

are out of phase, the wave may be damped. A nonlinear expression for the source term 

M′  in terms of the pressure and/or velocity is required to depict the behaviour for the 

dynamic system of interest. Different nonlinear models of the combustion and/or 

evaporation response to pressure and/or velocity oscillations are put forward in what 

follows.  
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6.3.1 Delayed Combustion Response 

Combustion processes are sensitive to the macroscopic flow variables, 

especially, pressure, temperature and velocity. The time-lag model proposed by Crocco 

and Cheng (1972) is one of the most extensively used combustion response models, 

which in essence provides a way to explain the coupling of heat perturbations with 

flow-field oscillations. In this model, the work of Sterling (1993) was extended, based 

on the notion that the heat release is proportional to the velocity associated with only 

one mode, but responds with a time delay, and the mass transfer due to evaporation is 

neglected. Therefore, a sinusoidal velocity may lead to a time-shifted, sinusoidal heat 

release. Thus, the heat release is given by, 

 ( ) ( )ϑη −=′ tQQ n
�� r                                                   (6.12) 

and the delay is 

Eβϑ =  

where β is proportionality constant between the time delay for the heat release and the 

oscillation energy, E. Assuming that, 

( )tE ωη sin2
1

≈  

and substituting this into Equation (6.11) and integrating, with the assumption of a 

slowly varying time delay, one obtains 

( )ωϑµ sinEE =∆                                                     (6.13) 

where µ is a bifurcation parameter related to the chamber dimension and acoustic 

modes.  
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Thus, the energy of the oscillator at cycle n+1 is, 

( )( )***
1 sin1 nnn EEE µ+=+                                             (6.14) 

where ( )βω/* EE = . 

 

Fig.  6.1  Bifurcation Diagram for Time Delay Model 
 

 In terms of a typical system given by Sterling (1993), this discrete dynamical 

system was calculated assuming that µ is varying from 0.5 to 1.0, as a bifurcation 

parameter.  A bifurcation diagram was obtained as shown in Fig. 6.1. For 636.0<µ , a 

limit cycle occurs, as in Fig. 6.2 (a). When 799.0636.0 << µ , period-doubling 

bifurcations occur, as shown in Fig. 6.2(b), whereas, when 836.0799.0 << µ , period-

four bifurcations appear in Fig. 6.2(c). When 8458.0836.0 << µ , period-eight 

bifurcations take place. As shown in Fig. 6.2(e), this discrete dynamic system displays a 

new type of behaviour known as intermittency, which indicates that periodic behaviour 

is interrupted by occasional chaotic bursts. It is noted that the transition to chaos occurs, 
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as guided by the analysis regarding Lyapunov exponents presented in the following 

section. 

 

Fig.  6.2  Time Series Data of Oscillation Energy for Time Delay Model (a) Period-one (Limit 
cycle); (b) Period-doubling; (c) Period-four; (d) Chaos; (e) Intermittency Route; (f) Chaos 
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J. Feigenbaum discovered a remarkable a universal constant known as 

Feigenbaum constant in the mid-1970s, which is ubiquitous in nonlinear science 

(Lynch, 2004). The first six bifurcation points computed numerically are given in Table 

1. If Dk is defined as,  

kkk bbD −= +1  

then, 

....669202.4lim
1

==
+

∞→
k

k

k D

D
δ  

In Table 6.1, the Feigenbaum constant calculated for the first six bifurcation points is 

slightly less than 4.669202. As expected, it should be approximated by the Feigenbaum 

constant if more bifurcation points are taken into account. 

 
Table 6.1  Bifurcation Points and Feigenbaum Constant 

 

Bifurcation 

Points (bi) 
Dk 

Feigenbaum 

Constant (δ) 

0.636 0.163 4.407 

0.799 0.037 4.625 

0.836 0.008 4.445 

0.844 0.0018 4.510 

0.8458 0.0004  

0.8462   
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Fig.  6.3  Lyapunov Exponent for Time Delay Model 
 
 

 

In addition, as indicated in/stability index, the Lyapunov exponent (Lynch, 

2004), L, is computed using the derivative method defined by, 

( )







′= ∑

i

ixf
n

L µln
1

                                              (6.15) 

where, µf ′  denotes differentiation with respect to x and x1, x2, …, xi indicate successive 

iterations. Lyapunov theorem states that, if at least one of the average Lyapunov 

exponents is positive, then the system is chaotic; if the average Lyapunov exponent is 

negative, then the orbit is periodic; and when the average Lyapunov exponent is zero, a 

bifurcation occurs. Thus, Fig. 6.3 exhibits that the state of the system is stable initially, 

changes to chaotic and then restabilizes as shown in Fig. 6.2. 
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6.3.2 Bi-parameter Model 

To further extend the above simple model, the droplet evaporation process is 

taken into consideration in addition to combustion. Equation (6.4) reveals that the 

evaporation rate of droplets may be thought of as a monopole source of sound, as the 

heat release resulting from combustion behaves in a similar vein to that of the heat 

releaseQ′� , provided that the Doppler effect is neglected. In terms of evaporation, this 

model accounts for the following physicochemical processes related to the two distinct 

phases, (1) detachment of fuel molecules from the surface of the droplet into gas in the 

immediate vicinity of droplets, and (2) diffusion of fuel vapour from the surface of 

droplets into the ambient gas. In most practical applications, the second process is 

highlighted for modelling purposes, on the assumption that the fuel vapour in the 

vicinity of droplet surface is always saturated (Sazhin, 2006). A number of models have 

been proposed in the literature to account for the influence of the prevailing velocity 

field on the evaporation rate as given in literature (Abramzon and Sirignano, 1989; Zeng 

and Lee, 2002; Sazhin et al., 2004). In this work, it is assumed that the droplet radius 

rate of change owing to vaporization is mainly dependent on the relative velocity and 

temperature fields between phases, as provided by Sazhin (2006) 

Sh
R

BD

dt

dR

l

dvg

ρ

ρ

2
−=  

where the Sherwood number, Sh, is expressed as (Sazhin, 2006), 

( ) ( )

d

d

dd
B

B+
+=

1ln
6.00.2 3/13/1

ScReSh  

and 
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vd ∝Re  

where Red is the Reynolds number, ggpd R ν/2 uvRe −= ; Scd is the Schmidt number, 

vggd Dρµ /=Sc ; νg is the kinematic viscosity of surrounding gas and Dv is the vapor 

diffusivity in air with density of ρg. 

Thus, loosely speaking, the evaporation rate can be taken to depend 

proportionally on the cube root of the velocity of ambient gas, provided the temperature 

and velocity of droplets are constant. Assuming that, 

( )
( )

( )t
k

x
WW

n

n

d

3/1

3/1

2
η

γ
�







∇
=′

ψ
x                               (6.16) 

where ( ) ( )xψ n

n

t
k

u ∇=′ η
γ
�

2

1
. 

Substitution of Equations (6.16) and (6.12) into Equation (6.11) yields, 

( )( )6/1****
1 sin1

−

+ ++= nnnn EEEE λµ                            (6.17) 

where λ is a bifurcation parameter related to the thermal dynamic properties of both 

ambient gas and droplets, chamber dimension and acoustic modes. 

Taking into consideration a typical system given by by Culick (1976a; 

1976b), this discrete dynamic system can be iterated numerically for any initial 

oscillation energy field. As the variable, µ, as a bifurcation parameter, is varying 

and λ is constant, bifurcation diagrams and corresponding Lyapunov exponent 

diagrams are obtained as shown in Figs. 6.4-5 and Figs. 6.6-7, respectively. 

Compared with Fig. 6.2, the evaporation effect plays an important role regarding 

the occurrence of chaos. It is found that chaos initially appears at µ ≈ 0.84 for λ ≈ 0, 
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at µ ≈ 0.84 for λ ≈ 1.0, while the same behaviour is observed at µ ≈ 0.96 for λ ≈ 0.7. 

In addition, the evaporation process as a source may substantially amplify the 

oscillatory performance of the system. In particular, the occurrence of the period-

doubling bifurcation point is delayed, owing to the evaporation effect. 

 Assuming that the variable, λ, is varying from 0 to 1.1 and µ = 1.0, a bifurcation 

diagram and a corresponding Lyapunov exponent diagram are obtained as shown in Fig. 

6.8 and Fig. 6.9, respectively. The state of this dynamic system initially is chaotic and 

evolves into periodic motion at λ ≈ 0.4 and then returns to chaos. This clearly indicates 

that the evaporation process, providing a driving force for combustion instabilities as 

pointed out by Tong and Sirignano (1989) and Duvvur et al. (1996), might complicate 

the analysis and understanding of the system of interest. Fig. 6.9 reveals that the 

occurrence of chaos has a high probability, compared with the case of no evaporation. 

6.4 Controlling Chaos in the Nonlinear Model 

6.4.1 OGY Method 

6.4.1.1 Formulation 

 Since the publication of the seminal paper of Ott, Grebogi and Yorke (1990), the 

development of techniques for the control of chaotic phenomena has made great strides. 

In this work, the OGY method (Lynch, 2004) is developed for the control of instability 

and the analysis is restricted to control pulses designed to be proportionally periodic. In 

order to control the chaotic behaviour exemplified by the system given in Equation 

(6.17), instantaneous pulses may be employed to influence the variable En every p 

iterations, that is, 

ii kEE →  
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 where k is a constant to be determined and p is the period. In addition, one may define, 

( ) ( )( )61
1

/***

, sin
−

++= nnnn EEEEf λµµλ  

Thus, one defines a  composite function Fλ,µ(E) by, 

( ) ( )EkfEF p

µλµλ ,, =                                            (6.18) 

A fixed point of the function Fλ,µ satisfies the equation, 

( ) ss

p EEkf =µλ ,                                                (6.19) 

where, the fixed point Es is stable if 

( )
1,

<
dE

Edf
k

s

p

µλ                                               (6.20) 

One further defines the function Cp(E) by 

( )
( )

( )
dE

Edf

Ef

E
EC

p

p

p µλ

µλ

,

,

=  

Substituting this into Equation (6.20), one obtains 

( ) 1<s

p EC                                                (6.21) 

Provided that Equation (6.21) holds, a fixed point of the system is a stable point of 

period p when the control is switched on. The functions, Ci(E), i =1, 2, 3, 4, are shown 

in Fig. 6.10. Fig. 6.10 (a) indicates that fixed points of period one can be stabilized in 

three ranges of Es values. For p = 2, Fig. 6.10 (b) shows that fixed points of period two 

can be stabilized in six ranges of Es values, whereas Fig. 6.10 (c) and (d) exhibit that 

there are 11 and 24 acceptable ranges for fixed points of period three and four, 
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respectively. This also shows that the control ranges are becoming restricted with the 

increase of periodicity. 

6.4.1.2 Results and Discussion  

Figs. 6.11-14 show time series data for specific examples when chaos is 

controlled to period-one, period-two, period-three and period-four behaviors. Note that 

the values of Es chosen in Figs. 6.11-14 were derived from Fig. 6.10. The values of k 

were calculated using Equation (6.19). It was found that when the control is switched 

on, chaotic non-linear behaviour transitions onto specific periodic motions as a result, 

amplitudes damp considerably. In addition, this control methodology using 

instantaneous pulses prescribed via the algorithm just described may be regarded as 

providing the fundamental rational basis to influence combustion instability as 

exercised in current practice (Hathout et al., 2002; Paschereit and Gutmark, 2008). 

6.4.2 Minimum Entropy Method 

6.4.2.1 Formulation 

In the past, a number of nonlinear control algorithms have been proposed for 

stochastic control in the literature (Chen, 2000; Yue and Wang, 2003; Lynch, 2004; Liu 

and Chen, 2004; Fuh and Tsai, 2007; Salarieh and Alasty, 2008). In this section, the 

minimum entropy control method is employed for the nonlinear models discussed 

above. Generally, the recurrence property is characteristic of chaotic systems, which 

have stationary probability density functions. Thus, the appropriately formulated 

entropy function for a nonlinear system based on the probability density reaches a 

minimum value and, correspondingly, the fixed point arises. As pointed out by Salarieh 
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and Alasty (2008), the advantage of this method is that there is no need to present any 

information regarding the characteristic mathematical model of the system. 

To generalize, consider a stochastic system as, 

( )nnn rXfX ,1 =+                                                      (6.22) 

where Xn is the state vector and rn is the control action. 

In the sense of Shannon, the entropy function of the chaotic system is defined as, 

( ) ( ) ( )∫ Ω∈
−=

X
dXrXPrXPrS ,ln,                                     (6.23) 

where P is the probability function and Ω is the whole phase space covering the states 

of the system which could be further divided into Z sub-regions denoted by Ωi, i = 1, 2, 

…, Z. Therefore, the probability function at the nth iteration is defined as 

( )
n

N
rXP i

i =,                                                     (6.24) 

where Ni is the number of points in the sub-region Ωi. 

Equation (6.24) may lead to 

∑
= ∂

∂
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∂

∂
=

∂
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nr

P

1
2

1
                                      (6.25) 

Thus, Equation (6.23) becomes 

( ) ∑
=

∆Ω⋅−=
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ii PPrS
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ln                                        (6.26) 

in which ∆Ω is the length of sub-region. 
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To computationally implement the local minimum entropy, the gradient descent method 

is employed, 

nrr

nn
r

S
rr

=

+
∂

∂
−= ω1                                           (6.27) 

where ω>0 indicates that the entropy of the system is decreasing, as probed in (Yang et 

al., 1988, 1990). 

Substitution of Equation (6.23) into Equation (6.27) may yield, 
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which can be approximated numerically, 
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Substituting Equation (6.25) into Equation (6.29), one may obtain 
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which may be rewritten numerically as 
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where ∆Ni = Ni(n)-Ni(n-1) and ∆r = r(n)-r(n-1). Additionally, since if the nth interation 

point lies in Ωi, ∆Ni = 1, otherwise, ∆Ni = 0, Equation (6.31) becomes 
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In addition, the control function rn is changed to the following form  

( )*XXr nnnnn −=⋅= ςες                                   (6.33) 

where εn is the error feedback and X
* is the fixed value as defined. 

Substitution of Equation (6.33) into Equation (6.32) leads to, 
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Iterating the above equation in conjunction with Equation (6.22), it is easily seen that 

the entropy of the system continuously reduces, eventually to zero. Consequently, a 

fixed point can be arrived at. 

6.4.2.2 Results and Discussion  

Fig. 6.15 shows emergence of the fixed point for the nonlinear model, Equation 

(6.14) with µ = 0.94, in which chaotic behavior appears as shown in Fig. 6.1. In this 

case, the parameters of Equation (6.34) are defined as Z = 25, ω = 0.15. It was found 

that when the control is switched on, chaotic non-linear behaviour transitions onto 

specific periodic motions as a result, amplitudes damp considerably, as shown in Fig. 

6.15 (a). In addition, the entropy of the system decreases as shown in Fig. 6.15 (b). 

 Stabilizing the fixed point of the nonlinear model, viz. Equation (6.17), with µ = 

1.1 and λ = 0.7 is shown in Fig. 6.16, in which chaotic behavior appears as shown in 

Fig. 6.4. In this case, the parameters of Equation (6.34) are defined as Z = 25, ω = 0.23. 

It was found that when the control is switched on, the state converge to the fixed point, 

i.e. X* = 2.8527, as shown in Fig. 6.16 (a). In addition, the entropy of the system reduces 

as shown in Fig. 6.16 (b). 
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6.5 Conclusions 

Discrete dynamic models of the system under consideration are proposed, in 

which the nonlinearity is associated with the response of the heat release and mass 

transfer to pressure and/or velocity oscillations. In terms of the first model of delayed 

combustion response which was originally put forward by Sterling (1993), additional 

details regarding the nonlinear dynamic performance is presented. The transformation 

between a limit cycle, periodic motion and chaos is highlighted. Furthermore, the 

Feigenbaum constant is calculated, to be in line with the universally reported value. In 

addition, the Lyapunov exponent is obtained and it is found out that for 0<µ<0.85, the 

system is, in general, stable. This exponent may be used to capture the stability of the 

system of interest numerically and experimentally. 

 Moreover, the more complicated dynamic model which accounts for both the 

combustion and evaporation processes is developed as well. The bifurcation diagrams 

show that the mass addition can greatly influence the occurrence of bifurcation points 

and the amplitude of oscillation. For the case of varying λ and µ = 1.0, initially chaotic 

behaviour arises, reflecting that, under certain circumstances, the vaporization of 

droplets will strengthen the heat release to drive the combustion instability. 

Additionally, the Lyapunov exponent is calculated pointing to the fact that that the 

chaotic range extent may increase in the presence of the vaporization process. 

Furthermore, the OGY method and minimum entropy method are employed to control 

the chaotic performance of the system. These can be complemented either numerically 

or experimentally to control the prevailing combustion instability. 

 A study of the bifurcation diagrams reveals that subharmonics can occur under 

various operating conditions. In experiments, one model parameter may be sufficient to 
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highlight and control one or more of the bifurcation points influenced by the prevailing 

chaotic/subharmonic behaviour. For a velocity oscillation, the mass addition and heat 

release may be in phase with the pressure oscillation. Thus, it is reasonable to expect 

that certain bifurcations may result from combinations of certain droplet velocity and 

dropsize distribution. 
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Fig.  6.4  Bifurcation Diagram for λ = 1.0 
 

 

 

Fig.  6.5  Bifurcation Diagram for λ = 0.7 
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Fig.  6.6  Lyapunov Exponent Diagram for λ = 1.0 
 

 

 

Fig.  6.7  Lyapunov Exponent Diagram for λ = 0.7 
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Fig.  6.8  Bifurcation Diagram for µ = 1.0 

Fig.  6.9  Lyapunov Exponent Diagram for µ = 1.0 
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Fig.  6.10  Control Curve C i, i = 1, 2, 3, 4, for the Bi-parameter Model with λ=0.7, µ=1.1. The 
range is restricted to -1 < C p (Es) < 1 in each case 

 



CHAPTER 6: NONLIN ANAL OF THERMO-ACOUSTIC INSTABILITY DUE TO VAPORIZATION 

 
 

135 

Fig.  6.11  Stabilization of Points of Period One of Bi-parameter Model with λ=0.7, µ=1.1. 
(Es=2.0, k=0.410) The control is activated after the 200

th iterate and is switched off after the 
300th iterate. 

Fig.  6.12  Stabilization of Points of Period Two of Bi-parameter Model with λ=0.7, µ=1.1. 
(Es=1.0, k=0.180) The control is activated after the 200

th iterate and is switched off after the 
300th iterate.
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Fig.  6.13  Stabilization of Points of Period Three of Bi-parameter Model with λ=0.7, µ=1.1. 
(Es=1.17, k=0.085) The control is activated after the 200

th iterate and is switched off after the 
300th iterate. 

Fig.  6.14  Stabilization of Points of Period Four of Bi-parameter Model with λ=0.7, µ = 1.1. 
(Es=3.581, k=0.019) The control is activated after the 200

th iterate and is switched off after the 
300th iterate.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

n

E
n

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

n

E
n



CHAPTER 6: NONLIN ANAL OF THERMO-ACOUSTIC INSTABILITY DUE TO VAPORIZATION 

 
 

137 

 
Fig.  6.15  Stabilizing the Fixed Point of the Nonlinear Model of Equation (6.14) 

 
 
 

 
Fig.  6.16  Stabilizing the Fixed Point of the Nonlinear Model of Equation (6.17) 
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CHAPTER 7   

CHAPTER 7 

IDENTIFICATION AND CONTROL OF COMBUSTION 

INSTABILITIES USING NEURAL NETWORKS 

 

7.1 Introduction 

In the context of a real gas turbine combustor, the current study in this chapter is 

primarily dedicated to identifying and predicting combustion dynamics by an artificial 

neural network (ANN), viz., nonlinear auto-regressive moving average with exogenous 

input (NARMAX) model, which has in the past been used in a comprehensive manner 

(Glass and Franchek, 1999). Moreover, based on a nonlinear autoregressive moving 

average (NARMA-L2) algorithm, a control system is proposed to eliminate the 

combustion instability in terms of a representative system of interest, which may 

eventually be extended to practical gas turbine combustors. 
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7.2 Neural Identification of Combustion Instability 

The nonlinear autoregressive moving average with exogenous inputs 

(NARMAX) model proposed by Chen and Billings (1989), has been adopted to provide 

a powerful representation for the time series analysis, modelling and prediction owing 

to its ability to accommodate the dynamic, complex and nonlinear nature of real-world 

time series prediction problems (Glass, 1999). 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]xy ntxtxtxntytytyty −−−−−−= ,,1,1,,,1,1 ……F             (7.1) 

where y, and x are respectively the output and external input for the system model,  ny 

and nx are the maximum lags in the output and input, and F is an unknown smooth 

function. Additionally, the output is fed back to the input of the feed forward neural 

network and consequently, the input to the feed forward network is more accurate. 

 In terms of training the network, the model receives input vectors and the output 

is compared with the desired targets corresponding to the inputs. As a result, the weight 

coefficients associated with the neural network can be recursively updated according to 

a specific training algorithm. Thus, the function F in Equation (7.1) can be 

approximated by a neural network, written as, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]xy ntxtxtxntytytyty −−−−−−= ,,1,1,,,1,1 ……NN           (7.2) 

If the training of the neural network has been implemented, the model developed could 

be used to simulate the dynamics of the system of interest. 

In this work, the numerical results reported by Steele et al. (2000) are employed 

to capture the nonlinear behaviour inherent in combustion instability using the neural 

network developed, where the temporal variations of acoustic pressure were provided in 

terms of series of cases with different fuel injection locations. For the NARMAX 



CHAPTER 7: IDENTIFICATION AND CONTROL OF COMBUSTION INSTABILITY USING NN 

 
 

140 

model, a three-layer feed-forward network was developed. The inputs were normalized 

with respect to the absolute maximums. A sigmoidal transformation was adopted in the 

second layer. In addition, the lags in the output and input were specified to be 8, which 

can result in optimal prediction. Figs. 7.1-3 show the comparisons between the 

numerical results reported by Steele et al. (2000), denoted by circles, and the simulated 

results obtained by the NARMAX model, denoted by the solid line, respectively. It was 

found that good agreement between the two is obtained and the nonlinear behaviour and 

the dynamics associated with the combustion instability can be captured. In addition, in 

Fig. 7.1, the amplitude of acoustic pressure is being attenuated and the system is stable, 

whereas Figs. 7.2-3 could potentially indicate that the limit cycles appear due to the 

coupling of the heat released by the reactions and the acoustics in the combustion 

chamber. Furthermore, the prediction based on the existing data was implemented for 

the case with fuel injection location of 7.6 cm and its nonlinear performance could 

recur. Therefore, the NARMAX model adopted could identify and predict the dynamics 

of pressure oscillations and, thus, it could be extended to derive a control scheme for the 

system of interest. 

7.3 Neural Dynamic Control of Combustion Instability 

Due to the nonlinearities associated with the system under concern, it is 

relatively difficult to define a control system. In this work, the NARMA-L2 control 

method proposed by Narendra and Mukhopadhyay (1997) is adopted. The primary basis 

of the NARMA-L2 controller involves transformation of a nonlinear dynamic system 

into a linear dynamic system by “appropriate cancellation” of the nonlinearities. 

Additionally, NARMA-L2 is simply a rearrangement of the neural network for the 

system to be controlled, which is trained off-line and in a batch form. Firstly, the 
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nonlinear autoregressive moving average (NARMA) is used to represent the general 

discrete-time nonlinear system as, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1,,1,,1,,1, +−−+−−=+ nkxkxkxnkykykyNdky ……      (7.3) 

where x and y are the system input and output, respectively. If one desires the system 

output to follow some reference trajectory y(k+d) = yr(k+d), a nonlinear controller can 

be developed as, 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1,,1,,1,,1, +−−++−−=+ mkxkxdkynkykykyGdkx r ……     (7.4) 

However, the problem with using this controller is that dynamic back propagation 

(Hagan et al., 2000) is required to train a neural network to create the function G, which 

is quite slow. In this regard, an alternative approximate model to represent the system 

was proposed by Narendra and Mukhopadhyay (1997), given as 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( )kxmkxkxnkykykyg

mkxkxnkykykyfdky

⋅+−−+−−+

+−−+−−=+

1,,1,1,,1,

1,,1,1,,1,

……

……
    (7.5) 

where f and g are functions of only the previous values of the output y. This model is in 

a suitable form, where the controller input x(k) is not contained inside the nonlinearity. 

It should be noted that an advantage afforded by this form is that it is possible to solve 

for the control input that results in the system output to follow the reference yr. 

Consequently, the resulting controller can be obtained as 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]1,,,1,,

1,,,1,,
1

+−+−

+−+−−+
=+

mkxkxnkykyg

mkxkxnkykyfdky
ku r

……

……
       (7.6) 

which is realizable for d ≥ 2.  

 In terms of a typical time evolution of acoustic pressures reported by Steele et al. 

(2000), viz., the case with the fuel injection location of 6.7 cm, a control system is 

developed as shown in Fig. 7.4. It should be noted that the predictions without the 

control system shown in Fig. 7.5 highlights the nonlinearity inherent in combustion 

instability. Initially, linear oscillations appear because the acoustic losses are relatively 
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weak, and then a limit cycle is reached in which nonlinear effects play an important 

role. Furthermore, the response of the ANN controller developed is also provided in 

Fig. 7.5. When the control is activated, the amplitude of pressure oscillation is 

attenuated and eventually reaches an acceptable level. 

7.4 Conclusions 

In this study, the NARMAX model was used to identify and predict the 

nonlinear performance associated with combustion instability in terms of the system 

under investigation. The comparisons for the simulated results with numerical 

(experimental) results indicate that this model could capture the nonlinear dynamics of 

the complex system. Moreover, a control system was developed using the NARMA-L2 

model and the simulation indicates that the controller is able to suppress the combustion 

instability effectively. Therefore, the controller developed may be adopted to attenuate 

the complex interaction between the heat release and the acoustics of combustion 

chamber in practical gas turbine engines. In particular, the current work in conjunction 

with Large Eddy Simulation (LES) as reported by Lei and Turan (2010c) may be 

implemented to control combustion instability in the future work.  
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Fig.  7.1  Time History of Pressure at Combustor Mid-Section for Fuel Injection Location of 
4.3cm 

 

Fig.  7.2  Time History of Pressure at Combustor Mid-Section for Fuel Injection Location of 
4.9cm 
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Fig.  7.3  Time History of Pressure at Combustor Mid-Section for Fuel Injection Location of 
7.6cm 

 
 

 

Fig.  7.4  Block Diagram of Applying NARMA-L2 
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Fig.  7.5  Time History of Pressure at Combustor Mid-Section for Fuel Injection Location of 
6.7cm with/without Control 
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CHAPTER 8  

CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

The thesis primarily concerns with thermo-acoustic instabilities in liquid fuelled gas 

turbine combustors and the evaporation process identified as one of the key mechanisms 

driving thermo-acoustic/combustion instabilities is focussed.  

In the first part, numerical methods such as LES have been employed to validate 

the evaporation of droplets in a realistic gas turbine combustor and good agreement 

between numerical predictions and experimental data has been obtained. It shows 

clearly that the current code could capture both the flow behaviour and droplets’ 

characteristics and can thereby be extended to cases of combustion instabilities. 

Moreover, a comprehensive method, in which the pressure-velocity-density 

coupling inherent to the transient evaporation of droplet is taken into consideration, has 

been developed. A comparative analysis of current numerical predictions and analytical 

results by hydrodynamic and kinetic methods to the problem under concern has been 
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discussed.  It is found out that the hydrodynamic model universally used in computation 

fluid dynamic (CFD) codes is not suitable for the study of combustion instabilities in 

liquid-fuelled gas turbine combustors. Additionally, in order to highlight the influence 

of the practical droplet vaporization process in an unstable combustion environment, the 

current work is helpful to improve the analytical models in terms of the case of droplet 

vaporization accounting for both the convective heat transfer and the two-way coupling 

between vaporization and acoustics. 

Furthermore, based on Navier-Stokes equations, two dynamic models have been 

proposed. In terms of the one-mode dynamic model, which includes a simple harmonic 

oscillatory behaviour for combustion used in the same manner as that of Sterling 

(1993), the system exhibits a variety of chaotic behaviours for some select range of the 

bifurcation parameter. These results are of significance to partially illustrate the 

emergence of the overshoot zone accompanying the linear zone and the nonlinear limit 

cycle discovered in pressure trajectory with time. The formulae for the bifurcation 

parameter and the period at Hopf points have been derived for the two-mode dynamic 

model. In the range from 0 to -10, the bifurcation parameter and the corresponding 

period at Hopf points vary rapidly. The limit value of the bifurcation parameter tends to 

be β, which is one of coefficients in the model. Additionally, it should be noted that the 

Hopf point computations are important to reveal the bifurcation structure associated 

with the thermo-acoustic instability in a given system and might result in the occurrence 

of limit cycle.  

In terms of a simplified case, it is found in Equation (5.43) that the coupling and 

the resulting energy transfer between the acoustic modes are primarily caused by the 

nonlinear gasdynamics. Additionally, the nonlinear coupling between the acoustic 

modes can cause an energy cascade and limit cycle consequently occurs. The energy 
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transferred from lower to higher modes results from the terms ini −ηη ��   and ini −ηη�� , 

whereas the terms ini +ηη �� and ini +ηη��  cause the reverse energy transfer from higher to 

lower modes. 

Considering that combustion occurs unsteadily in a low Mach number flow and 

consequently the sources owing to combustion and evaporation processes are far larger 

than the sound resulted from the other source mechanisms, as pointed out by Dowling et 

al. (1992), discrete dynamic models of the system under consideration are proposed, in 

which the nonlinearity is associated with the response of the heat release and mass 

transfer to pressure and/or velocity oscillations. In terms of the first model of delayed 

combustion response which was originally put forward by Sterling (1993), additional 

details regarding the nonlinear dynamic performance have been explored. The 

transformation between a limit cycle, periodic motion and chaos is highlighted. 

Furthermore, the Feigenbaum constant has been calculated, to be in line with the 

universally reported value. In addition, the Lyapunov exponent has been obtained and it 

is found out that for 0<µ<0.85, the system is, in general, stable. This exponent may be 

used to capture the stability of the system of interest numerically and experimentally. 

Moreover, the more complicated dynamic model which accounts for both the 

combustion and evaporation processes has been developed. The bifurcation diagrams 

show that the mass addition can greatly influence the occurrence of bifurcation points 

and the amplitude of oscillation. For the case of varying λ and µ = 1.0, initially chaotic 

behaviour arises, reflecting that, under certain circumstances, the vaporization of 

droplets will strengthen the heat release to drive the combustion instability. 

Additionally, the Lyapunov exponent calculated may point to the fact that that the 

chaotic range extent may increase in the presence of the vaporization process.  
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Finally, the control algorithms including the OGY method and minimum 

eentropy method are employed to control the chaotic performance of the system. The 

performance controlled indicates that these methods can be complemented either 

numerically or experimentally to control the prevailing thermo-acoustic/combustion 

instability. In addition, the nonlinear behaviours associated with thermo-acoustic 

instability in terms of the system under investigation have been identified and predicted 

using the state of the art neural networks and the corresponding controller developed 

may be adopted to attenuate the interaction between heat released by reactions and the 

acoustics of combustion chamber in practical gas turbine engines. 

In the future, since the mechanisms inducing thermo-acoustic instability 

primarily result from the interaction of heat release and chamber acoustics, it is of 

extreme importance to optimize the distribution of heat release in the combustion 

chamber for non-premixed/premixed gas turbine combustors. Furthermore, more 

advanced evaporation model oriented to numerically simulating combustion instability 

will be developed, which can capture the two-way coupling between the vaporization 

and acoustic fields. Moreover, LES in conjunction with the advanced model discussed 

above and appropriate boundary conditions such as NSCBC (Navier-Stokes 

characteristic boundary condition) will be operated in order to indentify the energy 

transition between acoustic modes and heat release. 
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APPENDIX A 

NUMERICAL METHODS 

 

In this appendix, the numerical methods employed in Chapter 3 including temporal 

discretization, spatial discretization and pressure-velocity coupling are provided in 

detail. 

AA.1 Gas Phase 

 The control-volume-based technique is employed in the code, FLUENT, to 

obtain algebraic equations which can be solved numerically. This technique yields 

discrete equations satisfying the conservation law on a control volume basis through 

integrating the transport equations. 

In terms of a dependent variable denoted byφ , the general transport equation 

may be written as 
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( ) ( ) ( ) φφ φφρρφ S
t

+Γ=+
∂

∂
graddivudiv                        (AA.1) 

where ρ is the density, u is the velocity vector, φΓ  is the diffusion coefficient and φS is 

the source term. Integration of Equation (AA.1) over an arbitrary control volume, V, 

leads to 

( ) ∫∫∫∫ +⋅∇Γ=⋅+
∂

∂
VV

dSdd AAAu φφ φφρρφ                 (AA.2) 

in which A is the surface area vector. Discretizing Equation (AA.2) on a given cell, one 

may obtain 

( ) VSV
t

faceface N

f

fff

N

f

fff ⋅+⋅∇Γ=⋅+⋅
∂

∂
∑∑ φφ φφρρφ AAu f ,          (AA.3) 

where Nface is the number of faces enclosing cell, Af is the area of face f, fφ  is the value 

of φ  convected through face f, fff Auf ⋅φρ  is the mass flux through the face f and 

fφ∇ is the gradient of φ  at face f. Note that the first and second terms on the left side of 

Equation (AA.3) represent the unsteady and convection ones, respectively, while the 

first and second terms on the right side denote the diffusion and source ones, 

respectively. The techniques to numerically express these terms will be discussed in the 

following sections. 

AA.1.1 Temporal Discretization 

Considering that the nature of LES simulations is unsteady, a temporal 

discretization must be implemented for the governing equations. In terms of Equation 

(AA.3), each terms should be integrated over a time step ∆t. A generic expression for 

the time solution of a variable φ  can be written as 



APPENDIX A 

 
 

152 

( )φ
φ

F
t

=
∂

∂
                                                (AA.4) 

where F represents any spatial discretization with respect to φ . Provided that the time 

derivative is discretized using backward differences, one can obtain the first-order 

temporal discretization written as 

( )φ
φφ

F
t

nn

=
∆

−+1

                                         (AA.5) 

and the second-order discretization is given by 

( )φ
φφφ

F
t

nnn

=
∆

+− −+

2

43 11

                                (AA.6) 

where n, n+1 and n-1 denote the time step at t, t+∆t, t-∆t, respectively.  

If ( )φF  is evaluated at the future time level n+1, the implicit time integration 

can be achieved. Thus, the first-order implicit scheme can be obtained from Equation 

(AA.5) 

( )11 ++ ⋅∆+= nnn Ft φφφ                                    (AA.7) 

and, similarly, the second-order implicit scheme derived from Equation (AA.6) is 

written by 

( )111

3

2

3

1

3

4 +−+ ⋅∆+−= nnnn Ft φφφφ                         (AA.8) 

Note that this implicit scheme is unconditionally stable with respect to time step size. 

However, the time step size for LES should be appropriately chosen to satisfy that the 

physical time step size is smaller than the time scale of smallest resolved eddies. In this 
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sense, the CFL (Courant-Friedrichs-Lewy) number proposed by Courant et al. (1967) 

should be kept around 1, given as 










∆

∆

∆

∆

∆

∆
=

z

tw

y

tv

x

tu
CFL ,,max  

In this work, the first-order implicit scheme is used for RANS simulations which 

provides the initial conditions for LES, whereas the second-order implicit scheme is 

employed for LES simulations.  

AA.1.2 Spatial Discretization 

 In the current code, a collocated grid approach is employed, where the values of 

the scalar φ  are stored at the cell centres and the face values fφ  are obtained through 

interpolating the cell values for the convection terms in Equation (AA.3). In addition, an 

upwind scheme is used for RANS, whereas the central-differencing scheme is employed 

for LES to achieve higher-order accuracy with lower numerical dissipation and 

diffusion. 

 Since the initial conditions for LES do not require a rigorously accurate solution, 

just first/second order upwind schemes are used to generate the initial filed for LES. In 

terms of the first order upwind scheme, face values are identical to cell values. Thus, the 

face values fφ are set to be equal to the upstream cell values. In the second-order 

upwind scheme (SOU), the values of a variable at cell are calculated by a 

multidimensional linear reconstruction approach developed by Barth and Jespersen 

(1989). The face value fφ  is obtained by 

r⋅∇+= φφφ SOUf ,                                            (AA.9) 
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where φ  and φ∇  are the cell-centred value and its gradient in the upwind cell and r is 

the displacement vector from the upstream cell centroid to the face centroid, as shown 

in Fig. AA.1.  

 

Fig.  AA.1  Control Volume for a Scalar Transport Equation 
 

As upwind schemes are relatively dissipative, central differencing schemes are 

preferred. Nevertheless, these schemes may lead to unphysical wiggles in the solution 

and consequently result in numerical instabilities. To avoid this problem, the central 

differencing schemes are generally blended with upwind schemes. For the pure central-

differencing (CD) scheme, the face value of a scalar fφ  is computed by 

( ) ( )11,00,10, 2

1

2

1
rr ⋅∇+⋅∇++= rrCDf φφφφφ                     (AA.10) 

in which the subscripts 0 and 1 refer to the cells sharing face f, respectively; 0,rφ∇ and 

1,rφ∇  are the reconstruction gradients at the cells 0 and 1, respectively. Note that this 

scheme may very often lead to unphysical fluctuation numerically, as mentioned above. 

To eliminate these wiggles, in this work, a second-order scheme based on the original 

MUSCL scheme (Monotone Upstream-Centred Schemes for Conservation Laws) of van 

Leer (1979) is implemented. It combines both a central differencing scheme and 

second-order upwind scheme (SOU) and may be written as 
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( ) SOUfCDff ,, 1 φθθφφ −+=                                (AA.11) 

where CDf ,φ  is calculated by Equation (AA.10) and SOUf ,φ  is calculated using Equation 

(AA.9). Note that this scheme may be applicable for structured/unstructured meshes.  

AA.1.3 Calculation of Gradients 

 Gradients are also required to numerically calculate secondary diffusion terms 

and velocity derivatives in Equation (AA.3). In the current code, the Green-Gauss 

theorem is implemented to obtain the gradient of the scalar φ  by 

∑ ⋅=∇
faceN

f

ff
V

Aφφ
1

                                              (AA.12) 

where the face value fφ  is calculated using the arithmetic average of the values at the 

neighbouring cell centres, 

( )102

1
φφφ +=f                                                 (AA.13) 

or, alternatively, may be  obtained by  

∑=
fN

n

n

f

f
N

φφ
1

                                                 (AA.14) 

where Nf is the number of nodes on the face and nφ  is the nodal values constructed from 

the weighted average of the cell values enclosing the nodes according to the approached 

proposed by Rauch et al. (1991) and Holmes and Connel (1989). Note that this scheme 

preserves a second-order spatial accuracy. 

AA.1.4 Linearization 
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 Considering an arbitrary cell (denoted by P), the linearization equation of 

Equation (AA.3) may be accomplished using the temporal and spatial discretization 

schemes discussed above with respect to the unknown variables at the cell and its 

surrounding neighbouring cells, written as 

∑ +=
nb

nbnbPP baa φφ                                        (AA.15) 

where the index nb indicates the neighbouring cells; ap and anb are the linearized 

coefficients for the cell variable Pφ  and the neighbouring cell variables nbφ , 

respectively; b represents the source term generated by the numerical manipulations 

and/or physical processes. Thus, a set of algebraic equations with a coefficient matrix is 

constructed applying the linearization procedure over every cell in the computational 

domain. Moreover, the numerical solution of Equation (AA.3) may be obtained by 

solving the coefficient matrix using a point implicit Gauss-Seidel solver. 

AA.1.5 Pressure-Velocity Coupling 

 To simultaneously satisfy the mass and momentum conservations, the pressure-

velocity coupling should be implemented. In this current code, the SIMPLE family of 

algorithms including SIMPLE, SIMPLEC and PISO based on a typical predictor-

corrector process, are employed. 

 In SIMPLE algorithm, the correlation of velocity with pressure correction is 

used to enforce mass conservation and then achieve the pressure field. Provided that a 

guessed pressure field p* is taken to solve the momentum equation, the face flux *
fJ  

resulted from the continuity equation, which might not satisfy mass conservation, is 

written as 
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( )*
1

*
0

** ˆ
ccfff ppdJJ −+=                                (AA.16) 

where fĴ  accounts for the effects of the velocity in cells and df is a function ap in the 

discretized continuity equation. If the mass conservation is not satisfied, a correction 

fJ ′  is required to compensate the face flux *
fJ . Consequently, one can obtain the 

corrected face flux Jf to satisfy the continuity equation, written as 

fff JJJ ′+= *                                                 (AA.17) 

where  

( )10 ccff ppdJ ′−′=′                                           (AA.18) 

in which 0cp′  and 1cp′  are the cell pressure corrections at the cells denoted 0 and 1 

shown in Fig. AA.1, respectively. In the SIMPLE algorithm, the substitution of the flux 

correction equation, both Equation (AA.17) and Equation (AA.18), into the discrete 

continuity equation leads to a discrete equation for the pressure correction p′ for a 

certain cell as 

bpapa
nb

nbnbP +′=′ ∑                                        (AA.19) 

where the source term b is the sum of flow rate in the cell, written as 

∑=
facesN

f

ffJb A
*                                              (AA.20) 

The solution of the pressure correction equation, Equation (AA.19), yields the corrected 

pressure and face flux, given as 
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ppp P
′+= α*                                             (AA.21) 

( )10
*

ccfff ppdJJ ′−′+′=                                  (AA.22) 

where αP is the under-relaxation factor for the pressure. Note that corrected face flux, Jf, 

satisfies the discrete continuity equation identically.  

 In the past, considerable variants of the basic SIMPLE algorithm have been 

developed, while in this work, the SIMPLEC (SIMPLEC-Consistent) algorithm 

proposed by Van Doormaal and Raithby (1984) is employed in that it may accelerate 

convergence in cases of pressure-velocity coupling playing an important role. The 

SIMPLEC procedure is similar to the SIMPLE procedure outlined above. The only 

difference is that the coefficient df in Equation (AA.17) is defined as a function 

∑−
nb

nbP aa  instead of just Pa . 

AA.2 Liquid Phase 

Appropriate numerical algorithms are also employed to obtain the trajectory of 

droplets by solving Equation (3.28) and Equation (3.29). In this work, an automated 

switch technique between lower-order scheme and higher-order one is used to achieve 

numerical stability and/or higher accuracy.  Implicit Euler algorithm is adopted for the 

lower-order scheme, which is unconditionally stable, whereas in terms of the higer-

order scheme, a 5th order Runge-Kutta scheme developed by Cash and Karp (1990) is 

implemented, which could provide higher accuracy, however is stable just in a limited 

range.  
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APPENDIX B 

SUMMARY OF THE EQUATIONS USED FOR 

CALCULATING PHYSICAL PROPERTIES 

 

AB.1 Density 

Density  ρ was calculated using the equation of state of an ideal gas, 

( )∑
=

=
N

i

iig MYTR

p

1

ρ , kg/m3                                     (AB.1) 

where Rg is universal gas constant, Yi is mass fraction of i-th species and Mi is molecular 

weight of i-th species. 

AB.2 Specific Heat 

The formula used specific heat at constant pressure, Cp,i, reads 



APPENDIX B 

 
 

160 

( ) iip MTaTaTaTaaC 4
4

3
3

2
210 ⋅+⋅+⋅+⋅+=, ,J/kg-K          (AB.2) 

where a0, a1, a2, a3 and a4 denote the constants. The values of these constants for 

gaseous species and isopropyl alcohol vapour are presented in Table AB.1. 

Table AB.1  Constants in Equation (AB.2) for Cp,i 
 

 a0 a1 a2 a3 a4 

Isopropyl Alcohol 2.5535×104 2.1203×102 5.3492×10-2 -1.473×10-4 4.9406×10-8 

O2 2.811×104 -3.680×10-3 1.746×10-2 -1.065×10-5 0 

CO2 1.980×104 7.344×101 -5.602×10-2 1.715×10-5 0 

H2O 3.224×104 1.924×100 1.005×10-2 -3.596×10-6 0 

N2 3.115×104 -1.357×101 2.680×10-2 -1.168×10-5 0 

 

AB.3 Diffusion Coefficient  

Wilke’s correlation (Reid, Prausnitz and Poling, 1987) is used to calculate the 

diffusion coefficient, Di, 

( )

∑
≠
=

−
−

=
N

ij
j ij

i

i
mi

D

X

X
D

1

11
, , m2/s                                           (A2-3) 

where Xi is mole fraction of i-th species and Dij is the binary diffusion coefficient that 

was calculated using Fuller’s correlation (Reid, Prausnitz and Poling, 1987) given as, 

( ) ( )[ ]23131

476101430
//*

/
.

jvivij

ij

Mp

T
D

Σ+Σ

×
=

−

, m2/s 
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where Mij = 2[(1/Mi)+ (1/Mj)]
2, Mi, Mj are molecular weight (g/mol) of species i and j, 

respectively; p* is pressure (bar); Σv is found for each component by summing atomic 

diffusion volumes. 

AB.4 Thermal Conductivity 

Thermal conductivity of the gaseous mixture, k, was calculated by Wassiljewa’s 

equation (Reid, Prausnitz and Poling, 1987) given as, 

∑
∑=

=

=
N

i
N

j

ijj

ii

AX

kX
k

1

1

, W/m-K                                    (AB.4) 

where ki is thermal conductivity of i-th species; Xi and Xj are mole fraction of i-th and j-

th species, respectively; and Aij can be calculated using Lindsay and Bromley 

correlation (Lindsay and Bromley, 1950) given as 

j

ij

j

i

i

j

j

i

ij
ST

ST

ST

ST

M

M
A

+

+
⋅















+

+








+=

2
43

1
4

1
/

µ

µ
 

where µi and µj are viscosity of i-th and j-th species, respectively; Si, Sj, and Sij are 

Sutherland constants given by 

ibi TS ,.51=  

( )2
1

jiij SSS =  

in which Tb,i is boiling point of i-th species. 

AB.5 Latent Heat of Evaporation 
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 The latent heat of evaporation, L(Ts), is calculated by 

( )
M

T

TL

3260

6 31508
1

1098258

.

.
.









−

⋅×= , J/kg                       (AB.5) 

where M is molecular weight of liquid fuel. 

AB.6 Viscosity 

The viscosity of gaseous mixture was calculated by (Reid, Prausnitz and Poling, 

1987) 

∑
∑=

=

Φ

=
N

i
N

j

ijj

ii

X

X

1

1

µ
µ , Pa-s                                          (AB.6) 

where Xi and Xj are mole fraction of i-th and j-th species, respectively; and Φij can be 

calculated using Wilke’s approximation 
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APPENDIX C 

ABSTRACTS OF JOURNAL PAPERS 

 

In this appendix, the titles and abstracts of journal papers published/produced 

during the PhD research are provided. 
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Note that this paper with DOI: 10.1016/j.ijheatmasstransfer.2010.06.045 in 

International Journal of Heat and Mass Transfer is in print. 
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Note that this paper was submited to AIAA Journal. 



 

 
 

166 

 

BIBLIOGRAPHY 

 

Abramzon, B. and Sirignano, W.A., 1989, “Droplet Vaporization Model for Spray 

Combustion Calculations,” Int. J. Heat Mass Transfer, 32(9), pp. 1605-1618. 

Ananthkrishnan, N., Deo, S. and Culick, F. E. C., 2005, “Reduced-order Modelling and 

Dynamics of Nonlinear Acoustic Waves in a Combustion Chamber,” Combust. Sci. 

Technol., 177, pp. 221-248. 

Angelberger, C., Veynante, D. and Egolfopoulos, F., 2000, “LES of Chemical and 

Acoustic Forcing of a Premixed Dump Combustor,” Flow Turbul. Combust., 65, pp. 

205-222. 

Apte, S. V.. Gorokhovski, M. and Moin, P., 2003, “LES of Atomizing Spray with 

Stochastic Modeling of Secondary Breakup,” Int. J. Mdtiphase Flow, 29, pp.1503-1522. 

Barth, J. Ferzier, J. H. and Reynolds, W. C., 1989, “The Design and Application of 

Upwind Schems on Unstructured Meshes,” Technical Report AIAA-89-0366, AIAA 

27th Aerospace Science Meeting, Reno, Nevada, USA. 

Baum, J. D. and Levine, J. N., 1982, “Numerical Techniques for Solving Nonlinear 

Instability Problems in Solid Rocket Motors,” AIAA J., 20(7), pp. 955-961. 



BIBLIOGRAPHY 

 
 

167 

Baum, J. D., Lovine, R. L. and Levine, J. N., 1983, “Pulsing Techniques for Solid-

Propellant Rocket Motors: Modeling and Cold-Flow Testing,” J. Spacecr. Rockets, 

20(2), pp. 150-157. 

Baum, J.D., Levine, J.N. and Lovine, R.L., 1988, “Pulsed Instability in Rocket Motors: 

A Comparison between Predictions and Experiments,” J. Prop. Power, 4(4), pp. 308-

316. 

Bellucci, V., Flohr, P., Paschereit, C. O., and Magni, F., 2004, “On the Use of 

Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines,” J. 

Eng. Gas Turbines Power, 126, pp. 271-275. 

Bloxsidge, G. J., Dowling, A. P., Hooper, N. and Langhorne, P. J., 1988, “Active 

Control of Reheat Buzz,” AIAA J., 26, pp. 783-790. 

Caraeni, D., Bergstrom, C. and Fuchs, L., 2000, “Modeling of Liquid Fuel Injection, 

Evaporation and Mixing in a Gas Turbine Burner Using Large Eddy Simulations,” Flow 

Turbul. Combust., 65, pp. 223-244. 

Cash, J. R. and Karp, A. H., 1990, “A Variable Order Runge-Kutta Method for Initial 

Value Problems with rapidly Varying Right-hand Sides,” ACM Trans. Math. Softw., 

16, pp. 201-222. 

Chen, G., 2000, Controlling Chaos and Bifurcation in Engineering Systems, CRC Press, 

New York. 

Chen, S. and Billings, S. A., 1989, “Representations of Non-linear Systems: The 

NARMAX Model,” Int. J. Control, 49, pp. 1013-1032. 

Chiang, C. H. and Sirignano, W. A., 1993, “Interacting, Convecting, Vaporizing Fuel 

Droplets with Variable Properties,” Int. J. Heat Mass Transfer, 36, pp. 875-886. 

Chu, B. T., 1965, “On the Energy Transfer to Small Disturbances in Fluid Flow (Part 

I),” Acta Mech., 1(3), pp. 215–234. 

Cohen, J. M.,  Banaszuk, A.,  Hibshman, J. R., Anderson, T. J.  and  Alholm, H. A., 

2008, “Active Control of Pressure Oscillations in a Liquid-Fueled Sector Combustor,” 

J. Eng. Gas Turbines Power, 130(5), pp. 051502-1-8. 



BIBLIOGRAPHY 

 
 

168 

Coker, A., Neumeier, Y., Zinn, B. T., Menon, S. and Lieuwen, T., 2006, “Active 

Instability Control Effectiveness in a Liquid Fueled Combustor,” Combust. Sci. 

Technol., 178(7), pp. 1251-1261. 

Conrad, T., Bibik, A., Shcherbik, D., Lubarsky, E. and Zinn, B. T., 2007, “Feasibility of 

“Intermittent” Active Control of Combustion Instabilities in Liquid Fueled Combustors 

using a “Smart” Fuel Injector,” Proc. Combust. Inst., 31, pp. 2223-2230. 

Courant, R., Friedrichs, K. and Lewy, H., 1967, “On the Partial Difference Equations of 

Mathematical Physics,” IBM J., 11, pp. 215-234. 

Crighton, D. G., Dowling, A. P., Willianms, J. E. Ffowcs, Heckl, M. and Leppington, F. 

G., 1992, Modern Methods in Analytical Acoustics: Lecture Notes, Springer-Verlag, 

London. 

Crocco, L and Cheng, S. I., 1972, Theory of Combustion Instability in Liquid Propellant 

Rocket Motors, Buttersworth. 

Culick, F. E. C., 1961, “High Frequency Pressure Oscillations in Liquid Rockets,” Sc.D. 

Thesis, M.I.T. 

Culick, F. E. C., 1963, “High Frequency Oscillations in Liquid Rockets,” AIAA J., 1(5), 

pp. 1097-1104. 

Culick, F. E. C, 1976a, “Nonlinear Behaviour of Acoustic Waves in Combustion 

Chambers-I,” Acta Astr., 3, pp. 715-734. 

Culick, F. E. C, 1976b, “Nonlinear Behaviour of Acoustic Waves in Combustion 

Chambers-II,” Acta Astr., 3, pp. 735-757. 

Culick, F. E. C., 1988, Combustion Instabilities in Liquid-fueled Propulsion Systems: an 

Overview, Presented at AGARD Conf. Combust. Instabil. Liquid-Fueled Prop. Syst., 

Seuille-Sur-Seine, France: AGARD, NATO. 

Culick, F. E. C., 1990, “Some Recent Results for Nonlinear Acoustics in Combustion 

Chambers,” AIAA 13th Aeroacoustics Conference, AIAA Paper 90-3927. 



BIBLIOGRAPHY 

 
 

169 

Culick, F. E. C. and Yang, V., 1992, “Prediction of the Stability of Unsteady Motions in 

Solid Propellant Rocket Motors,” Nonsteady Burning and Combustion Stability of Solid 

Propellants, edited by Deluca, L. and Summerfield, M. Vol. 143, Progress in 

Astronautics and Aeronautics, AIAA, Washington, DC, Chap. 18, pp. 719-780. 

Culick, F. E. C. and Yang, V., 1995, “Overview of Combustion Instabilities in Liquid-

Propellant Rocket Engines,” Liquid Rocket Engine Combustion Instability, edited by 

Yang, V. and Anderson, W. E., Progress in Astronautics and Aeronautics, AIAA, 

Washington, DC, Chap.1, pp. 3-37. 

Culick, F. E. C., 2006, Unsteady Motions in Combustion Chambers for Propulsion 

Systems, RTO AGARDograph, AG-AVT-039. 

Delplanque, J.-P., and Sirignano, W. A., 1993, “Numerical Study of Transient 

Vaporization of an Oxygen Droplet at Sub- and Super-critical Conditions,” Int. J. Heat 

Mass Transf., 36, pp. 303-314. 

Dowling, A. P. and Ffowcs Williams, J. E., 1983, Sound and Sources of Sound, Ellis 

Horwood. 

Dowling, A. P. and Morgans, A., 2005, “Feedback Control of Combustion 

Oscillations,” Annu. Rev. Fluid Mech., 37, pp. 151-182. 

Dubinkin, B. N., Natanzon, M. S. and Cham'yan, A. É., 1978, “Two Regimes of 

Operation in a Combustion Chamber with a Recirculation Zone,” Combust. Explos., 13, 

pp. 693-700. 

Duvvur, A., Chiang, C. H. and Sirignano, W. A., 1996, “Oscillatory Fuel Droplet 

Vaporization: Driving Mechanism for Combustion Instability,” J. Propul. Power, 12, 

pp. 358-365. 

Eaton, J. K. and Fessler, J. R., 1994, “Preferential Concentration of Particles by 

Turbulence,” Int. J. Multiph. Flow, 20, pp. 169-209.  

Eldredge, J. D. and Dowling, A. P., 2003, “The Absorption of Axial Acoustic Waves by 

a Perforated Liner with Bias Flow,” J. Fluid Mech., 485, pp. 307-335. 



BIBLIOGRAPHY 

 
 

170 

Elperin, T., and Krasovitov, B., 2006, “Transient Analysis of Sub-critical Evaporation 

of Fuel Droplet in Non-isothermal Stagnant Gaseous Mixtures: Effects of Radiation and 

Thermal Expansion,” Heat Mass Transf., 42, pp. 427-436. 

Ferziger, J. H. and Perić, M., 2002, Computational Methods for Fluid Dynamics (3rd 

Ed.), Springer. 

FLUENT 6.3 User Guide, 2006, Fluent Inc, Lebanon, USA. 

Franceschini, V. and Tebaldi, C., 1979, “Sequences of Infinite Bifurcations and 

Turbulence in a Five-mode Truncation of the Navier-Stokes Equations,” J. Stat. Phys., 

21, pp. 707-726. 

Fuh, C. C. and Tsai, H. H., 2007, “Control of Discrete-time Chaotic Systems via 

Feedback Linearization,” Chaos, Solit. Fract., 31, pp. 627-632. 

Germano, M., Piomelli, U., Moin, P. and Cabot, W. H., 1991, “A Dynamic Subgrid-

Scale Eddy Viscosity Model,” Phys. Fluids, 7, pp. 1760-1765. 

Glass, J. W.  and Franchek, M. A., 1999,  “NARMAX Modelling and Robust Control of 

Internal Combustion Engines,” Int. J. Control, 72, pp. 289-304. 

Griewank, A., Reddien, G., 1983, “The Calculation of Hopf Points by a Direct 

Method,” IMA J. Numer. Anal., 3, pp. 295-304. 

Gysling, D. L., Copeland, G. S., McCormick, D. C. and Proscia, W. M., 2000, 

“Combustion System Damping Augmentation with Helmholtz Resonators,” J. Eng. Gas 

Turbines Power, 122, pp. 269-274. 

Hagan, M. T., De Jesus, O. and Schultz, R., “Training Recurrent Networks for Filtering 

and Control,” Chapter 12 in Recurrent Neural Networks: Design and Applications, 

Medsker, L. and Jain, L.C., Eds., CRC Press, 2000, pp. 311-340. 

Harrje, D. J. and Reardon, F. H. E. (Eds.), 1972, Liquid Propellant Rocket Combustion 

Instability, National Aeronautics and Space Administration, NASA SP-194. 

Hathout J. P., Fleifil M., Annaswamy A. and Ghoniem A., 2002, “Combustion 

Instability Active Control using Periodic Fuel Injection,” J. Propul. Power, 18, pp. 390-

399. 



BIBLIOGRAPHY 

 
 

171 

He, L. and Clavin, P., 1993, “Premixed Hydrogen-oxygen Flames (Part II): Quasi-

isobaric Ignition near the Flammability Limits,” Combust. Flame, 93, pp. 408-420. 

Heckl, M. A. and Howe, M. S., 2007, “Stability Analysis of the Rijke Tube with a 

Green’s Function Approach,” J. Sound Vibr., 305, pp. 672-688. 

Hinze, J. O., 1975, Turbulence, McGraw-Hill. 

Hsieh, K. C., Shuen, J. S. and Yang, V., 1991, “Droplet Vaporization in High-pressure 

Environments. I: Near-critical Conditions,” Combust. Sci. Technol., 76, pp. 111-132. 

Holodniok, M. and Kubíček, M., 1984, “New Algorithms for the Evaluation of 

Complex Bifurcation Points in Ordinary Differential Equations: A Comparative 

Numerical Study,” Appl. Math. Comput., 15, pp. 261-274. 

Holmes, D. G. and Connel, S. D., 1989, “Solution of the 2D Navier-Stokes Equations 

on Unstructured Adaptive Grids,” Presented at the AIAA 9th Computational Fluid 

Dynamics Conference. 

Huang, Y., Wang, Z. and Zhou, J., 2002, “Nonlinear Theory of Combustion Stability in 

Liquid Engine Based on Chemistry Dynamics,” Sci. China Ser. A-Math., 45, pp. 373–

383. 

Huang, Y., Sung, H.-G, Hsieh, S.-Y. and Yang, V., 2003, “Large-Eddy Simulation of 

Combustion Dynamics of Lean-Premixed Swirl-Stabilized Combustor,” J. Propul. 

Power, 19(5), pp. 782-794. 

Huang, Y. and Yang, V., 2004, “Bifurcation of Flame Structure in a Lean-premixed 

Swirl-stabilized Combustor: Transition from Stable to Unstable Flame,” Combust. 

Flame, 136, pp. 383-389. 

Huang, Y. and Yang, V., 2005, “Effect of swirl on combustion dynamics in a lean-

premixed swirl-stabilized combustor,” Proc. Combust. Inst., 30(2), pp. 1775-1782. 

Hubbard, G. L., Denny, V. E. and Mills, A. F., 1975, “Droplet Evaporation: Effects of 

Transients and Variable Properties,” Int. J. Heat Mass Transf., 18, pp. 1003-1008.  



BIBLIOGRAPHY 

 
 

172 

Jorgensen, D. V. and Rutherford, A., 1983, “On the Dynamics of a Stirred Tank with 

Consecutive Reactions,” Chem. Eng. Sci., 38, pp. 45-53. 

Joshi, N., Epstein, M., Durlak, S., Marakovits, S. and Sabla, P., 1994, “Development of 

a Fuel Air Premixer for Aero-Derivative Dry Low Emissions Combustors,” Presented at 

Conf. No. 94-GT-253, The Hague. New York: ASME. 

Kim, W. W. and Menon, S., 1995, “A New Dynamic One-Equation Subgrid-Scale 

Model for Large Eddy Simulations,” AIAA-95-0356. 

Kim, W. W., Menon, S. and Mongia, H. C., 1999, “Large-Eddy Simulation of a Gas 

Turbine Combustor Flow,” Combust. Sci. Technol., 143(1), pp. 25-62. 

Kubíček, M., Holodniock, M., 1984, “Evaluation of Hopf Bifurcation Points in 

Parabolic Equations Describing Heat and Mass Transfer in Chemical Reactors,” Chem. 

Eng. Sci., 39, pp. 593-599. 

Lamb, H., 1945, Hydrodynamics (6th Ed.), Dover Publications, New York. 

Lang, W., Poinsot, T. and Candel, S., 1987, “Active Control of Combustion Instability,” 

Combust. Flame, 70, pp. 281-289. 

Langhorne, P. J., Dowling, A. P. and Hooper, N., 1990, “Practical Active Control 

System for Combustion Oscillations,” J. Propul. Power, 6, pp. 324-333.  

Lee, J.–Y., Lubaarsky, E. and Zinn, B. T., 2005 ““Slow” Active Control of Combustion 

Instabilities by Modification of Liquid Fuel Spray Properties,” Proceed. Combust. Inst., 

30, pp. 1757-1764. 

Lefebvre, A. H., 1989, Atomization and Sprays, Hemisphere Publishing Corp., New 

York. 

Lei, S. and Turan, A., 2009a, “Nonlinear/Chaotic Behaviour in Thermo-acoustic 

Instability,” Combust. Theory Model., 13, pp. 541-557. 

Lei, S. and Turan, A., 2009b, “Nonlinear/Chaotic Analysis, Modelling and Control of 

Combustion Instabilities due to Vaporizing Sprays,” Chaos Solitons Fractals, 42, pp. 

1766-1779. 



BIBLIOGRAPHY 

 
 

173 

Lei, S. and Turan, A., 2010a, “Chaotic Modelling and Control of Combustion 

Instabilities Due to Vaporization,” Int. J. Heat Mass Transf., in print, 

10.1016/j.ijheatmasstransfer.2010.06.045. 

Lei, S. and Turan, A., 2010b, “Nonlinear/Chaotic Modelling and Control of Combustion 

Instabilites,” Int. J. Bifurcation Chaos, 20(4), pp. 1245-1254. 

Lei, S. and Turan, A., 2010c, “Identification and Control of Combustion Instabilities 

using Neural Networks,” J. Propul. Power, submitted. 

Levine, J. N. and Baum, J. D., 1981, “A Numerical Study of Nonlinear Instability 

Phenomena in Solid Rocket Motors,” AIAA-81-1524. 

Lieuwen, T., 2002, “Experimental Investigation of Limit Cycle Oscillations in an 

Unstable Gas Turbine Combustor,” J. Propul. Power, 18, pp. 61-67. 

Lieuwen T. C. and Yang, V. (Eds.), 2005, Combustion Instability in Gas Turbine 

Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress 

in Astronautics and Aeronautics, AIAA. 

Lilly, D. K., 1966, “On the Application of the Eddy Viscosity Concept in the Inertial 

Subrange of Turbulence,” NCAR Manuscript 123. 

Liu, A. B., Mather, D. and Reitz, R. D., 1993, “Modeling the Effects of Drop Drag and 

Breakup on Fuel Sprays,” SAE Technical Paper 930072. 

Liu, S. T. and Chen, G., 2004, “Nonlinear Feedback-controlled Generalized 

Synchronization of Spatial Chaos,” Chaos, Solit. Fract., 22, pp. 35-46. 

Lord Rayleigh, 1878, The theory of sound, Dover Publication, New York, 1945, Vol. II, 

pp. 227. 

Lynch, S., 2004, Dynamical systems with applications using MATLAB, Birkhauser, 

Boston. 

Lynch, S., 2005, “Analysis of a Blood Cell Population Model,” Int. J. Bifurcation 

Chaos, 15, pp. 2311-2316. 



BIBLIOGRAPHY 

 
 

174 

Mathews, J. H., 1992, Numerical Methods for Mathematics, Science and Engineering 

(2nd ed.), Prentice Hall International, London.  

Martin, C. E., Benoit, L. and Sommerer, Y., 2006, “Large-Eddy Simulation and 

Acoustic Analysis of a Swirled Staged Turbulent Combustor,” AIAA J., 44(4), pp. 741-

750. 

Maxey, M. R. and Patel, B. K., 2001, “Localized Force Representations for Particles 

Sedimenting in Stokes Flow,” Int. J. Multiph. Flow, 27, pp. 1603-1626. 

McIntosh, A. C. and Rylands, S., 1996, “A Model of Heat Transfer in Rijke Tube 

Burners,” Combust. Sci. Technol., 113, pp. 273-289. 

Menon, S. and Patel, N., 2006, “Subgrid Modeling for Simulation of Spray Combustion 

in Large-Scale Combustors”, AIAA J., 44(4), pp. 709-723. 

Moin, P. and Apte, S. V., 2006, “Large-Eddy Simulation of Realistic Gas Turbine 

Combustors,” AIAA J., 44, pp. 698-708. 

Morgans, A. S. and Stow, S. R., 2007, “Model-based Control of Combustion 

Instabilities in Annular Combustors,” Combust. Flame, 150(4), pp. 380-399. 

Morgans, A. S. and Annaswamy, A. M., 2008, “Adaptive Control of Combustion 

Instabilities for Combustion Systems with Right-Half Plane Zeros,” Combust. Sci. 

Technol., 180(9), pp. 1549-1571. 

Narendra, K. S., and Mukhopadhyay, S., 1997, “Adaptive Control Using Neural 

Networks and Approximate Models,” IEEE Trans. Neural Netw., 8, pp. 475-485. 

Natanzon, M. S. and Men’shikova, O. M., 1992, “Bifurcation of Steady Combustion 

Regimes and Teir influence on the Onset of High-frequency Oscillations in Combustion 

Chambers,” Combust. Explos., 28, pp. 326-333. 

Nicoud, F. and Ducros, F., 1999, “Subgrid-Scale Stress Modelling based on the Square 

of Velocity Gradient Tensor,” Flow Turbul. Combust., 62, pp. 183-200. 

O'Rourke, J. and Amsden, A. A., 1987, “The TAB Method for Numerical Calculation of 

Spray Droplet Breakup,” SAE Technical Paper 872089, SAE. 



BIBLIOGRAPHY 

 
 

175 

Ott, E., Grcbogi, C. and Yorke, J. A., 1990, “Controlling Chaos,” Phys. Rev. Lett., 64, 

pp. 1196-1199. 

Paschereit, C. and Gutmark, E., 2008, “Combustion Instability and Emission Control by 

Pulsating Fuel Injection,” J. Turbomach, 130, pp. 011012-1-8. 

Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New 

York. 

Poinsot, T. and Veynante, D., 2005, Theoretical and numerical combustion (2nd Ed.), 

Edwards, Inc, Philadelphia, PA. 

Poling, B. E., Prausnitz, J. M. and O’Connell, J. P., 2001, The Properties of Gases and 

Liquids (5th Ed.), McGRAE-HILL, London. 

Pope, S. B., 2000, Turbulent Flows, Cambridge University Press. 

Putnam, A., 1971, Combustion Driven Oscillations in Industry, American Elsevier 

Pulbishers, New York, NY. 

Rauch, R. D., Batira, J. T. and Yang, N. T. Y., 1991, “Spatial Adaption Procedures on 

Unstructured Meshes for Accurate Unsteady Aerodynamics Flow Computations,” 

Technical Report, AIAA-91-1106. 

Richards, G. A. and Janus, M. C., 1998, “Characterization of Oscillations during Premix 

Gas Turbine Combustion,” J. Eng. Gas Turbines Power, 120, pp. 294-302. 

Richards, G. A., Straub, D. L. and Robey, E. H., 2003, “Passive Control of Combustion 

Dynamics in Stationary Gas Turbines,” J. Prop. Power, 19(5), pp. 795-810. 

Richards, G. A., Thornton, J. D., Robey, E. H. and  Arellano, L., 2007, “Open-Loop 

Active Control of Combustion Dynamics on a Gas Turbine Engine,” J. Eng. Gas 

Turbines Power, 129, pp. 38-48. 

Roose, D. and Hlaváček, V., 1983, “A New Approach for the Computation of Hopf 

Bifurcation Points,” SIAM J. Appl. Math., 43, pp. 1075-1085.  



BIBLIOGRAPHY 

 
 

176 

Roose, D., Piessens, R., Hlaváček, V. and van Rompay, 1984, “Direct Evaluation of 

Critical Conditions for Thermal Explosion and Catalytic Reaction,” Combust. Flame, 

55, pp. 323-329. 

Roux, S., Lartigue, G., Poinsot, T., Meier, U. and Bérat, C., 2005, “Studies of Mean and 

Unsteady Flow in a Swirled Combustor using Experiments, Acoustic Analysis, and 

Large Eddy Simulations,” Combust. Flame, 141, pp. 40-54. 

Roux, A., Gicquel, L., Sommerer, Y. and Poinsot, T., 2008, “Large Eddy Simulation of 

Mean and Oscillating Flow in a Side-dump Ramjet Combustor,” Combust. Flame, 152, 

pp. 154-176. 

Salarieh, H. and Alasty, A., 2008, “Stabilizing Unstable Fixed Points of Chaotic Maps 

via Minimum Entropy Control,” Chaos, Solit. Fract., 37, pp. 763-769. 

Sattinger, S., Neumeier, Y., Nabi, A., Zinn, B. T., Amos, D. and Darling, D., 2000, 

“Sub-scale Demonstration of the Active Feedback Control of Gas-turbine Combustion 

Instabilities,” Transact ASME, 122, pp. 262-268. 

Sazhin, S., 2006, “Advanced Models of Fuel Droplet Heating and Evaporation,” Prog. 

Energy Combust. Sci., 32, pp. 162-214. 

Sazhin, S., Krutitskii, P., Abdelghaffar, W., Mikhalovsky, S., Meikle, S. and Heikal, M., 

2004, “Transient Heating of Diesel Fuel Droplet,”  Int. J. Heat Mass Transf., 47, pp. 

3327-3340. 

Schmitt, P., Poinsot, T., Schuermans, B. and Geigle, K. P., 2007, “Large-Eddy 

Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and 

Combustion Instability in a Swirled Turbulent High-Pressure Burner,” J. Fluid Mech., 

570, pp. 17-46. 

Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K. –U., Krebs, W., Prade, 

B., Kaufmann, P. and Venante, D., 2004, “Compressible Large Eddy Simulation of 

Turbulent Combustion in Complex Geometry on Unstructured Meshes,” Combust. 

Flame, 137, pp. 489-505. 



BIBLIOGRAPHY 

 
 

177 

Selle, L., Benoit, L., Poinsot, T., Nicoud, F. and Krebs, W., 2006, “Joint Use of 

Compressible Large-Eddy Simulation and Helmholtz Solvers for the Analysis of 

Rotating Modes in an Industrial Swirled Burner,” Combust. Flame, 145, pp. 194-205. 

Seydel, R., 1994, Practical Bifurcation and Stability Analysis: From Equilibrium to 

Chaos (2nd ed.), Springer-Verlag Inc., New York. 

Sirignano, W. A., Delplanque, J. -P., Chiang, C. H., and Bhatia, R., 1994, “Liquid-

Propellant Droplet Vaporization: A Rate-Controlling Process for Combustion 

Instability,” Liquid Rocket Engine Combustion Instability, edited by Yang, V. and 

Anderson, W. E., Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 

1995, Chap.11, pp. 307-343. 

Sirignano, W. A., 1999, Fluid Dynamics and Transport of Droplets and Sprays, 

Cambridge University Press. 

Smagorinsky, J., 1963, “General Circulation Experiments with Primitive Equations. I. 

The Basic Experiments,” Mon. Weather Rev., 91, pp. 99-164. 

Smith, C. B., Kuszta, B., Lyberatos, G. and Bailey, J. E., 1983, “Period Doubling and 

Complex Dynamics in an Isothermal Chemical Reaction System,” Chem. Eng. Sci., 38, 

pp. 425-430. 

Sohn, C. H.,  Kim, J. S., Chung, S. H. and Maruta, K., 2000, “Nonlinear Evolution of 

Diffusion Flame Oscillations Triggered by Radiative Heat Loss,” Combust. Flame, 123, 

pp. 95-106. 

Sommerfeld, M. and Qiu, H. H., 1998, “Experimental Studies of Spray Evaporation in 

Turbulent Flow,” Int. J. Heat Mass Transf., 19, pp. 10-22. 

Steele, R. C., Cowell, L. H., Cannon, S. M. and Smith, C. E., 2000, “Passive Control of 

Combustion Instability in Lean Premixed Combustors,” J. Eng. Gas Turbines Power, 

122, pp. 412-419. 

Sterling, J. D., 1993, “Nonlinear Analysis and Modelling of Combustion Instabilities in 

a Laboratory Combustor,” Combust. Sci. Technol., 89, pp. 167-179. 



BIBLIOGRAPHY 

 
 

178 

Strahle, W., 1960, “Unsteady Laminar Jet Flames at Large Frequencies of Oscillation,” 

AIAA J., 3, pp. 957-960. 

Taylor, G. I., 1963, “The Shape and Acceleration of a Drop in a High Speed Air 

Stream,” Technical report, In the Scientific Papers of Taylor, ed., G. K. Batchelor, 1963. 

Tong, A. Y. and Sirignano, W. A., 1989, “Oscillatory vaporization of fuel droplets in an 

unstable combustor,” J. Propul. Power, 5, pp. 257-261. 

Tsien, H. S., 1952, “Servo-Stabilization of Combustion in Rocket Combustion,” ARS J., 

22, pp. 256-263. 

Turns, S. R., 2000, An Introduction to Combustion: Concepts and Applications, 

McGRAW-HILL, New York. 

Van Leer, B., 1979, “Toward the Ultimate Conservative Difference Scheme. IV. A 

Second Order Sequel to Godunov’s Method,” J. Comput. Phys., 32, pp. 101-136. 

Van Doormaal, J. P. and Raithby, G. D., 1984, “Enhancements of the SIMPLE Method 

for Predicting Incompressible Fluid Flows,” Numer. Heat Transfer, 7, pp. 147-163. 

Vuillot, F. and Lupoglazoff, N., 1991, “Two-dimensional Numerical Simulation of the 

Stability of a Solid Propellant Rocket Motor,” In: Proc. AIAA 29th Aerospace Sciences 

MeetingReno, NV, Jan. 7-10,  AIAA, New York, Paper 91-0205 . 

Wang, T., 1997, “Modeling of Combustion Dynamics in Gas Turbine Engines,” Ph.D. 

Thesis, The Penn State University. 

Yang, V., Kim, S.-I., Culick, F. E. C, 1987, “Third-Order Nonlinear Acoustic Waves 

and Triggering of Pressure Oscillations in Combustion Chambers, Part I: Longitudinal 

Modes,” AIAA Paper 87-1973. 

Yang, V., Kim, S.-I., Culick, F. E. C, 1988, “Third-Order Nonlinear Acoustic Waves 

and Triggering of Pressure Oscillations in Combustion Chambers, Part I: Transverse 

Modes,” AIAA Paper 88-0152. 



BIBLIOGRAPHY 

 
 

179 

Yang, V., Kim, S.-I., Culick, F. E. C, 1990, “Triggering of Longitudinal Pressure 

Oscillations in Combustion Chambers, I: Nonlinear Gasdynamics,” Combust. Sci. 

Technol., 72, pp. 183-214. 

Yang, V., Wicker, J. M. and Yoon M. W., 1995, “Acoustic Waves in Combustion 

Instability,” Liquid Rocket Engine Combustion Instability, edited by Yang, V. and 

Anderson, W. E., Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 

Chap.1, pp. 357-376. 

Yi, T. and Gutmark, E. J., 2008, “Adaptive Control of Combustion Instability Based on 

Dominant Acoustic Modes Reconstruction,” Combust. Sci. Technol., 180, pp. 249-263. 

Yue, H. and Wang, H., 2003, “Minimum Entropy Control of Closed-loop Tracking 

Errors for Dynamic Stochastic Systems,” IEEE Trans. Automat. Control, 48, pp. 118-

122. 

Zeng Y. and Lee C., 2002, “A Preferential Vaporization Model for Multicomponent 

Droplets and Sprays,” Atom. Sprays, 12, pp. 163-186. 


