

IMPROVING LEARNING AND TEACHING THROUGH

AUTOMATED SHORT ANSWER MARKING

A thesis submitted to The University of Manchester for the degree of Doctor of

Philosophy in the Faculty of Engineering and Physical Sciences

2010

RAHEEL SIDDIQI

SCHOOL OF COMPUTER SCIENCE

2

Table of Contents

ABSTRACT .. 9

DECLARATION.. 10

COPYRIGHT STATEMENT ... 11

ACKNOWLEDGEMENTS ... 12

PUBLICATION AND CONFERENCE PAPERS BASED ON THE RESEARCH

PRESENTED IN THIS THESIS ... 13

1. INTRODUCTION .. 14

1.1 Short-Answer Questions .. 14

1.2 Role of Students’ Information in Teacher’s Decision Making 15

1.3 Key Features and Purposes behind Assessment Tasks (in general) 18

1.4 Classroom Assessment and its Advantages .. 19

1.4.1 Importance of Classroom Assessment for Effective Teaching 20

1.4.2 Importance of Classroom Assessment in Improving Student Learning 20

1.5 Utilizing IndusMarker to Improve Teaching and Learning 21

2. SIMILAR SYSTEMS .. 23

2.1 Short-Answer Marking Systems .. 24

2.2 C-rater ... 25

2.2.1 C-rater’s Approach to Marking Students’ Responses ... 26

2.2.2 C-rater’s Evaluation ... 30

2.3 The Oxford-UCLES System .. 31

2.3.1 The Oxford-UCLES System’s Approach to Marking Students’ Responses 32

2.3.2 The Oxford-UCLES System’s Evaluation .. 34

3

2.4 Automark .. 35

2.4.1 Automark’s Approach to Marking Students’ Responses ... 35

2.4.2 Automark’s Evaluation .. 38

2.4.2.1 The Blind Experiment ...39

2.4.2.2 The Moderation Experiment ..40

2.5 Related Techniques .. 42

2.5.1 Neural Network ... 42

2.5.2 Text Mining .. 43

2.6 Summary of the Similar Work ... 44

3. “ANSWER STRUCTURE” SPECIFICATION LANGUAGES AND

INDUSMARKER’S ARCHITECTURE... 45

3.1 The Question Answer Language (QAL) .. 45

3.2 The Question Answer Markup Language (QAML) .. 52

3.3 IndusMarker’s Architecture .. 60

3.3.1 The Answer Text Analyzer’s Architecture ... 61

3.3.2 The QAML Structure Editor’s Architecture ... 62

4. DESIGN AND DEVELOPMENT OF INDUSMARKER’S COMPONENTS 65

4.1 Design and Development of the Answer Text Analyzer’s Sub-Components 65

4.1.1 The Spell Checker .. 65

4.1.2 The Linguistic Features Analyzer ... 66

4.1.3 Overall Algorithm for the Structure Matcher and the Marks Calculator 67

4.1.4 Structure Matching Algorithms for Various QAL Constructs 69

4.1.4.1 “Text String” Matching Algorithm ..71

4.1.4.2 “Noun Phrase Required” Matching Algorithm...71

4.1.4.3 “Verb Group Required” Matching Algorithm ..72

4.1.4.4 “No Noun Phrase / No Verb Group / No Word” Condition Matching Algorithm73

4.1.4.5 “Alternative Options” Matching Algorithm ...75

4.1.4.6 “Allowed Permutation” Matching Algorithm ..77

4.1.4.7 “Not” Condition Matching Algorithm ..78

4.1.4.8 “Sub-pattern” Matching Algorithm..79

4.2 Design and Development of the QAML Structure Editor’s Sub-Components 80

4

4.2.1 The Validator ... 81

4.2.2 The Automatic QAML Generator .. 84

4.2.3 The Transformer .. 88

5. INDUSMARKER’S EVALUATION ... 90

5.1 Evaluation Method and Criteria .. 90

5.2 Knowledge Targets and the Design of Short-Answer Questions 91

5.3 IndusMarker’s Evaluation at Bahria University ... 93

5.3.1 Allowed Short-Answer Question Types for OOP Tests ... 94

5.3.2 The OOP Tests Creation and the Required Structures Formulation and Validation

Phase .. 99

5.3.2.1 First OOP Test ..100

5.3.2.2 Second OOP Test ..101

5.3.2.3 Third OOP Test ...104

5.3.2.4 Fourth OOP Test ...107

5.3.2.5 Fifth OOP Test ..109

5.3.2.6 Sixth OOP Test ..111

5.3.2.7 Analysis of Evaluation Results ..113

5.3.3 Using IndusMarker to Conduct the OOP Practice Tests .. 117

5.4 IndusMarker’s Evaluation at the City School ... 119

5.4.1 Allowed Short-Answer Question Types for Science Tests 120

5.4.2 The Science Tests Creation and the Required Structures Formulation and Validation

Phase .. 122

5.4.2.1 First Science Test ..125

5.4.2.2 Second Science Test ...127

5.4.2.3 Third Science Test ..128

5.4.2.4 Analysis of Structure Testing and other Evaluation Results ..130

5.4.3 Using IndusMarker to Conduct the Science Practice Tests 135

5.5 Comparison and Lessons Learnt from the Two Case Studies 135

6. DISCUSSION AND CONCLUSION ... 138

6.1 Impact of IndusMarker on Students’ Performance .. 138

6.2 IndusMarker’s Performance without “Linguistic Features Analyzer” 141

5

6.3 Comparison of IndusMarker with Other Similar Systems .. 144

6.3.1 Comparison of IndusMarker with C-rater ... 144

6.3.2 Comparison of IndusMarker with the Oxford-UCLES System 147

6.3.3 Comparison of IndusMarker with Automark .. 149

6.4 Conclusion ... 150

REFERENCES ... 154

APPENDICES ... 160

Appendix 1: User Manual ... 160

Appendix 2: Screen Shot of “Examiner’s Main Menu” Screen 166

Appendix 3: Screen Shot of Screen for Asking Examiner to Specify the Number of

Questions in the Test ... 166

Appendix 4: Screen Shot of Screen for Asking Examiner to specify whether or not the

Question to be entered has Sub-parts .. 166

Appendix 5: Screen Shot of Screen for Entering Main Question Text and Number of Sub-

parts .. 167

Appendix 6: Screen Shot of Screen for Sub-part Entry .. 167

Appendix 7: Screen Shot of Screen for Entering Question Text and Question Marks 168

Appendix 8: Screen Shot of “Test Selection” Screen ... 168

Appendix 9: Screen Shot of “Question Selection” Screen .. 169

Appendix 10: Screen Shot of “Answer Structure” Formulation & Validation Screen 170

Appendix 11: Screen Shot of “Regions Specification Structure Editor” Screen 171

Appendix 12: Screen Shot of “Practice Results” Screen ... 172

Appendix 13: Screen Shot of “Individual Student’s Performance” Screen 172

Appendix 14: Screen Shot of “Student’s Main Menu” Screen .. 173

6

Appendix 15: Screen Shot of “Practice Performance History” Screen 173

Appendix 16: Screen Shot of “Practice Number Entry” Screen 173

Appendix 17: Screen Shot of “Practice’s Question Selection” Screen 174

FINAL WORD COUNT=40671 WORDS

7

List of Tables

Table 1. Tuples for 4 responses.. 28

Table 2. Comparison of human and computerized marking outcomes for the blind

experiment ... 40

Table 3. Comparison of human and computerized marking outcomes for the moderation

experiment ... 41

Table 4. Summary of the system’s performance on all the allowed short-answer question

types ... 114

Table 5. Time taken to formulate and validate the required structures for each of the 6 OOP

tests .. 116

Table 6. Example questions for the three question types ... 121

Table 7. Topics covered in each of the three science tests ... 124

Table 8. Summary of the system’s performance on all the allowed short-answer question

types for science tests .. 131

Table 9. Key Features of the Two Case Studies ... 136

Table 10. Average marks of students in the final OOP exams taken during the last four

terms of the Bahria University’s Islamabad campus ... 139

Table 11. Average marks in grade seven “science” subject at the “Darakhshan campus” and

the “PECHS Prep Boys-A” branches of the City School .. 140

Table 12. IndusMarker’s performance with and without consideration of linguistic features

 .. 143

Table 13. Comparison of IndusMarker’s and the Oxford-UCLES system’s evaluations....... 148

8

List of Figures

Figure 1. Automark’s Architecture ... 37

Figure 2. Structure of an example mark scheme template ... 38

Figure 3. An overview of the system architecture ... 61

Figure 4. Architecture of the “Answer Text Analyzer” ... 62

Figure 5. Architecture of the “QAML Structure Editor” ... 63

Figure 6. “Student’s answer entry” screen along with “spelling correction” dialog 66

Figure 7. Screen shot of the “possibility specification” structure editor 82

Figure 8. The contents of the “QAML_POSSIBILITY.xml” file displayed via a GUI screen 88

Figure 9. An IndusMarker’s GUI screen for carrying out student’s answer text analysis 119

Figure 10. Graph depicting how average human-system agreement rate varies with the

allowed short-answer question types for the science tests. The complexity of the question

types increases from left to right ... 132

Figure 11. Graph depicting how the average time taken to formulate the required

structures varies with the different short-answer question types 134

Figure 12. Architecture of the “answer text analyzer” component after removal of the

“linguistic features analyzer” sub-component .. 142

Figure 13. Illustration of an Automark’s mark scheme template .. 149

file:///D:\PhD%20research\Reports\PhD%20thesis%20work\PhD%20Thesis_revised.doc%23_Toc273045223
file:///D:\PhD%20research\Reports\PhD%20thesis%20work\PhD%20Thesis_revised.doc%23_Toc273045224
file:///D:\PhD%20research\Reports\PhD%20thesis%20work\PhD%20Thesis_revised.doc%23_Toc273045234
file:///D:\PhD%20research\Reports\PhD%20thesis%20work\PhD%20Thesis_revised.doc%23_Toc273045234
file:///D:\PhD%20research\Reports\PhD%20thesis%20work\PhD%20Thesis_revised.doc%23_Toc273045235

9

Abstract

Automated short-answer marking cannot “guarantee” 100% agreement between the

marks generated by a software system and the marks produced separately by a human. This

problem has prevented automated marking systems from being used in high-stake short-

answer marking. Given this limitation, can an automated short-answer marking system have

any practical application? This thesis describes how an automated short-answer marking

system, called IndusMarker, can be effectively used to improve learning and teaching.

The design and evaluation of IndusMarker are also presented in the thesis.

IndusMarker is designed for factual answers where there is a clear criterion for answers

being right or wrong. The system is based on structure matching, i.e. matching a pre-

specified structure, developed via a purpose-built structure editor, with the content of the

student‟s answer text. An examiner specifies the required structure of an answer in a simple

purpose-designed language called Question Answer Markup Language (QAML). The

structure editor ensures that users construct correct required structures (with respect to

QAML‟s syntax and informal semantics) in a form that is suitable for accurate automated

marking.

10

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

11

Copyright Statement

The following are four notes on copyright and the ownership of intellectual property

rights for this thesis:

1. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

2. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents Act

1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

3. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may be

described in this thesis, may not be owned by the author and may be owned by third

parties. Such Intellectual Property and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the relevant

Intellectual Property and/or Reproductions.

4. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-

property.pdf), in any relevant Thesis restriction declarations deposited in the

University Library, The University Library‟s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The University‟s

policy on presentation of Theses.

12

Acknowledgements

 The author is thankful to the teachers, teaching assistants and students of Bahria

University (Pakistan) and the City School (Pakistan) for participating in IndusMarker‟s

evaluation. The author is deeply indebted to Rosheena Siddiqi for her help in organizing

IndusMarker‟s evaluation at the two institutions. The author is also extremely thankful to the

higher authorities of Bahria University and the City School for allowing the use of resources

at the two institutions and also for allowing the sharing of some of their final exam records.

Finally, the author would like to express his gratitude for his supervisor, Dr. Christopher

Harrison, whose help and guidance was always available whenever the author needed it.

13

Publication and Conference Papers Based on the Research

Presented in this Thesis

The following paper has been accepted for publication:

 R. Siddiqi, C. J. Harrison and R. Siddiqi, “Improving Teaching and Learning through

Automated Short-Answer Marking,” IEEE Transactions on Learning Technologies,

preprint, 9 Feb. 2010.

The following are the two conference papers based on the research presented in this thesis:

 R. Siddiqi and C. J. Harrison, “A Systematic Approach to the Automated Marking of

Short-Answer Questions,” Proceedings of the 12
th

 IEEE International Multi topic

Conference (IEEE INMIC 2008), Karachi, Pakistan, pp. 329-332, 2008.

 R. Siddiqi and C. J. Harrison, “On the Automated Assessment of Short Free-Text

Responses,” Paper presented at the 34
th

 annual conference of the International

Association for Educational Assessment (IAEA), Cambridge, UK, 2008.

14

1. Introduction

Advances in computer technology and the widespread availability of ever more

sophisticated computer-based systems are gradually changing the way teaching and

assessment is undertaken [1]. Educational institutions must explore and effectively utilize

opportunities provided by such technologies to enhance the “educational experience” of their

students. Automated short-answer marking is one of the technologies that may be usefully

explored, and in recent years a number of attempts have been made to automate short-answer

marking [2], [3], [4], [5], [6]. The most important problem addressed by all of these systems

is the accuracy with which automated marking can be performed. These systems are not

reliable enough to be used as the sole marker of students‟ tests and exams. It is quite

reasonable to suggest that it is very difficult to produce an automated system that is as

reliable as a human marker. Given this limitation, can an automated short-answer marking

system have any practical application? The main aim of the research described in this

thesis is to devise a way in which short-answer marking technology can be usefully

exploited to improve teaching and learning. The design and evaluation of a short-answer

marking system called IndusMarker is presented in this thesis.

The purpose of this chapter is to present the case for the research undertaken. The

area of research is introduced along with some key terms and concepts that are necessary for

the argument in favor of the research undertaken. Section 1.1 explains the term short-answer

questions and also presents the benefits associated with short-answer questions and practice

tests. Section 1.2 discusses the role of students‟ information in teacher‟s decision making.

Section 1.3 describes assessment tasks and outlines purposes behind such tasks. The concept

of classroom assessment and its advantages are explained in Section 1.4. Section 1.5

summarizes the information presented in earlier sections and elaborates the nature of the

research undertaken and presented in this thesis.

1.1 Short-Answer Questions

Questions are an essential component of effective instruction [14]. If questions are

effectively delivered, they facilitate student learning and thinking and provide the

opportunity for academics to assess how well students are mastering course content [16].

15

Questions may be categorized as short-answer, multiple choice, essay etc. The two most

commonly used categories are multiple-choice and short-answer questions [17].

In the case of the research described in this thesis, “short-answers” implies free

text entry, requiring answers that have to be constructed rather than selected, ranging

from phrases to 3 to 4 sentences. Moreover, the research described here concerns

objective questions rather than subjective questions. Thus, the criterion of right and

wrong for an answer must be clear. An example of a short-answer objective question (in

the context of a programming language) is: “What is the main difference between structures

and arrays?” The correct answer is: “Arrays can only hold multiple data items of the same

type, but structures can hold multiple data items of different data types”. Correct student

responses are expected to be paraphrases of this concept and therefore, the primary task of

the automated marking system is to recognize which answers are paraphrases of the

correct concept and which are not.

From a learning and retention point of view, short-answer tests are more effective than

multiple-choice tests [17]. This argument is supported by a recent research study [18]. The

study shows that short-answer questions (that require recall) are more beneficial than

multiple choice questions (that require recognition) for subsequent memory performance.

The study also reveals that taking a practice test is a more potent learning device than

additional study of the target material and it leads to better performance in a subsequent final

test. In addition, experimental results also demonstrate that short-answer tests produce

greater gains in student performance in final tests than multiple-choice tests. These findings

provide a good rationale for researching the area of automated short-answer marking

so that students’ learning and retention of course content can be improved.

1.2 Role of Students’ Information in Teacher’s Decision Making

“What makes a good teacher?” This question has been debated at least since formal

education began, if not long before. It is a difficult question to answer because, as

Rabinowitz and Traver [7] pointed out almost a half-century ago, the good teacher “does not

exist pure and serene, available for scientific scrutiny, but is instead a fiction of the minds of

men”. Some have argued that good teachers possess certain traits, qualities or characteristics.

16

These teachers are understanding, friendly, responsible, enthusiastic, imaginative and

emotionally stable [8].

Since the 1970s, there has been a group of educators and researchers, like Shavelson [9],

who have argued that the key to being a good teacher lies in the decisions that teachers

make. Shavelson [9] states that “Any teaching act is the result of a decision, whether

conscious or unconscious, that the teacher makes after the complex cognitive processing of

available information. This reasoning leads to the hypothesis that the basic teaching skill is

decision making.” In addition to emphasizing the importance of decision making, Shavelson

[9] made a critically important point. Namely, teachers make their decisions “after the

complex cognitive processing of available information.” Thus, there is an essential link

between available information and decision making. Without information, it is difficult to

make good decisions. Although good information does not necessarily produce wise

decisions, having access to good information is certainly an asset for the decision maker.

Teachers have many sources of information that can be used in making decisions [10].

The critical issue facing teachers is what information to use and how to use it to make the

best decisions possible in the time available. Time is important because many decisions need

to be made before the teacher has all the information that they would like to have. The more

students‟ information that teachers have at the time of decision making, the more likely a

better quality of teachers‟ decisions results. Timely provision of students‟ information to

teachers is one of the issues addressed by the author‟s research.

The awareness that a decision needs to be made is often stated in the form of a “should”

question [10]. Examples of everyday decisions facing teachers:

1. “Should I send a note to Ali‟s parents informing them that he constantly interrupts

the class and invite them to meet me to discuss the problem?”

2. “Should I stop this lesson to deal with the increasing noise level in the room or

should I just ignore it, hoping it will go away?”

3. “What should I do to get Sarah back on task?”

4. “Should I tell students they will have a choice of activities tomorrow if they complete

their group projects by the end of the class period?”

5. “What marks should I give Saleem for his answer?”

17

6. “Should I move on to the next unit or should I spend a few more days teaching the

same material again before moving on?”

Although all of these are “should” questions, they differ in three important ways. First,

the odd-numbered questions deal with individual students, whereas the even-numbered

questions deal with the entire class. Second, the first two questions deal with classroom

behavior, the second two questions with student effort, and the third two questions with

student achievement. Third, some of the decisions (e.g. Questions 2, 3 and perhaps 6) must

be made on the spot, whereas for others (e.g. Questions 1, 4 and to a certain extent 5)

teachers have more time to make their decisions. These “should” questions (and their related

decisions) then can be differentiated in terms of (a) the focus of the decision (individual

student or group), (b) the basis for the decision (classroom behavior, effort or achievement)

and (c) the timing of the decision (immediate or longer term). The author’s research

involves designing a system that can aid in teacher’s decision making based on

students’ achievement. The focus of the decision may be an individual student or group and

the timing of decision may be immediate or longer term. The system presented in this thesis

is not meant for measuring student‟s effort or classroom behavior.

How do teachers get the information about students that they need to make decisions? In

general, they have three alternatives [10]. First, they can examine information that already

exists, such as information included in students‟ stored records. The files containing such

records typically include students‟ grades in previous semesters or year(s), participation in

extracurricular activities, health reports and the like. Second, teachers can observe students

in their natural habitats – as students sit in their classrooms, interact with other students,

read on their own, complete written work at their desks or tables, and so on. Finally, they

can assign specific tasks to students (e.g. ask them questions, undertake practice tests etc.)

and see how well students perform these tasks. This third source of information is referred to

as assessment tasks. Since the research described in this thesis is about a particular kind of

assessment task, it is worthwhile presenting an overview of key features and purposes

behind assessment tasks (in general) in the next section.

18

1.3 Key Features and Purposes behind Assessment Tasks (in general)

The term assessment task is more clearly defined next. Following tradition, if teachers

want to know whether their students have learned what they were supposed to learn, teachers

administer quizzes, tests etc. These assessment instruments typically contain a series of

items (e.g. questions to be answered, incomplete sentences to be completed, matches to be

made between entries in one column and those in another etc.). In some cases, the instrument

may contain a single item. In such cases, this item often requires that the student produce an

extended response (e.g. “Write an essay about….”). All the items included on these

instruments, regardless of their structure, format or number, are referred to as assessment

tasks [10].

Different assessment tasks may require different responses from students [10]. The

nature of the required response is inherent in the verb included in the task description

(“Write an essay about…”) or in the directions given to students about the tasks (“Circle the

option that …”). In general, these verbs ask students to perform some action (e.g. write,

demonstrate) or select from among alternative possible responses to the task (e.g. circle,

choose). The first set of tasks is referred to as performance tasks, whereas the second set of

tasks is referred to as selection tasks. The research described in this thesis focuses on a

specific kind of performance task called short-answer questions.

In exploring the purposes of assessment, Rowntree [11] identified six broad categories:

1. Selection

2. Maintaining standards – or quality control

3. Motivation of students

4. Feedback to students

5. Feedback to teachers

6. Preparation for life

To what extent and in what ways do these purposes support student learning? It can be

argued that selection and quality control benefit stakeholders other than students, though

students need to be assured of the quality of the awards they achieve [12]. Rowntree [11]

talks of the “constant prod from assessment” which encourages learning. Thus, the

motivational purpose may be said to be more directly related to the needs of students than

19

other purposes of assessment. However, Rowntree argued that motivational assessment may

be seen as an instrument of coercion, a way of getting students to do something they would

not do otherwise. In this way, motivational assessment also benefits the teacher. Thus,

motivation has two aspects. It encompasses both encouragement and coercion [12].

Feedback is beneficial to both students and teachers, and perceived as such by both students

and teachers. IndusMarker (the automated short-answer marking system described in

this thesis) is primarily designed for the third, fourth and fifth purposes listed above

i.e. it is designed to motivate students and provide feedback to both teachers and

students. As shown later in chapter 5, IndusMarker‟s proposed use is to conduct practice

tests so that timely feedback may be provided to both teachers and students, and students

may be motivated to perform revision of the topics covered earlier. Moreover, IndusMarker

is designed for classroom assessments which are different from traditional assessments.

Classroom assessment and its advantages are explained in the next section.

1.4 Classroom Assessment and its Advantages

Traditionally, assessments are used as evaluation devices that are administered when

instructional activities are completed and are used primarily for assigning students‟ grades.

Assessments, however, can also be used to “improve education”. Classroom assessments are

considered to be well-suited for this task [13]. Classroom assessments are tests, writing

assignments etc. that teachers administer on a regular basis in their classrooms. Teachers

trust the results from these assessments because of their direct relation to classroom

instructional goals. Plus, results are immediate and easy to analyze at the individual student

level. To use classroom assessments to make improvements, however, teachers must change

both their view of assessments and their interpretation of results. Specifically, they need to

see their assessments as an integral part of the instruction process and as crucial for helping

students learn.

The term “practice tests” is used to refer to a kind of classroom assessment. Practice

tests are low-stake tests taken during term-time. Marks obtained in these tests are not

counted towards the final grade of students. The purposes and benefits of practice tests are

the same as those of classroom assessments in general. The benefits of classroom assessment

20

are: (1) it can improve teaching, and (2) it can improve student learning. The two benefits

are elaborated in the following two sub-sections:

1.4.1 Importance of Classroom Assessment for Effective Teaching

Effective teachers continually assess their students relative to learning goals and

adjust their instruction on the basis of assessment results [14]. Based on assessment results,

teachers make diagnostic decisions about individual students as well as group strengths,

weaknesses and needs. Information gathered through assessment allows the teacher to

diagnose the specific area that needs further attention or where progress is being made. The

diagnosis includes an assessment of why a student may be having difficulty so that

appropriate instructional activities can be prescribed.

An important aspect of teaching is communicating expectations to students, and

assessments are used continuously during instruction to indicate what is expected of

students. The nature of the tests teachers give and how they evaluate student answers

communicate standards students are expected to meet.

1.4.2 Importance of Classroom Assessment in Improving Student Learning

Classroom assessment occurs during the teaching and learning process rather than

after it and has as its primary focus the ongoing improvement of learning for all students

[15]. Teachers who assess for learning use classroom assessment activities to involve

students directly and more deeply in their own learning, increasing their confidence and

motivation to learn by emphasizing progress and achievement rather than failure and non-

achievement. In the “assessment for learning” model, assessment is an instructional tool that

promotes learning rather than an event designed solely for the purpose of evaluation and

assigning grades. Also, when students become involved in the assessment process,

assessment for learning begins to look more like teaching and less like testing.

Students are often thought to be passive participants in assessment rather than

engaged users of the information that assessment can produce. In the context of classroom

assessment, however, students can use assessment to take responsibility for and improve

their own learning. Student involvement in assessment does not mean that students control

decisions regarding what will or will not be learned or tested. It also does not mean that they

21

assign their own grades. Instead, student involvement means that students learn to use

assessment information to manage their own learning so that they understand how they learn

best, know exactly where they are in relation to the defined learning targets, and plan and

take the next steps in their learning.

1.5 Utilizing IndusMarker to Improve Teaching and Learning

In this chapter, a number of terms such as “classroom assessment”, “short-answer

questions” and “practice tests” have been explained along with their benefits and their

relevance to the research undertaken. The role that students‟ information can play in

enhancing the quality of teacher‟s decision making has also been emphasized. Key points

are:

1. The basic teaching skill is decision making and without students‟ information, it is

difficult to make good decisions. It is also important that students‟ information is

available on time. Assessment is a means of gathering information about students

that can be used to aid teachers in the decision-making process.

2. Classroom assessments are tests, writing assignments etc. that teachers administer

on a regular basis in their classrooms. Practice tests are a form of classroom

assessment. Practice tests are low-stake tests taken during term-time. Marks

obtained in these tests are not counted towards the final grade of students.

3. Classroom assessments (such as practice tests) are effective in improving teaching

and students‟ learning.

4. Experimental reports [18], [19], [20] have repeatedly demonstrated that taking a

practice test on studied material promotes subsequent learning and retention of that

material on a final test/exam. In addition, practice tests produce learning/retention

advantages beyond that enjoyed from repeated study.

5. Short-answer tests produce more robust benefits than multiple choice tests. Studies

[18], [20] show that short-answer tests (that require recall) are more beneficial than

multiple-choice tests (that require recognition) for subsequent memory

performance.

Given the above listed points, it was determined that a short-answer marking system,

called IndusMarker, should be developed. IndusMarker can be used to conduct short-answer

22

practice tests with the aim of supporting improvements in both teaching and students‟

learning.

IndusMarker exploits structure matching, i.e. matching a pre-specified structure,

developed via a purpose-built structure editor [21], with the content of the student‟s answer

text. The examiner specifies the required structure of an answer in a simple purpose-

designed language. The language was initially called Question Answer Language (QAL) but

was subsequently redefined as a sublanguage of XML and named Question Answer Markup

Language (QAML).

Chapter 2 discusses similar systems. Chapters 3 and 4 are devoted to the presentation

of QAL, QAML and IndusMarker‟s system design & implementation. IndusMarker‟s

evaluation is presented in chapter 5 while chapter 6 discusses some important issues such as

impact of IndusMarker on students‟ performance and also presents the conclusion.

23

2. Similar Systems

An important aim of the research described in this thesis is to develop a novel

approach for automatically marking short-answer questions. For an approach to be novel, it

is necessary to examine the “state-of-the-art” (and, of course, past important developments if

significant) and hence a number of similar systems were studied. Automated free-text

marking systems can be divided in to two main categories: (1) automated essay marking

systems, and (2) automated short-answer marking systems. In 2003, Leacock and Chodorow

[2] pointed out that research in the area of automated free-text marking has largely

concentrated on essay marking rather than on short-answer marking. This trend is still

apparent today.

Essay marking systems award marks based on either the content or style (i.e.

“writing quality”) or both. Research in this area has been undertaken since the 1960s but

there was no significant success until the mid-1990s. This is because the computing power

and software technology required by such systems have only become widely available since

the mid-1990s [22]. As a result of technological improvements, many automated essay

marking systems have emerged. The most widely known are Project Essay Grade (PEG), e-

rater and systems based on Latent Semantic Analysis such as Intelligent Essay Assessor

(IEA) [22], [23]. These systems have been used with varying degrees of success by large

testing companies, universities and state-owned institutions.

The research described in this thesis is concerned with automated short-answer

marking systems and therefore these systems are discussed in detail rather than essay

marking systems. Section 2.1 discusses short-answer marking systems in general while

Sections 2.2 to 2.4 present overviews of the three short-answer marking systems that exist.

As the author has used structure-editing and structure-matching for the purpose of system

development, it is also important to provide a brief overview of related techniques i.e. the

techniques that could have been used instead of structure-editing and structure matching.

Two related techniques are overviewed in Section 2.5. Section 2.6 presents a summary of the

related work and associated systems.

24

2.1 Short-Answer Marking Systems

Short-answer marking systems are designed for short, factual answers where there is a

clear criterion for right and wrong (i.e. right and wrong answers). In such systems, the award

of marks is based on content rather than style. Poor writing “quality” is normally tolerated.

Not all short-answer questions are appropriate for computerized marking. Situations where

short answer questions are inappropriate for computerized marking are:

 The correct response may be expressed in a large number of ways (i.e. the short-

answer question is subjective).

 Responses are complex in nature (i.e. identification of correct and incorrect

answers is not clear-cut).

An example of a short-answer question that is inappropriate for computerized testing

is: “Define the term „Democracy‟”. There are numerous standard definitions of the term

„Democracy‟. Moreover, various respondents may have their own perspective on the term

and may define it differently. In other words, the expected responses will likely be subjective

and not simply paraphrases of a single concept. The criterion of right and wrong for

students‟ answers is also not very clear.

An example of a short-answer question appropriate for computerized testing is: “How

do we terminate a statement in Java”. The answer is relatively simple: “A Java statement is

terminated using a semicolon”. Correct student responses are expected to be paraphrases of

this concept and therefore, the primary task of the assessment software is to recognize which

students‟ answers are paraphrases of the correct concept and which are not.

In some cases, short-answer questions considered unsuitable for computerized tests can

be modified and adapted for such tests. The following are two guidelines for modifying

initially unsuitable questions:

 The short-answer question should try to constrain students to writing about just one

particular fact or concept.

 Longer response items should be broken into smaller, more specific items.

When one modifies a short-answer question to make it amenable to computerized

testing, the resulting question(s) are usually not exactly equivalent to the original question.

But computerized marking will typically be more accurate on the refined question(s) rather

25

than on the original one. For example, consider the following two versions of the same

question. The first version is not suitable for computerized marking but the second modified

version is:

Version 1

Explain the difference between passing primitive data types and passing reference data types

as arguments in Java.

Version 2

1. How do we pass primitive data type arguments to a method in Java?

2. When a primitive data type argument is passed, will the changes made to the

corresponding parameter be retained after the method returns?

3. What happens in computer memory when a primitive data type argument is passed to

a method?

4. How do we pass reference data type arguments to a method in Java?

5. When a reference data type is passed, what will the passed-in reference refer to once

the method call has returned?

6. What happens in computer memory when a reference data type argument is passed to

a method?

The following three existing short-answer marking systems were examined to understand

the “state-of-the-art”:

1. C-rater at Educational Testing Service (ETS) [2], [24],

2. the Oxford-UCLES system at the University of Oxford [3], [4], [5], and

3. Automark at Intelligent Assessment Technologies [6].

Sections 2.2 to 2.4 provide overview of each of these systems.

2.2 C-rater

C-rater is an automated “marking engine” developed by ETS [2], [24]. It is designed

to mark short content-based free-text responses. It is not designed to mark “open-ended”

questions, such as those that ask respondents for their personal opinion about something.

 A question is designed to elicit from the student one or more concepts that constitute

the correct answer. However, there is an enormous number of ways that a single concept can

be expressed in a natural language. To score short-answer responses, the scoring engine must

26

be able to recognize when a concept is expressed and when it is not. The set of correct

responses are considered as paraphrases of the correct answer, and hence the c-rater scoring

engine is considered as a paraphrase recognizer that identifies the members of this set (of

paraphrases).

 For example, consider the question: “Why is 26
th

 January 2001 an important date for

the Indian state of Gujarat?” Some possible correct student responses are:

 There was an earthquake in Gujarat on that day.

 Many people died in an earthquake.

 An earthquake occurred and many people died.

 Thousands of people were killed as a result of an earthquake.

A possible incorrect response is: There was false news of an earthquake in some parts of

Gujarat that panicked people across the state. Note that there are some words, e.g.

earthquake and people common to both the correct and incorrect responses. The task of C-

rater is to identify that the first four responses are paraphrases of the correct concept while

the fifth one is not.

2.2.1 C-rater’s Approach to Marking Students’ Responses

A model of the correct answer has to be created by a “content expert”. C-rater‟s task

is to map the student‟s response on to this model and, in so doing, check the correctness of

the student‟s response. Before this mapping can take place, the student‟s response is first

converted to a canonical representation (i.e. a non-ambiguous, mutually exclusive

representation of “knowledge”). C-rater then matches the concept(s) found in the student‟s

response with those found in the model of the correct answer and makes a decision about the

marks based on the number of matches.

In order to generate canonical representations, the variations in the students‟

responses have to be normalized. The designers of C-rater have identified four primary

sources of variations in students‟ answers: syntactic variations (e.g. “The democrats

dominate the US congress” and “The US congress is dominated by the democrats”);

pronoun reference (e.g. “Alan bought the cake and ate it”); morphological variations (e.g.

hide, hides, hided, hidden) and the use of synonyms and similar words (e.g. decrease, lessen,

27

minimize). Spelling and typographical errors are the fifth source of variation and even

though such errors are not considered when studying paraphrases, C-rater needs to correct

these errors itself for accurate marking to be possible. A brief overview of how C-rater

handles these sources of variations is given below.

In content-based responses, the semantic domain is limited. If a student makes a

typing or spelling error in their response, then that error can be automatically corrected

because the correct word may easily be identified through the restricted domain that consists

of the question, the model answer etc. For example, consider the question: “Why did Albert

Einstein leave Germany and settle in the US in 1933?” Now, suppose, if someone responds

“Abert Einsien” instead of “Albert Einstein”, then C-rater automatically corrects the

spelling of Einstein‟s name.

 When a misspelled word is submitted along with a student‟s response, the spelling

correction module of c-rater identifies the misspelled word because it cannot be located in its

own dictionary. Once a misspelled word has been identified, the spelling correction module

uses the edit distance algorithm to compute the number of keystrokes that separate the

misspelled word from words in the semantic domain. The misspelled word is replaced with

the closest matching word.

This approach to automatically correcting mis-spelt words introduces a problem. Not

all mis-spelt words result in non-words. For example, if a student wanted to use the word

“race” in his answer and he mistakenly types “rack” and submits the answer without

correcting the typing error. The word “rack” itself is a valid English word and will be found

by the c-rater spelling correction module in its dictionary. C-rater will be unable to detect

such typing mistakes and therefore automatic correction in such cases will not occur.

Leacock and Chodorow [2] have found through their research that consideration of

word order is very important for automated short-answer marking. Syntactic variation is the

major source of paraphrasing. A canonical syntactic representation is created by C-rater

which generates a predicate argument structure, or tuples, for each sentence of the student‟s

response. A tuple consists of verb in each clause of a sentence along with its arguments

(such as subject and object). For example, consider the question: “What is the primary

function of red blood cells in the human body?” Table 1 below shows tuples for four

28

possible responses to this question. The syntax of the three correct responses is different but

their tuples are similar i.e. all three have “Red blood cells” as the subject of the main clause

and “oxygen” as the object of main or sub-ordinate clauses. The wording of the fourth

answer is similar to that of the first three answers but it is still marked incorrect because the

object of this sentence is “food” rather than “oxygen”.

Table 1. Tuples for 4 responses

Score Sentence and tuple

Credit Red blood cells carry oxygen from lungs to body tissues through blood.

 carry :subject Red blood cells :object oxygen

Credit Red blood cells travel through our body to deliver oxygen and remove

waste.

 travel :subject Red blood cells :object our body

 deliver :object oxygen

 remove :object waste

Credit Red blood cells have the important job of carrying oxygen.

 have :subject Red blood cells :object important job

 carrying :object oxygen

No credit Red blood cells transports food to various parts of human body.

 transports :subject Red blood cells :object food

Pronoun resolution is the next important step. The pronoun resolution component of

C-rater identifies all the noun phrases that precede the pronoun and all the noun phrases that

are in the question. It then decides which noun phrase the pronoun refers to. For example,

consider this sentence: “Alice went to a supermarket where she bought some apples”.

Consider next, below, the predicate-argument structure of this sentence before and after

pronoun resolution:

29

went :subject Alice :object supermarket

bought :subject she :object some apples

went :subject Alice :object supermarket

 bought :subject Alice :object some apples

Next, the morphological analysis component converts the inflected and derived forms

of words to their base forms. For example, adds, added, adding and addition are all inflected

and derived forms of the same base form add.

Negated words are also converted to their base form e.g. illiterate is converted to

literate. But the meaning is retained as not in the tuple. For example, consider the sentence:

“Peter is illiterate”. Its predicate argument structure is:

be :subject Peter :not :object literate

This enables C-rater to effectively mark the scope of negation. For example, C-rater is able

to differentiate between the following two sentences which a “bag-of-words” approach
1

cannot: “Alan is literate but Jack is illiterate” and “Alan is illiterate but Jack is literate”.

The final step is how C-rater deals with the use of similar words and synonyms in

student‟s responses as these words also need to be normalized. C-rater uses a word similarity

matrix for this purpose [2]. The word similarity matrix has entries for a very large number of

English words and with each word there is an associated list of similar word items. Similar

words here mean words used in similar contexts. This list also contains some antonyms as

antonyms are also often used in similar contexts. It is the task of a content expert to remove

antonyms and other inappropriate words from the similar words list. When a student‟s

response is evaluated, C-rater tries to match each base form in the student‟s response with

the base forms of the model answer and all the associated similar word lists. If a match is

found, then the word in the response is replaced with the word from the model answer.

1
 Approaches, such as Latent Semantic Analysis, that do not use contextual information are termed bag-of-

word approaches because they treat a response as simply a set of unordered words.

Pronoun resolution module

30

 Once a student‟s response has been converted to a normalized canonical

representation, it is then compared with the canonical representation of the model answer.

For each relation in the model answer‟s canonical representation, C-rater tries to find a

comparable relation in the canonical representation of the response. There will not always be

a one-to-one correspondence between arguments in the canonical representation of the

model answer and those in the correct responses. A content expert specifies those elements

that are required in a response during the process of building model answers to the questions.

Since many of the students‟ responses are ungrammatical or fragmentary, the

matching algorithm is fairly forgiving. However, in allowing for various degrees of

ungrammatical input, there is a tradeoff. If it is strictly enforced, then too many correct

answers will be missed. If it is too lax, then the order problem of the “bag-of-words”

approach appears and too many incorrect responses are given undue credit.

2.2.2 C-rater’s Evaluation

C-rater has been evaluated in two relatively large-scale assessment programs [2]. The

first was the National Assessment of Educational Progress (NAEP) Math Online Project. C-

rater was used to evaluate written explanations of the reasoning behind particular solutions

to some mathematical problems. Five such questions were used in the evaluation process.

The second program was the online scoring and administration of Indiana‟s English 11 End

of Course Assessment pilot study. In this case, C-rater was required to assess seven reading

comprehension questions. The answers to these questions were more open-ended than those

to the questions in NAEP Math Online Project. In these experiments, none of the test

questions were designed with C-rater in mind. In fact, those who developed the questions

were not even aware of its existence.

In the NAEP assessment, the average length of the responses was 1.2 sentences or 15

words. Between 245 and 250 randomly chosen student responses were scored by two human

judges and by C-rater. The average agreement rate between C-rater and the first human

judge was 84.4% while between C-rater and the second human judge it was 83.6%. The

average agreement rate between the two human judges was 90.8%. This means that C-rater‟s

performance was encouraging in the case of the NAEP assessment.

31

 In the Indiana pilot study, student responses were longer and the average length was

around 2.8 sentences or 43 words. One hundred student responses were used for each

question and were scored separately by C-rater and a human judge. Leacock and Chodorow

[2] summarized the evaluation results: “On average, C-rater and the human readers were in

agreement 84% of the time”. The average kappa value
2
 was 0.74. As stated by Fleiss [25],

“Values greater than 0.75 or so may be taken to represent excellent agreement beyond

chance, values below 0.4 or so may be taken to represent poor agreement beyond chance,

and values between 0.4 and 0.75 may be taken to represent fair to good agreement beyond

chance”. So, according to standards set by Fleiss [25], C-rater‟s performance was good.

C-rater‟s errors fall into two categories: misses and false positives. A miss refers to

C-rater‟s inability to recognize a correct concept in a response. This results in less credit

being awarded to the response. A false positive, on the other hand, occurs when a C-rater

assigns too much credit for a response, i.e. credit is awarded for concept(s) that are not

present in the response.

 The NAEP and Indiana assessments were also carried out using a “bag-of-words”

approach
3
. Performance dropped by 12% in the case of NAEP assessment and by 30% in the

case of Indiana pilot study. The conclusion is that the C-rater‟s use of predicate-argument

structure and similar words had resulted in its superior performance.

2.3 The Oxford-UCLES System

Many of the University of Cambridge Local Examinations Syndicate (UCLES)‟s

exam questions are short-answer questions which are worth one or two marks and require

free text responses of approximately five lines maximum [3], [4], [5]. Such questions are

considered to be a useful and integral part of UCLES exams. Automated marking of short-

answers is therefore desired by UCLES. An Information Extraction (IE)-based system was

developed at Oxford University in an attempt to fulfill this need of UCLES. The project was

funded by UCLES and work began in summer 2002. The system‟s prototype has been

2
 Kappa values correct for the level of agreement that is expected by chance.

3
 A simple content vector analysis (CVA) classifier based on the Vector space model was used.

32

evaluated using General Certificate of Secondary Education (GCSE) biology examination

answers. The work shares the same aims, and uses many similar techniques (although

independently developed) as the systems described in [2] and [6]. As far as it is possible to

make sensible comparisons on systems that are not tested using the same data, all of this

work achieves comparable levels of accuracy.

 Two examples of GCSE Biology short-answer questions (along with their answer

keys) suitable for marking by the Oxford-UCLES system are given below:

Example #1

Write down two things about asexual reproduction in plants which is different from sexual

reproduction.

Answer key (any two):

 Can be done at any time

 Does not need 2 gametes/parents

 No fertilization

 No meiosis involved

 No genetic variation

Example #2

What is the function of white blood cells?

Answer key (any one):

 Protect the body against disease.

 Safeguard the body against infections.

 Defend the body against both infectious disease and foreign materials.

 Help human body fight against infections.

2.3.1 The Oxford-UCLES System’s Approach to Marking Students’

Responses

Information Extraction (IE) techniques were adopted for use in the system.

According to Sukkarieh et al. [3], the reasons for this choice were that these techniques do

not require complete and accurate parsing, they are relatively robust in the face of

33

ungrammatical and incomplete sentences and they are also easy to implement. IE techniques

are classified in to two categories: „knowledge engineering‟ and „machine learning‟. The

difference is that in the „knowledge engineering‟ approach the information extraction

patterns are discovered by a human expert while in the „machine learning‟ approach the

patterns are “learned” by the software itself.

The „knowledge engineering‟ approach is more accurate and requires less training

data but it requires considerable skill and effort (and hence time) on the part of the

knowledge engineer [26]. On the other hand, the „machine learning‟ approach is not as

accurate as the „knowledge engineering‟ approach. The „machine learning‟ approach is

suitable when no skilled knowledge engineer is available, training data is plentiful and the

highest possible performance is not critical. Both the IE approaches have been tried (one at a

time) in the system [3], [4], [5] and the resulting performances have been evaluated. First,

the use of the „knowledge engineering‟ approach in the system is considered below.

The students‟ answers are first subjected to shallow parsing. The resulting parsed

text is then used by the system‟s „pattern matcher‟ component to match it with the hand-

crafted patterns. The hand-crafted patterns must conform to the rules set out by the

grammar
4
. The result of the pattern matching process is fed into the system‟s „marker‟

component which makes the final decision about the marks.

As already mentioned, a human expert discovers information extraction patterns in

the „knowledge engineering‟ approach. Appelt and Israel [26] specified three crucial steps to

accomplish the task of pattern writing by hand:

1. Determine all ways in which target information is expressed in a given corpus.

2. Determine all possible variants of these ways.

3. Write patterns of those ways.

Sukkarieh et al. [3], [4], [5] abstracted patterns over three sets of data: (1) sample answers

provided by examiners, (2) answers prepared by themselves, and (3) students‟ answers

provided by UCLES.

 A pattern is essentially various paraphrases collapsed into one [5]. A set of patterns

is associated with each question. This set is further divided into bags or equivalence classes.

4
 Grammar here refers to the grammar of the language in which the hand-written patterns should be specified

(see [3], [4] for rules of this grammar).

34

The members of an equivalence class are related by an equivalence relation i.e. a member of

an equivalence class convey the same message and/or information as other members of the

same equivalence class. The marking algorithm compares student‟s answer with various

equivalence classes associated with the question and awards marks according to the number

of matches.

 The amount of work involved in pattern writing is significant. Human expertise, in

both computational linguistic and the exam/test domain, is also required. Automatic

customization to new questions is therefore desirable to remove these requirements. Machine

learning methods provide ways in which a short-answer marking system can be

automatically customized to new questions using a training set of marked answers. A

number of machine learning techniques have been tried in the system and their evaluated

performances are reported by Sukkarieh et al. [3], [5]. The machine learning techniques that

have been tried are: Nearest Neighbor classification, Inductive Logic Programming (ILP),

Decision Tree Learning (DTL) and Naïve Bayesian learning (NBayes).

2.3.2 The Oxford-UCLES System’s Evaluation

The evaluation of the latest version of the system following the hand-crafted pattern

writing approach was carried out using approximately 260 answers for each of the 9

questions taken from a UCLES GCSE biology exam. The full mark for these questions

ranged from 1 to 4. 200 marked answers were used as the training set (i.e. the patterns were

abstracted over these answers) and 60 unmarked answers were kept for the testing phase.

The average percentage agreement between the system and the marks assigned by human

examiner was 84% [5]. It was also observed that there was some inconsistency between the

marks awarded by human examiner and the marks that should have been awarded if the

marking scheme had been followed more carefully. Therefore, the scores awarded by

carefully following the marking scheme guidelines were compared with system scores. The

average percentage agreement between the two types of scores is 93%. The evaluation

results are thus reasonably good and encouraging.

The evaluation results of the application of machine learning techniques in the

Oxford-UCLES system shows that while these techniques are promising, they are not

35

accurate enough at present to replace the hand-crafted pattern matching approach [5].

Currently, such techniques should be used to either aid pattern writing [5] or perhaps act as

complementary assessment techniques for extra confirmation.

The system‟s performance is unsatisfactory in cases where the required degree of

inference is beyond the state-of-the-art [5]. The following are some situations where this

may occur:

1. Need for reasoning and making inferences: for example, a student may answer

with “keep us healthy” rather than “protect the body from diseases”.

2. Students sometimes use negation of a negation: for example, the answer “it is not

necessary for a female cat to give birth at a specific time” is equal to “a female cat

can give birth at any time”.

3. Contradictory or inconsistent information: an example of contradictory

information is “needs photosynthesis and does not need photosynthesis”. An

example of inconsistent information is “identical twins have the same chromosomes

but different DNA”.

2.4 Automark

Automark has been developed for robust automated marking of short free-text

responses [6], [27]. Information Extraction (IE) techniques have been used to extract the

concept or meaning behind free text and full effort has been made to make the software

system tolerant of errors in typing, spelling, syntax etc. Its marking is primarily based on

content analysis but certain style features may also be considered. Sections 2.4.1 and 2.4.2

outline Automark‟s approach to marking students‟ responses and its evaluation respectively.

2.4.1 Automark’s Approach to Marking Students’ Responses

Automark uses mark scheme templates to search for specific content in the student

answer text. These templates are representatives of valid (or specifically invalid) answers.

The templates are developed using an off-line custom written configuration interface. The

software system first parses the student answer text and then “intelligently”
5
 matches it with

5
 But still under the control of some algorithm.

36

each mark scheme template so that marks for the student answer may be calculated. The

answer representation of a mark scheme template may be mapped to a number of input text

variations.

Figure 1 (on the next page) illustrates the operation of the system, and shows the

main computational operations which the system performs. The Automark system

architecture consists of an offline component and an online component. The offline

component consists of configuration and storage of mark scheme templates using a

customized interface. The online component is concerned with marking a student‟s answer

and consists of a number of stages. First, the student‟s answer is subjected to syntactic

preprocessing that standardizes the student‟s answer text in terms of spelling and

punctuation. Sentence analysis is then performed to decompose answer sentences into

syntactic constituents and relationships between these constituents are also identified. The

pattern matching module searches for matches between the mark scheme templates and the

syntactic constituents of the student text. The results of this matching process are used to

formulate feedback. Feedback is in the form of marks but may also include structured

feedback (in English) commenting on various features of the student‟s answer.

37

Like human beings, the Automark system attempts to identify the understanding

expressed in a student‟s free-text response, rather than unduly penalizing because of errors in

spelling or grammar. Each mark scheme template specifies one particular form of correct or

incorrect answers. So, there may be more than one mark scheme template associated with a

question.

For example, Figure 2 illustrates a mark scheme template for the answer: The moon

revolves around the earth. The template is matched against the student‟s answer and the

two entities may be considered matching if the student‟s answer contains one of the stated

verbs (i.e. rotate, revolve, orbit, travel, move) with the stated noun (i.e. moon) as its

subject and around/round the earth in its preposition. The verbs used in the student‟s

answer are all lemmatized (i.e. converted to the base form e.g. „went‟ changed to „go‟), so

that the following sentences will be all matched by the template shown in Figure 2:

Offline

Online

Student’s answer

Feedback Response

Syntactic
Preprocessing

Sentence Analysis

Pattern Matching

Feedback Module

Computerized Mark

Scheme

Offline Configuration

Figure 1. Automark’s Architecture

38

The moon rotates round the earth.

The moon is orbiting around the earth.

The moon travels in space around the earth.

2.4.2 Automark’s Evaluation

Automark was tested in a “real world” scenario of “high importance” tests that were

part of the national curriculum assessment of science for pupils at age 11 [6]. The domain

had been chosen because in it the likelihood of spelling and syntax errors was very high and

therefore through it robustness of the Automark system could be easily tested.

For the purpose of evaluation, four items of varying degrees of open-endedness were

selected from the Key Stage 2 1999 Science National Test papers [6]. The form of response

of each of the four items, in increasing order of linguistic complexity, was as follows:

 Single word generation (1999, paper B, question 2a)

 Single value generation (1999, paper A, question 7d)

 Generation of a short explanatory sentence (1999, paper A, question 9b)

 Description of a pattern in data (1999, paper B, question 6d)

moonn

rotatev

revolvev

orbitv

travelv

movev

around
round

earthn

subject preposition

Figure 2. Structure of an example mark scheme template

39

All four items were scored to one mark except the last, which was scored to two

marks. 120 responses were randomly selected for each item. Hand-written pupil responses

were transcribed using the exact spelling, syntax and punctuation as written on the test

papers. Two experiments were devised to test the software using these data. The first was

termed the blind experiment and the second one was termed the moderation experiment. The

two experiments and their results are discussed in Sections 2.4.2.1 and 2.4.2.2 respectively.

2.4.2.1 The Blind Experiment

 The blind experiment treated the system as a „black box‟ and the discrepancies

between human and computer marking were analyzed. Mark scheme templates were devised

and tested using the model answers from the paper-based mark scheme, augmented by a

small number (approximately 50) of answers devised to cover the range of expected pupil

responses. The results of this experiment are summarized in Table 2 on the next page.

 In the table, „n‟ represents the number of students‟ responses used. It can be easily

observed from the evaluation results that Automark‟s accuracy decreases substantially as the

linguistic complexity of students‟ responses increases. Another important point to notice is

that the number of false negatives was much higher than the number of false positives.

40

Table 2. Comparison of human and computerized marking outcomes for the blind

experiment

 Paper B, Q.

2a (n=120)

Paper A, Q.

7d (n=120)

Paper A, Q.

9b (n=120)

Paper B, Q.

6d (n=120)

All (n=480)

Item

classification

Single word Single value Explanatory

sentence

Pattern

description

Matches 118 119 111 100 448

% Match 98.3% 99.2% 92.5% 83.3% 93.3%

False

positives

1 0 1 0 2

False

negatives

1 1 8 20 30

2.4.2.2 The Moderation Experiment

Subsequent to the completion of the blind experiment, the responses used in the blind

experiment were used to moderate the unmoderated computerized mark scheme. For the

system being described, moderation is required to cope with:

 unexpected but allowable responses;

 unexpected but allowable synonyms;

 and unexpected but allowable phraseology.

Subsequent to moderation, a further test of the marking accuracy was then carried out

using the moderated computerized mark scheme. The same data (i.e. students‟ responses)

were used for the moderation experiment and the blind experiment. Consequently, the

accuracy figures from the moderation experiment cannot be regarded as indicative of the

expected performance on unseen samples. However they do serve the main purpose of the

moderation experiment: to identify those errors which are inherent in the software, rather

41

than those which can be addressed by moderation. Table 3 shows the results of the

moderation experiment.

Table 3. Comparison of human and computerized marking outcomes for the moderation

experiment

 Paper B, Q.

2a (n=120)

Paper A, Q.

7d (n=120)

Paper A, Q.

9b (n=120)

Paper B, Q.

6d (n=120)

All (n=480)

Item

classification

Single word Single value Explanatory

sentence

Pattern

description

Matches 120 120 118 105 463

% Match 100% 100% 98.3% 87.5% 96.5%

False

positives

0 0 1 1 2

False

negatives

0 0 1 14 15

Mitchell et al. [6] analyzed the errors encountered in the moderation experiment and

this led them to the following conclusions:

 With unmoderated mark schemes, the system generates a number of marking errors

when faced with unexpected but allowable responses, synonyms or phraseology.

 The system, after moderation, is able to provide high marking accuracy for items

requiring word generation, value generation and short explanatory sentence

generation. This is true even with the high incidence of poor spelling and syntax

evident in the student responses.

 The system performs less well on the item requiring generation of a description of a

pattern in data. This is directly attributable to limitations in the sentence analyzer.

More depth and detail is required in identifying the major syntactic relationships

within the free-text responses.

42

 Mitchell et al. [6] believe that the problem of incorrect qualification of correct

answers is the most challenging. Students‟ responses sometimes comprise a correct

statement qualified by (or supplemented by) an incorrect statement. Invalid

qualifications that negate a correct answer should result in a reduction of the marks

awarded. While the characteristics of the set of creditworthy responses may be

increased iteratively, algorithms for recognizing nullifying incorrect science may

approach the infinite.

2.5 Related Techniques

 IndusMarker mainly relies on structure-editing and structure-matching. But other

techniques/approaches could have been used instead. Section 2.5.1 and Section 2.5.2 provide

brief overview of the two related techniques and the reasons for not selecting them for

system development.

2.5.1 Neural Network

 An Artificial Neural Network (ANN) is an information processing paradigm that is

inspired by the way biological nervous systems, such as brain, process information [54]. It is

composed of a large number of highly interconnected processing elements (neurons)

working together to solve specific problems. ANNs, like people, learn by example. An ANN

is configured for a specific application, such as pattern recognition or data classification,

through a learning process. The difference between neural networks and conventional

systems is considered next.

 Neural networks take a different approach to problem solving than that of

conventional systems. Conventional systems use an algorithmic approach i.e. the system

follows a set of instructions in order to solve a problem. Unless the specific steps that the

system needs to follow are known the system cannot solve the problem. Neural networks, on

the other hand, learn by example. They cannot be programmed to perform a specific task.

Neural networks are best for situations where the system developers do not fully understand

the problem and also do not know exactly how to solve it.

 As already stated, pattern recognition is an important application of neural networks.

Pattern recognition is used to find patterns and develop classification schemes for data in

43

very large data sets. Pattern recognition could have been exploited for automated short-

answer marking but why wasn‟t it selected then? There are two important problems that

make pattern recognition (using neural network) unsuitable for IndusMarker. Firstly, neural

networks require a very large training data set size, and secondly, neural networks require

high processing time i.e. they are slow. Another important disadvantage is that because the

network finds out how to solve the problem by itself, its operation can be unpredictable [54].

Due to these reasons, pattern recognition (using neural network) was not selected for use in

IndusMarker.

2.5.2 Text Mining

 Text mining, also known as intelligent text analysis or text data mining, refers

generally to the process of extracting interesting and non-trivial information and knowledge

from unstructured text [55]. The difference between regular data mining and text mining is

that in text mining the patterns are extracted from natural language text rather than from

structured databases of facts [56]. Databases are designed for programs to process

automatically; text is written for people to read. Technology to “read” text (i.e. technology to

fully understand text in the same way humans understand text) is not available and it seems

highly unlikely that such a technology will be available in the near future. Many researchers

think it will require a full simulation of how the mind works before programs that “read” text

(like the way humans do) can be written.

 However, intelligent use of the techniques taken from fields like machine learning,

statistics and computational linguistics enable high-quality information to be derived from

text. “High quality” in text mining usually refers to some combination of relevance, novelty

and interestingness. Text mining usually involves the process of structuring the input text

(usually parsing, along with the addition of some derived linguistic features and the removal

of others, and subsequent insertion into a database), deriving patterns within the structured

data and finally evaluation and interpretation of the output. Text mining could have been

used for automated marking in IndusMarker but it was not selected because text mining is

computationally quite expensive, it requires use of many tools/technologies for various

stages of the text mining process and also requires considerably large training data set.

44

2.6 Summary of the Similar Work

 In recent years, a keen interest in automatic content scoring of constructed response

items has emerged. Progress in Natural Language Processing (NLP) has made it possible to

judge content without having to fully understand the text. A new type of NLP system has

emerged employing a technique known as Information Extraction (IE). IE makes use of NLP

tools (e.g. parsers, lexical databases, etc.), but rather than attempting an in-depth language

analysis, “skims” the input text searching for specific concepts.

 Several systems for content scoring exist. However, the only three systems that deal

with both short-answers and analytic-based content (i.e. look at content in terms of the main

points or concepts expected in an answer) are C-rater at ETS, the Oxford-UCLES system at

the University of Oxford and Automark at Intelligent Assessment Technologies. Though the

3 systems were developed independently, they all used a knowledge-engineered IE approach

taking advantage of shallow linguistic features that ensure robustness against noisy data (i.e.

students‟ answers are full of misspellings and grammatical errors). As far as it is possible to

make sensible comparisons on systems that are not tested using the same data, the human-

system agreement rates for the three systems are comparable. Moreover, none of these

systems is accurate and reliable enough to completely replace human marking.

 The design and evaluation of the similar systems were discussed in this chapter. The

design, evaluation and use of IndusMarker are presented in the next three chapters.

45

3. “Answer Structure” Specification Languages and

IndusMarker’s Architecture

IndusMarker‟s design criterion is that IndusMarker should be based on structure-

editing and structure-matching and, unlike other similar systems, reliance on linguistic

features analysis should be minimized. Structure-editing is used to support the development

of descriptions of correct answer structures for subsequent structure-matching. Structure

matching involves matching the pre-specified answer structure with the content of the

student‟s answer text.

As already stated, an examiner/teacher must specify the required answer structure

before IndusMarker performs structure matching. Thus, some means of expressing the

required structure was needed. This need was addressed through a new purpose-designed

language called Question Answer Language (QAL). QAL was later redefined as a

sublanguage of XML (the de facto standard for specifying “semi-structured”
6
 data) and

named Question Answer Markup Language (QAML). IndusMarker is designed to use the

required structures expressed in QAL/QAML to perform the structure matching process. The

purpose of this chapter is to explain the syntax and semantics of QAL and QAML and also

to describe IndusMarker‟s architecture. QAL and QAML are presented in Section 3.1 and

Section 3.2 respectively. The architecture of IndusMarker is presented in Section 3.3.

3.1 The Question Answer Language (QAL)

The syntax and semantics of QAL is intended to be suitable for educators with

widely differing computing skills, i.e. QAL is intentionally simple enough to be readily

understandable and hence “easy to learn”
7
. To get an overview of how the required

structures are written in QAL, consider the following example:

6
 The term “semi-structured data” is, as its name suggests, used here to denote data that is neither fully-

structured (e.g. data represented by relations in a relational database) nor entirely without structure. As such,

semi-structured data possesses some structure that can be formally defined, e.g. in terms of the simple

algorithmic concepts of sequences, alternatives and iterations (of data elements or other structures).

7
 The notion that a formal language* (or any other formal system) is “easy to learn” is, of course, problematic.

However, both QAL and QAML are significantly less complex than modern (or even earlier) general-purpose

programming languages, i.e. both QAL and QAML have significantly, and intentionally, simpler syntax and

46

Test question: Describe the idea of “function overloading” in a single sentence. (1 mark)

Model answer: Functions having the same name but different signatures.

The examiner must specify the required structure so that all the expected

paraphrases are elaborated. There are two equally important required parts or regions in the

model answer for the above question. The first required region is “same name” and the

second is “different signatures”. Since both are of equal importance, they are allocated equal

marks. The following is the regions specification in QAL for the above question:

Begin_regions;

 Begin_region(marks=0.5);

 "same name"

 End_region;

 Begin_region(marks=0.5);

 "different signature"

 End_region;

End_regions;

Each region has its own required structure which consists of multiple possibilities (each

possibility representing the structure of a possible paraphrase for the region) as shown

below:

Region: "same name"

Possibility #1:

<main>=("same";"name")*2:0.5:;

Possibility #2:

<main>=("same";"identity")*2:0.5:;

semantics than such languages. There is evidence, e.g. [28] of the teaching of modern general-purpose

programming languages (in the case of the example in this reference the class-based object-oriented general

purpose programming language Java) to children as young as 9 years old. The author would assume an

educator exploiting the IndusMarker system to be at least capable of the kinds of reasoning expected of a nine

year old.

* A programming language is a formal language in the sense that it is consciously designed rather than, as in a

natural language (e.g. English), “evolving” as a means of communication between humans.

47

Region: "different signature"

Possibility #1:

<main>=("different";"data type")*2:0.5:;

Possibility #2:

<main>=("different";"parameter")*2:0.5:;

Possibility #3:

<main>=("different";"signature")*2:0.5:;

Possibility #4:

<main>=("different";"argument")*2:0.5:;

The examiner uses a subset of students‟ answers together with the model answer to

predict all acceptable paraphrases for a region. QAL embodies the necessary constructs to

express structure for a natural language text. The following is a brief explanation of the

QAL‟s constructs:

1. Notation: “……”

Meaning/explanation: Text string.

Example: "polymorphism"

Explanation of the example: "polymorphism" is a text string.

2. Notation: <……>

Meaning/explanation: Main pattern/sub-pattern identifier. A main pattern/sub-pattern has

the following form: LHS=RHS. The main pattern/sub-pattern identifier is on LHS. The

main pattern/sub-pattern‟s required structure is specified on RHS. If a pattern has <main>

on the LHS, then it is the main pattern for a particular possibility. If a pattern‟s name on

the LHS is something other than “main” e.g. <organize>, then it is a sub-pattern. A

possibility always has one main pattern and it may also have one or more sub-patterns.

Sub-patterns are called from the main pattern.

Example:

<main>=<rbcCount>+<lowHematocrit>:1:;

<rbcCount>=NP_containing("RBC count" | "red blood cell

count");

48

<lowHematocrit>=NP_containing("low hematocrit");

Explanation of the example: The first pattern in the example above is the main pattern.

The next two patterns are sub-patterns. The two sub-patterns are called from the main

pattern.

3. Notation: +

Meaning/explanation: Sequence. A sequence consists of one or more elements. Elements

are listed from left to right and are separated by a “+” symbol. These elements are

processed by IndusMarker in the same order as they are listed i.e. one by one from left to

right. An element on the left should be matched in the student‟s answer text before an

element on the right. If some element in a sequence is not matched in the student‟s answer

text, the whole sequence is deemed to be not matching. An element of a sequence can be

any one of the following: (1) “text string” element, (2) “noun phrase required” element,

(3) “verb group required” element, (4) “condition” element, (5) “alternative options”

element, (6) “allowed permutation” element, (7) “not” element, and (8) “sub-pattern”

element.

 Example #1: "more"+"one"

Explanation of the example: In the student‟s answer text, the text string “more” should

appear before the text string “one”. The sequence consists of two elements; both of them

are text strings.

Example #2: "upto"+{"programmer","developer"}

Explanation of the example: The sequence consists of two elements; the first one is a “text

string” element while the second is an “alternative options” element. IndusMarker first

looks up for the text string “upto” in the student‟s answer text and if it is found/matched,

then it looks up for the second element. Since the second element is an “alternative

options” element, IndusMarker looks for both the words (i.e. “programmer” and

“developer”) in the student‟s answer text. If any one of the two words (i.e. “programmer”

or “developer”) is matched in the student‟s answer text, the whole sequence is matched

(provided “upto” has been matched earlier). Another important point is that the first

element of the sequence should appear in the student‟s answer text before the second,

otherwise the sequence is not matched.

49

4. Notation: NP_containing(……)

Meaning/explanation: Noun phrase required. Requirement of a noun phrase containing

any of the strings specified in the enclosed brackets. If more than one string is present

inside enclosed brackets, then each string is separated from the other through a “|” symbol.

 Example: NP_containing("same type" | "same data type")

Explanation of the example: Noun phrase containing either "same type" or "same data

type".

5. Notation: VG_containing(……)

Meaning/explanation: Verb group required. Requirement of a verb group containing any

of the strings specified in the enclosed brackets. If more than one string is present inside

enclosed brackets, then each string is separated from the other through a “|” symbol.

 Example: VG_containing("facilitate" | "assist" | "ease" |

"help")

 Explanation of the example: Verb group containing either “facilitate” or

“assist” or “ease” or “help”.

6. Notation: [……]

Meaning/explanation: Condition. The three allowed conditions are NO_WORD, NO_NP

and NO_VG. These conditions respectively mean “no word”, “no noun phrase” and “no

verb group” allowed at a particular location in the student answer text.

Example #1: <DBMS>+[NO_VG]+<organize>+[NO_NP & NO_VG]+“data”

Explanation of the example: There should be no verb group between the sub-patterns

<DBMS> and <organize> and there should also be no noun phrase as well as no verb

group between the sub-pattern <organize> and the word “data”.

Example #2: "pointer"+[NO_WORD]+"array"

Explanation of the example: There should be no word between the words “pointer” and

“array”.

7. Notation: {…}

50

Meaning/explanation: Alternative options. Any one of the alternatives. Each alternative

option is separated from the other through a comma.

Example #1: {“count”, “counting”}

Explanation of the example: Any one of the two alternatives.

Example #2: {"type int","type"&"int"}

Explanation of the example: Either the string “type int” or the string “type”

followed by the string “int” (there may be some other string between “type” and

“int”).

8. Notation: (…)*MinNum

Meaning/explanation: Allowed permutation. A specified minimum number of options

should appear in the student‟s answer text in any order. Each option is separated by a

semi-colon. Each option is a text string. MinNum should be a positive integer and should

not be greater than the number of options listed in the enclosed brackets.

Example #1:

(“organization”;“storage”;“access”;“security”;“integrity”)*3

Explanation of the example: At least 3 of the 5 options should appear in the student‟s

answer text in any order.

Example #2: ("base";"constructor")*2

Explanation of the example: Both "base" and "constructor" should appear in the

student‟s answer text in any order.

9. Notation: NOT(…)

Meaning/explanation: The word(s) contained in the NOT word list is/are not allowed at a

particular location in the student‟s answer text. If the number of words contained in the

NOT word list is more than one, then each word is separated by “|” symbol.

Example:

NP_containing("array")+NOT("structure")+NP_containing("same

type" | "same data type")

51

Explanation of the example: The word “structure” should not appear between the

noun phrase containing “array” and the noun phrase containing “same type” or

“same data type”.

Consider the following two examples to fully understand how patterns are written in

QAL and how they should be interpreted:

Example #1

Consider the following pattern written in QAL:

 A B C

<main>=("same";"identity")*2:0.5:;

An explanation of the marked parts of the pattern is given below:

A=Indicates that this is the main pattern of the possibility. A possibility can also have sub-

patterns called from the “main” pattern. This is analogous to the concept of “main” method

in Java where program execution starts from the main method but other methods can be

called (invoked) from the main method.

B=Indicates that at least two options should appear in at least one of the student‟s answer

sentences (in any order). Since there are only two options (i.e. “same” and “identity”), both

should appear in at least one of the student‟s answer sentences.

C=Indicates the marks that will be added to the student‟s total if this structure is found in

any sentence of the student‟s answer text.

Example #2

Consider another pattern written in QAL:

 C F

 A B D E

<main>={"address","location"}+"i":1:"i"+{"address","location"}:1:;

An explanation of the markings on the above pattern is as follows: The above pattern is a

main pattern and it consists of two parts. The two parts are marked as “C” and “F”. Each

main pattern part (i.e. “C” or “F”) consists of a required structure and associated marks. “A”

52

is the required structure and “B” contains the associated marks for the first part of the main

pattern. “D” is the required structure and “E” contains the associated marks for the second

part of the main pattern. If the required structure of any main pattern part is matched in any

sentence of the student‟s answer text, the associated marks for that part of the main pattern is

added to the student‟s total marks.

3.2 The Question Answer Markup Language (QAML)

XML is currently the de facto standard format for data handling and exchange [29].

Another advantage of XML is that the data in XML documents is self-describing.

Customized markup languages can also be created using XML and this represents its direct

utility. In other words, XML is a meta-language and has the ability to define new languages

built around a standard format [30], [31]. People, who create these new languages, can also

tailor them to their own specific needs. It was decided, for obvious compatibility and

associated advantages, to redefine QAL as a sublanguage of XML so that QAL is

standardized and all the benefits of XML can be exploited. The new language is called

Question Answer Markup Language (QAML).

The first task was to build rules that specify the structure of a QAML document so

that the document can be checked to make sure it is set up correctly. There are two types of

QAML documents: one type contains “regions specifications” for expected answers and the

other type contains “possibility specifications” for a region. Since each region may have

multiple possibilities, there may be more than one “possibility specification” document for a

region. The following are the Document Type Definitions (DTDs) for “regions

specification” and “possibility specification”:

“Regions specification” DTD

<!ELEMENT QAML_REGIONS_SPECIFICATION (BODY)>

<!ELEMENT BODY (REGION+)>

<!ELEMENT REGION (TEXT,MARKS)>

<!ELEMENT TEXT (#PCDATA)>

<!ELEMENT MARKS (#PCDATA)>

53

“Possibility specification” DTD

<!ELEMENT QAML_POSSIBILITY (MAIN_PATTERN,SUB_PATTERN*)>

<!ELEMENT MAIN_PATTERN (PATTERN_BODY_PART+)>

<!ELEMENT SUB_PATTERN (SUB_PATTERN_NAME,SUB_PATTERN_BODY)>

<!ELEMENT PATTERN_BODY_PART (SEQUENCE,MARKS)>

<!ELEMENT SUB_PATTERN_BODY (SEQUENCE)>

<!ELEMENT SEQUENCE (TEXT | NOUN_PHRASE | VERB_GROUP |

CONDITION | ALTERNATE | MINIMUM_REQUIRED_OPTIONS | NOT |

SUB_PATTERN_NAME)+>

<!ELEMENT NOUN_PHRASE (TEXT+)>

<!ELEMENT VERB_GROUP (TEXT+)>

<!ELEMENT CONDITION (NO_NP | NO_VG | NO_WORD | NO_NP_NO_VG)>

<!ELEMENT NO_NP EMPTY>

<!ELEMENT NO_VG EMPTY>

<!ELEMENT NO_WORD EMPTY>

<!ELEMENT NO_NP_NO_VG EMPTY>

<!ELEMENT ALTERNATE (AND_OPERAND | TEXT)+>

<!ELEMENT AND_OPERAND (TEXT+)>

<!ELEMENT MINIMUM_REQUIRED_OPTIONS (TEXT+,MIN_REQ)>

<!ELEMENT MIN_REQ (#PCDATA)>

<!ELEMENT NOT (TEXT+)>

<!ELEMENT TEXT (#PCDATA)>

<!ELEMENT MARKS (#PCDATA)>

<!ELEMENT SUB_PATTERN_NAME (#PCDATA)>

To have a better understanding of how QAML represents the required answer

structure for a question, consider the following example:

Test Question: Explain the meaning of the following C++ statement: int *m[10]; (1

mark)

54

Model Answer: The C++ statement represents declaration of an array of pointers to integer

variables. The size of the array is 10.

The following is a possible “regions specification” of the required answer structure for the

question:

<QAML_REGIONS_SPECIFICATION>

 <BODY>

 <REGION>

<TEXT>Declaration of an array of pointers to integer

variables, size 10</TEXT>

 <MARKS>1</MARKS>

 </REGION>

 </BODY>

</QAML_REGIONS_SPECIFICATION>

There is only one region in the above QAML “regions specification”. Some other

person designing the required structure may decide to have a different “regions

specification” e.g. s/he may decide to have more than one region in the “regions

specification”. The decision about how many regions to create in a “regions specification”

depends mainly on the total number of concepts expected to appear in the student‟s answer

text and the maximum marks for the question. A designer can choose to have more than one

concept in a region. S/he also has to make a decision about the region marks and this

depends upon the relative importance of the particular region. The following are the QAML

“possibility specifications” for the first two possibilities of the region in the “regions

specification”:

Possibility #1:

<QAML_POSSIBILITY>

 <MAIN_PATTERN>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <TEXT>array</TEXT>

55

 <TEXT>of</TEXT>

 <TEXT>pointer</TEXT>

 </SEQUENCE>

 <MARKS>1</MARKS>

 </PATTERN_BODY_PART>

 </MAIN_PATTERN>

</QAML_POSSIBILITY>

Possibility #2:

<QAML_POSSIBILITY>

 <MAIN_PATTERN>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <TEXT>pointer</TEXT>

 <CONDITION>

 <NO_WORD/>

 </CONDITION>

 <TEXT>array</TEXT>

 </SEQUENCE>

 <MARKS>1</MARKS>

 </PATTERN_BODY_PART>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <TEXT>pointer array</TEXT>

 </SEQUENCE>

 <MARKS>1</MARKS>

 </PATTERN_BODY_PART>

 </MAIN_PATTERN>

</QAML_POSSIBILITY>

Consider below another example of how required structures are expressed in QAML:

56

Test Question: Which C++ operator provides dynamic memory allocation? When this

operator is used in an expression to create an object, what does that expression return? If the

object is an array, then what does that expression return? (2 marks)

Model Answer: The new operator provides dynamic storage allocation. When this operator

is used in an expression to create an object, the expression returns pointer to the object

created. If the object is an array, a pointer to the first element is returned.

The following is a possible “regions specification” of the required answer structure

for the question (both QAL and QAML representations are given to illustrate how the same

specification is expressed in the two languages):

The “regions specification” expressed in QAL

Begin_regions;

 Begin_region(marks=0.75);

"The new operator provides dynamic storage

allocation"

 End_region;

 Begin_region(marks=0.75);

 "a pointer to the object created"

 End_region;

 Begin_region(marks=0.5);

"If the object is an array, a pointer to the initial

element is returned"

 End_region;

End_regions;

The “regions specification” expressed in QAML

<QAML_REGIONS_SPECIFICATION>

 <BODY>

 <REGION>

<TEXT>The new operator provides dynamic storage

allocation</TEXT>

57

 <MARKS>0.75</MARKS>

 </REGION>

 <REGION>

 <TEXT>a pointer to the object created</TEXT>

 <MARKS>0.75</MARKS>

 </REGION>

 <REGION>

<TEXT>If the object is an array, a pointer to the

first element is returned</TEXT>

 <MARKS>0.5</MARKS>

 </REGION>

 </BODY>

</QAML_REGIONS_SPECIFICATION>

The above “regions specification” consists of three regions. Each region consists of

text and associated marks. Each region‟s required structure consists of one or more

possibilities. Each possibility is expressed through a “possibility specification”. The

“possibility specifications” for each of the three regions are given below (both QAL and

QAML representations are given for each “possibility specification” in order to illustrate that

the same “possibility specification” can be expressed in both the languages):

Region: "The new operator provides dynamic storage allocation"

Possibility #1:

(The “possibility specification” expressed in QAL is as follows)

<main>="new":0.75:;

(The “possibility specification” expressed in QAML is as follows)

<QAML_POSSIBILITY>

 <MAIN_PATTERN>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <TEXT>new</TEXT>

58

 </SEQUENCE>

 <MARKS>0.75</MARKS>

 </PATTERN_BODY_PART>

 </MAIN_PATTERN>

</QAML_POSSIBILITY>

Region: "a pointer to the object created"

Possibility #1:

(The “possibility specification” expressed in QAL is as follows)

<main>={"pointer","location","address"}+{"object","element"}:0

.75:("pointer";"type")*2:0.5:;

(The “possibility specification” expressed in QAML is as follows)

<QAML_POSSIBILITY>

 <MAIN_PATTERN>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <ALTERNATE>

 <TEXT>pointer</TEXT>

 <TEXT>location</TEXT>

 <TEXT>address</TEXT>

 </ALTERNATE>

 <ALTERNATE>

 <TEXT>object</TEXT>

 <TEXT>element</TEXT>

 </ALTERNATE>

 </SEQUENCE>

 <MARKS>0.75</MARKS>

 </PATTERN_BODY_PART>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <MINIMUM_REQUIRED_OPTIONS>

59

 <TEXT>pointer</TEXT>

 <TEXT>type</TEXT>

 <MIN_REQ>2</MIN_REQ>

 </MINIMUM_REQUIRED_OPTIONS>

 </SEQUENCE>

 <MARKS>0.5</MARKS>

 </PATTERN_BODY_PART>

 </MAIN_PATTERN>

</QAML_POSSIBILITY>

Region: "If the object is an array, a pointer to the initial element is returned"

Possibility #1:

(The “possibility specification” expressed in QAL is as follows)

<main>={"pointer","location","address"}+{"initial","first"}:0.

5:{"pointer","location","address"}+{"begin","array"}:0.25:;

(The “possibility specification” expressed in QAML is as follows)

<QAML_POSSIBILITY>

 <MAIN_PATTERN>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <ALTERNATE>

 <TEXT>pointer</TEXT>

 <TEXT>location</TEXT>

 <TEXT>address</TEXT>

 </ALTERNATE>

 <ALTERNATE>

 <TEXT>initial</TEXT>

 <TEXT>first</TEXT>

 </ALTERNATE>

 </SEQUENCE>

 <MARKS>0.5</MARKS>

60

 </PATTERN_BODY_PART>

 <PATTERN_BODY_PART>

 <SEQUENCE>

 <ALTERNATE>

 <TEXT>pointer</TEXT>

 <TEXT>location</TEXT>

 <TEXT>address</TEXT>

 </ALTERNATE>

 <ALTERNATE>

 <TEXT>begin</TEXT>

 <TEXT>array</TEXT>

 </ALTERNATE>

 </SEQUENCE>

 <MARKS>0.25</MARKS>

 </PATTERN_BODY_PART>

 </MAIN_PATTERN>

</QAML_POSSIBILITY>

All the three regions (in the above example) have one possibility each and therefore

there is one “possibility specification” per region. But a region can have more than one

possibility. All the above QAML specifications have to be well-formed and valid. In order

for these specifications to be valid, they have to comply with the DTD associated with such

specifications. The IndusMarker system has a QAML structure editor that ensures the user

builds well-formed and valid QAML specifications.

3.3 IndusMarker’s Architecture

 IndusMarker can be roughly divided into two main components: an “answer text

analyzer” and a “QAML structure editor”. The system is designed for two types of users:

examiners and students. Interactions between the main components and users of the system

are depicted in Figure 3 on the next page. The architectural designs of “answer text

analyzer” and “QAML structure editor” are discussed in Section 3.3.1 and Section 3.3.2

respectively.

61

3.3.1 The Answer Text Analyzer’s Architecture

This component of IndusMarker has four sub-components: a “spell checker”, a

“linguistic features analyzer”, a “structure matcher” and a “marks calculator”. The

“linguistic features analyzer” itself has two further sub-components: a “natural language

parser” [32] and a “noun phrase and verb group chunker”. Architectural design of the

“answer text analyzer” is depicted in Figure 4 on page 62. An “answer text analyzer”

performs four main functions: (i) spell-checking, (ii) some basic linguistic analysis – Part Of

Speech (POS) tagging and Noun Phrase and Verb Group (NP & VG) chunking, (iii)

matching student‟s answer text structure with the required structure (as specified in the

“regions” and “possibility” specifications), and (iv) computing the total marks of the student

for his/her answer based on the result of the matching process.

Figure 3. An overview of the system architecture

The spelling mistakes in the student‟s answer text are highlighted by the spell

checker and correct spelling options are presented to the student for each spelling mistake. It

is the responsibility of the student to make the final decision about the correct spelling. Once

the student has submitted an answer text, some basic linguistic analysis is performed. A

natural language parser and NP & VG chunker are respectively used to perform POS tagging

and NP & VG chunking of the student‟s answer text. After linguistic analysis, the tagged

and chunked student‟s answer text is processed by the “structure matcher”. The “structure

matcher” matches the pre-specified required “answer structure” with student‟s answer text (a

62

detailed description of the “structure matcher‟s” algorithmic design is given in Section 4.1.3

and Section 4.1.4). The result of structure matching is used by “marks calculator” to

compute the total marks obtained by the student for his/her answer. The design and

development details of the “Answer Text Analyzer‟s” components are described thoroughly

in Section 4.1.

Figure 4. Architecture of the “Answer Text Analyzer”

3.3.2 The QAML Structure Editor’s Architecture

The “QAML structure editor” performs four important functions: (i) provide a

suitable Graphical User Interface (GUI) that enables development of structured QAML

specifications with relative ease, (ii) automatic QAML document generation, (iii) validation

of QAML documents by ensuring that all rules in the associated DTD are followed, and (iv)

63

transformation of QAML specifications to their respective QAL representations (the reason

for this transformation function is that the “answer text analyzer” was designed and

implemented for QAL and the idea of QAML came later. Since the “answer text analyzer”

had already been developed and tested, there was no need to make any change in this

component if the QAML structures can somehow be transformed to QAL equivalents). The

architectural design of the “QAML structure editor” is depicted in Figure 5.

Figure 5. Architecture of the “QAML Structure Editor”

The structure of QAML specification is represented at the user interface as a tree.

Nodes may be added or deleted from this tree. Each node represents a QAML element. A

leaf node represents either an empty QAML element or parsed character data of a QAML

64

element. Changes in the tree structure result in corresponding changes in the QAML

document.

There are three main sub-components of the “QAML structure editor”: (i) “automatic

QAML generator”, (ii) “validator” and (iii) “transformer”. The “automatic QAML

generator” serializes the contents of the QAML document. The “validator” is used to verify

whether the QAML document conforms to all the constraints specified in DTD. Once the

QAML document has been validated, the QAML specifications are converted by the

“transformer” to their QAL representation for storage in a relational database. The

“transformer” component itself consists of two sub-components: (i) “XSLT processor” and

(ii) “QAL-based specification extractor”. The “XSLT processor” takes in QAML-based

document and XSL style sheet and produces a HTML document containing QAL-based

specification which is then used by a “QAL-based specification extractor” to produce

storable QAL representation. The design and development details of the “QAML structure

editor‟s” sub-components are described thoroughly in Section 4.2.

65

4. Design and Development of IndusMarker’s Components

IndusMarker‟s development can be sub-divided into two parts i.e. the “answer text

analyzer” development and the “QAML structure editor” development. A number of

technologies, including Java, XML, DTD, XSL/XSLT, SAX, XPath, the Stanford Parser,

JOrtho etc, have been used in the system development. Section 4.1 and Section 4.2 describe

how these technologies are utilized. Algorithms developed during the system‟s design that

perform various functionalities within the system, are also described in these sections.

4.1 Design and Development of the Answer Text Analyzer’s Sub-

Components

As already stated in Section 3.3.1 and depicted in Figure 4, the “answer text

analyzer” component itself consists of four sub-components: the “spell checker”, the

“linguistic features analyzer”, the “structure matcher” and the “marks calculator”. The

purpose of this section is to provide implementation details / algorithms for these sub-

components. This section is further divided in to four sub-sections. Section 4.1.1 presents

implementation of “spell checker”, Section 4.1.2 presents implementation of “Linguistic

Features Analyzer”, Section 4.1.3 presents the overall algorithm for the “structure matcher”

and the “marks calculator” while Section 4.1.4 presents the structure matching algorithms

used in the “structure matcher” for matching various QAL constructs with student‟s answer

text.

4.1.1 The Spell Checker

 The spell-checker used is called JOrtho (Java Orthography) [33]. It is an Open

Source spell checker and is entirely written in Java. Its dictionaries are based on the free

Wiktionary project [34]. The JOrtho library works with any JTextComponent from the

Swing framework. In the case of the system implemented here, the spell checker is

registered with JTextArea component in which the student‟s answer is supposed to be

entered. The JOrtho library, when bound to a JTextComponent (such as JTextArea),

highlights the potentially incorrectly spelt word and offers a context menu with suggestions

66

for a correct form of the word. The students, entering their answer, must select a correct

spelling before submitting their answer because incorrect spelling will not be automatically

corrected once the answer has been submitted. Figure 6 depicts the IndusMarker‟s GUI

screen for student‟s answer entry. The question is displayed on top of the text area provided

for student‟s answer. The spelling mistakes in student‟s answer are highlighted and

suggestions for correct spelling are displayed in a separate dialog. The dialog pops up

whenever there is a spelling error and the student presses the “F7” button. The dialog allows

users to perform a number of functions. Most importantly, it allows the student to select and

insert the correct spelling in the answer text.

Figure 6. “Student’s answer entry” screen along with “spelling correction” dialog

4.1.2 The Linguistic Features Analyzer

To develop the required linguistic features analysis capability, the Stanford Parser

[32] and a self-developed Noun Phrase and Verb Group (NP & VG) chunker were exploited.

The Stanford Parser is a program that determines the grammatical structure of sentences. It is

67

a Treebank-trained statistical parser developed by Klien and Manning at Stanford University

and is capable of generating parses with high accuracy [35]. Key reasons for choosing the

Stanford Parser were: (1) it is written in Java and since the rest of the system‟s software is

also written in Java, the parser is easy to integrate with the system, and (2) the parser is

highly accurate. The parser can read plain text input and can output various analysis formats,

including part-of-speech tagged text, phrase structure trees and a grammatical relations

(typed dependency) format. In the case of the author’s system, the Stanford Parser is

used only to get the part-of-speech tagged text output. The tagged text output is then

chunked into noun phrases and verb groups by a self-developed NP & VG chunker.

4.1.3 Overall Algorithm for the Structure Matcher and the Marks Calculator

The “structure matcher” and “marks calculator” were designed during the work

undertaken for this thesis. Their main function is to compare the structure of the student‟s

answer text with the structure specified in the related QAL-based specification and based on

the result of such a comparison, the student‟s marks for the answer are computed. Before the

sub-components‟ algorithm is presented, consider the following QAL possibility to

understand the notation used in the algorithm‟s pseudo code:

<main>={“variable”,“object”}+“cube”:0.5:(“length”;“5”)*2:0.5:;

A=sub-part pattern

B=MAIN_PATTERN_PART_MARKS

C=main-pattern part

D=main-pattern

The above main-pattern has two main-pattern parts. The first main-pattern part has two sub-

part patterns. Each main-pattern part has an associated MAIN_PATTERN_PART

_MARKS.

D

A A A B B

C C

68

The pseudo code for the overall algorithm used in the “structure matcher” and

“marks calculator” is given below. A combined algorithm is given because the two

components are highly integrated:

TOTAL_STUDENT_MARKS_FOR_THIS_ANSWER=0;

FOR each region in the regions specification BEGIN

 MAXIMUM_MARKS_OBTAINED_THIS_REGION_ALL_SENTENCES=0;

 FOR each sentence in the student’s answer text BEGIN

 MAXIMUM_MARKS_OBTAINED_THIS_REGION_THIS_SENTENCE=0;

 FOR each possibility of the region BEGIN

 CURRENT_POSSIBILITY_MARKS=0;

 FOR each main-pattern part BEGIN

 PATTERN_MATCHED=true;

 FOR each sub-part of the main-pattern part BEGIN

IF the sub-part pattern is NOT matched in student’s

answer sentence THEN

 PATTERN_MATCHED=false;

 BREAK this FOR loop;

 END IF

 END FOR

 IF PATTERN_MATCHED=true THEN

 CURRENT_POSSIBILITY_MARKS=

CURRENT_POSSIBILITY_MARKS+MAIN_PATTERN_PART_MARKS;

 END IF

 END FOR

IF (MAXIMUM_MARKS_OBTAINED_THIS_REGION_THIS_SENTENCE <

CURRENT_POSSIBILITY_MARKS) THEN

 MAXIMUM_MARKS_OBTAINED_THIS_REGION_THIS_SENTENCE=

CURRENT_POSSIBILITY_MARKS;

 END IF

 END FOR

69

 IF (MAXIMUM_MARKS_OBTAINED_THIS_REGION_ALL_SENTENCES <

MAXIMUM_MARKS_OBTAINED_THIS_REGION_THIS_SENTENCE) THEN

MAXIMUM_MARKS_OBTAINED_THIS_REGION_ALL_SENTENCES=

MAXIMUM_MARKS_OBTAINED_THIS_REGION_THIS_SENTENCE;

 END IF

 END FOR

TOTAL_STUDENT_MARKS_FOR_THIS_ANSWER=

TOTAL_STUDENT_MARKS_FOR_THIS_ANSWER+

MAXIMUM_MARKS_OBTAINED_THIS_REGION_ALL_SENTENCES;

END FOR

The “sub-part pattern” matching with the student’s answer sentence is a very

important step in the above algorithm because the decision about student’s marks is

based on the result of this matching. This step is quite involved (as well as important). The

novel algorithms developed to perform this structure matching are presented in the next

section.

4.1.4 Structure Matching Algorithms for Various QAL Constructs

Structure matching algorithms used in the “structure matcher”, for matching various

QAL constructs with the student‟s answer text, are described in detail in this section. In the

context of the algorithm presented in the previous section, a “sub-part pattern” corresponds

to a QAL construct. A QAL construct may be any one of the following: (1) a text string, (2)

a “noun phrase required” construct, (3) a “verb group required” construct, (4) a “no noun

phrase / no verb group / no word” condition, (5) an “alternative options” construct, (6) an

“allowed permutation”, (7) a “not” condition, or (8) a call to a sub-pattern. The “linguistic

features analyzer” converts a student‟s answer sentence from a simple text string to a Part Of

Speech (POS) tagged and Noun Phrase and Verb Group (NP & VG) chunked text. As an

example, consider the following student‟s answer sentence:

“Arrays can only hold multiple data items of the same type, but structures can hold multiple

data items of different data types”.

The above sentence in the POS tagged and NP & VG chunked form is given below:

70

[Arrays/NNS]/NP can/MD only/RB [hold/VB]/VG [multiple/JJ data/NN items/NNS]/NP

of/IN [the/DT same/JJ type/NN]/NP ,/, but/CC [structures/NNS]/NP can/MD [hold/VB]/VG

[multiple/JJ data/NN items/NNS]/NP of/IN [different/JJ data/NN types/NNS]/NP ./.

The noun phrases and verb groups in the above text are highlighted. There are some

words that do not fall into the category of either a noun phrase or a verb group. IndusMarker

creates a sequential list containing all the noun phrases, verb groups and words (in the same

order as they appear in the student‟s answer sentence). The sequential list is called

ANSWER_SENTENCE_CONSTITUENTS. An entire main pattern part has to match in the

student‟s answer sentence (i.e. ANSWER_SENTENCE_CONSTITUENTS), only then the

associated MAIN_PATTERN_PART_MARKS are added to the

CURRENT_POSSIBILITY_MARKS. A main pattern part consists of one or more sub-part

patterns. These sub-part patterns have to be processed in the sequence they are specified and

they should also appear in the student‟s answer sentence in the same sequence (i.e. order is

important). For this purpose, a pointer called CONSTITUENTS_POINTER is maintained.

The purpose of the CONSTITUENTS_POINTER is to keep track of the position in the

ANSWER_SENTENCE_CONSTITUENTS from where the next sub-part pattern matching

should start. The search for the next sub-part pattern begins from the location (or position)

just next to the location where the search for the previous sub-part pattern ended. So, if the

search for a previous sub-part pattern ended at location i of the

ANSWER_SENTENCE_CONSTITUENTS list, the search for the next sub-part pattern

starts from the location i+1. Once the matching process for an entire main pattern part (i.e.

all sub-part patterns included in the main pattern part) has finished, the

CONSTITUENTS_POINTER is reset to the position of the first element of the

ANSWER_SENTENCE_CONSTITUENTS so that the matching process for the next main

pattern part can start.

The matching algorithms used to match various forms of sub-part patterns are given

below. In each of the matching algorithms presented below, the result of the matching

process is indicated through the value of SUB_PART_PATTERN_MATCHED at the end of

algorithm execution. If the value of SUB_PART_PATTERN_MATCHED at the end of

algorithm execution is TRUE, then the sub-part pattern has been matched in the student‟s

71

answer sentence. Otherwise, the sub-part pattern has not been matched in the student‟s

answer sentence.

4.1.4.1 “Text String” Matching Algorithm

The “text string” matching algorithm‟s pseudo code is given below:

SUB_PART_PATTERN_MATCHED=FALSE;

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS from the

location CONSTITUENTS_POINTER) BEGIN

IF (current element contains the required text string)

THEN

 SUB_PART_PATTERN_MATCHED=TRUE;

CONSTITUENTS_POINTER=(location of the current

element in ANSWER_SENTENCE_CONSTITUENTS + 1);

BREAK this FOR loop;

 END IF

END FOR

4.1.4.2 “Noun Phrase Required” Matching Algorithm

The list of text strings contained in the enclosed brackets of the “noun phrase

required” construct is referred to as TEXT_STRINGS_LIST in the following pseudo code

for the “noun phrase required” matching algorithm:

SUB_PART_PATTERN_MATCHED=FALSE;

FOR (each element of TEXT_STRINGS_LIST) BEGIN

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS from

the location CONSTITUENTS_POINTER) BEGIN

IF (current element of ANSWER_SENTENCE_CONSTITUENTS

is a noun phrase containing current element of

TEXT_STRINGS_LIST) THEN

 SUB_PART_PATTERN_MATCHED=TRUE;

72

CONSTITUENTS_POINTER=(location of the current

element in ANSWER_SENTENCE_CONSTITUENTS + 1);

BREAK this FOR loop;

 END IF

 END FOR

 IF (SUB_PART_PATTERN_MATCHED=TRUE) THEN

 BREAK this FOR loop;

 END IF

END FOR

4.1.4.3 “Verb Group Required” Matching Algorithm

The algorithm for the “verb group required” matching is quite similar to the one used

for “noun phrase required” matching. The only difference is that instead of considering noun

phrases in ANSWER_SENTENCE_CONSTITUENTS, the algorithm for “verb group

required” matching considers verb groups in ANSWER_SENTENCE_CONSTITUENTS.

The rest of the algorithm is pretty much the same. The list of text strings contained in the

enclosed brackets of the “verb group required” construct is referred to as

TEXT_STRINGS_LIST in the following pseudo code:

SUB_PART_PATTERN_MATCHED=FALSE;

FOR (each element of TEXT_STRINGS_LIST) BEGIN

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS from

the location CONSTITUENTS_POINTER) BEGIN

IF (current element of ANSWER_SENTENCE_CONSTITUENTS

is a verb group containing current element of

TEXT_STRINGS_LIST) THEN

 SUB_PART_PATTERN_MATCHED=TRUE;

CONSTITUENTS_POINTER=(location of the current

element in ANSWER_SENTENCE_CONSTITUENTS + 1);

BREAK this FOR loop;

 END IF

73

 END FOR

 IF (SUB_PART_PATTERN_MATCHED=TRUE) THEN

 BREAK this FOR loop;

 END IF

END FOR

4.1.4.4 “No Noun Phrase / No Verb Group / No Word” Condition Matching

Algorithm

Before the “no noun phrase / no verb group / no word” condition matching algorithm

is presented, consider the following QAL possibility to understand the notation used in the

algorithm‟s pseudo code:

<main>=”pointer”+[NO_WORD]+”array”:1:;

A=previous sub-part pattern

B=condition

C=next sub-part pattern

Two new variables called START_POSITION and END_POSITION are used. The

START_POSITION is the position just after the position where the previous sub-part pattern

has finished in the ANSWER_SENTENCE_CONSTITUENTS. The END_POSITION is the

position just before the position where the next sub-part pattern starts in the

ANSWER_SENTENCE_CONSTITUENTS. The condition applies on positions from

START_POSITION to END_POSITION i.e. the condition needs to be true from

START_POSITION to END_POSITION of the

ANSWER_SENTENCE_CONSTITUENTS. The matching algorithm‟s pseudo code is given

below:

SUB_PART_PATTERN_MATCHED=TRUE;

NO_NP_CONDITION_PRESENT=FALSE;

NO_VG_CONDITION_PRESENT=FALSE;

NO_WORD_CONDITION_PRESENT=FALSE;

A B C

74

IF (condition contains NO_NP) THEN

 NO_NP_CONDITION_PRESENT=TRUE;

END IF

IF (condition contains NO_VG) THEN

 NO_VG_CONDITION_PRESENT=TRUE;

END IF

IF (condition contains NO_WORD) THEN

 NO_WORD_CONDITION_PRESENT=TRUE;

END IF

Compute START_POSITION and END_POSITION;

IF (NO_WORD_CONDITION_PRESENT=TRUE) THEN

 IF (START_POSITION≠END_POSITION) THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 END IF

END IF

IF (NO_NP_CONDITION_PRESENT=TRUE OR NO_VG_CONDITION_PRESENT=

TRUE) THEN

FOR (each position from START_POSITION to END_POSITION)

BEGIN

IF (NO_NP_CONDITION_PRESENT=TRUE AND

NO_VG_CONDITION_PRESENT=TRUE) THEN

IF (element at current position of

ANSWER_SENTENCE_CONSTITUENTS is a noun phrase

or a verb group) THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 BREAK this FOR loop;

END IF

 END IF

IF (NO_NP_CONDITION_PRESENT=TRUE AND

NO_VG_CONDITION_PRESENT=FALSE) THEN

75

IF (element at current position of

ANSWER_SENTENCE_CONSTITUENTS is a noun phrase)

THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 BREAK this FOR loop;

END IF

END IF

IF (NO_NP_CONDITION_PRESENT=FALSE AND

NO_VG_CONDITION_PRESENT=TRUE) THEN

IF (element at current position of

ANSWER_SENTENCE_CONSTITUENTS is a verb group)

THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 BREAK this FOR loop;

END IF

END IF

 END FOR

END IF

4.1.4.5 “Alternative Options” Matching Algorithm

Consider the following QAL possibility to understand the notation used in the

“alternative options” matching algorithm:

<main>={“type int”, “type”&“int”}:0.5:;

A=option

B=sub-option. Each sub-option is separated by a & symbol. An option can have one or more

sub-options.

B B B

A A

C

76

C=“alternative options” construct

Two new lists called OPTION_LIST and SUB_OPTION_LIST are used in the

algorithm‟s pseudo code. For the “alternative options” construct in the above QAL

possibility, the OPTION_LIST consists of two elements (i.e. “type int” and

“type”&“int”). Each element in the OPTION_LIST has its own SUB_OPTION_LIST.

The SUB_OPTION_LIST for the first element in the OPTION_LIST consists of only one

element (i.e. “type int”). The SUB_OPTION_LIST for the second element in the

OPTION_LIST consists of two elements (i.e. “type” and “int”). In other words, a

SUB_OPTION_LIST contains all the sub-options of an option. The matching algorithm‟s

pseudo code is given below:

SUB_PART_PATTERN_MATCHED=FALSE;

SUB_OPTION_FOUND=FALSE;

FOR (each element of OPTION_LIST) BEGIN

 STARTING_POINTER=CONSTITUENTS_POINTER;

 FOR (each element of SUB_OPTION_LIST
8
) BEGIN

 SUB_OPTION_FOUND=FALSE;

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS

from the location STARTING_POINTER) BEGIN

IF (current element of SUB_OPTION_LIST is

present as a sub-string in the current element

of ANSWER_SENTENCE_CONSTITUENTS) THEN

 SUB_OPTION_FOUND=TRUE;

STARTING_POINTER=(location of current

element in

ANSWER_SENTENCE_CONSTITUENTS+1);

BREAK this FOR loop;

 END IF

 END FOR

8
 The SUB_OPTION_LIST associated with the current element of the OPTION_LIST.

77

 IF (SUB_OPTION_FOUND=FALSE) THEN

 BREAK this FOR loop;

 END IF

 END FOR

 IF SUB_OPTION_FOUND=TRUE THEN

 SUB_PART_PATTERN_MATCHED=TRUE;

 CONSTITUENTS_POINTER=STARTING_POINTER;

 BREAK this FOR loop;

 END IF

END FOR

4.1.4.6 “Allowed Permutation” Matching Algorithm

Consider the following QAL possibility to understand the notation used in the

“allowed permutation” matching algorithm:

<main>=(“base”;“constructor”)*2:0.5:;

OPTION_LIST is the list of all options in the “allowed permutation” construct. The

pseudo code for the “allowed permutation” matching algorithm is given below:

SUB_PART_PATTERN_MATCHED=FALSE;

HIGHEST_LOCATION_REACHED=CONSTITUENTS_POINTER;

NUMBER_OF_MATCHES=0;

FOR (each element of OPTION_LIST) BEGIN

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS from

the location CONSTITUENTS_POINTER) BEGIN

IF (current element of OPTION_LIST is present as a

sub-string in the current element of

ANSWER_SENTENCE_CONSTITUENTS) THEN

 NUMBER_OF_MATCHES=NUMBER_OF_MATCHES+1;

option MinNum

78

IF (HIGHEST_LOCATION_REACHED < location of the

current ANSWER_SENTENCE_CONSTITUENTS element)

THEN

HIGHEST_LOCATION_REACHED=location of the

current ANSWER_SENTENCE_CONSTITUENTS

element;

 END IF

 BREAK this FOR loop;

 END IF

 END FOR

 IF (NUMBER_OF_MATCHES=MinNum) THEN

 SUB_PART_PATTERN_MATCHED=TRUE;

 CONSTITUENTS_POINTER=HIGHEST_LOCATION_REACHED+1;

 BREAK this FOR loop;

 END IF

END FOR

4.1.4.7 “Not” Condition Matching Algorithm

Consider the following QAL possibility to understand the notation used in the

algorithm‟s pseudo code:

<main>=“P”+NOT(“R” | “S”)+“Q”:0.5:;

A=previous sub-part pattern

B=“not” condition

C=next sub-part pattern

NOT_TEXT_STRING_LIST is the list of all the text strings contained in a “not”

condition. Like “no noun phrase / no verb group / no word” condition matching algorithm,

the two variables called START_POSITION and END_POSITION are also used in the

“not” condition matching algorithm. The START_POSITION is the position just after the

A B C

79

position where the previous sub-part pattern has finished in the

ANSWER_SENTENCE_CONSTITUENTS. The END_POSITION is the position just

before the position where the next sub-part pattern starts in the

ANSWER_SENTENCE_CONSTITUENTS. The “not” condition applies on positions from

START_POSITION to END_POSITION i.e. the “not” condition needs to be true from

START_POSITION to END_POSITION of the

ANSWER_SENTENCE_CONSTITUENTS. The matching algorithm‟s pseudo code is given

below:

SUB_PART_PATTERN_MATCHED=TRUE;

Compute START_POSITION and END_POSITION;

FOR (each element of NOT_TEXT_STRING_LIST) BEGIN

FOR (each element of ANSWER_SENTENCE_CONSTITUENTS from

START_POSITION to END_POSITION) BEGIN

IF (current element of NOT_TEXT_STRING_LIST is

present as a sub-string in the current element of

ANSWER_SENTENCE_CONSTITUENTS) THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 BREAK this FOR loop;

END IF

 END FOR

 IF (SUB_PART_PATTERN_MATCHED=FALSE) THEN

 BREAK this FOR loop;

 END IF

END FOR

4.1.4.8 “Sub-pattern” Matching Algorithm

A sub-part pattern of a main pattern part can be a call to a sub-pattern. Consider the

following QAL possibility to understand this situation:

<main>=“W”+<X>:0.5:;

A

80

<X>=“Y”+“Z”;

A=call to a sub-pattern

B=sub-pattern identifier

C=sub-pattern part

D=sub-pattern

There is a call to the sub-pattern <X> in the main-pattern. The sub-pattern <X> itself

consists of two sub-pattern parts (i.e. “Y” and “Z”). A sub-pattern part may be any one of the

following: (1) a text string, (2) a “noun phrase required” construct, (3) a “verb group

required” construct, (4) a “no noun phrase / no verb group / no word” condition, (5) an

“alternative options” construct, (6) an “allowed permutation”, or (7) a “not” condition.

Therefore, appropriate matching algorithm has to be called depending on the type/form of

sub-pattern part. For example, if a sub-pattern part is a “noun phrase required” construct,

then the “noun phrase required” matching algorithm is called.

SUB_PART_PATTERN_MATCHED=TRUE;

FOR (each sub-pattern part) BEGIN

Call the appropriate matching algorithm for the current

sub-pattern part;

IF (current sub-pattern part is NOT matched) THEN

 SUB_PART_PATTERN_MATCHED=FALSE;

 BREAK this FOR loop;

END IF

END FOR

4.2 Design and Development of the QAML Structure Editor’s Sub-

Components

As already stated in Section 3.3.2 and depicted in Figure 5, the “QAML structure

editor” consists of three main components: (1) the Validator, (2) the Automatic QAML

B C C

D

81

Generator, and (3) the Transformer. The Graphical User Interface (GUI) of the “QAML

structure editor” enables users of the system to easily exploit the necessary functionalities.

Figure 7 (on the next page) is a screen shot of the “QAML structure editor”. Since the

QAML-based specifications are divided into two parts (i.e. the “regions specifications” and

the “possibility specifications”), the GUI of the “QAML structure editor” consists of two

screens: one for specifying the “regions specifications” and the other for specifying the

“possibility specifications”. The screen in Figure 7 is the GUI for the “possibility

specification”. The GUI for the “regions specification” is similar to the GUI for the

“possibility specification”. The QAML-based “possibility specification” is represented as a

tree structure in the GUI. The components of the structure editor are implemented using

various XML-related technologies. Implementation details of the main “QAML Structure

Editor” components are presented in Sections 4.2.1, 4.2.2 and 4.2.3.

4.2.1 The Validator

The Validator‟s functionality is implemented using the Simple API for XML (SAX)

[36]. SAX enables Java programs to parse and validate XML documents. SAX uses an

event-driven approach. A SAX parser doesn‟t wait until the document is completely loaded.

Instead, as it traverses the document, it reports back whatever it finds.

82

Figure 7. Screen shot of the “possibility specification” structure editor

Selecting and downloading an appropriate SAX parser is an important task in using

SAX. The author has used the Apache Xerces parser. The parser comes bundled with SAX

2.0 classes. SAX provides an interface called org.xml.sax.XMLReader that all SAX-

compliant XML parsers should implement. The Apache Xerces parser‟s class that

implements the org.xml.sax.XMLReader interface is called

org.apache.xerces.parsers.SAXParser.

The code to instantiate a parser using

org.apache.xerces.parsers.SAXParser class is given below:

83

XMLReader parser=XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

SAX provides an ErrorHandler interface that can be implemented to treat

various error conditions that may arise during parsing. The system required a class to be

created to implement the ErrorHandler interface defined by SAX. The resulting custom

error handler was named MyErrorHandler. The MyErrorHandler instance is

registered with the SAX parser using the setErrorHandler() method of the

XMLReader interface:

parser.setErrorHandler(errorHandler);

The ErrorHandler interface has three methods: warning(), error() and

fatalError(). This interface allows custom behavior to be attached to the three types of

problem conditions that can occur within the lifecycle of XML parsing. Each receives the

SAXParseException indicating what problem initiated the callback [36]. As the names

of the methods indicate, the three types of problem conditions are warnings, errors and fatal

errors. There are almost no warnings that can arise as a result of validation being requested.

Invalidity in XML documents was considered by the W3C to be important enough to always

warrant the generation of an error [36]. Almost all SAX problems received when validating

XML are non-fatal errors. This is generated whenever XML constraints are violated. In the

case of the system developed here, these constraints are specified in the QAML DTDs. Fatal

errors are typically related to a document not being well-formed and are not related to the

validity of a document. A document that violates its DTD‟s constraints will never generate a

fatal error.

SAX 2.0 includes the methods needed for setting properties and features in the

XMLReader interface. The setFeature() method is used to turn on validation by

supplying the URI specific to setting validation. The following is the code to turn on

validation:

parser.setFeature("http://xml.org/sax/features/validation",

true);

84

The parser is now loaded and ready for use. It can now be instructed to parse the

QAML document. This is conveniently handled by the parse() method of

org.xml.sax.XMLReader. This method accepts the URI of the QAML document

which in this case is the full path to the QAML document. The following is the program

statement to parse the QAML document:

parser.parse(uri);

4.2.2 The Automatic QAML Generator

The “automatic QAML generator” enables users of the structure editor to

dynamically view the current status of the QAML documents. The XML Document Object

Model (DOM) is used to implement this component. The principle behind programming

with DOM is simple. The first stage involves using a parser to translate the XML document

into an in-memory tree of objects representing every element and attribute. The methods in

these objects‟ interfaces can be used to navigate around the document, extract information

and modify these objects‟ content. The in-memory object hierarchy can also be converted

back to XML [37].

In order to use DOM, the DOM parser needs to be first accessed, and this is done by

code that is entirely proprietary to Xerces. The parser is implemented as a

DocumentBuilder object. This is because what it actually does is build a document

object model from the incoming data source, via the method parse(), which returns a

Document object [37]. The code to set up the DOM parser and parse a QAML document to

produce an in-memory object hierarchy is given below:

DocumentBuilderFactory

factoryObj=DocumentBuilderFactory.newInstance();

DocumentBuilder domBuilderObj=factoryObj.newDocumentBuilder();

FileReader inFileObj=new FileReader("QAML_POSSIBILITY.xml");

Document domObj=domBuilderObj.parse(new

InputSource(inFileObj));

85

The domObj (which is an instance of the Document object) now contains the in-

memory object hierarchy. The desired functionality is that the structure and content of the

GUI tree on the structure editor screen should be the same as the in-memory DOM-based

tree. The in-memory tree may have different structure and/or content from the GUI tree. In

order to make sure that the two trees are synchronized and the updated QAML document is

displayed, the following steps are taken: (i) the child nodes of the in-memory tree root node

are deleted, (ii) the in-memory tree is re-populated based on the current structure and content

of the GUI tree, and (iii) the in-memory tree is then written back to the QAML document.

The code to accomplish the first step is given below. The code given below is for the

desired functionality implemented in the “possibility specification” part of the structure

editor. The code used to implement the same functionality in the “regions specification” part

of the structure editor is quite similar to the following code:

NodeList

qamlPossibilityList=domObj.getElementsByTagName("QAML_POSSIBIL

ITY");

Element qamlPossibilityObj=(Element)

qamlPossibilityList.item(0);

if(qamlPossibilityObj.hasChildNodes()){

NodeList

mainPatternList=qamlPossibilityObj.getElementsByTagName("

MAIN_PATTERN");

 while(mainPatternList.getLength()!=0){

Element mainPatternObj=(Element)

mainPatternList.item(0);

 qamlPossibilityObj.removeChild(mainPatternObj);

 }

}

if(qamlPossibilityObj.hasChildNodes()){

NodeList

subPatternList=qamlPossibilityObj.getElementsByTagName("S

UB_PATTERN");

86

 while(subPatternList.getLength()!=0){

Element subPatternObj=(Element)

subPatternList.item(0);

 qamlPossibilityObj.removeChild(subPatternObj);

 }

}

First, it locates all instances of <QAML_POSSIBILITY> elements and put them in a

NodeList. Since the <QAML_POSSIBILITY> is the root node of the in-memory tree (as

well as the GUI tree), there will be only one instance of <QAML_POSSIBILITY> element

and this is located by supplying 0 to the item() method of the NodeList. Once the

<QAML_POSSIBILITY> element has been located, the rest of the above code deals with

the removal of child nodes of the <QAML_POSSIBILITY> element. After the execution of

the above code, the in-memory tree will be ready for the re-population.

The code for the second step (which is about re-population of the in-memory tree

based on the current structure and content of the GUI tree) is quite involved and therefore

only a summarized algorithm in the form of pseudo code is presented below:

Initialize QUEUE with the root node of the GUI tree.

WHILE QUEUE is NOT EMPTY

Remove the first element of the QUEUE and store it in a

variable called CURRENT_NODE.

Create a new in-memory tree node using the content of the

CURRENT_NODE and assign it to PARENT_XML_ELEMENT.

 FOR each child of the CURRENT_NODE

Create a new in-memory tree node using the content

of the current child of the CURRENT_NODE and assign

it to CURRENT_XML_ELEMENT.

Add the current child of the CURRENT_NODE to the end

of the QUEUE.

87

Append the CURRENT_XML_ELEMENT to the

PARENT_XML_ELEMENT. (In effect, this step leads to

the gradual re-population of the in-memory tree).

 END FOR

END WHILE

Once the in-memory tree has been updated, it needs to be written back to the QAML

document file. This is done via a class unique to Xerces called XMLSerializer. When an

XMLSerializer object is created its output format is also specified. This output format

defines how the QAML is to be written to the output file. The

setOutputCharStream() method of the XMLSerializer object is used to point the

output stream to a standard Java FileWriter object representing the QAML document

file. The rest of the task is performed by calling the serialize() method of the

XMLSerializer object. The Java code for all this is given below:

OutputFormat of = new OutputFormat("XML","ISO-8859-1",true);

of.setIndent(1);

of.setIndenting(true);

FileWriter outFileObj=new FileWriter("QAML_POSSIBILITY.xml");

XMLSerializer serializerObj=new XMLSerializer(of);

serializerObj.setOutputCharStream(outFileObj);

serializerObj.serialize(domObj);

After the updated in-memory tree has been written back to the QAML document file,

the contents of the QAML document file are then displayed in a separate GUI screen. An

example screen shot is depicted in Figure 8 (on the next page). This is how the “automatic

QAML generator” component is implemented.

88

Figure 8. The contents of the “QAML_POSSIBILITY.xml” file displayed via a GUI screen

4.2.3 The Transformer

The QAML-based specifications (both “regions” and “possibility”) need to be stored

in a database. An important point to remember here is that IndusMarker was initially

built for Question Answer Language (QAL) and not for QAML. The system had to be

adapted for this important change. A design decision was made that there was no need to

change the “answer text analyzer” component. The reason was that the logic and working of

the “answer text analyzer” had already been tested with QAL and if somehow the QAML-

based specification was transformed to the QAL-based equivalent and this QAL-based

equivalent was stored in the system database (instead of the QAML-based specification),

then no modification to the “answer text analyzer” component was required. The

89

transformation of the QAML-based specification to an equivalent QAL-based specification

is achieved using the XSL/XSLT and the XPath technologies. The QAL-based specification

is then stored in a relational database.

XSL is a language that transforms a document from one format to another [36]. In

the case of the “transformer” developed, the XSL style sheet is used to transform a QAML-

based specification to an equivalent QAL-based specification. The Apache Xalan XSLT

processor takes in the XSL style sheet and the QAML-based document as input and

produces an HTML document containing a QAL-based specification. Since the QAL-based

specification is in the HTML document, it needs to be extracted and stored in the relational

database of the system. This task is carried out by a self-developed “QAL-based

Specification Extractor” (a sub-component of the “transformer”).

90

5. IndusMarker’s Evaluation

There were four important objectives for the IndusMarker‟s evaluation:

1. Verify that the marking algorithm developed is capable of achieving high human-

system agreement rates for certain types of short-answer questions. The types of

short-answer questions suitable for IndusMarker are defined in Section 5.3.1 for

object-oriented programming tests and in Section 5.4.1 for science tests.

2. Analyze errors made by IndusMarker during marking.

3. Check whether the task of “required structure formulation and validation” can be

easily carried out in manageable period of time.

4. Verify the feasibility of using IndusMarker to conduct practice tests and as a tool to

improve teaching and learning.

IndusMarker was evaluated at two different educational institutions in Pakistan. One was

a private school called the City School which offers primary and secondary level education.

The other was a public-sector university called Bahria University which offers degree

courses in engineering and management sciences. The two institutions have been chosen so

that IndusMarker may be evaluated in two different, un-related subjects and at two different

levels of education. Before presenting the system evaluation at the two institutions, it is

important to consider the kind of knowledge that may be tested through IndusMarker.

5.1 Evaluation Method and Criteria

 The author has used empirical methods (i.e. experimental evaluation) to evaluate

IndusMarker. Three important evaluation criteria are:

1. IndusMarker should be capable of marking the allowed short-answer question

types (listed in Section 5.3.1 and Section 5.4.1) with high human-system

agreement rates.

2. Time taken to formulate and validate the required structures should be

manageable.

3. The use of IndusMarker to conduct short-answer practice tests should have a

positive impact on students‟ performance in the final exam.

91

In order to verify that IndusMarker passes these criteria, a systematic strategy is

adopted. A number of tests consisting of questions of the allowed short-answer question

types have been created and then conducted at two different educational institutions. These

tests are both manually and automatically marked (i.e. marked by IndusMarker) so that

human-system agreement rates for the various allowed question types can be computed. If

the human-system agreement rate for the allowed question types is reasonably high, then

IndusMarker is deemed to have passed the first evaluation criteria. The “required structure”

formulation and validation time is recorded and if the time taken is manageable, then

IndusMarker is deemed to have also passed the second evaluation criteria. Details of

students‟ performance in the final exam are collected for the term when IndusMarker was

used to conduct practice tests and for the previous three terms when it was not used. If the

students‟ final exam performance is superior in the term when IndusMarker was used

compared with the other three previous terms, then IndusMarker is deemed to have passed

the third evaluation criteria as well.

5.2 Knowledge Targets and the Design of Short-Answer Questions

Until recently Bloom‟s taxonomy [38] provided a definition of knowledge for many

educators. In this scheme, knowledge is the first, and “lowest,” level of categories in the

cognitive domain, in which knowledge is defined as “remembering something”. All that is

required is that the students recall or recognize facts, definitions, terms, concepts or other

information.

The contemporary view of knowledge is that remembering is only part of what

occurs when students learn. It is also necessary to think about how the knowledge is

represented in the mind of the student
9
. Knowledge representation is how information is

constructed and stored in long-term and working memory [39]. There are different types of

knowledge representations. The type relevant to the author‟s research is declarative

knowledge. Declarative knowledge is information that is retained about something, and,

hence, knowing that it exits [14]. At the lowest level, declarative knowledge is similar to

Bloom‟s first level, i.e. remembering or recognizing specific facts about persons, places,

9
 The notion of a “representation” of knowledge in the mind of a student is, to say the least, problematic, i.e. we

have difficulty seeing into the mind of a student!

92

events or content in a subject area. The knowledge is represented by simple association or

discrimination, such as rote memory. At the highest level, declarative knowledge consists of

concepts, ideas and generalizations that are more fully understood and applied. This type of

knowledge involves understanding in the form of comprehension or application, the next

two levels in Bloom‟s taxonomy. In other words, declarative knowledge can exist as recall

or understanding, depending on the intent of the instruction and how the information is

learned. The nature of the representation moves from rote memorization and association of

facts to generalized understanding and usage.

Although IndusMarker is primarily designed to assess factual knowledge, it can also

be used to assess answers to some forms of applied or comprehension questions. Examples

of questions whose answers require understanding that IndusMarker is capable of marking

with high accuracy rate are given below:

Example #1:

Consider the following piece of C++ code:

#include <iostream>

 using namespace std;

 class A {

 int data;

 public:

 void f(int arg) { data = arg; }

 int g() { return data; }

 };

 class B : public A { };

 int main() {

 B obj; obj.f(20);

 cout << obj.g() << endl;

 }

i. How many data members are contained in class B?

ii. How many member functions are contained in class B?

93

iii. Explain the meaning of the following code fragment:

class B : public A

iv. What will be the output of the program?

Example #2:

The battery in a torch stores 100 joules of energy and 30 joules are out as light. How much

energy is wasted as heat?

Example #3:

If a base class contains a member function basefunc(), and a derived class does not

contain a function with this name, can an object of the derived class access basefunc()?

It is important to understand that if short-answer questions requiring understanding

are carefully designed, i.e. if the number of possible answers for the question designed is

finite and the “required structure” for possible answers can be easily pre-determined, then

short-answer questions requiring understanding can also be assessed through IndusMarker.

5.3 IndusMarker’s Evaluation at Bahria University

Bahria University (BU) is a federally chartered university in Pakistan that is

accredited by both Higher Education Commission, Pakistan and Pakistan Engineering

Council [40], [41], [42]. IndusMarker was evaluated at BU using Object-Oriented

Programming (OOP) tests. The OOP tests were designed keeping the allowed short-answer

question types in mind.

Since the release of the Java language more than ten years ago, OOP has become

widely used to introduce programming skills to computer science students [43]. The OOP

course taught at BU aims to introduce programming and object-oriented concepts to

undergraduate students using C++ [44]. The course involves three hours of lectures and three

hours of laboratory work in each week of its 16 week duration. The goal of the course is to

teach students how to develop object-oriented programs, rather than teach details of the C++

language, i.e. the intention is to use the C++ language merely as a tool for mastering object-

oriented programming.

94

The course is part of many degree programs at BU including Bachelor of

Engineering (Electrical), Bachelor of Software Engineering, Bachelor of Computer

Engineering and Bachelor of Science (Computer Science). BU has two campuses: one in

Karachi and the other one in Islamabad. A typical cohort of students taking the OOP course

at a BU campus ranges from 200 to 250 students. English is the medium of instruction and

computer-based classrooms (i.e. classrooms where each student is provided with a computer)

are available. All computers in these computer-based classrooms have a fast internet

connection.

IndusMarker cannot currently mark all types of short-answer questions with a high

degree of accuracy. The limitations of the system must be defined and one means of doing so

is to clearly define the types of short-answer questions that the system is designed to process.

5.3.1 Allowed Short-Answer Question Types for OOP Tests

The following is the list of OOP short-answer question types that are expected to be

marked by the system with a satisfactory degree of accuracy (the question types are listed in

increasing order of complexity):

1. “True” or “false” question: This type of question requires student to state whether a

particular statement is “true” or “false”. An example of such a question is given

below:

State whether the following statements are true or false:

 A class is an instance of an object.

 The destructor of a class never has any arguments.

2. Sentence completion: This type of question requires student to supply the missing

words in an incomplete sentence. Two examples of such questions are:

 The wrapping up of data and member function into a single unit is called

______________.

 If there is a pointer p to objects of a base class, and it contains the address of

an object of a derived class, and both classes contain a non-virtual member

function, ding(), then the statement p->ding(); will cause the version

95

of ding() in the ______________ class to be executed.

3. Single term generation: This type of question requires students to generate a single

term. The student‟s answer may be longer than the required term, but it is the

required term that the system is looking for in the answer. Two examples of such

questions are:

 What is the name of a special member function that has no return type and has

the same name as the name of the class?

 Data abstraction and inheritance are key features of Object-Oriented

Programming (OOP). Name one more key feature of OOP.

4. “Quantity” required: This type of question normally starts with the words “how

many” and requires students to specify some quantity. An example of a “quantity

required” question is given below:

Consider the following piece of code (of Java programming language):

int x=3;

for(int i=0;i<x;i++)

 System.out.println(“AAA”);

How many times the above for loop will iterate?

5. “Numerical value” generation: This type of question requires the generation of a

numerical value. An example of such a question is given below:

Consider the following C++ statement:

int primes[] = {1,2,3,5,7,11,13};

What is the size of the array primes declared in the above C++ statement?

6. “Location” required: This type of question requires students to identify a particular

location, e.g. a part of a text. An example of such a question is given below:

 Where do C++ programs begin to execute?

 In C++, where do we place the virtual keyword to indicate that a function is

virtual?

96

7. “Program statement output” required: This type of question requires students to

generate the output of a print statement contained in a program. Through this the

examiner can test student‟s understanding of the program. An example of such a

question is given below:

Consider the following C++ piece of code:

#include <iostream>

 using namespace std;

 int main(){

 int i=10;

 int *m=&i;

 int n=*m+*m;

 cout << m << “\n”;

 cout << n << “\n”;

}

What will get printed on the console due to the second cout statement?

The student taking the test can only answer the question if s/he has good

understanding of the “address of” (&) and “value of” (*) operators.

8. Single phrase generation: This type of question should be answerable through a

single phrase although the answer supplied by a student may be longer. Examples of

such questions are:

Consider the following C++ statement:

float annual_temp[100];

 X Y Z

The above C++ statement is a declaration of an array and three of its syntactical

parts are highlighted and named as X, Y and Z.

 What does part X represent?

 What does part Y represent?

 What does part Z represent?

97

9. “Example” required: This type of question requires students to provide examples of a

given term, situation etc. The number of possible examples must be finite and easily

predictable in advance because it is impossible to correctly mark valid, unpredictable

examples. Examples of questions of this type are:

 Give an example of a relational operator?

 Give an example of an arithmetic unary operator?

10. List: This type of question requires students to specify reasons, constructs, items,

entities etc. that fall under a particular category or satisfy specific conditions.

Examples of questions of this type are:

 List three types of loops available to a C++ programmer.

 Every software object has two characteristics. Name these two characteristics.

11. Short explanation/description: This type of question requires students to provide a

short explanation or description of some statement(s), process, or logic behind a

piece of code etc. The explanation or description should ideally be no more than two

sentences long. Examples of questions of this type are given below:

 Describe the idea of “function overloading” in a single sentence.

 Explain the meaning of the following C++ statement: int *m[10];

12. “Situation” or “context” required: This type of question normally starts with “when”

and requires students to specify the situation or context in which a particular

condition is valid or an event occurs. Two examples of such questions are:

 When does C++ create a default constructor?

 When do we use the keyword virtual in C++?

13. Definition: This type of question requires students to provide a definition of a

specified term. The term must be definable in one or two sentences, however, a

student can provide a longer definition. Examples of such questions are:

 What is a ternary operator?

 What is a variable?

98

14. Contrast: This type of question requires students to identify differences between two

things. Two examples of such questions are:

 What is the main difference between a while and a do while statement?

 What is the difference between private and public members of a class?

When designing this type of question, it must be remembered that the number of

possible differences should be small (ideally not more than two or three in number).

This restriction on the number of differences is necessary in order that the possible

difference(s) can be easily predicted by the examiner. The examiner can then specify

the “required structure” based on his/her knowledge of possible difference(s).

15. Compare: This type of question requires students to state similarity between two

things. Two examples of such questions are:

 What is the most important similarity between C++ and Java programming

languages?

 What is the similarity between a base class object and a derived class object?

The number of possible similarities must again be small in number and easily

predictable by the examiner in advance.

16. Composite questions: A question that consists of more than one part with each part

itself a question of one of the question types 1-15 above. Two examples of such

questions are:

 What is a ternary operator? Give an example of a ternary operator.

 What is the purpose of delete operator? What is called when the delete

operator is used for a C++ class object?

IndusMarker‟s evaluation at BU was divided in to two phases: (1) the OOP tests

creation and the associated “required structures” formulation and validation at BU Karachi

campus, and (2) use of the stored OOP tests and the associated “required structures” to

conduct practice tests at BU Islamabad campus.

99

5.3.2 The OOP Tests Creation and the Required Structures Formulation

and Validation Phase

 The first task was to design OOP tests suitable for IndusMarker to mark. The

lecturers involved were informed about the types of short-answer questions that IndusMarker

can mark. Six OOP tests were designed so that the performance of IndusMarker can be

satisfactorily evaluated on all types of short-answer questions. 225 students of BU Karachi

campus undertook each of the six OOP tests. Two lecturers and six teaching assistants of BU

Karachi campus took part in the evaluation process. Teaching assistants carried out manual

marking of students‟ answers while lecturers performed the “required structure” formulation

and validation. Both lecturers and teaching assistants had reasonably good knowledge of

OOP concepts. The lecturers were provided with guidelines for how to write the “required

structures” in QAML using the system‟s structure editor.

 The system was made available on computers of the BU‟s network. The students‟

answers were collected through the system and first marked manually by teaching assistants.

The students‟ answers for each question were divided in to two parts: 25 students‟ answers

were kept for the “required structure” formulation and the remaining 200 students‟ answers

were kept for the “required structure” validation. To define the required structure for a

question, a lecturer analyzed the structure and content of the model answer and 25 students‟

answers. Once the “required structure” for a question had been developed using the system‟s

structure editor, the “required structure” was tested using the remaining 200 students‟

answers.

Marks computed by IndusMarker for a student‟s answer are compared with marks

assigned by the human marker. If the marks assigned by IndusMarker and that assigned by

human marker are the same, then IndusMarker‟s judgment is considered to be correct

otherwise it is considered as an incorrect judgment. Human-system agreement rate is

calculated based on the ratio of the number of correct judgments to the total number of

judgments:

c
r

t

100

where r = human-system agreement rate, c = number of correct judgments and t = total

number of judgments.

 Questions used in the six OOP tests are presented in the following six sub-sections

(i.e. from Section 5.3.2.1 to Section 5.3.2.6) along with the question type and human-system

agreement rate for each question. The questions used were based upon a number of OOP

topics such as function overloading, dynamic memory allocation, inheritance, polymorphism

(virtual functions) etc. Analysis of evaluation results is presented in Section 5.3.2.7.

5.3.2.1 First OOP Test

 Questions used in the first OOP test, along with the question type and human-system

agreement rate for each question, are presented below:

1. A ________ is an item of data named by an identifier. (Question type: Sentence

completion, Human-system agreement rate: 100%)

2. Where do C++ programs begin to execute? (Question type: “Location” required,

Human-system agreement rate: 100%)

3. Consider the following piece of code:

int x=3;

for(int i=0;i<x;i++)

 cout << “AAA”;

i. How many times the above for loop will iterate? (Question type: “Quantity”

required, Human-system agreement rate: 100%)

ii. If the for loop condition i<x is changed to i<=x, then what will be the effect?

(Question type: Single phrase generation, Human-system agreement rate: 100%)

4. What is the main difference between a while and a do while statement?

(Question type: Contrast, Human-system agreement rate: 84.5%)

5. What is the main difference between structures and arrays? (Question type: Contrast,

Human-system agreement rate: 86.5%)

6. Consider the following C++ piece of code:

 #include <iostream>

 using namespace std;

101

 int main(){

 int i=10;

 int *m=&i;

 int n=*m+*m;

 cout << m << “\n”;

 cout << n << “\n”;

 }

i. What will get printed on the console as a result of the first cout statement?

(Question type: “Program statement output” required, Human-system

agreement rate: 100%)

ii. What will get printed on the console due to the second cout statement?

(Question type: “Program statement output” required, Human-system

agreement rate: 96.5%)

7. Explain the meaning of the following C++ statement: int *m[10]; (Question

type: Short explanation/description, Human-system agreement rate: 96.5%)

5.3.2.2 Second OOP Test

 Questions used in the second OOP test, along with the question type and human-

system agreement rate for each question, are presented below:

1. The wrapping up of data and member function into a single unit is called

__________. (Question type: Sentence completion, Human-system agreement rate:

100%)

2. Consider the following piece of code:

class Y{

 int a;

 public:

 Y();

 ~Y();

};

Explain the meaning of the following statements in the above code:

102

i. Y(); (Question type: Short explanation/description, Human-system

agreement rate: 94%)

ii. ~Y(); (Question type: Short explanation/description, Human-system

agreement rate: 97.5%)

3. Describe the idea of “function overloading” in a single sentence. (Question type:

Short explanation/description, Human-system agreement rate: 100%)

4. Consider the following piece of code:

class Cube{

 int sideLength;

 public:

 Cube(int initialSideLength);

 ~Cube();

 int volume();

 int surfaceArea();

 void printSideLength();

};

Cube::Cube(int initialSideLength) {

 sideLength=initialSideLength;

}

Cube::~Cube(){}

void Cube::printSideLength(){

cout << “Side Length = ” << sideLength << endl;

}

int Cube::volume(){

return (sideLength*sideLength*sideLength);

}

int Cube::surfaceArea(){

return (6*sideLength*sideLength);

}

int main(){

 Cube c(5);

103

c.printSideLength();

cout << “Surface Area= ” << c.surfaceArea() <<

endl;

cout << “Volume= “ << c.volume() << endl;

}

a. How many member functions are there in the Cube class (excluding the

constructor and destructor)? (Question type: “Quantity” required, Human-

system agreement rate: 100%)

b. How many data members are there in the Cube class? (Question type:

“Quantity” required, Human-system agreement rate: 100%)

c. Explain the meaning of the following statement (present in the main method of

the code under consideration): Cube c(5); (Question type: Short

explanation/description, Human-system agreement rate: 88.5%)

d. What output will be produced by the following cout statements in the code

under consideration:

i. cout << “Surface Area= ” << c.surfaceArea() <<

endl; (Question type: “Program statement output” required, Human-

system agreement rate: 100%)

ii. cout << “Volume= “ << c.volume() << endl; (Question

type: “Program statement output” required, Human-system agreement

rate: 100%)

5. Is it allowed to overload functions on return values? (Question type: “True” or

“false” question, Human-system agreement rate: 100%)

6. This question is about object-oriented concepts:

i. Software objects are modeled after __________. (Question type: Sentence

completion, Human-system agreement rate: 100%)

ii. Every software object has two characteristics. Name these two characteristics.

(Question type: List, Human-system agreement rate: 91.5%)

7. What is the difference between a constructor and a function? (Question type:

Contrast, Human-system agreement rate: 91%)

104

5.3.2.3 Third OOP Test

Questions used in the third OOP test, along with the question type and human-system

agreement rate for each question, are presented below:

1. Consider the following C++ statement:

 float annual_temp[100];

The above C++ statement is a declaration of an array and three of its syntactical

parts are highlighted and named as X, Y and Z.

i. What does part X represent? (Question type: Single phrase generation, Human-

system agreement rate: 100%)

ii. What does part Y represent? (Question type: Single phrase generation, Human-

system agreement rate: 82.5%)

iii. What does part Z represent? (Question type: Single phrase generation, Human-

system agreement rate: 89.5%)

2. Consider the following C++ statement:

int primes[] = {1, 2, 3, 5, 7, 11, 13};

What is the size of the array primes declared in the above C++ statement?

(Question type: “Numerical value” generation, Human-system agreement rate:

96.5%)

3. List three types of loops available to a C++ programmer. (Question type: List,

Human-system agreement rate: 92.5%)

4. State whether the following statements are true or false.

i. A class is an instance of an object. (Question type: “True” or “false” question,

Human-system agreement rate: 100%)

ii. An object is the definition of a class. (Question type: “True” or “false” question,

Human-system agreement rate: 100%)

iii. The wrapping up of data and member function into a single unit is called

encapsulation. (Question type: “True” or “false” question, Human-system

agreement rate: 100%)

X Y Z

105

iv. The destructor of a class never has any arguments. (Question type: “True” or

“false” question, Human-system agreement rate: 100%)

5. How many constructors can be created for a class? (Question type: “Quantity”

required, Human-system agreement rate: 96%)

6. What is the difference between a data member and a local variable inside a member

function? (Question type: Contrast, Human-system agreement rate: 83.5%)

7. What is a ternary operator? Give an example of a ternary operator. (Question type:

Composite questions, Human-system agreement rate: 91%)

8. Consider the following C++ program:

#include <iostream>

using namespace std;

void f(int a){

 cout << "a = " << a << endl;

 a = 10;

 cout << "a = " << a << endl;

}

int main() {

 int x = 20;

 cout << "x = " << x << endl;

 f(x);

 cout << "x = " << x << endl;

}

i. What will get printed as a result of the first cout statement in the main

function? (Question type: “Program statement output” required, Human-system

agreement rate: 100%)

ii. What will get printed as a result of the first cout statement in the f function?

(Question type: “Program statement output” required, Human-system

agreement rate: 94.5%)

106

iii. What will get printed as a result of the second cout statement in the f

function? (Question type: “Program statement output” required, Human-system

agreement rate: 97.5%)

iv. What will get printed as a result of the second cout statement in the main

function? (Question type: “Program statement output” required, Human-system

agreement rate: 97%)

9. What will be the output of the following C++ program:

#include <iostream>

using namespace std;

void f(int* p) {

 cout << "*p = " << *p << endl;

 *p = 50;

}

int main() {

 int x = 40;

 cout << "x = " << x << endl;

 f(&x);

 cout << "x = " << x << endl;

}

i. What will get printed as a result of the first cout statement in the main

function? (Question type: “Program statement output” required, Human-system

agreement rate: 100%)

ii. What will get printed as a result of the cout statement in the f function?

(Question type: “Program statement output” required, Human-system

agreement rate: 100%)

iii. What will get printed as a result of the second cout statement in the main

function? (Question type: “Program statement output” required, Human-system

agreement rate: 100%)

10. How are the C++ classes and structures similar? (Question type: Compare, Human-

system agreement rate: 92%)

107

11. What is the difference between private and public members of a class? (Question

type: Contrast, Human-system agreement rate: 75%)

5.3.2.4 Fourth OOP Test

 Questions used in the fourth OOP test, along with the question type and human-

system agreement rate for each question, are presented below:

1. Consider the following piece of C++ code:

#include <iostream>

 using namespace std;

 class A {

 int data;

 public:

 void f(int arg) { data = arg; }

 int g() { return data; }

 };

 class B : public A { };

 int main() {

 B obj; obj.f(20);

 cout << obj.g() << endl;

 }

i. How many data members are contained in class B? (Question type:

“Quantity” required, Human-system agreement rate: 100%)

ii. How many member functions are contained in class B? (Question type:

“Quantity” required, Human-system agreement rate: 100%)

iii. Explain the meaning of the following code fragment:

class B : public A

(Question type: Short explanation/description, Human-system agreement rate:

77.5%)

iv. What will be the output of the program? (Question type: “Program statement

output” required, Human-system agreement rate: 100%)

108

2. Complete the following sentences:

i. ________ is the process of creating new classes, called derived classes, from

existing or base classes. (Question type: Sentence completion, Human-system

agreement rate: 100%)

ii. To be accessed from a member function of the derived class, data or functions

in the base class must be public or _________. (Question type: Sentence

completion, Human-system agreement rate: 98%)

3. If a base class contains a member function basefunc(), and a derived class does

not contain a function with this name, can an object of the derived class access

basefunc()? (Question type: “True” or “false” question, Human-system

agreement rate: 100%)

4. If a base class and a derived class each include a member function with the same

name, which member function will be called by an object of the derived class?

(Question type: Single term generation, Human-system agreement rate: 97.5%)

5. Consider the following piece of code:

class Animal{

 float weight;

 public:

 Animal(float);

};

Animal::Animal(float w){

 weight=w;

}

class Cat : public Animal{

 public:

 Cat(float);

};

Cat::Cat(float w) : Animal(w){ }

X

109

What does part X represent in the above code? (Question type: Single phrase

generation, Human-system agreement rate: 97%)

6. State whether the following statements are true or false:

i. Adding a derived class to a base class requires fundamental changes to the

base class. (Question type: “True” or “false” question, Human-system

agreement rate: 100%)

ii. A class D can be derived from a class C, which is derived from a class B, which

is derived from a class A. (Question type: “True” or “false” question, Human-

system agreement rate: 100%)

5.3.2.5 Fifth OOP Test

 Questions used in the fifth OOP test, along with the question type and human-system

agreement rate for each question, are presented below:

1. In C++, what keyword tells the compiler that it should not perform early binding?

(Question type: Single term generation, Human-system agreement rate: 97.5%)

2. Define (in a single sentence):

i. Binding (Question type: Definition, Human-system agreement rate: 100%)

ii. Early binding (Question type: Definition, Human-system agreement rate:

92.5%)

iii. Late binding (Question type: Definition, Human-system agreement rate:

88.5%)

3. What term is used to refer to the redefinition of a function in a derived class?

(Question type: Single term generation, Human-system agreement rate: 100%)

4. Consider the following C++ capability (that can be achieved if certain conditions

are met):

“Completely different functions are executed by the same function call”.

What is this C++ capability called? (Question type: Single term generation, Human-

system agreement rate: 100%)

5. In C++, where do we place the virtual keyword to indicate that a function is

virtual? (Question type: “Location” required, Human-system agreement rate: 100%)

110

6. Data abstraction and inheritance are key features of Object-Oriented Programming

(OOP). Name one more key feature of OOP. (Question type: Single term generation,

Human-system agreement rate: 100%)

7. If there is a pointer p to objects of a base class, and it contains the address of an

object of a derived class, and both classes contain a non-virtual member function,

ding(), then the statement p->ding(); will cause the version of ding() in the

______________ class to be executed. (Question type: Sentence completion,

Human-system agreement rate: 100%)

8. Consider the following piece of code:

class Base{

 public:

 void show(){

 cout << “Base\n”;

 }

};

class Derv1 : public Base{

 public:

 void show(){

 cout << “Derv1\n”;

 }

};

class Derv2 : public Base{

 public:

 void show(){

 cout << “Derv2\n”;

 }

};

The function show() is defined in the Base, Derv1 and Derv2 classes. If we

want to declare the show() function as virtual, which class‟s show() function

111

must be declared to be so? (Question type: “Location” required, Human-system

agreement rate: 97.5%)

5.3.2.6 Sixth OOP Test

 Questions used in the sixth OOP test, along with the question type and human-system

agreement rate for each question, are presented below:

1. When do we set data member or member function of a class as “Public”? (Question

type: “Situation” or “context” required, Human-system agreement rate: 80.5%)

2. Which C++ operator provides dynamic memory allocation? When this operator is

used in an expression to create an object, what does that expression return? If the

object is an array, then what does that expression return? (Question type: Composite

questions, Human-system agreement rate: 94.5%)

3. Consider the following two C++ statements:

int array1[20];

float array2[25];

What is the similarity between the two C++ statements? (Question type: Compare,

Human-system agreement rate: 95.5%)

4. Give an example of an arithmetic binary operator? (Question type: “Example”

required, Human-system agreement rate: 98%)

5. Give an example of an arithmetic unary operator? (Question type: “Example”

required, Human-system agreement rate: 100%)

6. Give an example of a relational operator? (Question type: “Example” required,

Human-system agreement rate: 100%)

7. What is the similarity between classes and structures in C++? (Question type:

Compare, Human-system agreement rate: 94.5%)

8. Consider the following piece of C++ code:

class Person{

 public:

 Person(){

 age=1;

112

 weight=5;

}

~Person(){}

void setAge(int age){

 this.age=age;

}

int getAge(){

 return age;

}

 private:

 int age;

 int weight;

};

int main(){

 Person people[5];

 int i;

 for(i=0;i<5;i++)

 people[i].setAge(2*i+1);

 return 0;

}

i. How many Person objects are there in the people array? (Question type:

“Quantity” required, Human-system agreement rate: 100%)

ii. After the execution of for loop in the main method, what will be the value of

the age attribute in the Person object at index 0 of the people array?

(Question type: “Numerical value” generation, Human-system agreement rate:

100%)

iii. What will be the value of the age attribute in the Person object at index 4 of

the people array (after the execution of for loop in the main method)?

(Question type: “Numerical value” generation, Human-system agreement rate:

100%)

113

9. What is the purpose of delete operator? What is called when the delete

operator is used for a C++ class object? (Question type: Composite questions,

Human-system agreement rate: 90.5%)

10. When do we use brackets after the delete operator? (Question type: “Situation” or

“context” required, Human-system agreement rate: 100%)

11. When do we use the keyword virtual in C++? (Question type: “Situation” or

“context” required, Human-system agreement rate: 100%)

12. What is the similarity between a base class object and a derived class object?

(Question type: Compare, Human-system agreement rate: 94%)

5.3.2.7 Analysis of Evaluation Results

Table 4 (on the next page) summarizes the structure testing results for all the allowed

short-answer question types. The table shows the number of questions used, the average

answer length and the average human-system agreement rate for each question type.

In order to interpret data in Table 4, it is important to understand how the values

presented have been calculated. The distinction between a question and a question type is

significant. Multiple questions were used for a particular question type. For example, 5

questions were used for the “single term generation” question type. To calculate the average

answer length (in words) for a question type, the author used the following formula:

1y

q

i

w

q a

 i

where y = average answer length (in words), wi = total number of words in all the answers

for ith question, q = total number of questions used for the question type, and a = total

number of answers per question.

114

Table 4. Summary of the system’s performance on all the allowed short-answer question

types

S. No. Question type Number

of

questions

used

Average

answer

length

(words)

Average

human-system

agreement

rate

1 "True" / "False" question 8 1.2 100%

2 Sentence completion 6 1.5 99.67%

3 Single term generation 5 1.9 99%

4 "Quantity" required 7 3.1 99.42%

5 "Numerical value" generation 3 2.3 98.83%

6 "Location" required 3 3.6 99.16%

7 "Program statement output" required 12 3.9 98.79%

8 Single phrase generation 5 7.3 93.80%

9 "Example" required 3 5.6 99.33%

10 List 2 7.1 92%

11 Short Explanation / Description 6 11.6 92.33%

12 "Situation" or "context" required 3 11.2 93.50%

13 Definition 3 10.8 93.67%

14 Contrast 5 20.4 84.10%

15 Compare 4 15.6 94%

16 Composite questions 3 14.9 92%

The average human-system agreement rate for a question type is calculated using the

following formula:

1

q

i

i

r

z
q

where z = average human-system agreement rate, ri = human-system agreement rate for the

i
th

 question, and q = total number of questions used for the question type.

Table 4 demonstrates that if an OOP short-answer question test is carefully designed,

high human-system agreement rates can be achieved. The average human-system agreement

115

rate tends to decrease as the complexity of the short-answer question type increases. This

trend is not valid across all question types. For example, “compare” questions are deemed to

be more complex than the “single phrase generation” questions by the author but the average

human-system agreement rate is higher for the “compare” questions than that for the “single

phrase generation” questions. “Contrast” questions have the lowest average human-system

agreement rate while “true” / “false” questions have the highest average human-system

agreement rate. Another important pattern that may be deduced from the data in the table is

that (in general) as the average answer length increases the average human-system

agreement rate decreases but again this is not true in every case. The “contrast” question

type has the highest average answer length and the lowest average human-system agreement

rate. But the “example required” question type has both higher average answer length and

higher average human-system agreement rate than the “single term generation” question

type.

The errors of IndusMarker were analyzed and they fall into two categories: misses

and false positives. A miss occurs when a response gets lower marks than it deserves. A false

positive occurs when the system assigns more marks to a response than it deserves. In the

case of IndusMarker‟s evaluation, the number of misses was much higher than the number of

false positives. Around 69% of all the errors were misses while only 31% of the errors were

false positives. The relatively higher ratio of misses is due to the fact that it is very difficult

to anticipate all the possible paraphrases for an answer. If some correct possibility is omitted

by the person specifying the required structure, then the occurrence of that possibility in

students‟ answers will lead to misses.

There are two reasons for the system‟s false positives. The first occurs when a

student does not know when to stop typing – beginning with a correct answer but going on

to say something that is clearly wrong. It is impossible to predict all the wrong possibilities

in advance. So the “required structure” specification normally contains the structure of

correct possibilities only. The system assigns marks when it finds the correct possibility that

it is looking for in student‟s answer text. It does not normally search for wrong parts of the

students‟ answers. The second reason for false positives is that sometimes the student

116

happens to use the correct language – but that the language is used in such a manner that it

does not, in fact, convey the correct concept.

If the human-system agreement rate for a question is not 100%, the “required

structure” for that question may be modified by analyzing the structure and content of those

students‟ answers where there is discrepancy between human and system markings. Once the

required structure for a question has been finalized, it is stored for future use.

Table 5. Time taken to formulate and validate the required structures for each of the 6

OOP tests

Test Time taken

First OOP test 1 hour 50 minutes

Second OOP test 2 hours 10 minutes

Third OOP test 2 hours 45 minutes

Fourth OOP test 1 hour 35 minutes

Fifth OOP test 1 hour 40 minutes

Sixth OOP test 2 hours 35 minutes

In order to be confident about the feasibility of the system, it is also important to

consider whether the lecturers find it easy to learn QAML and to use the system. The

lecturers were given a detailed presentation about QAML and how to use the system.

IndusMarker‟s user manual, containing detailed guidelines on how to use the system and

how to specify the required structures, was also provided to the lecturers. The lecturers

found QAML a simple and a sufficiently expressive language through which the required

structures can be expressed conveniently. According to the lecturers‟ comments, the system

is easy to use and the QAML structure editor is quite helpful in the task of required structure

specification. Table 5 shows the time taken by the lecturers to formulate and validate the

required structures for the 6 OOP tests used in the evaluation. The lecturers found the time

consumed quite reasonable and manageable given that these tests will be repeated many

times and their automated marking will provide useful benefits to both students and teachers.

Time taken to formulate and validate the required structures for a particular OOP test

117

depends upon the number and complexity of the questions appearing in that test. The next

section describes the use of IndusMarker to conduct the OOP practice tests.

5.3.3 Using IndusMarker to Conduct the OOP Practice Tests

The OOP tests were designed to be used as low-stake, practice tests. Since

IndusMarker cannot guarantee a 100% human-system agreement rate, it can not be used for

high-stake tests. The approach to using the system for practice tests is only effective if the

same practice test is repeated many times. The lecturers at BU indicated that in most cases

the curriculum of a course does not change for several years and therefore the same practice

test may be used for many terms or semesters. When a practice test is taken for the first time,

the students‟ answers are manually marked and these manually marked students‟ answers are

used to develop and validate the required structures. The required structures are stored in the

system‟s database and can be used to mark future practice tests. This is similar to the

situation where a lecturer spends a considerable amount of time preparing a lecture

presentation in the form of PowerPoint slides and then reuses the same lecture slides for

several years. In this way, time spent preparing the slides when a course is taught for the first

time is compensated for if the same course material is taught for several years and/or by

many different lecturers. In fact, effort expended and time spent initially results in much

greater time and effort being saved later. Similarly, if some time and effort is consumed

making and validating the required structures for a practice test, then this results in much

greater benefit later on if the same test is repeated. Since the marks obtained in these practice

tests do not contribute to the final grade of students, and the main objective is to promote

learning and provision of immediate (and accurate) feedback to both students and teachers, it

is expected that students will not raise serious objections even if there is some lack of trust in

the system‟s marking accuracy.

Once the required structures for questions appearing in the six OOP tests were

finalized (i.e. when the process of required structure formulation, validation and correction

had ended), the required structures were stored in the system database. The required

structures were then used when these tests were later given to students studying the same

course at BU Islamabad campus. The tests were conducted online in computer-based

classrooms and students who took these tests obtained summative feedback on their

118

performance in the form of marks immediately after the test. Marks obtained in each

question and total marks obtained in the test were provided to each student who took the test.

If a student thinks that the marks given by the system are not accurate then the student has

the option to view the correct model answer so that he or she can compare his or her own

answer with the correct model answer. Moreover, the system can highlight the parts of the

student‟s answer text that have been matched with the required structure. It can also indicate

to the student the regions (of the QAML regions specification) that have been found and

those that have not been found in the student‟s answer text. In this way, the student can have

a better idea of how his or her marks for a particular answer have been calculated. He or she

can also better understand his or her mistakes. Figure 9 (on the next page) depicts an

IndusMarker‟s GUI screen for carrying out student‟s answer text analysis. The student‟s

answer text is displayed in a text area in the upper right side of the screen. The list of

required “regions” for the answer is given in the lower part of the GUI screen. The screen

enables its user (i.e. the student) to check whether a particular required “region” has been

matched in the student‟s answer text or not. A “region” may be “fully matched”, “partially

matched” or “not matched” at all in the student‟s answer text. In order to check whether a

particular “region” is matching or not, the student selects a “region” and presses the “Match

Region” button. The sentence that matches the most, with the selected “region”, is

highlighted. Other important information such as “Matching Result”, “Marks Obtained” and

“Total Marks” can also be viewed on the screen.

Lecturers can also view the results of the test if they log-in to the system. Lecturers

can then revise those topics where the overall students‟ performance is poor, or give

additional tutorials to those students who are performing poorly. Students can also get an

idea of their overall understanding of the course content and can increase their learning

effort if their performance is poor. Both students and lecturers at the BU Islamabad campus

found the system quite useful and its performance satisfactory. The system can also be

viewed as a tool that promotes “deep learning” [45], [46]. In such learning, both lecturer and

students actively participate in students‟ learning. The lecturer needs to obtain feedback on

their teaching performance from students, and students need feedback from the lecturer on

their learning performance. The feedback must reach the students as quickly as possible in

119

order to affect their learning, that is, to promote deep learning. This objective can be

achieved through proper use of the system.

Figure 9. An IndusMarker’s GUI screen for carrying out student’s answer text analysis

5.4 IndusMarker’s Evaluation at the City School

IndusMarker‟s evaluation was also performed at the City School, Pakistan [47]. The

City School is one of the largest private English medium school systems in Pakistan and was

established in 1978. It now has more than 150 branches in 42 cities across Pakistan. More

than 50,000 students are enrolled at the City School. Most of its students opt to take the

international GCE O-level and A-level examinations at the end of grade 11 and 13 of their

schooling respectively. Education at the City School is divided into four levels: junior

(grades one to six), prep (grades seven to nine), O-level (grades ten and eleven) and A-level

(grades twelve and thirteen). A grade corresponds to a year of schooling. A student gets

promoted from a particular grade to the next by securing at least a minimum percentage of

marks.

120

IndusMarker was evaluated using seventh grade students‟ answers for “science”

questions. Science is taught as a subject from grade one at the City School. By the time

students reach grade seven, they already possess some basic knowledge about science. The

syllabus of the “science” subject for grade seven consists of a number of topics such as

“acids and alkalis”, “chemical reactions”, “energy”, “forces”, “the human body” etc.

5.4.1 Allowed Short-Answer Question Types for Science Tests

Most of the types of short-answer questions used in OOP tests are reused in science

tests. But some changes to the list of allowed question types were made. It was realized that

including “True/False” questions again in science tests will most likely produce 100%

human-system agreement rate. The analysis of such results that are easily predictable in

advance will not give any useful insight into the performance of the system and therefore

questions of this type have not been included. The “program statement output” question type

is not applicable to science tests and therefore this question type has also been removed from

the list of allowed short-answer question types for science tests. The “single phrase

generation” and the “„situation‟ or „context‟ required” question types have also been

excluded from the list of allowed short-answer question types. The reason for excluding the

“single phrase generation” question type is that questions of this type can easily be classified

as belonging to some other question type such as “short explanation/description”. The reason

for excluding the “„situation‟ or „context‟ required” question type is that questions of this

type appear less frequently in science tests and when they do appear they may also be

classified as belonging to the “short explanation / description” question type.

The “short explanation / description” question type is an interesting question type as

many questions of varying complexity and nature can be crafted of this type. Two sub-types

of “short explanation / description” have been identified: (1) “„reason‟ or „justification‟

required” and (2) “„way of doing something‟ required”. These two subtypes have been

included to evaluate and analyze the system‟s performance on specialized forms of “short

explanation / description”. The “short explanation / description” questions that do not fall in

these specialized categories are categorized as belonging to the generic category of “short

explanation / description”. Another question type that has been added to the list of allowed

short-answer question types is “„ordering / rearrangement‟ required”. This is a specialized

121

form of the “list” question type. It requires students to rearrange a list of given items or

provide a list of items in a specified order. Examples of “„ordering / rearrangement‟

required” questions are:

1. Rearrange the following list of planets, so that the planet closer to sun appears before

the planet further away from the sun: Saturn, Jupiter, Mercury, Venus, Mars, Earth.

2. Name the colors of the spectrum, in order.

The “„reason‟ or „justification‟ required” questions normally start with “why” while

the “„way of doing something‟ required” questions normally start with “how” but it must be

remembered that not every question starting with “how” belongs to this question type. Table

6 gives example questions for each of the three question types so that the difference between

the three question types becomes clearer.

Table 6. Example questions for the three question types

Question type Example questions

“Short explanation /

description” required

1. What is the job of red blood cells?

2. What happens to the particles in a solid when it

dissolves in water?

“Reason” or

“justification” required

1. Why does an astronaut weigh less on the moon than

on the Earth?

2. Why some people are not convinced that viruses are

really living things?

“Way of doing

something” required

1. How can we increase the strength of an

electromagnet?

2. How can infectious diseases spread?

 The following is the list of allowed short-answer question types for science tests (the

question types are arranged in ascending order of complexity):

122

 Sentence completion

Single term generation

“Quantity” required

“Numerical value” generation

“Location” or “source” required

“Example” required

List

“Ordering / rearrangement” required

Short explanation / description

“Reason” or “justification” required

“Way of doing something” required

Definition

Compare

Contrast

Composite

It must be remembered that the order of complexity presented above is what the

author perceived before the start of evaluation. As shown later on in Section 5.4, the order of

complexity perceived does not necessarily always have a direct correlation with the human-

system agreement rates achieved as a result of evaluation.

Like the IndusMarker‟s evaluation at Bahria University, the evaluation at the City

school was also divided in to two phases: (1) the science tests creation and the required

structures formulation and validation at one branch, and (2) use of the stored science tests

and the associated required structures to conduct practice tests at two other branches of the

City School.

5.4.2 The Science Tests Creation and the Required Structures Formulation

and Validation Phase

The first phase of evaluation was carried out at a large branch of the City School in

Karachi called “PAF chapter”. An important reason for choosing the “PAF chapter” was that

a number of computer-based classrooms (i.e. classrooms where each student is provided

increasing

complexity

123

with a computer) were available. The computer-based classrooms were equipped with new

computers connected together to form a Local Area Network (LAN). This facility was not

available at many other branches of the City School.

A typical cohort of students (i.e. students of the same grade) at the “PAF chapter”

branch consists of 90 to 120 students. Students of the same grade are then further divided in

to “sections”. At the time the IndusMarker software was evaluated at the “PAF chapter”,

there were 109 students registered for the seventh grade. The students of the seventh grade

were divided in to four sections. Each section had around 25 to 28 students. Students of each

section study in a separate classroom. If students need to use a computer, they are taken to

one of the computer-based classrooms that are available.

Three teachers took part in the evaluation process. Each one was assigned a specific

task. One of them was assigned the task of setting up science tests containing questions of

the allowed short-answer question types, another teacher was responsible for manually

marking students‟ answers and the third teacher was given the task of required structure

formulation and validation. All three teachers were experienced science teachers as they

have been teaching science at the City School for more than ten years. They have taught

science to students of various grades including those of grade seven. Thus, they had a good

knowledge of the science subject. A presentation was given to the three science teachers

about the IndusMarker system and the way it is used. A thorough set of guidelines were

provided about how to formulate and validate the required structures in QAML using the

IndusMarker software.

Three science tests were designed each containing fifteen questions of the allowed

short-answer question types. Overall in the three science tests, three questions were used for

each question type. This is unlike OOP tests where the number of questions used for each

question type was different. The test questions were on a number of science topics. Table 7

(on the next page) shows the topics covered in each of the three science tests.

The academic year at the City School starts in August and ends in May the following

year. Each academic year is divided in to two semesters: the fall semester and the spring

semester. The fall semester starts in August and ends in December. The spring semester

starts in January and ends in May. IndusMarker‟s evaluation was performed in the fall

124

semester of the academic year 2009-10. The three science tests were conducted in the

months of October and November. It was ensured that the topics covered in each science test

had already been taught to students by the time the test was conducted.

Table 7. Topics covered in each of the three science tests

Test Topics covered

First test Acids and alkalis

 The human body

Second test Variety of life

 Magnetism and electricity

 Earth and space

 The human body

Third test Chemical reactions

 Energy

 Forces

 Sight and sound

 Materials

IndusMarker system was deployed at the computer-based classrooms of the “PAF

chapter” and the students‟ answers were collected and stored by the system. The students‟

attendance in the three tests varied slightly from 96 to 103. Students‟ answers for the test

questions were first manually marked by the teacher responsible for the task. The manual

marking by the teacher was stored in the system. As in the OOP tests, the students‟ answer

data set for each question was divided in to two parts: 26 to 33 students‟ answers were kept

for the required structure formulation task and the remaining 70 students‟ answers were kept

for the required structure validation task. The number of students‟ answers used for the

required structure formulation task varies due to the different number of students present on

each of the three test days. It was decided that the number of students‟ answers for the

required structure validation task should be the same as this will ease the task of result

analysis later on.

125

To define the required structure for a question, the teacher responsible for the task

analyzes the structure and content of the model answer and the manually marked students‟

answers that were set aside for this purpose. The marks awarded to students‟ answers were

also considered while creating the required structures as they provided a guideline for the

marking scheme used. Once the required structure for a question had been developed using

the system‟s structure editor, it was tested using the 70 manually marked students‟ answers

that were set aside for the required structure validation.

Questions used in the three science tests are presented in the following three sub-

sections (i.e. from Section 5.4.2.1 to Section 5.4.2.3) along with other important information

such as type and topic of each question and the structure testing result for each question. The

structure testing results are presented as human-system agreement rates. Analysis of

structure testing and other evaluation results is presented in Section 5.4.2.4.

5.4.2.1 First Science Test

Questions used in the first science test, along with other associated information, are

presented below:

1. What are indicators used for? (Question type: Short explanation / description, Topic:

Acids and alkalis, Human-system agreement rate: 92.85%)

2. Why is universal indicator more useful than other indicators? (Question type:

“Reason” or “justification” required, Topic: Acids and alkalis, Human-system

agreement rate: 87.14%)

3. How do indigestion tablets work? (Question type: “Way of doing something”

required, Topic: Acids and alkalis, Human-system agreement rate: 84.28%)

4. Give 3 ways in which your skeleton helps you. (Question type: List, Topic: The

human body, Human-system agreement rate: 92.85%)

5. What is the chemical found in your skin that protects you from ultra-violet light?

(Question type: Single term generation, Topic: The human body, Human-system

agreement rate: 100%)

126

6. What is an element? (Question type: Definition, Topic: Elements, Human-system

agreement rate: 87.14%)

7. Why is toothpaste usually slightly alkaline? (Question type: “Reason” or

“justification” required, Topic: Acids and alkalis, Human-system agreement rate:

91.42%)

8. __________ attach bones to other bones. (Question type: Sentence completion,

Topic: The human body, Human-system agreement rate: 100%)

9. When a muscle gets shorter and fatter, we say it ___________. (Question type:

Sentence completion, Topic: The human body, Human-system agreement rate:

100%)

10. Rewrite the following list of liquids so that the lower pH liquid comes before the

higher pH liquid: lemon juice, pure water, sodium hydroxide solution, milk of

magnesia (Mg(OH)2) solution, hydrochloric acid. (Question type: “Ordering /

rearrangement” required, Topic: Acids and alkalis, Human-system agreement rate:

94.28%)

11. What are the four types of teeth? (Question type: List, Topic: The human body,

Human-system agreement rate: 94.28%)

12. Where is acid added when your body is digesting food? (Question type: “Location”

or “source” required, Topic: The human body, Human-system agreement rate:

97.14%)

13. Where is digestion completed and food passed in to your blood? (Question type:

“Location” or “source” required, Topic: The human body, Human-system agreement

rate: 98.57%)

14. Why are sleeping bags designed to trap air? (Question type: “Reason” or

“justification” required, Topic: The human body, Human-system agreement rate:

92.85%)

127

15. How could you measure growth? (Question type: “Way of doing something”

required, Topic: The human body, Human-system agreement rate: 94.28%)

5.4.2.2 Second Science Test

Questions used in the second science test, along with other associated information,

are presented below:

1. Sugar is broken down inside animals and plants to produce energy. What is this

process called? (Question type: Single term generation, Topic: Variety of life,

Human-system agreement rate: 100%)

2. Where do plants get the energy they need for food production? (Question type:

“Location” or “source” required, Topic: Variety of life, Human-system agreement

rate: 97.14%)

3. What is the main difference between a vertebrate and an invertebrate? (Question

type: Contrast, Topic: Variety of life, Human-system agreement rate: 91.42%)

4. Plants make their own food in a process called ___________. (Question type:

Sentence completion, Topic: Variety of life, Human-system agreement rate: 98.57%)

5. What is the common feature of all vertebrates? (Question type: Compare, Topic:

Variety of life, Human-system agreement rate: 94.28%)

6. What happens to a thin piece of wire when electricity is passed through it? (Question

type: Short explanation / description, Topic: Magnetism and electricity, Human-

system agreement rate: 95.71%)

7. What do we use to measure the size of an electric current? (Question type: Single

term generation, Topic: Magnetism and electricity, Human-system agreement rate:

100%)

8. What do we call the safety device used in plugs? How does it work? (Question type:

Composite, Topic: Magnetism and electricity, Human-system agreement rate:

81.42%)

128

9. What is the similarity between a bar magnet and an electromagnet? (Question type:

Compare, Topic: Magnetism and electricity, Human-system agreement rate: 97.14%)

10. What happens in an eclipse of the sun? (Question type: Short explanation /

description, Topic: Earth and space, Human-system agreement rate: 87.14%)

11. How many planets are there in the solar system? (Question type: “Quantity”

required, Topic: Earth and space, Human-system agreement rate: 100%)

12. Give an example of a smaller object type in our solar system (i.e. objects apart from

the sun, planets and satellites that go around planets). (Question type: “Example”

required, Topic: Earth and space, Human-system agreement rate: 98.57%)

13. How many eggs does a woman usually release each month? (Question type:

“Quantity” required, Topic: The human body, Human-system agreement rate: 100%)

14. Which parts of animal and plant cells common in both? (Question type: Compare,

Topic: Variety of life, Human-system agreement rate: 94.28%)

15. What is a herbivore? (Question type: Definition, Topic: Variety of life, Human-

system agreement rate: 88.57%)

5.4.2.3 Third Science Test

Questions used in the third science test, along with other associated information, are

presented below:

1. What is a catalyst? (Question type: Definition, Topic: Chemical reactions, Human-

system agreement rate: 90%)

2. What 3 things make up the fire triangle? (Question type: List, Topic: Chemical

reactions, Human-system agreement rate: 94.28%)

3. What is the difference between a physical and a chemical change? (Question type:

Contrast, Topic: Chemical reactions, Human-system agreement rate: 85.71%)

129

4. Which metal is used to galvanize iron? Why is it a good way to protect iron?

(Question type: Composite, Topic: Chemical reactions, Human-system agreement

rate: 78.57%)

5. What is the difference between a renewable and a non-renewable source of energy?

(Question type: Contrast, Topic: Energy, Human-system agreement rate: 87.14%)

6. Give an example of a renewable energy source. (Question type: “Example” required,

Topic: Energy, Human-system agreement rate: 95.71%)

7. The battery in a torch stores 100 joules of energy and 30 joules are out as light. How

much energy is wasted as heat? (Question type: “Numerical value” generation,

Topic: Energy, Human-system agreement rate: 100%)

8. What does kJ stand for? How many joules are there in 1 kJ? (Question type:

Composite, Topic: Energy, Human-system agreement rate: 97.14%)

9. You push something with a force of 5 N and the force of friction is 2 N. What is the

resultant force? (Question type: “Numerical value” generation, Topic: Forces,

Human-system agreement rate: 100%)

10. An athlete runs 50 meters in 5 seconds. What is the athlete‟s average speed, in

meters per second? (Question type: “Numerical value” generation, Topic: Forces,

Human-system agreement rate: 97.14%)

11. How many small bones are there in the ear? (Question type: “Quantity” required,

Topic: Sight and sound, Human-system agreement rate: 100%)

12. How can you make the image in a pin-hole camera brighter? (Question type: “Way

of doing something” required, Topic: Sight and sound, Human-system agreement

rate: 94.28%)

13. Name the colors of the spectrum, in order. (Question type: “Ordering /

rearrangement” required, Topic: Sight and sound, Human-system agreement rate:

92.85%)

130

14. Give an example of a fossil fuel. (Question type: “Example” required, Topic:

Materials, Human-system agreement rate: 97.14%)

15. Rewrite the following list of materials so that solids come first, then liquids and then

gases: oxygen, oil, wood, water, iron, air. (Question type: “Ordering /

rearrangement” required, Topic: Materials, Human-system agreement rate: 92.85%)

5.4.2.4 Analysis of Structure Testing and other Evaluation Results

Table 8 (on the next page) summarizes the structure testing results and shows how

the performance of IndusMarker varies with the different allowed short-answer question

types. The performance of IndusMarker on a specific short-answer question type is indicated

through average human-system agreement rate for that question type. Higher average

human-system agreement rate means better IndusMarker performance. Another piece of

information presented in the table is the average answer length (in words) for each question

type. The average answer length and average human-system agreement rate for the science

test question types are calculated in the same way as these values were calculated for the

OOP tests‟ question types.

The table demonstrates that IndusMarker was able to mark the allowed question

types with high average human-system agreement rates. The average human-system

agreement rate tends to decrease as the complexity of the question types increases. This is of

course not true in every case as instances where a more complex question type has a higher

average human-system agreement rate can be easily identified. But this trend is more

uniform than the one we had in OOP tests i.e. deviations from the trend are less frequent and

the size of deviations is also smaller than the ones we had in OOP tests. Figure 10 (on page

132) is the graph that depicts this trend. The graph has been drawn so that the trend may be

visualized. The greatest deviation from the trend is the average human-system agreement

rate for the “compare” questions. The “compare” questions were perceived to be more

complex than most of the other question types used. An important reason for this belief was

that “compare” questions are classified as higher-order questions in Bloom‟s taxonomy [48].

But the average human-system agreement rate is higher than many other question types

which were perceived to be simpler by the author. This may be due to careful design of

131

“compare” questions that restricted the scope of questions and therefore, correct answers can

be easily distinguished from incorrect answers by IndusMarker.

Table 8. Summary of the system’s performance on all the allowed short-answer question

types for science tests

S.

No.

Question type Average

answer length

(words)

Average human-

system agreement

rate

1 Sentence completion 1.4 99.52%

2 Single term generation 2.2 100%

3 "Quantity" required 2.9 100%

4 "Numerical value" generation 2.3 99.04%

5 "Location" or "source" required 3.4 97.61%

6 "Example" required 2.8 97.14%

7 List 7.3 93.80%

8 "Ordering / rearrangement" required 10.5 93.33%

9 Short explanation / description 8.7 91.90%

10 "Reason" or "justification" required 10.1 90.47%

11 "Way of doing something" required 9.6 90.95%

12 Definition 13.6 88.57%

13 Compare 10.7 95.23%

14 Contrast 19.6 88.09%

15 Composite 15.9 85.71%

The general relationship between average answer length and average human-system

agreement rate that can be deduced from the data presented in Table 8 is that as the average

answer length increases the average human-system agreement rate decreases. This general

relationship also existed between the two properties when IndusMarker was evaluated using

the OOP tests. It is easy to notice deviations from this general pattern but still the

relationship provides a good guideline about the performance of IndusMarker i.e.

IndusMarker performs less accurately with longer answers. There is nothing in the design of

132

IndusMarker system that demands constrains on the size of student‟s answer. It is

important to note that, in principle, IndusMarker can process essay type answers as

well. The reason for this assertion is that IndusMarker is basically a text structure analysis

tool and therefore can be applied to mark essay type answers as well (as long as essay type

questions test factual knowledge). The author believes that such a use of IndusMarker is not

feasible because too much time will be consumed in required structure formulation and the

accuracy of IndusMarker will also likely degrade to an unacceptable level.

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

S
en

te
nc

e
co

m
pl
et

io
n

S
in
gl
e

te
rm

 g
en

er
at

io
n

"Q
ua

nt
ity

" r
eq

ui
re

d

"N
um

er
ic
al
 v
al
ue

" g
en

er
at

io
n

"L
oc

at
io
n"

 o
r "

so
ur

ce
" r

eq
ui
re

d

"E
xa

m
pl
e"

 re
qu

ire
d

Li
st

"O
rd

er
in
g

/ r
ea

rr
an

ge
m

en
t"

re
qu

ire
d

S
ho

rt
ex

pl
an

at
io
n

/ d
es

cr
ip
tio

n

"R
ea

so
n"

 o
r "

ju
st
ifi
ca

tio
n"

 re
qu

ire
d

"W
ay

 o
f d

oi
ng

 s
om

et
hi
ng

" r
eq

ui
re

d

D
ef

in
iti
on

C
om

pa
re

C
on

tra
st

C
om

po
si
te

 q
ue

st
io
ns

Short-answer question types

A
v

e
ra

g
e

 h
u

m
a

n
-s

y
s

te
m

 a
g

re
e

m
e

n
t

ra
te

Figure 10. Graph depicting how average human-system agreement rate varies with the

allowed short-answer question types for the science tests. The complexity of the

question types increases from left to right10

10

 The order of the question types is based on the amount of processing that is expected to be required for

students‟ answers of a particular question type.

133

Like the IndusMarker‟s evaluation at Bahria University, the errors of IndusMarker in

science tests at the City School were also analyzed and categorized as misses or false

positives. 66% of the errors were categorized as misses and 34% of the errors were

categorized as false positives. The reasons for the occurrence of the two types of errors are

the same as those given for errors occurred during system evaluation at Bahria University.

It is very important to consider how easy or difficult it was to formulate required

structures in QAML using the IndusMarker‟s structure editor. A good way of doing this is to

measure time taken to formulate the required structure. More time taken is considered to

mean that the teacher found it difficult to develop the required structure. Less time taken is

considered to mean that the teacher found it easy to develop the required structure. Unlike

IndusMarker‟s evaluation using OOP tests, time taken to formulate the required structure for

each and every question was measured rather than the total time taken for the entire test.

This enabled the author to analyze how the difficulty level of required structure formulation

varies with the different short-answer question types. Average time taken to formulate the

required structures for each question type is calculated using the following formula:

1

n

i

i

t

a
n

where a = average time taken, ti = time taken to formulate the required structure for i
th

question, and n = total number of questions used for the question type.

Figure 11 (on the next page) depicts how the average time taken varied with different

allowed short-answer question types during IndusMarker‟s evaluation using science tests. As

the complexity of the question types increases, the average time taken also tends to increase.

If the graphs of Figure 10 (on page 132) and Figure 11 are analyzed together, another

important finding is that as the time taken to formulate the required structures increases, the

average human-system agreement rate decreases. In other words, IndusMarker becomes

increasingly less feasible as the complexity and length of students‟ answer increases.

Therefore, due to this limitation of IndusMarker, the author re-emphasizes that the use of

IndusMarker should be limited to the allowed short-answer question types.

134

The teacher (responsible for the required structure formulation task) found the

average time consumed for all the question types quite manageable. Required structure

formulation for questions belonging to the “contrast” question type took the greatest amount

of time. Other question types, such as “composite” and “definition”, were also considerably

much more time consuming to deal with than simpler question types such as “sentence

completion” and “single term generation”. The teacher found the QAML structure editor of

IndusMarker quite helpful in carrying out the task. He also suggested that there is room for

improvement in the design of the structure editor and improving the structure editor may

make the whole process of developing required structures faster.

0

2

4

6

8

10

12

14

16

18

S
en

te
nc

e
co

m
pl
et

io
n

S
in
gl
e

te
rm

 g
en

er
at

io
n

"Q
ua

nt
ity

" r
eq

ui
re

d

"N
um

er
ic
al
 v
al
ue

" g
en

er
at

io
n

"L
oc

at
io
n"

 o
r "

so
ur

ce
" r

eq
ui
re

d

"E
xa

m
pl
e"

 re
qu

ire
d

Li
st

"O
rd

er
in
g

/ r
ea

rr
an

ge
m

en
t"

re
qu

ire
d

S
ho

rt
ex

pl
an

at
io
n

/ d
es

cr
ip
tio

n

"R
ea

so
n"

 o
r "

ju
st
ifi
ca

tio
n"

 re
qu

ire
d

"W
ay

 o
f d

oi
ng

 s
om

et
hi
ng

" r
eq

ui
re

d

D
ef

in
iti
on

C
om

pa
re

C
on

tra
st

C
om

po
si
te

Short-answer question types

A
v
e
ra

g
e
 t

im
e
 t

a
k
e
n

 (
m

in
u

te
s
)

Figure 11. Graph depicting how the average time taken to formulate the required

structures varies with the different short-answer question types

135

5.4.3 Using IndusMarker to Conduct the Science Practice Tests

The required structures are adjusted based on the structure testing results. Once the

required structures are finalized, they are stored in the system database for later use. The

second phase of evaluation involves the use of stored required structures to conduct practice

tests. These practice tests were conducted at two other branches of the City School: (1)

“Darakhshan campus”, and (2) “PECHS Prep Boys-A”. Both the branches are smaller in size

than the “PAF chapter” but follow exactly the same system of education as the “PAF

chapter”. The syllabus for the seventh grade science subject is same at the three branches of

the City School. Therefore the science tests and the associated required structures prepared

at the “PAF chapter” can be effectively used as practice tests at the “Darakhshan campus”

and “PECHS Prep Boys-A”.

At the time the practice tests were conducted, the number of students enrolled in the

seventh grade at “Darakhshan campus” was 63 and at “PECHS Prep Boys-A” was 58. Both

the branches had computer-based classrooms with computers good enough to run the

IndusMarker system. When the practice tests were conducted at the two branches, both the

students and teachers were satisfied with their experience of IndusMarker. According to the

comments made by students and teachers, the system provided a useful means to get an idea

of students‟ preparedness for the final exam. Students appreciated the immediate test results

generated by the system. They do not have to wait very long to get the test results. Students

informed the author that usually teachers do not mark the practice tests that they take

because of a lack of time. In such cases, practice tests have little benefit. The use of

IndusMarker to conduct practice tests eliminates this problem as immediate feedback is

provided with no effort from the teachers. Practice tests and their results also gave students

opportunity to identify their weaknesses and use this information to make better study plans

for the final exam.

5.5 Comparison and Lessons Learnt from the Two Case Studies

 Key features of the two case studies are summarized in Table 9 below:

136

Table 9. Key Features of the Two Case Studies

 Evaluation at Bahria

University

Evaluation at the City

School

Course Used Object-Oriented

Programming

7
th

 grade science

Number of Questions Used 78 45

Data Set Size for “Answer

Structure ” Formulation

25 students‟ answers 26 to 33 students‟ answers

Data Set Size for “Answer

Structure” Validation

200 students‟ answers 70 students‟ answers

People Involved 2 lecturers (responsible for

tests creation and “answer

structure” formulation and

validation)+6 teaching

assistants (responsible for

manual marking)

3 teachers (1 teacher for test

creation+1 teacher for

manual marking+1 teacher

for “answer structure”

formulation and validation)

Number of Allowed Short-

Answer Question Types

16 15

Number of Tests Created

and Used

6 3

Results obtained from the two case studies indicate similar trends. In both the case

studies, high average human-system agreement rate was achieved for all the allowed short-

answer question types. Overall, the average human-system agreement rate decreases as the

complexity of the question type increases or as the average answer length increases (but

there are some deviations from this general trend). Time spent in “required structures”

137

formulation and validation was also manageable. In both the case studies, the same

evaluation process was followed. The following are the main steps of that process:

1. Test creation keeping in mind the allowed short-answer question types.

2. The test is conducted for the first time.

3. Manual marking of the test.

4. For each question:

i. “Answer structure” formulation using training data.

ii. “Answer structure” validation using unseen test data.

iii. (If necessary) “Answer structure” correction and validation of the corrected

“answer structure” using seen test data.

5. Once “answer structures” are ready, the test may be repeated wherever and whenever

the same course material is taught. The same course material may be taught during

different semesters/years or at different locations (i.e. different branches/campuses).

The above process is analogous to the process of software development and software

use. Software developers spend considerable time designing, writing and testing a computer

program. But once the program is ready to be used, it can be used any number of times to

perform the task for which it is designed. So, time and resources spent earlier on results in

much greater time and resource saving later on. Another important point here is that the

people using the program need not understand how the program was developed; they should

only know how to use it. The same is true for “answer structure” development and use (in

the case of IndusMarker). Teachers/lecturers using the “answer structures” do not need to

understand how they are developed. Therefore, only those lecturers/teachers are provided the

training for “answer structures” development who are responsible for that task. So, only 2

lecturers were provided this training at Bahria University and in the case of the City School

only 1 teacher was trained. Other lecturers/teachers, who were just using “answer structures”

to conduct practice tests, did not need the training for “answer structures” development. The

whole process of teachers‟ training, therefore, becomes manageable because very few

teachers need to be trained for “answer structures” development.

138

6. Discussion and Conclusion

In the last chapter, IndusMarker‟s evaluation was presented. There are four important

purposes of this chapter: (1) analyze the impact of IndusMarker on students‟ performance in

the final exam (Section 6.1), (2) analyze IndusMarker‟s performance without the “linguistic

features analyzer” (Section 6.2), (3) present a comparison of IndusMarker with other similar

systems (Section 6.3), and (4) conclude the thesis by presenting a summary of the

contributions made as a result of the author‟s research during this project, and also suggest

some directions for future research (Section 6.4).

6.1 Impact of IndusMarker on Students’ Performance

From the beginning, IndusMarker was intended to be used to conduct short-answer

practice tests. After completion of IndusMarker‟s design and implementation and also the

subsequent completion of the required structures formulation and validation phase,

IndusMarker was used to conduct practice tests at Bahria University (BU) Islamabad campus

and the City School‟s “Darakhshan campus” and “PECHS Prep Boys-A” branches. It was

stated in Section 5.3.3 and Section 5.4.3 that IndusMarker provided a useful means to both

students and teachers to get an idea of students‟ preparedness for the final exam. This in turn

helped both students and teachers to adjust their study or teaching plans respectively. So,

what impact did IndusMarker‟s use actually had on students‟ performance in the final exams

conducted at the two institutions? To answer this question, average assessment results for the

courses used to validate the IndusMarker tool were obtained
11

. The data collected included

students‟ results for the term when IndusMarker was used and also for the previous three

terms when IndusMarker was not used to conduct practice tests. The purpose of this

students‟ results collection is to find out whether or not the use of IndusMarker leads to

improved students‟ performance in the final exam. If the average of students‟ marks is

significantly greater for the term when IndusMarker was used compared with the other three

terms, then IndusMarker‟s use can be considered to have improved students‟ performance in

the final exam. It may be argued that students who took the course during the term when

IndusMarker was used may be overall better students than the students of the previous terms.

11

 Permission to obtain students‟ final exam results was taken from both Bahria University and the City School.

139

To counter this argument, it must be realized that data is collected from three different

locations (i.e. BU Islamabad campus, the City School‟s “Darakhshan campus” branch and

the City School‟s “PECHS Prep Boys-A” branch) and students studying at each of these

locations are different. Impact of IndusMarker‟s usage on students‟ performance in each of

the three cases is analyzed separately and if the impact is positive in all three cases then the

trend can be deemed to be generic.

Once the “required structures formulation, validation and storage” phase is

completed for all questions of a test, the test is ready to be used as a practice test. The

“required structures formulation, validation and storage” phase was completed for questions

in the 6 Object-Oriented Programming (OOP) tests at the Karachi campus of BU. An OOP

test was used as a practice test at the Islamabad campus soon after it was ready to be used as

a practice test due to the completion of the “required structures formulation, validation and

storage” phase at the Karachi campus. Table 10 gives average marks scored by students in

the OOP course‟s final exam at the Islamabad campus. The average marks of students are

presented for the last four terms, i.e. the term when IndusMarker was used to conduct

practice tests and the three terms before that term.

Table 10. Average marks of students in the final OOP exams taken during the last four

terms of the Bahria University’s Islamabad campus

 T1 T2 T3 T4

Average marks of students in the final exam of

the OOP course (maximum final exam marks is

100)

59.7 63.8 62.3 69.4

T1=2006 second term (IndusMarker was not used)

T2=2007 second term (IndusMarker was not used)

T3=2008 second term (IndusMarker was not used)

T4=2009 second term when IndusMarker was used to conduct practice tests.

The OOP course is taught during the second term of an academic year at BU. An

academic year at BU starts from January and ends in December of the same year. So, “2006

second term” means second term of the 2006 academic year. Table 10 demonstrates that

140

there was a marked improvement in students‟ performance when IndusMarker was used to

conduct practice tests before the final exam. The author was informed by the lecturers, who

have taught the course during the last four terms, that there has not been any significant

change in the course outline, final exam paper format and marking criteria. This indicates

that the marked improvement in students‟ performance is mainly due to IndusMarker‟s

usage rather than any other factor.

Similar data was also collected from the City School‟s “Darakhshan campus” and

“PECHS Prep Boys-A” branches. The “required structures formulation, validation and

storage” phase for all questions of the three science tests was completed at the “PAF

chapter” branch. As with the OOP tests, these science tests were used as practice tests at the

“Darakhshan campus” and the “PECHS Prep Boys-A” branches soon after they were ready

to be used as practice tests. Even though science is a year-long course at grade seven, each

year is divided into two semesters and topics covered in a semester are examined in the same

semester. So, each semester has its own final exam. Table 11 gives average marks scored by

students in the last four fall semester final exams of the grade seven “science” subject at the

“Darakhshan campus” and the “PECHS Prep Boys-A” branches of the City School.

Table 11. Average marks in grade seven “science” subject at the “Darakhshan campus”

and the “PECHS Prep Boys-A” branches of the City School

 S1 S2 S3 S4

Average marks at the “Darakhshan

campus” branch (maximum marks=100)
63.1 64.6 67.1 70.7

Average marks at the “PECHS Prep

Boys-A” branch (maximum marks=100)
66.2 67.9 65.3 69.8

S1=2006-07 fall semester (IndusMarker was not used)

S2=2007-08 fall semester (IndusMarker was not used)

S3=2008-09 fall semester (IndusMarker was not used)

S4=2009-10 fall semester when IndusMarker was used to conduct practice tests.

141

 Table 11 shows that at both the City School‟s branches, the students performed best

in the semester in which IndusMarker was used. As with the teachers at BU‟s Islamabad

campus, the teachers at the two branches of the City School also informed the author that

there has been no significant change in the “science” subject‟s course contents, the exam

pattern and the marking criteria. So students‟ best performance in S4 at both the branches

cannot be attributed to changes in these factors. The only major difference is the use of

IndusMarker in S4. In fact, IndusMarker‟s usage has led to superior students‟ performance at

all three locations. This cannot be interpreted as co-incidence because IndusMarker‟s

positive impact is consistent.

Taking mandatory practice tests using IndusMarker during term-time helps to keep

students constantly revising course content. It may be argued that the same objective can

also be achieved by taking paper and pencil class tests. But the main difference is that

immediate feedback is provided by IndusMarker. Teachers do not normally mark students‟

class / practice tests “on time” and so by the time they finish marking such class / practice

tests and return the marked answer scripts to students, it is usually too late to have a

significant impact on students‟ performance in the final exam. Immediate feedback enables

students to adjust their study plan on time and ultimately this leads to better performance in

the final exam. This section analyzed the impact of IndusMarker on students‟ performance;

the next section presents analysis of IndusMarker‟s performance without the “linguistic

features analyzer”.

6.2 IndusMarker’s Performance without “Linguistic Features Analyzer”

As described in Section 3.3.1 and Section 4.1, the “linguistic features analyzer” is a

sub-component of IndusMarker‟s “answer text analyzer” component. Its task is to perform

some basic linguistic analysis (i.e. Part Of Speech (POS) tagging and Noun Phrase and Verb

Group (NP & VG) chunking) on student‟s answer texts. To perform this task, a natural

language parser called the Stanford Parser [32] and a self-developed Noun Phrase and Verb

Group (NP & VG) chunker are exploited. During IndusMarker‟s evaluation, it was noticed

that the processing performed by the Stanford Parser is computationally expensive and

therefore consumes a lot of resources. It was decided to find out how IndusMarker would

perform if the “linguistic features analyzer” component is removed. For this purpose, the

142

QAML had to be modified and its two linguistic-specific constructs, i.e. the “noun phrase

required” construct and the “verb group required” construct, were removed from the QAML

language. Figure 12 depicts the architecture of the “answer text analyzer” after removal of

the “linguistic features analyzer” sub-component. IndusMarker‟s code was adapted for this

change.

The students‟ answers data collected at BU‟s Karachi campus was re-utilized to

evaluate the performance of IndusMarker without the “linguistic features analyzer” sub-

component. The required structures validated and stored earlier for the same questions were

re-formulated using the modified version of QAML, i.e. QAML with the linguistic-specific

constructs removed. Table 12 (on the next page) demonstrates IndusMarker‟s performance

with and without linguistic features consideration. These results are for the same allowed

short-answer question types that were used for IndusMarker‟s evaluation at BU. The number

of questions used and the average answer length for questions of each question type have not

been included in Table 12 because the data set used was the same as that used for

IndusMarker‟s evaluation at BU‟s Karachi campus, i.e. these quantities have already been

presented in Table 4 (on page 114).

Structure Matcher

“Regions” and “possibility”
specifications

Marks obtained

Student’s answer text

Spell Checker

Student’s answer text with spelling corrections

Marks Calculator

Matching

result

System database

Figure 12. Architecture of the “answer text analyzer” component after

removal of the “linguistic features analyzer” sub-component

143

The average human-system agreement rates when IndusMarker considered linguistic

features have been presented again in this table (i.e. these values have been presented before

in Table 4 on page 114). These values have been included in Table 12 so that they may be

compared with the corresponding values obtained when IndusMarker did not consider

linguistic features. This second set of values, i.e. average human-system agreement rates

without linguistic features consideration, has been calculated using the same method and

formula given in Section 5.3.2.7.

Table 12. IndusMarker’s performance with and without consideration of linguistic

features

S.

No.
Question type

Average human-

system agreement

rate when linguistic

features were

considered by

IndusMarker

Average human-

system agreement

rate when linguistic

features were not

considered by

IndusMarker

1 "True" / "False" question 100% 100%

2 Sentence completion 99.67% 99.67%

3 Single term generation 99% 99%

4 "Quantity" required 99.42% 99.42%

5 "Numerical value" generation 98.83% 98.83%

6 "Location" required 99.16% 99.16%

7 "Program statement output" required 98.79% 98.79%

8 Single phrase generation 93.8% 92.7%

9 "Example" required 99.33% 99.33%

10 List 92% 91%

11 Short Explanation / Description 92.33% 91.41%

12 "Situation" or "context" required 93.5% 92.58%

13 Definition 93.67% 93.08%

14 Contrast 84.10% 82.05%

15 Compare 94% 93.12%

16 Composite questions 92% 91.16%

144

The corresponding average human-system agreement rates, resulting from the two

IndusMarker‟s architectures, are equal for the first seven and the ninth allowed short-answer

question types. This indicates that for the simpler allowed short-answer question types, there

is no difference at all in the performance of the two variants of IndusMarker‟s architecture.

For more complex question types, IndusMarker without “linguistic features analyzer”

performs slightly less accurately. But the difference in accuracy is minor and not major. The

major benefit of the new architecture and of the new approach of not considering linguistic

features is that the processing of student‟s answer text becomes much faster due to the

removal of the Stanford Parser [32]. According to the author‟s viewpoint, the benefit of the

new approach outweighs its disadvantage. The use of the Stanford Parser slows down

IndusMarker‟s processing speed especially in situations where student‟s answer text

comprises many sentences. Another problem with the Stanford Parser is that there is no

guarantee that it will produce an accurate parse of student‟s answer text, and therefore

relying on its output for further processing by the “structure matcher and marks calculator”

component is itself problematic. The number of constructs in QAML also becomes less with

this new approach and the learner of QAML will have to learn fewer QAML constructs.

Having presented and analyzed IndusMarker‟s performance without “linguistic features

analyzer”, the next section presents a comparison of IndusMarker with other similar systems.

6.3 Comparison of IndusMarker with Other Similar Systems

The purpose of this section is to compare IndusMarker with the other three similar

systems identified in chapter 2. This comparison is presented in the following sub-sections

(i.e. Sections 6.3.1 to 6.3.3).

6.3.1 Comparison of IndusMarker with C-rater

A number of similarities and differences exist. The task of both systems, in general,

is to compare student‟s answer with a model / required structure
12

 [49], [2]. In both systems,

the “model building / required structure specification” stage is performed by hand but

comparison is fully automated. The student‟s marks are computed based on the result of this

12

 “Model” in the case of C-rater and “required structure” in the case of IndusMarker.

145

comparison. The model / required structure represents the “space” of potentially “all possible

correct answers”.

C-rater does not have a formal language for model building. The model building task

is performed using C-rater‟s own graphical interface called Alchemist [2]. Model is built by

specifying patterns in English. It is the task of C-rater to extract linguistic features from

these patterns using a set of Natural Language Processing (NLP) tools [50]. In the case of

IndusMarker, the required structure is specified in QAML using the QAML structure editor.

Once the QAML-based required structure has been fully specified, it is stored in the

IndusMarker database without extraction of linguistic features. The reason for this is that

IndusMarker mainly relies on text structure analysis (i.e. analysis of occurrence and ordering

of words in an answer text) and does not rely heavily on linguistic feature analysis (i.e.

analysis of grammatical features in an answer text). IndusMarker has demonstrated

comparable performance even after removing the “linguistic feature analyzer” component

from the system. In short, linguistic feature analysis is not crucial to IndusMarker (this is

unlike C-rater which relies heavily on linguistic feature analysis). QAML has only two

linguistic-specific constructs: the “noun phrase required” construct and the “verb group

required” construct. The linguistic-specific QAML constructs are included in QAML-based

specifications just like other QAML constructs and so there is no linguistic feature extraction

by IndusMarker during QAML-based required structure specification and storage. This is

better in the sense that unlike C-rater, there are no complex, computationally expensive NLP

tasks to perform by IndusMarker at the “required structure specification / model building”

stage. It may be argued that model building task is easier in C-rater from the user‟s

perspective as the user does not have to write patterns in a formal language, instead he/she

can easily express the patterns in English. But C-rater‟s model building still needs to be done

by a content expert [2] and requires considerable time and effort [50].

The matching or comparison of a student‟s answer text with the “model” built or the

“required structure” specified is carried out by Goldmap [24] in the case of C-rater and the

“structure matcher and marks calculator” component in the case of IndusMarker [49]. In the

case of C-rater, the system performs extensive pre-processing of student‟s answer text before

it is used by Goldmap for the comparison. This pre-processing involves normalizing the

146

student‟s response into a canonical representation [2]. To build this representation, C-rater

extracts the underlying structure of the response, resolves pronoun reference, normalizes

across inflected words and recognizes the use of similar terms and synonyms. A number of

NLP tools such as OpenNLP parser, feature extractor, pronoun resolver, morphology

analyzer, etc. are used in building the canonical representation [50]. There is also some pre-

processing done in the case of IndusMarker but this pre-processing is much less complex

and much less “deep” than that performed by C-rater. For example, there is no pronoun

resolution and no morphology analysis in the case of IndusMarker.

C-rater‟s comparison module, Goldmap, is based on maximum entropy modeling

[24]. Basically, given a set of attributes, constraints over these attributes, and a set of training

data consisting of pairs of sentences that are both manually-annotated for match or no-match

and automatically annotated according to the set of attributes, Goldmap learns a matching

model. Given an unseen answer, the matching model outputs a probability on the match

between the unseen answer and a model answer. In general, a threshold of 0.5 is used to

determine a match. Scoring rules are then applied to obtain a score. IndusMarker‟s “structure

matcher and marks calculator” performs matching of part-of-speech tagged and noun phrase

& verb group chunked answer text with the pre-specified QAML-based required structure.

Unlike C-rater, there is no learning of the matching model / technique. The matching

algorithm is “hard-coded” in IndusMarker. The precise details of the algorithms used in

IndusMarker‟s “structure matcher” and “marks calculator” components are given in Section

4.1.3 and Section 4.1.4.

Overall, the design of C-rater is more complex than IndusMarker and since the

amount of NLP is significantly more in C-rater, C-rater is believed to be computationally

much more expensive than IndusMarker. What about the important issue of system

accuracy? Both systems have demonstrated a high-level of accuracy with the data they were

evaluated with, but neither of the two systems is 100% accurate. To counter this problem of

a less than 100% human-system agreement rate, the proposed use of IndusMarker is

restricted to low-stake, practice tests. The main aim is to provide timely feedback to both

students and teachers so that they may adjust their future study or teaching plan. In the case

of C-rater, it is not clear how the problem of less than 100% human-system agreement rate

147

has been tackled. Unlike IndusMarker, the list of allowed short-answer question types is also

not given for C-rater. So, IndusMarker‟s operational domain is much more clearly defined.

6.3.2 Comparison of IndusMarker with the Oxford-UCLES System

Unlike C-rater, the Oxford-UCLES system uses a formal language in which to write

patterns [3]. This feature of the Oxford-UCLES system is similar to IndusMarker.

QAL/QAML, however, is more “powerful”, i.e. more expressive, compared to the language

used in the Oxford-UCLES system. There are no equivalent Oxford-UCLES pattern-writing

language‟s constructs for a number of useful QAL/QAML constructs. An example of such a

QAL/QAML construct is the “allowed permutation” construct. The syntax and semantics of

the Oxford-UCLES system‟s pattern-writing language is also more difficult to understand

and therefore, more difficult to learn compared with QAL/QAML. Sukkarieh et al. [3] states

that there is a pattern-writing tool available in the Oxford-UCLES system to help users write

patterns. Detailed description of the working and effectiveness of this pattern-writing tool

has not been provided. IndusMarker, on the other hand, has a comprehensive “QAML

structure editor” (a detailed description of which is given in Section 3.3.2 and Section 4.2).

Perhaps the most important difference between the pattern-writing languages of the

two systems is that IndusMarker‟s QAML exploits the utility of XML while the Oxford-

UCLES system‟s pattern-writing language does not exploit this utility. XML is a language

for creating new markup languages or in other words, it is a meta-language [30]. The new

markup languages created are called XML vocabularies [51]. QAML is an XML vocabulary.

There are many benefits of defining QAML as a sub-language of XML because all the

benefits of using XML are inherited by QAML. XML is currently the de facto standard

format for data handling and exchange [29]. It is also platform-independent, well-supported

and its format is human-readable [52].

Another important QAL/QAML concept is the use of “regions specification”. The

required answer structure for longer, multi-part answers can be easily represented if the

expected answer text is considered to consist of various regions. So, an important aspect of

the system‟s capability is the ability to process “composite questions” structured from other

“composite” or “simpler” questions. In this way IndusMarker can mark longer, factual

answers. This feature is lacking in the Oxford-UCLES system.

148

Evaluations of the two systems have also been performed differently. Evaluation of

IndusMarker is more extensive and more carefully designed. Table 13 demonstrates some

differences between the evaluations of the two systems.

Table 13. Comparison of IndusMarker’s and the Oxford-UCLES system’s evaluations

 IndusMarker’s

evaluation

Oxford-UCLES

system’s evaluation

Number of courses used 2 1

Title of courses used Object-Oriented

Programming (OOP)

 Science

 Biology

Number of questions used 123 questions (78 OOP

questions + 45 Science

questions)

9 questions

Number of tests/exams

used

9 tests (6 OOP tests + 3

Science tests)

1 biology exam

Number of institutions

where evaluation was

performed

2 1

Size of the data set used in

pattern-writing

25 students‟ answers (OOP

tests), 26 to 33 students‟

answers (Science tests)

200 students‟ answers

Size of test data 200 students‟ answers (OOP

tests), 70 students‟ answers

(Science tests)

60 students‟ answers

The number of questions used is much greater in the case of IndusMarker‟s

evaluation. The size of test data, the number of courses used and the number of institutions

where evaluation was performed, are all greater for IndusMarker‟s evaluation compared with

149

the Oxford-UCLES system‟s evaluation. A more thorough evaluation of the Oxford-UCLES

system could have provided a better insight into its performance and any short-comings.

The allowed short-answer question types are clearly stated in the case of

IndusMarker. This means the domain and scope of IndusMarker are more clearly defined

than the Oxford-UCLES system. Since questions of each allowed short-answer question type

were included in IndusMarker‟s evaluation, it was possible to carry out a comparative

analysis of IndusMarker‟s performance on the various allowed short-answer question types.

This enabled better understanding of IndusMarker‟s capabilities and limitations.

6.3.3 Comparison of IndusMarker with Automark

Like IndusMarker, Automark frames computerized marking of free-text responses as

an information extraction task [6]. But there are important differences in the design of the

two systems and their respective capabilities and limitations also vary. Automark searches

free-text responses for pre-defined computerized mark scheme answers. These mark scheme

answers are represented as syntactic-semantic templates. For example, Figure 13 illustrates a

simple template for the mark scheme answer: “The Earth rotates around the Sun”.

rotatev

revolvev

orbitv

travelv

movev

Earthn

worldn

around

round

Sunn

subject preposition

Figure 13. Illustration of an Automark’s mark scheme

template

150

The template shown can be expected to match a student‟s response if the response

contains one of the stated verbs (rotate, revolve, orbit, travel, move) with one of the stated

nouns (Earth, world) as its subject, and around / round the sun in its preposition. An

important point to note here is that linguistic features such as subject and preposition of

student‟s response are neither considered by IndusMarker‟s matching algorithm nor there are

any corresponding constructs in QAL / QAML related to these linguistic features.

IndusMarker has demonstrated reasonably good performance without considering these

linguistic features of student‟s response. Mitchell et al. [6] did not demonstrate through

appropriate evaluation how much the consideration of these additional linguistic features

(such as subject and preposition of student‟s response), help in improving the accuracy of

Automark. Any claimed benefit of using “deeper” NLP should be justified through empirical

evidence.

The number of question types used in Automark‟s evaluation is much less than the

number of question types used in IndusMarker‟s evaluation. Only four question types are

used in Automark‟s evaluation compared with the sixteen question types used in

IndusMarker‟s evaluation. The question types used in Automark‟s evaluation are: “single

word generation”, “single value generation”, “generation of a short explanatory sentence”

and “description of a pattern in data”. Only one question was used for each question type.

This is in contrast with IndusMarker‟s evaluation where multiple questions were used for

each question type. IndusMarker has been shown to produce high human-system agreement

rates with relatively complex question types such as “definition”, “contrast”, “compare”,

“composite questions”, etc. Automark has not been tested on such complex question types

and therefore it is not possible to comment on how Automark would perform on these

question types. Unlike IndusMarker, the design of Automark contains no provision for

marking longer, factual answers. The use of QAL/QAML “regions specification” enables

IndusMarker to mark longer, multi-part answers such as answers to composite questions.

6.4 Conclusion

The salient feature of IndusMarker (from the pedagogical perspective) is that it can

provide practice tests and immediate feedback to students regardless of the size of the class.

The lecturer has to initially spend some time developing and validating the required

151

structures when a practice test is conducted for the first time. But, once the required

structures are finalized, the same practice test may be repeated wherever the same course

material is taught. The lecturer conducting the practice test, after the first test, does not need

to spend any time manually marking the test papers. No other similar automated short-

answer marking system has been applied for such a practical and useful purpose.

Provision of immediate and on-time feedback about students‟ performance in

practice tests, enables both teachers and students to adjust their teaching/study plans on-time,

i.e. it helps them in decision-making. Making the right decision at the right time is very

important for both students and teachers. For example, if a student performs poorly in a

practice test conducted using IndusMarker, he/she can analyze his/her mistakes and short-

comings on-time. The student can then decide to concentrate on the topics in which he/she

has performed poorly. If the student‟s overall performance is bad, then he/she may decide to

increase his/her study time and effort. From the teacher‟s perspective, the system is equally

useful. For example, a teacher may decide to speed up or slow down delivery of course

material depending on students‟ collective performance in practice tests. If the students‟

collective performance is good, then the teacher has the option of speeding up (if needed) the

delivery of course material. If the students‟ collective performance is bad, the teacher may

decide to slow down the pace of the course material delivery. The basic point is that on-time

availability of students‟ information is very important in decision-making. Taking

mandatory practice tests at regular intervals during term-time also helps to keep students

revising the course material throughout the term rather than just a few days before the final

exam.

IndusMarker has been evaluated at two different educational institutions. At each

institution, a subject of study was chosen to conduct practice tests. The allowed short-answer

question types were determined and only questions of these types were included in the

practice tests. The domain and scope of IndusMarker are much more clearly defined

compared with other similar systems. Evaluation of IndusMarker is also much better planned

and more systematic. High human-system agreement rates are achieved for all the allowed

short-answer question types (but agreement rates are higher for simpler question types

compared with the agreement rates for more complex question types). Moreover,

152

comparable human-system agreement rates are also achieved when IndusMarker does not

consider linguistic features and only relies on non-linguistic, structural analysis of the

student‟s answer text. This is an important finding as non-linguistic, structural analysis of

student‟s answer text is much more efficient and much less computationally expensive.

The author has received positive feedback about the system from the lecturers

involved and also from students of the two institutions. In chapter 1, the author referred to

some experimental reports [18], [19], [20] that have demonstrated that taking a practice test

on studied material promotes subsequent learning and retention of that material in a final

test/exam. In addition, the experimental reports also demonstrate that practice tests produce

learning/retention advantages beyond that enjoyed from repeated study. So, do these

concepts materialize in the case of IndusMarker‟s usage? When IndusMarker was used to

conduct practice tests at the three different locations, its usage resulted in superior students‟

performance in the final exams at all the three locations. This reconfirms the validity of the

experimental reports and also demonstrates the positive impact of IndusMarker.

The following are the scientific contributions of the author‟s research:

1. A new automated short-answer marking system called IndusMarker. Unlike other

similar systems, IndusMarker relies mainly on structure-editing and structure-

matching rather than linguistic features analysis.

2. A new purpose-designed language called QAML (defined as a sub-language of

XML) to specify the “required answer structures”.

3. A structure-editor to help develop the QAML structures (i.e. the use of “structure

editing” to support the development of descriptions of correct “answer structures” for

subsequent “structure matching”). If the lecturers/teachers use the system properly

they are forced to develop their descriptions in the form that the structure editor

constrains them to, and the resulting answer-structures can be used for accurate

automated marking.

In future, the author anticipates that researchers will be interested in extending his

work. Possible directions for future research/work include:

1. Modification/improvement of IndusMarker‟s architecture and algorithm so that the

range of the allowed short-answer question types can be increased.

153

2. Find out if some other short-answer question type(s) (apart from those included in

the list of allowed short-answer question types) can be marked with a high degree of

accuracy using the current IndusMarker‟s architecture and algorithm.

3. Evaluate IndusMarker‟s performance and usage at other levels of education and in

other subject areas.

4. IndusMarker can be further enhanced by including features that can provide detailed

statistical analysis of students‟ performance for both lecturers and students so that

each may adjust or modify their teaching or learning approach for the course in a

better and more comprehensive way.

5. IndusMarker may also be integrated with some other type of assessment system

(such as essay marking system, program/software marking system, etc.) to form a

single, comprehensive system. For example, in recent years a number of automated

marking systems for program texts, i.e. texts written in a programming language,

have been developed [53]. However, these systems cannot mark short-answers

expressed in natural language
13

. Short-answer questions provide a very useful means

of testing theoretical concepts associated with a programming course. IndusMarker

may be integrated with other program marking systems to form a single system that

can mark both programming exercises as well as short-answer questions.

6. Extension of QAML so that required answer structure for a greater range of short-

answer question types may be expressed in QAML.

13

 It is common, though arguably not effective (a separate discussion to be held elsewhere), to include natural

language comments in program texts. Such comments could, in principle, be analysed by IndusMarker and

used in the assessment of program texts, albeit only the natural language commented parts of such texts.

154

References

[1] K. E. Holbert and G. G. Karady, “Strategies, Challenges and Prospects for Active

Learning in the Computer-Based Classroom”. IEEE Transactions on Education, vol. 52, no.

1, pp. 31-38, Feb. 2009.

[2] C. Leacock and M. Chodorow, “C-rater: Automated Scoring of Short-Answer Question”.

Computers and the Humanities, vol. 37, no. 4, pp. 389-405, Nov. 2003.

[3] J. Z. Sukkarieh, S. G. Pulman and N. Raikes, “Auto-marking: using computational

linguistics to score short, free text responses”. Paper presented at the 29
th

 annual conference

of the International Association for Educational Assessment (IAEA), Manchester, UK, 2003.

[4] J. Z. Sukkarieh, S. G. Pulman and N. Raikes, “Auto-marking 2: An update on the

UCLES-Oxford University research into using computational linguistics to score short, free

text responses”. Paper presented at the 30
th

 annual conference of the International

Association for Educational Assessment (IAEA), Philadelphia, USA, 2004.

[5] J. Z. Sukkarieh and S. G. Pulman, “Automatic Short Answer Marking”. Proceedings of

the 2
nd

 Workshop on Building Educational Applications Using NLP, Association for

Computational Linguistics, pp. 9-16, June 2005.

[6] T. Mitchell, T. Russel, P. Broomhead and N. Aldridge, “Towards robust computerized

marking of free-text responses”. Proceedings of the Sixth International Computer Assisted

Assessment Conference, Loughborough, UK: Loughborough University, 2002.

[7] W. Rabinowitz and R. M. W. Travers, “Problems of defining and assessing teacher

effectiveness”. Educational Theory, vol. 3, no. 3, pp. 212-219, July 1953.

[8] D. G. Ryans, “Prediction of teacher effectiveness”. Encyclopedia of educational

research, C. W. Harris, ed., New York: Macmillan, pp. 1486-1491, 1960.

[9] R. J. Shavelson, “The basic teaching skill: decision making”. Stanford, CA: Stanford

University School of Education Centre for Research and Development in Teaching, 1973.

155

[10] L. W. Anderson, Classroom Assessment: Enhancing the Quality of Teacher Decision

Making. Mahwah, New Jersey: Lawrence Erlbaum Associates, 2003.

[11] D. Rowntree, Assessing Students: How shall we know them? London: Kogan Page Ltd,

pp. 15-31, 1987.

[12] N. Falchikov, Improving Assessment through Student Involvement: Practical Solutions

for Aiding Learning in Higher and Further Education. London: Taylor & Francis Routledge,

pp. 1-5, 2005.

[13] T. R. Guskey, “How Classroom Assessments Improve Learning”. Educational

Leadership, vol. 60, no. 5, pp. 6-11, Feb. 2003.

[14] J. H. McMillan, Classroom Assessment: Principles and Practice for Effective Instruction.

Boston, MA: Allyn and Bacon, 1997.

[15] S. Chappuis and R. J. Stiggins, “Classroom Assessment for Learning,” Educational

Leadership, vol. 60, no. 5, pp. 40-43, Sep. 2002.

[16] J. T. Dillon, Questioning and Teaching: A Manual of Practice. New York: Teachers Coll.

Press, 1988.

[17] L. R. Gay, “The Comparative Effects of Multiple-Choice versus Short-Answer Tests on

Retention”. Journal of Educational Measurement, vol. 17, no. 1, pp. 45-50, Spring 1980.

[18] M. A. McDaniel, J. L. Anderson, M. H. Derbish and N. Morrisette, “Testing the testing

effect in the classroom”. European journal of cognitive psychology, vol. 19, no. 4/5, pp. 494-

513, 2007.

[19] M. A. McDaniel, M. D. Kowitz, and P. K. Dunay, “Altering memory through recall:

The effects of cue-guided retrieval processing”. Memory and Cognition, vol. 17, no. 4, pp.

423-434, 1989.

156

[20] M. A. McDaniel and M. E. J. Masson, “Altering memory representations through

retrieval”. Journal of Experimental Psychology: Learning, Memory and Cognition, vol. 11,

no. 2, pp. 371-385, 1985.

[21] W. J. Hanson, “Creation of Hierarchic Text with a Computer Display”, Ph.D. thesis. Stanford

University, 1971.

[22] T. K. Landauer, D. Laham and P. W. Foltz, “Automatic Essay Assessment”. Assessment

in Education, vol. 10, no. 3, Nov. 2003.

[23] T. Kakkonen and E. Sutinen, “Automatic Assessment of the Content of Essays Based

on Course Materials”. Proceedings of International Conference on Information Technology:

Research and Education (ITRE), pp. 126-130, 2004.

[24] J. Sukkarieh and E. Bolge, “Leveraging C-Rater‟s Automated Scoring Capability for

Providing Instructional Feedback for Short Constructed Responses”, Intelligent Tutoring

Systems, Lecture Notes in Computer Science, vol. 5091, Heidelberg: Springer, pp. 779-783,

2008.

[25] J. L. Fleiss, Statistical Methods for Rates and Proportions. New York: John Wiley &

Sons, pp. 212-236, 1981.

[26] D. Appelt and D. Israel, “Introduction to information extraction technology”. IJCAI

Tutorial, 1999.

[27] S. Valenti, F. Neri and A. Cucchiarelli, “An overview of current research on automated

essay grading”. Journal of Information Technology Education, vol. 2, pp. 319–330, 2003.

[28] J. P. Gibson, “A noughts and crosses Java applet to teach programming to primary

school children,” Proceedings of the 2nd international conference on Principles and

practice of programming in Java, pp. 85 – 88, 2003.

[29] S. Holzner, Inside XML. Indianapolis, Indiana: New Riders, pp. 9-10, 2001.

[30] D. Gulbransen, The Complete Idiot‟s Guide to XML. Indianapolis, Indiana: Que, pp.

131 – 133, 2000.

157

[31] S. S. Laurent and E. Cerami, Building XML Applications. New York: McGraw-Hill, p.

46, 1999.

[32] The Stanford Natural Language Processing Group, “The Stanford Parser: A statistical

parser”, http://nlp.stanford.edu/software/lex-parser.shtml. [Last accessed on 15-05-2010]

[33] i-net software, “JOrtho – a Java spell-checking library”,

http://www.inetsoftware.de/other-products/jortho. [Last accessed on 26-06-2010]

[34] Wiktionary, “Wiktionary – a wiki-based Open Content dictionary”,

http://wiktionary.org/. [Last accessed on 18-06-2010]

[35] M. C. de Marneffe, B. MacCartney and C. D. Manning, “Generating Typed

Dependency Parses from Phrase Structure Parses,” Proc. The fifth international conference

on Language Resources and Evaluation, pp. 449-454, 2006.

[36] B. McLaughlin, Java and XML. Sebastopol, California: O‟Reilly & Associates, pp. 125-

135, 2000.

[37] K. Cagle, M. Corning, J. Diamond, T. Duynstee, O. G. Gudmundsson, M. Mason, J.

Pinnock, P. Spencer, J. Tang and A. Watt, Professional XSL, Birmingham, UK: Wrox Press,

2001.

[38] B. S. Bloom, Taxonomy of Educational Objectives. New York: Longman‟s, Green &

Company, 1954.

[39] E. D. Gagne, C. W. Yekovich and F. R. Yekovich, The cognitive psychology of school

learning (2
nd

 ed.). New York: HarperCollins College Publishers, 1997.

[40] Official website of Bahria University. Available online: http://bimcs.edu.pk/about-

bahria/why-bahria.htm. [Last accessed on 2-07-2010]

[41] Official website of Higher Education Commission Pakistan. Available online:

http://www.hec.gov.pk. [Last accessed on 6-07-2010]

http://wiktionary.org/
http://bimcs.edu.pk/about-bahria/why-bahria.htm
http://bimcs.edu.pk/about-bahria/why-bahria.htm
http://www.hec.gov.pk/

158

[42] Official website of Pakistan Engineering Council. Available online: http://www.pec.org.pk.

[Last accessed on 3-07-2010]

[43] M. Farrow and P. J. B. King, “Experiences With Online Programming Examinations”. IEEE

Transactions on Education, vol. 51, no. 2, May 2008, pp. 251-255.

[44] Course website of “Object Oriented Programming” course. Available online:

http://sites.google.com/site/sen142oop/Home. [Last accessed on 6-05-2010]

[45] F. Marton and R. Saljo, “On qualitative differences in learning- I: Outcome and

process”, British journal of Educational Psychology, vol. 46, no. 1, pp. 4-11, Feb 1976.

[46] L. S. Ming, “An ICT-Based Technique for Assessment of Short-Answer Question”. Paper

presented at the 7
th
 International Conference on Information Technology Based Higher Education

and Training, Sydney, Australia, 2006.

[47] Official website of the City School, Pakistan. Available online:

http://www.thecityschools.edu.pk. [Last accessed on 18-05-2010]

[48] A. J. Swart, “Evaluation of Final Examination Papers in Engineering: A Case Study

Using Bloom‟s Taxonomy,” IEEE Transactions on Education, preprint, doi:

10.1109/TE.2009.2014221.

[49] R. Siddiqi, C. J. Harrison and R. Siddiqi, “Improving Teaching and Learning through

Automated Short-Answer Marking,” IEEE Transactions on Learning Technologies, preprint,

9 Feb. 2010.

[50] J. Z. Sukkarieh and S. Stoyanchev, “Automating Model Building in C-rater,”

Proceedings of the 2009 Workshop on Applied Textual Inference, ACL-IJCNLP 2009,

pp.61-69, 2009.

[51] D. Gulbransen, K. Bartlett, E. Bingham, A. Kachur, K. Rawlings and A. H. Watt, Using

XML (Second Edition). Indianapolis, Indiana: Que, pp. 7-24, 2002.

[52] W3C Communications Team, “XML in 10 Points,”

http://www.w3.org/XML/1999/XML-in-10-points. [Last accessed on 13-06-2010]

http://www.pec.org.pk/
http://sites.google.com/site/sen142oop/Home
http://www.thecityschools.edu.pk/

159

[53] C. Daly and J. M. Horgan, “An Automated Learning System for Java Programming”.

IEEE Transactions on Education, vol. 47, no. 1, pp. 10-17, February 2004.

[54] C. Stergiou and D. Siganos, “Neural Networks,”

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. [Last accessed on

28-08-2010]

[55] R. Witte, “Introduction to Text Mining,” http://www.rene-

witte.net/system/files/IntroductionToTextMining.pdf. [Last accessed on 28-08-2010]

[56] M. Hearst, “What is Text Mining?” http://people.ischool.berkeley.edu/~hearst/text-

mining.html. 2003. [Last accessed on 28-08-2010]

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://www.rene-witte.net/system/files/IntroductionToTextMining.pdf
http://www.rene-witte.net/system/files/IntroductionToTextMining.pdf
http://people.ischool.berkeley.edu/~hearst/text-mining.html
http://people.ischool.berkeley.edu/~hearst/text-mining.html

160

Appendices

The following are appendices for this thesis.

Appendix 1: User Manual

 IndusMarker system is designed to be used by two types of users: (1) examiners, and

(2) students. The system‟s user interface is divided in to two parts/sections i.e. one

part/section is for examiners and the other part/section is for students. The system enables

examiners to perform the following tasks:

1. Test creation: This task involves specifying questions (and their associated marks)

for the test being created and stored in the system database.

2. “Answer structure” preparation: This task involves “answer structure” formulation,

validation and correction. Once “answer structure” for all questions of a test have

been prepared, the test becomes available for use as practice test.

3. Viewing students‟ results: Examiners can view the overall performance and also the

individual student‟s performance in various practice tests.

The system enables students to perform the following tasks:

1. Taking practice test

2. Viewing results: A student can view his/her performance in the various practice tests

that he/she has taken. Performance details are presented in the form of marks

obtained in each practice test taken. In addition, marks obtained in each question (of

the practice tests) can also be viewed. Student‟s answer to each question can also be

analyzed with respect to the required “answer structure” for that question.

To accomplish each of the above tasks, appropriate user interfaces have been developed.

The following is explanation of how the above listed tasks are accomplished using

IndusMarker‟s user interface (since there are two sections of the system, i.e. examiner‟s

section and student‟s section, the explanation of user interface has also been divided

accordingly):

161

Examiner’s Section

When an examiner logs into the IndusMarker system, he/she is presented the

examiner‟s main menu. The main menu contains examiner‟s options or the tasks that he/she

can perform. Appendix 2 contains a screen shot of the “Examiner‟s Main Menu” screen. If

the examiner wants to create a new test, he/she should press the “Test Creation” button. The

test creation process starts once the examiner has pressed the “Test Creation” button.

Appendices 3 to 7 depicts screen shots of various screens used in the test creation process.

The test creation process is explained below (in the form of pseudo code):

First the examiner is asked about the number of questions in the test (Appendix 3)

FOR each question in the test BEGIN

 Ask whether or not the question has sub-parts (Appendix 4)

 IF examiner indicates that the question has sub-parts THEN

A screen pops-up asking examiner to enter main text of the question and also

requiring him/her to enter the number of sub-parts (Appendix 5)

FOR each sub-part of the question BEGIN

 Enter sub-part‟s text and marks (Appendix 6)

END FOR

 END IF

 ELSE IF examiner indicates that the question has NO sub-parts THEN

 Examiner is asked to enter question‟s text and marks (Appendix 7)

 END IF

END FOR

 If examiner wants to prepare/develop “answer structure” for various questions of the

test(s) created, then he/she should press the “Structure Preparation” button on the

“Examiner‟s Main Menu” screen (Appendix 2). Once the examiner has pressed the

“Structure Preparation” button, a “Test Selection” screen (Appendix 8) appears. The “Test

Selection” screen enables examiner to select the test for “answer structure” development. On

the left-hand side of the screen, there is a list of tests that have been created and stored.

When a test is selected in the list, its details are displayed on the right-hand side. If the test is

162

ready for practice, i.e. all questions of the test have their “answer structure”

finalized/developed, then this will be indicated in the corresponding text field on the right-

hand side along with other test details. When examiner has selected the desired test, he/she

should press the “OK” button to move to the “Question Selection” screen (Appendix 9).

 The user interface of the “Question Selection” screen consists of three parts. On the

left-hand side, there is a tree-based structure containing question and sub-question numbers.

When a question number is selected, the question‟s text appears in the text area at the middle

of the “Question Selection” screen. Once the desired question has been selected, the

examiner should press the “Manual Marking” button to start the manual marking of

students‟ answers for the question. If the manual marking has already been done, then the

“Manual Marking” button will appear disabled and therefore “answer structure” formulation

and validation can now be started by pressing the “Structure Creation” button.

 When the “Structure Creation” button is pressed, the “Answer Structure”

Formulation & Validation screen appears (Appendix 10). Training data set for the question

is displayed in the middle. In order to formulate “answer structure” for the question, the

“Formulate Structure” button should be pressed. When the “Formulate Structure” button is

pressed, a new screen pops up on top of the “Answer Structure” Formulation and Validation

screen. The new screen (Appendix 11) is for regions specification structure editing. Once the

regions specification has been developed and saved, the “Finish” button on the screen is

pressed and this brings up the “Possibility Structure Editor” screen (Figure 7 of the main

thesis text). The GUI for the “regions” specification is similar to the GUI for “possibility

structure” specification. The QAML specification is represented as a tree structure on GUI.

The user of the editor constructs the QAML specification by selecting QAML elements from

the list displayed on the left. When a user selects a node in the QAML specification tree, all

the possible QAML child elements are displayed on the list. In order to insert a QAML

element in to the specification tree, the user has to select a node in the tree and also select a

QAML element from the list and then press the “Insert Element” button. The QAML

element from the list is added as a child of the selected node in the tree. The leaf nodes of the

QAML specification trees consist of parsed character data that is entered by the user through

the text area just beneath the pane containing the QAML specification tree. Functionalities

163

available to the examiner may be executed by pressing buttons present on the screen. As the

specification tree changes, the changes are reflected in the QAML document that is

developed dynamically at the back end. The status of the QAML document can be easily

viewed at any time by pressing the “View XML” button. The QAML document is validated

by pressing the “Validate” button. The result of validation is displayed on the output text

area of the screen. Once a QAML document is completed and validated, it is saved by

pressing the “Save Possibility” or “Save Regions Specification” button.

 Once “answer structure” formulation has finished, the regions specification structure

editor (Appendix 11) and the possibility specification structure editor (Figure 7 of the main

thesis text) screens close. The “Formulate Structure” button appears disabled on “Answer

Structure” Formulation & Validation screen (Appendix 10) once “answer structure”

formulation has finished. Now, the formulated “answer structure” is ready for validation.

Validation is performed by pressing the “Validate Structure” button and this result in

automated marks for students‟ answers being computed and the discrepancies between

automated and manual markings identified. If the examiner wishes to resolve the

discrepancies then he/she should press “Correct Structure” button which will enable

examiner to modify the stored “answer structure” using the same structure editor screens

(Figure 7 and Appendix 11). Once “answer structure” has been finalized, the examiner

should press the “Finish” button to return to the examiner‟s main menu (Appendix 2).

 An examiner can also view students‟ results for the various practice tests conducted.

To do this, the examiner has to press the “View Results” button on the “Examiner‟s Main

Menu” screen (Appendix 2). After selecting the desired test on the “Test Selection” screen,

the details for all the practices (of that test) are displayed on “Practice Results” screen

(Appendix 12). The average marks obtained and the maximum marks for the practice are

given along with other details about the practice currently selected. Individual student‟s

performance can also be viewed by pressing “Students‟ Details” button. This will bring

“Individual Student‟s Performance” screen (Appendix 13) on the computer display. The

screen contains list of students who appeared in the practice along with the marks scored by

each student in the practice.

164

Student’s Section

 When a student logs into the IndusMarker system, he/she is presented the student‟s

main menu (Appendix 14). A student can either take a practice test or view results of his/her

past performances in various practice tests taken. If the student decides to take a practice

test, he/she has to first select the test using “Test Selection” screen and then practice test

questions start appearing one by one (Figure 6 of the main thesis text). Spelling mistakes in

student‟s answer text are underlined. Suggestions for correct spelling can be viewed by

pressing the “F7” button. Student can then replace the mis-spelled word in the answer text

with correct spelling in the list of suggested words. Once the practice test has finished, the

student‟s result for the practice is displayed immediately.

 If a student wants to view his/her practice performance history (Appendix 15), he/she

should press the “View Results” button on “Student‟s Main Menu” screen (Appendix 14).

The “Practice Performance History” screen (Appendix 15) shows details of all the practice

tests taken by the student. The following details are displayed for each practice:

1. Practice number

2. Subject

3. Topics covered

4. Marks obtained by the student

5. Total / maximum marks for the test

The student can also analyze his/her answers to various questions of the practice

test(s) taken. To do this, he/she should press the “Analyze Answers” button on “Practice

Performance History” screen (Appendix 15). The student will then be required to enter the

practice (test) number (Appendix 16). Once practice number has been specified, a

“Practice‟s Question Selection” screen (Appendix 17) appears on the computer display. A

tree-based structure on the left-hand side of the “Practice‟s Question Selection” screen

consists of all the question numbers (and sub-question numbers) of the practice (test).

Selecting a question number on the tree-based structure, results in details (such as question

text, marks obtained in this question and maximum marks for this question) to be displayed

on the right-hand side. Once the desired question has been selected, the “Analyze Answer”

button should be pressed to start student‟s answer text analysis for the selected question.

165

Figure 9 (of the main thesis text) depicts the IndusMarker‟s GUI screen for carrying out

student‟s answer text analysis. The student‟s answer text is displayed in a text area in the

upper right side of the screen. The list of required “regions” for the answer is given in the

lower part of the GUI screen. The screen enables its user (i.e. the student) to check whether a

particular required “region” has been matched in the student‟s answer text or not. A “region”

may be “fully matched”, “partially matched” or “not matched” at all in the student‟s answer

text. In order to check whether a particular “region” is matching or not, the student selects a

“region” and presses the “Match Region” button. The sentence that matches the most, with

the selected “region”, is highlighted. Other important information such as “Matching

Result”, “Marks Obtained” and “Total Marks” can also be viewed on the screen. Once the

student has finished analyzing his/her answer, he/she should press the “Finish” button.

166

Appendix 2: Screen Shot of “Examiner’s Main Menu” Screen

Appendix 3: Screen Shot of Screen for Asking Examiner to Specify the

Number of Questions in the Test

Appendix 4: Screen Shot of Screen for Asking Examiner to specify

whether or not the Question to be entered has Sub-parts

167

Appendix 5: Screen Shot of Screen for Entering Main Question Text and

Number of Sub-parts

Appendix 6: Screen Shot of Screen for Sub-part Entry

168

Appendix 7: Screen Shot of Screen for Entering Question Text and

Question Marks

Appendix 8: Screen Shot of “Test Selection” Screen

169

Appendix 9: Screen Shot of “Question Selection” Screen

170

Appendix 10: Screen Shot of “Answer Structure” Formulation &

Validation Screen

171

Appendix 11: Screen Shot of “Regions Specification Structure Editor”

Screen

172

Appendix 12: Screen Shot of “Practice Results” Screen

Appendix 13: Screen Shot of “Individual Student’s Performance” Screen

173

Appendix 14: Screen Shot of “Student’s Main Menu” Screen

Appendix 15: Screen Shot of “Practice Performance History” Screen

Appendix 16: Screen Shot of “Practice Number Entry” Screen

174

Appendix 17: Screen Shot of “Practice’s Question Selection” Screen

