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Abstract 

Jaclyn Bibby 

Computational studies to elucidate the role of proteins in the prevention of malaria 

This thesis was submitted to the University of Manchester for the degree of Doctor of 

Philosophy (PhD) in 2010.  

 

Malaria is a disease that affects half the worlds population and is caused by a parasite 

spread by mosquito. The control of malaria relies on the use of insecticide treated nets 

to prevent transmission by mosquito bite. Nets alone act as poor barriers to insect bites 

and the insecticides used to treat the net have a role in killing the insect on contact. As 

the nets are in frequent contact with people, pyrethroids are the only class of insecticide 

recommended for use due to its low toxicity to mammals. Insecticide resistance to 

pyrethroids can occur in insects reducing the effectiveness of the nets to prevent 

transmission, and insects can become resistant to insecticides by the over expression of 

cytochrome P450 enzymes. P450 enzymes are a super family of heme containing 

enzymes involved in the detoxification of drugs and xenobiotics. This study uses 

computational modelling techniques to give an insight into the structures of the P450s 

involved in the detoxification of these insecticides. These computational studies 

complement experimental work and give an understanding of experimental results by 

giving an insight at the atomic level into the structures of these enzymes. The 

computational models give explanations for the observed results, but are also predictive 

and can be used to guide experimental studies. In this study, homology modelling and 

bioinformatics was used to build structural models of the P450s. These models were 

validated structurally to ensure that the proteins were correctly folded, docking studies 

were used to ensure that there was a good correlation between the experimental and 

computational results. A number of P450s are overexpressed in insecticide resistant 

mosquitoes these were studied to understand their ability to bind to pyrethroids and 

comparisons were made to P450s incapable of metabolism. Based on this, a fingerprint 

for metabolism was constructed that may be used to predict the capacity for metabolism 

in unknown P450s by identifying residues involved in metabolism. The models 

produced can be used to explain the profiles of metabolites observed to be produced by 

these enzymes. The studies on CYP6M2 investigate its ability to metabolise pyrethroids 

and in particular its metabolism pathway for deltamethrin. It was shown to metabolise 

deltamethrin at specific sites that can be explained by the models produced in this 

thesis. The models can also explain the specificity of the enzymes towards a number of 

fluorescent substrates by identifying the residues that have a steric influence. The 

models can be used to guide the development of novel pyrethroids that are resistant to 

metabolism. In addition, the models identified factors external to the active site that 

influence the metabolism of pyrethroids including its interaction with binding partners 

and the membrane as well as ligand access to the buried active site. Such factors explain 

the selectivity of enzymes for the logP of their substrates. These models were used to 

design probes specific to metabolising enzymes that can be used to identify novel P450s 

involved in insecticide resistance, and could be used to monitor resistance in insect 

populations. In the human host, toll like receptors are involved in sensing the malaria 

parasite and initiate an inflammatory response, an excessive inflammatory response can 

lead to severe forms of malaria. Mal has a central role in this pathway and the affect of 

malaria on the human host can be determined by the variant of this protein. 

Understanding the role of Mal can lead to the identification of targets for drugs that can 

modulate the immune response and prevent hyper inflammatory disorders.     
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1.1 Vector borne diseases 

1.1.1 Malaria 

According to the World Heath Organisation (WHO), half the world‟s population of 

around 3.3 billion people live in areas that have a risk of malaria transmission; 109 

countries are classified as endemic or at risk (Figure 1.1). In 2006 there were an 

estimated 247 million malaria cases, and nearly a million deaths with 81% of these 

among children under 5 years. Malaria is caused by parasites of the Plasmodium genus 

and is spread from person to person through the bites of infected Anopheles mosquitoes. 

Severe malaria occurs when the infection is complicated by blood abnormalities and 

organ failures. Destruction of red blood cells, hemolysis, can cause anemia. Cerebral 

malaria is associated with abnormal behavior, seizures and coma. Severe malaria can 

also manifest as pulmonary oedema, acute respiratory distress syndrome, cardiovascular 

collapse and shock.  

 
Figure 1.1 Countries where malaria is endemic (taken from World Health Organization 

world malaria report, 2008). 

1.1.2 Dengue 

According the WHO, Dengue is the most common mosquito borne viral disease. The 

Aedes aegypti mosquito is the main vector of transmission and its distribution is 

comparable to that of malaria, 2.5 billion people live in areas where Dengue is 

transmitted (Figure 1.2). The dengue virus is a Flaviviridae (single stranded non-

segmented RNA virus) with four distinct serotypes. Infection with one serotype does 

not provide immunity to the others so that people living in dengue-endemic areas can 
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have up to four infections, and sequential infection increases the risk of more severe 

disease (Gubler, 2006).  

 

Figure 1.2 Areas at risk of dengue transmission, (taken from Nathan and Dayal-Drager, 

2006). The contour lines of the January and July isotherms indicate geographical limits. 

 

The Dengue virus causes a severe flu-like illness called Dengue Fever (DF) usually 

consisting of a fever and a rash in infants or high fever, headache, muscle and joint pain 

in older children and adults.  Dengue Hemorrhagic fever (DHF) is a potentially fatal 

complication characterised by high fever, enlargement of the liver, circulatory failure, 

and hemorrhagic phenomena such as bleeding from the nose, gums and gastro intestinal 

tract or injection sites. Each year there are around 50-100 million cases of DF and 250-

500,000 cases of DHF. The fatality rate of DHF is around 5% with most of these among 

children and young adults. Dengue has become a major cause of mortality in children 

especially in South-East Asia. The number of cases of DF and DHF is currently 

growing with a record number of cases occurring in the Americas in 2002 with 968,723 

cases and 234 deaths. The most common causes of death from DHF include bleeding 

into the vital organs, massive bleeding, and shock caused by the loss of intra-vascular 

fluids due to increased capillary permeability (Lloyd, 2003).    

 

1.2 Vectors 

1.2.1 Anopheles 

The Anopheles gambiae mosquito is a vector for Plasmodium parasites that cause 

malaria. It is highly anthropophilic with a distribution throughout sub-Saharan Africa. 

Sattler et al. (2005) found that the preferred breeding sites of A. gambiae were slopes to 
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riverbeds, riverbeds, borders of swamps, stagnant drains and rivers, and valleys with 

vegetable gardens and crops. They also found A. gambiae breeding in a sewage pond 

and one swamp extremely polluted with organic matter. It was suggested that it is likely 

that anopheles can breed in every type of water accumulation. The habitat preferences 

of Anopheles gambiae have been found to have changed over the 20th century as a 

result of ecological change. Chinery (1984) found that breeding in water filled man 

made containers has increased from 1.97% in 1911 to 21% of all breeding in the 1980s. 

This was also accompanied by an increase in breeding in polluted habitats from 5.3% to 

25% of all breeding. Anopheles is also anthropophagic in that it prefers to bite humans 

or cattle; this and its habitat preferences allow it to act as a vector for disease 

transmission.   

  

1.2.2. Aedes 

The Aedes aegypti mosquito has a worldwide distribution between latitudes 45°N and 

35°S. It is a known vector of the yellow fever and dengue viruses. Ae aegypti tends to 

occur in urban areas due to its breeding and behavioral preferences. It breeds in artificial 

containers, such as water storage containers, neglected cups and jugs that contain fresh 

water (Simard et al., 2005). There has been an increase in the occurrence of dengue 

since 1970, from 9 countries affected to 60 by 1999, caused by an increase in 

urbanisation, poor urban infrastructure and unreliable water supply that has promoted 

the use of water storage and the accumulation of discarded water containers (Kay and 

Vu, 2005). Ae aegypti also prefers to oviposit, rest and bite hosts indoors, and does not 

require vegetation for sugar feeding. Ae aegypti is therefore anthropophilic and tends to 

be closely associated with humans (Braks et al., 2003). Aedes aegypti is found 

worldwide in the tropics and is an efficient vector because it is susceptible to the dengue 

virus, preferentially feeds on human blood, is a daytime feeder with an imperceptible 

bite and can bite many people in a short period for one blood meal. Unlike malaria, 

dengue occurs primarily in urban areas and Aedes is adapted to urban habitats as it 

breeds in clean stagnant water in man made containers. At present the only method of 

controlling dengue is to control the vector mosquitoes. Most dengue control programs 

rely on the use of insecticides to control the larval and adult stages of Aedes aegypti 

(Wilder-Smith and Schwartz, 2005).  
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1.3 Insecticide treated nets 

Insecticide treated nets (ITNs) are a vector control tool against malaria. Nets have long 

been used as a method of protection against mosquitoes. However, nets are limited as a 

physical barrier as they can become torn, or they can be hung in a way that allows 

mosquitoes to bite through them. To prevent this, nets can be treated with insecticides 

and treated nets offer greater protection than untreated nets by irritating, repelling or 

killing the mosquitoes as they contact the net.  

 

The requirements of insecticides for the treatment of nets is strict due to the frequent 

contacts with people. The insecticide must be non-toxic to children and be non-irritating 

to the skin. According to the WHO Communicable Disease Control, Prevention and 

Eradication WHO Pesticide Evaluation Scheme (WHOPES, 2002), pyrethroids are the 

only insecticides recommended for the treatment of mosquito nets. They satisfy this 

criteria by having a low volatility to reduce inhalation toxicity, no teratogenic, 

carcinogenic, or mutagenic effects and low toxicity to mammals (Najera and Zaim, 

2002). Pyrethroids affect mosquitoes with knockdown and killing effects at doses below 

the threshold for mammalian toxicity. In addition the pyrethroids recommended by 

WHOPES (Table 1.1) all have an exito-repellent effect on the vector species, and the 

presence of one net in a room may partially protect individuals outside the net.  

 

Table 1.1 The insecticides recommended for the treatment of nets (taken from 

WHOPES, 2002). 

Insecticide    Dose (mg active ingredient/m
2
 of netting)   

α-cypermethrin  20-40 

Cyfluthrin   50 

Deltamethrin   15-25 

Etofenprox   200 

Lamda-cyhalothrin  10-15 

Permethrin   200-500     

 

 

1.4 History of pyrethroid development 

Pyrethroids were originally found in the flowers of the herbaceous perennials 

Pyrethrum cinerariifolium and Chrysanthemum cinerariifolium. Pyrethroids have been 

found to mostly act on the sodium channel; insect sodium channels are 100 fold more 

sensitive to pyrethroids than mammalian channels, and partly because of this, mammals 

tend to be resistant to pyrethroids (Ray and Forshaw, 2000)  
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Pyrethroids are the oldest class of insecticides. Pyrethrum flowers or their extracts have 

been used for centuries. In the 1800s they were used by the Caucasian tribes to control 

lice, by 1828 the flowers were being produced commercially in Armenia and by 1840 in 

Dalmatia. Since the 1920s the insecticidal components, pyrethrins, were extracted with 

kerosene to produce liquid sprays. After the Second World War, production continued 

in East Africa and South America and by the 1980s pyrethrum production had reached 

15,000 tons of dried flowers per year. However, the dried flowers contain only 1-2% 

pyrethrins by dry weight producing 150-200 tons per year. This production was 

insufficient and provided only half of the world market demand (Casida, 1980). 

 

The first development of synthetic pyrethroids was a result of wartime research in the 

US and the UK to find substitutes to minimise dependency on imported natural 

materials, where shipping channels may be disrupted. Allethrin was the first commercial 

pyrethroid produced from this, and further pyrethroids were developed until 1965 that 

were pyrethrum substitutes. These pyrethrins and pyrethrin substitutes were structurally 

similar to the natural pyrethrins and can undergo photooxydation at the isobutenyl, 

furan and allyl substituents, and were unstable for agricultural use (Figure 1.3a). The 

development of pyrethroids for crop protection involved replacement of the photolabile 

isobutenyl methyls with stable functions (Figure 1.3b), and the inclusion of a 

phenoxybenzyl alcohol group which increased activity and photostability (Figure 1.3c) 

(Casida, 1980; Elliott, 1980). Metabolism of the insecticide was taken into account in 

the design of insecticides, oxidation at the isobutenyl methyls was prevented by 

replacement with a dihalovinyl. As the structure of the pyrethroid was altered, its 

metabolism in insects was also altered. 

 

1.5 Pyrethroid structure 

Almost all pyrethroids are esters, composed of an acid and alcohol groups connected by 

an ester bond. The acid tends to be a substituted cyclopropane carboxylic acid. The 

alcohol groups consist of pyrethrolone for the pyrethrins and phenoxybenzyl groups for 

the pyrethroids. The pyrethroids with a cyclopropane acid group have two common 

chiral centres at carbons 3 and 1 (Figure 1.4), and isomers differing at either of these 

centres have varying toxicity.  
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Figure 1.3 The substitution of pyrethrin acid and alcohol groups with photo stable 

groups. 

 

Figure 1.4 The positions of the C1, C3 and α carbons in cypermethrin. 

 

Isomers differing at the 1 carbon are termed 1R and 1S. The toxicity of these isomers 

vary according to the structure of the alcohol group, the C3 substituent (a halovinyl or 

isobutenyl) and the species tested. Isomers differing at the 3 carbon are termed trans or 

cis depending on their orientation relative to the 1 carbon. The acid moieties of the 

naturally occurring pyrethroids are exclusively in the 1R trans configuration. 

Pyrethroids derived from (1S)cyclopropanecarboxylic acids have been found to be less 

active than those derived from (1R) acids (Anderson et al., 1985).  

 

The trans chrysanthamates can be more active than the cis isomers (Elliott, 1971). 

However, where the isobutenyl group of the crysanthamic acid is replaced by a 
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halovinyl group, the activity of the cis and trans may vary, but generally where a 

halovinyl group is present, the cis forms of pyrethroids are more toxic than the trans 

forms. Alzogaray et al. (1998) compared isomer mixtures of cis and trans permethrin 

against the bug Triatoma infestans. They found that the cis isomer was 3 fold more 

effective than the trans in the first instar, 25 fold in the third instar, and 54 fold in the 

fifth instar larvae. Stereospecificity also occurs in the alcohol moiety. The alpha carbon 

can become a chiral centre by the inclusion of an α-cyano group; when this occurs only 

one isomer has insecticidal activity. The (S) α-cyano-3-phenoxybenzyl alcohol has a 

higher activity than the R isomer (Anderson et al., 1985).  

 

1.6 Pyrethroid resistance 

1.6.1 Housefly pyrethroid resistance 

Insecticide resistance is defined as the ability of some individuals to tolerate doses of a 

toxicant that would prove lethal to the majority of individuals in a normal population of 

the same organism. The learn PyR (LPR) strain was collected from a dairy near 

Horseheads NY in 1980 and selected with permethrin until 6000-fold resistance was 

attained. It was also shown to have 100,000-fold resistance to deltamethrin and has been 

extensively studied because of its resistance. This strain has been shown to be resistant 

due to three mechanisms: increased detoxification by P450s, decreased cuticular 

penetration, and target site insensitivity (Scott and Georghiou, 1986).  

 

Scott and Georghiou (1986) found that in LPR there is slower penetration of permethrin 

than in the susceptible NAIDM strain, with 60% remaining external in LPR compared 

to 49% in NAIDM. Slower penetration may be a mechanism of resistance in housefly.  

 

Scott and Georghiou (1986) found that LPR was highly resistant to knockdown, a 

characteristic of target site insensitivity, and found LPR to have a low neuronal 

sensitivity to permethrin. Target site insensitivity was determined by applying 

permethrin and monitoring for burst discharges in the dorsal longitudinal muscle, a 

marker for neuronal dysfunction. The threshold dose causing burst discharges was 

found to be greater in LPR than that of the Super-KDR strain, homozygous for the 

knock down resistance (kdr) gene. 
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In LPR pyrethroid resistance is also associated with elevated P450 activity, 

demonstrated by the synergistic affect of piperonyl butoxide, and also with increases in 

P450, b5 and P450 reductase activity (Scott and Georghiou, 1986).   

 

1.7 P450s 

Cytochromes P450, named after their absorption at 450 nm, are one of the largest 

superfamilies of proteins. They are a superfamily of heme containing enzymes that are 

involved in the metabolism of endogenous and exogenous compounds. They are 

involved in the classical 'Phase I' metabolism in which a substrate is oxidised. During 

Phase II other enzymes use this oxygen for further metabolism. Potentially toxic drugs 

and xenobiotics can be detoxified by this oxidation and be made more water soluble to 

increase its elimination by the kidney (Spatzenegger and Jaeger, 1995).   

 

1.7.1 P450 structure 

The nomenclature system was introduced by Nebert et al. (1997) which proposes that 

members of a family share >40% identity and members of a sub family >55% identity. 

CYP is used as a prefix, followed by a number for the family, a letter for the subfamily 

and a number for the individual gene. Sequence identity among P450s can be as low as 

20% with only three absolutely conserved amino acids. Despite high sequence variation, 

there is a high degree of conservation of overall fold with the highest conservation 

around the heme, indicating a conserved mechanism of electron transfer and oxygen 

activation. The conserved fold consists of a core bundle formed by four helices D,E,I 

and L, helices J and K, two sets of beta sheet, and a coil called the 'meander' (Figure 

1.5). These regions contain conserved consensus sequences; (F-X-X-G-X-R-X-C-X-G) 

is part of the heme-binding loop and occurs on the L helix, the conserved Cys is the 

heme iron‟s fifth ligand, and the heme iron being bonded to the four nitrogens of the 

prophyrin. (E-X-X-R) occurs on the K helix and stabilises the core. (A/G-G-G-X-D/E-

T-T/S) is the P450 signature and corresponds to the electron transfer groove of the I 

helix. P450s contain variable regions that are associated with the N-terminal 

transmembrane helix, and substrate binding and recognition (substrate recognition sites) 

(Werck-Reichhart and Feyereisen, 2000).  
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Figure 1.5 (A) Topology diagram of the secondary structure of a typical P450. Α-

helices: blue boxes; arrows outlined with doted lines: β-sheets. (B) Ribbon diagram of 

the distal face of CYP2C5 showing its association with the membrane (purple). Taken 

from  Werck-Reichhart and Feyereisen (2000).   

 

1.7.2 History of P450 structure determination 

The first crystal structure for a P450, P450cam (CYP101) (Poulos et al., 1985) was 

published in 1985. It was several years before the next structure, P450BMP (CYP102) 

was published in 1993 (Ravichandran et al., 1993) and  until 2000, the only crystal 

structures available were microbial P450s. Crystalisation of membrane bound 

mammalian P450s was difficult due to their hydrophobicity. The first eukaryotic 

microsomal P450 was CYP2C5 (Williams et al., 2000b), which had to be modified to 

promote crystallization. Crystallisation was only achieved after engineering to improve 

its solubility, the N-terminal 22 residues forming the membrane binding helix was 

removed and the FG loop between residues 201 and 210 replaced with those from 

P4502C3 (Cosme and Johnson, 2000). With the availability of these structures, it was 

shown that there is a conserved structural fold even though the sequence identity may 

be less than 20% and with only three absolutely conserved amino acids (Graham and 

Peterson, 1999). 

 

1.7.3 Substrate Recognition Sites (SRS) 

Although P450s tend to show an overlap in the substrates that they bind, they also show 

distinct substrate specificities. Gotoh (1992) attempted to identify the parts of a P450 

A B
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that are involved in substrate recognition or binding, that determine specificity. Six 

substrate recognition sites (SRS) were identified that constitute 16% of the total 

residues of a P450. These are: SRS1, the B' area; SRS2, the C terminus of F-helix; 

SRS3, the N terminus of the G-helix; SRS4, the N terminal half of the I-helix; SRS5, 

the β3 area, and SRS6 the central region of β5 (Gotoh, 1992). Hyper-variable regions 

within these six SRSs can account for the variations in substrate specificities of P450s. 

This assignment of SRS regions has been supported by finding direct counterparts on 

other P450s and the creation of point mutations in these areas that significantly affect 

substrate specificity.   

 

Investigations into substrate selectivity have involved a number of approaches including 

site directed mutagenesis, and homology modelling. Homology modelling is needed as 

the crystal structures of only a few P450s have been determined. In the absence of a 

crystal structure homology models can be used to predict the structure of the P450 and 

the positions of residues involved in substrate binding. Homology modelling has been 

used successfully to interpret the results of mutagenesis studies and to guide mutagenic 

studies to alter substrate specificity (de Groot, 2006). 

 

1.7.4 Common active site binding 

There are a number of examples where biochemical pathways contain P450s in different 

families capable of catalysing the same reaction. Rupasinghe et al. (2003) identified 

four highly divergent P450s that were capable of catalysing reactions in the 

phenylpropanoid pathway, the plant biosynthetic pathway for the formation of lignins, 

flavonoids and anthocyanins. These were CYP75A5, CYP84A1, CYP75B1 and 

CYP8A3. Although the primary sequence identities could be as low as 13% they 

identified a common substrate recognition mechanism among them in the orientation of 

the substrate, location of residues in the SRS regions that contact the substrate as well as 

sequence similarities in the SRS regions. 

  

It was found that sequence comparisons among the SRS regions showed conservations, 

particularly in the SRS5 that contacts the substrate. In SRS5 they found a highly 

conserved sequence that has a sequence identity significantly higher than in 

comparisons of the full length proteins or other SRS regions. They predicted that the 

conserved residues in the SRS5 region would come within 4 Å of the substrate and 

contact the substrate. These residues were embedded in a Pro-rich sequence that 
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produced kinks in the backbone to project them into the active site (Rupasinghe et al., 

2003).  

 

The P450s that catalyse the metabolism of pyrethroids may also have some active site 

commonalities with conserved residues in the SRS regions. The conservations may be 

used to identify a pyrethroid metabolism 'fingerprint' that could be used to identify other 

metabolisers to guide experimental investigation.  

 

1.7.5 The P450 cycle 

Cytochrome P450 are a superfamily involved in oxidative metabolism of endogenous 

and exogenous chemicals. They primarily function as mono-oxygenases, activating 

molecular oxygen and inserting a single oxygen atom into the substrate: 

 

NADPH + H + O2 + R  →   NADP
+
 + H2O + RO 

 

The enzyme catalyses the insertion of oxygen atoms between C-H, C-C, C-N and N-H 

bonds, and can mediate epoxidations, S-oxidations, H-hydroxylation and dealkylations. 

The input of two reducing equivalents (2e
-
) and two proton equivalents are required. 

These are usually derived from HADPH or NADH, and transferred via a flavoprotein 

(Shaik et al., 2005).  

 

There are different electron transfer chains and P450s can be classified accordingly 

(Hannemann et al., 2007):  

Class I require both an FAD-containing reductase and an iron sulfur redoxin. 

Class II require only an FAD/FMN-containing P450 reductase.  

Class III are self sufficient and require no electron donor.  

Class IV receive electrons from NADPH or NADH.   

 

The active center for the reaction is the porphyrin ligated iron of the iron-

protoporphyrin IX (heme). At the proximal face, the thiolate of a conserved cysteine 

coordinates the iron as the fifth ligand. At the distal face there is access for water, 

oxygen and a site for substrate binding and orientation relative to the iron. The 

electronic characteristics of the heme allow the iron to exist as either a low spin or high 

spin state depending on the ligand environment (Lewis and Pratt, 1998). In the heme 

system, 6-fold coordinated Fe is found to be low-spin and 5-fold coordinate Fe is found 
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to be in the high-spin state. In the resting state the iron is low spin (III) and a water 

molecule forms a sixth axial ligand on the distal face of the heme 
 
to stabilize the low-

spin state (Segall et al., 1998).   

 

The P450 operates by means of a catalytic cycle which involves seven steps: 

1) The cycle begins in the resting state (Figure 1.6, 1) with a water bound to the ferric 

iron at the distal side. In this hexacoordinated Fe
III

 complex the d-orbitals of the iron 

contain five electrons in a low spin doublet configuration.  

 

2) The entry of the substrate into the active site displaces this water molecule and leaves 

a five coordinated iron (Figure 1.6, 2). The iron moves from the plane of the heme to a 

position below the heme and becomes a sextet high-spin species. 

 

3) The complex is now a better electron acceptor than the resting state and can take up 

an electron from the reductase leading to a high spin ferrous complex (Figure 1.6, 3).  

 

4) Following reduction, oxygen is able to bind to the Fe
II
 high spin state to produce a 

ferrous dioxygen complex (Figure 1.6, 4).  

 

5) This complex has a singlet spin state and is a good electron acceptor which triggers a 

second reduction to generate a ferric-peroxo anion species (Figure 1.6, 5).  

 

6) As this is a base, it becomes protonated to a ferric-hydroperoxide species also called 

Cpd 0 (Figure 1.6, 6). 

 

7) Cpd 0 is also a base and attracts a second proton to form Cpd I and water. This 

species transfers an oxygen atom to the substrate (Figure 1.6, 7). After the reaction, the 

product exits the active site and water enters to restore the resting state (Shaik et al., 

2005).  
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Figure 1.6 The P450 cycle taken from Shaik et al. (2005). 

 

The redox partners for microsomal P450s are P450 reductase and cytochrome b5. P450 

reductase accepts a pair of electrons from NADPH and transfers these to cytochromes 
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P450. Cytochrome b5 is known to augment P450 reactions by electron transfer. While 

P450 reductase can transfer the first and second electrons, b5 can only donate the 

second electron (Bridges et al., 1998). 

  

1.7.6 P450 inhibitors 

Ligands can act as inhibitors of P450s. Type I ligands displace the water ligand shifting 

the iron spin towards the high-spin form and accelerate P450 reduction. Ligands that 

contain nitrogen heterocycles and anilines can replace the water ligand to stabilize the 

low-spin form and are termed type II. These ligands act as inhibitors as they stabilize 

the low reduction potential P450 and prevent oxygen binding to the heme. The nature of 

the interaction can be determined by the visible spectrum of the ligand bound P450 

measured with a spectrophotometer (Locuson et al., 2007). Type I is characterised by a 

trough at around 420mµ and peak at 380mµ, type II is characterised by a peak at 430mµ 

and trough at 394mµ (Gigon et al., 1968). 

 

1.7.7 P450 regulation and induction 

Each P450 has its own expression pattern which is developmentally regulated, often 

with expression limited to a particular developmental phase, and tissue specific. Insect 

xenobiotic detoxification occurs in the midgut, Malphigian tubules and fatbody, and 

transcripts of P450s involved in detoxification are enriched in these tissues. The 

expression and transcription rates of P450 genes are inducible by xenobiotics via a 

number of pathways. Aryl hydrocarbons such as dioxin act as inducers mediated by the 

Ah receptor, dioxin binds to the Ah receptor which dimerises with the protein Arnt, and 

the dimer induces a battery of genes including P450s (Giraudo et al.). Many insect 

P450s are induced by their substrates, CYP6B metabolises furanocoumarins, and its 

expression is 5-fold higher in individuals after dietary exposure. This insect gene 

contains response elements similar to those in mammalian genes that are targets of aryl 

hydrocarbon regulatory cascades (Brown et al., 2005). Insect P450s involved in 

insecticide resistance may be constitutively over-expressed, in the case of CYP6D1 the 

insert of a 15-bp fragment acts to disrupt repressor binding leading to high levels of 

expression in resistant strains (Scott et al., 1999).  

 

1.8 Experimental determination of structure 

The structure of a protein is important for its function and its structure can be 

experimentally determined using X-ray crystallography and NMR. 
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1.8.1 X-ray crystallography 

For an object to be seen its size must be at least half the wavelength of the light being 

used to see it. To get a higher resolution, shorter wavelengths can be obtained from 

electrons and X-rays. X-ray scattering from a single molecule would be weak, a crystal 

arranges large numbers of molecules in the same orientation so that scattered waves in 

phase can amplify a signal. Crystallography relies on the scattering of X-rays by 

electrons in the sample to create a diffraction pattern. Crystals are used because they 

have a unit cell that is repeated throughout the crystal in a periodic way and this 

repetition amplifies the diffractions. These diffractions are governed by the geometry of 

the crystal unit cell and the wavelength of the X-ray, and the crystal structure is encoded 

in the diffractions. In a crystal, with the repetition of the unit cell, their diffraction 

patterns interfere with each other. The diffraction pattern is zero everywhere except for 

the spots where crystal diffraction is allowed, and at these spots the diffraction pattern 

equals that of the unit cell. In the Bragg model, the crystal contains families of equally 

spaced parallel planes if waves reflected from adjacent planes are in phase, if the path 

length distance for the two waves equals a whole number of wavelengths, constructive 

interference occurs and a strong diffraction is observed. This leads to Bragg‟s Law 

(Figure 1.7): 

           

 

Figure 1.7 Bragg‟s Law (taken from Lattman, 2008). The two horizontal lines represent 

two planes belonging to a family of Bragg‟s planes with a spacing of d, incoming X-

rays are reflected. The ray reflected by the lower plane travels a greater distance ( ABC 

=         ), when this distance equals a whole number of wavelengths λ, the reflected 

waves are in phase. 
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In most directions the scattered waves from different unit cells are out of phase and 

cancel to give zero. Non-zero diffraction is observed in those directions for which the 

diffracted waves from all the unit cells are in phase. The diffraction pattern consists of 

discrete spots or Bragg peaks where the diffracted waves from every unit cell add 

together. 

 

To obtain the structure of the diffracting motif a Fourier transformation of the structure 

factors are calculated. These factors or F values represent the reflection amplitudes and 

phases. Each reflection is characterised by amplitude and phase but only amplitude can 

be measured and no direct information about phase is provided by the experiment, but 

the phases can be determined by a number of methods. This leads to an initial electron 

density distribution of the crystal which can be improved iteratively. The result of an X-

ray diffraction experiment is a map of the electron density of the crystal and molecular 

modelling is used to interpret this as individual atoms and molecules. This model is 

refined to give the best match between the observed reflection amplitudes and those 

calculated from the model. This agreement between the observed and calculated 

amplitude is determined by the R-factor (Wlodawer et al., 2008). 

 

1.8.2 NMR 

Nuclear magnetic resonance (NMR) spectroscopy originated with the observation of 

nuclear magnetic resonance, and has been applied to determine protein structure. Many 

proteins do not crystallise, and for those that do some may diffract poorly. Unlike X-ray 

crystallography, NMR can operate in the solution state and protein dynamics and ligand 

binding can be measured. It is possible that X-ray structures may not be a true picture of 

the molecule as it exists in solution. NMR structure determination can be carried out 

under conditions that more closely match experimental conditions and can eliminate 

perturbations in geometry that may occur in the crystalline environment (MacArthur 

and Thornton, 1993). NMR spectroscopy is based on the magnetic properties of nuclei; 

nuclei that have an odd atomic mass or number behave as spinning electrical charges 

and have a magnetic moment. When placed in a magnetic field, its magnetic moment 

will align either parallel (low energy state) or antiparallel (high energy state) to the 

magnetic field. If energy is provided at the proper frequency, energy is absorbed and a 

transition from the lower energy to higher energy state can take place. As the nuclei 

return to the lower energy state, a signal with the same frequency as the one absorbed is 

emitted (Ingwall, 1982). Protein conformational data are upper distance limits derived 
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from nuclear Overhauser effects (NOEs). NOEs result from cross relaxation due to 

interactions between nearby pairs of nuclear spins in a molecule, and can give distance 

information (Herrmann et al., 2002).  

 

NMR has an advantage over crystallography in that it is free of crystallisation artifacts, 

surface residues are often perturbed by intermolecular contacts in the crystal. This has a 

biological relevance as surfaces are often involved in interactions with other proteins 

and ligands. NMR also differs from crystallography in that each cross peak contains 

information on a single torsion angle or distance. In contrast each peak in a diffraction 

pattern contains information on the entire structure. NMR can also estimate the 

timescales of intra-molecular motions (Wagner et al., 1992).  However, unlike 

crystallography, NMR is not useful for all proteins. It has a size limit of around 35kDa 

as large proteins have slower tumbling rates and shorter NMR signal relaxation times, 

the increase in size also introduces more complexity because there are more NMR-

active nuclei (Yu, 1999).   

 

1.9 Modelling 

Proteins fold into specific compact structures and the information coded in the amino 

acid sequence is sufficient to determine the structure. The three dimensional structures 

of proteins can be predicted from the amino acid sequence using ab initio or 

comparative modelling. Ab initio modelling methods use physical principles alone to 

find the folded structure. It is assumed that a protein sequence folds to its native 

conformation that is at the global free-energy minimum. Although simulating protein 

folding can be carried out using molecular dynamics, this is computationally expensive. 

Ab initio modelling usually involves a representation of protein geometry, a force field 

and energy surface searching. A representation of the protein is needed but limits on 

computational resources mean an all atom model cannot be used. A simple geometry 

model is often used where a single particle represents a number of atoms of the protein. 

A potential function is needed to predict the native structure of the protein. Force fields 

such as CHARMM can be used. A conformational search technique is used to search 

the conformational space (Osguthorpe, 2000).  

 

Comparative modelling uses experimentally determined structures to predict the 

conformation of a target protein with a similar sequence, and is possible because small 

changes in sequence may result in only small changes in structure. This modelling 
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involves finding an homologous 3D structural template that can be identified from the 

PDB, the sequences of the target and template are aligned and a structure is calculated. 

However, comparative modelling is restricted to sequences with closely related proteins 

with known structures (Sali and Blundell, 1993).  

 

1.9.1 History of P450 structure prediction 

Modelling and structure prediction of P450s was initially limited by the availability of 

crystal structures of only soluble microbial P450s. These structures were of limited use 

for modelling eukaryotic microsomal P450s that have adaptations for binding to the 

membrane and redox partners. With the availability of the first crystal structure of a 

eukaryotic P450 it was shown that although the elements that define the active site are 

the same as the microbial P450s, the arrangements of these elements differ. Of the 

substrate recognition sites, only SRS4 on the I helix is conserved in its location. The 

other SRS regions diverged significantly with RMDS of 3.3 Å for SRS5, 6.0 Å for 

SRS1, 6.4 Å for SRS2 and 3.9 Å for SRS3. Although different domains of CYP2C5 can 

be superimposed with those of P450BM3, the interdomain positioning differs and the fit 

is poor if both domains are used in the alignment (Williams et al., 2000b).  

 

The differences between microbial and eukaryotic P450s affected the modeling, 

homology models of CYP2C5 based on CYPBM3 before its structure was determined 

had large errors. The positions of SRS1 differ giving 5 Å differences in position of 

residues, the F helix is moved significantly in CYP2C5 with a 12 Å displacement 

compared to the model (Williams et al., 2000b). The crysalisation of CYP2C5 was a 

landmark in modelling due to its similarity to other mammalian CYPs. After the 

CYP2C5 structure became available there was an improvement in the modelling of 

other mammalian P450s. The use of CYP2C5 to model CYP2D6 improved the models 

over those based on the microbial structures, principle component analysis showed 

improvements and the model successfully identified residues in the active site (Kirton et 

al., 2002) that were later confirmed in the crystal structure. A model of CYP2D6 based 

on CYP2C5 in another study (Marechal et al., 2008) also showed good agreement with 

the crystal structure. Residues within 5 Å of the heme overlaid well with the crystal and 

the Cα RMSD between the model and crystal was a reasonable 0.8 Å. The main region 

of error was the FG region which adopted a different conformation in the crystal. This 

region is known to vary in size and shape across CYPs.   
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1.10 Kinetics 

P450 kinetics have a clinical relevance as the determination of P450 kinetics can be 

used to predict drug dosing and clearance in humans. There are a number of models that 

are used to determine P450 activity. Microsomes are vesicles of the endoplasmic 

reticulum and can be used as a source of P450s. The transmembrane part of the P450s 

insert into the microsomal membrane with the N terminus facing the luminal side and 

the body of the P450 located on the cytoplasmic side. The reductase and b5 are also 

located on the cytoplasmic side. Microsomes are commonly used as they can be easily 

isolated by centrifugation. However, there can be considerable differences in activity 

between microsomal preparations and as they contain a large number of P450s any 

activity may not easily be attributed to an individual isoform. To study the kinetics of an 

individual P450, baculovirus mediated expression can be used. A baculovirus can be 

used as a vector to carry a P450 gene into cultured insect cells, and is then expressed at 

a high level (Kramer and Tracy, 2008).  

 

The kinetics of a P450 can be described by the Michaelis-Menten equation.  Km is 

defined as the substrate concentration at which half Vmax is reached.  

 

    
                 
        

                 
                

                   
            

where E is the enzyme, S is the substrate and P the product.  

 

   
         

      
 

 

where Vmax is the maximum velocity, Km the Michaelis constant and [S] the substrate 

concentration.  

 

Km is the combination of several rate constants and is equal to k-1 + k2/k1. Km is the 

apparent dissociation constant often associated with the affinity, but the dissociation 

constant Ks is a more accurate description of affinity. The binding of an enzyme and its 

substrate can be represented as: 

      
      

The equilibrium constant is the substrate dissociation constant Ks: 
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The velocity of the enzyme reaction is the rate of product formation and expressed as 

the amount of product produced per time. V0 is the initial velocity of product formation 

and proportional to the steady state concentration of ES. Vmax is the maximal velocity of 

the reaction defined as the value of V0 when the enzyme is completely saturated. 

 

In the presence of an inhibitor there is a decrease in the rate of turnover. Competitive 

inhibitors bind to the same binding region as the substrate to prevent the substrate 

binding. This has no effect on Vmax but increases Km:  

   
        

       
   
  
      

 

where [I] is the inhibitor concentration, Ki is the inhibition constant Ki = [E][I]/[EI]. 

 

Determining Ki usually involves multiple substrate and inhibitor concentrations and 

represents the dissociation constant of the enzyme inhibitor complex. IC50 is the 

concentration of a compound that results in 50% inhibition. it can also be used to 

describe the inhibitory potential of a compound but unlike Ki only one concentration of 

substrate is used in the presence of multiple inhibitor concentrations. Unlike Ki, the 

IC50 measurement is dependent on the concentration of both substrate and inhibitor and 

IC50s may not be comparable unless made at the same enzyme and substrate 

concentrations. Both Ki and IC50 can be used to describe the inhibitory potential of a 

compound, the lower the Ki and the lower the IC50, the higher the affinity. Protein-

ligand binding interactions and binding energies can also be predicted using docking 

(Kramer and Tracy, 2008).   

 

1.11 Structure based drug design 

It is possible to rationally design drugs using the structural model of a protein. Drug 

design can be both computer aided or experimental. Computer aided design can involve 

virtual screening where databases of molecules are docked into the active site and 

scored to find the best binders. De novo drug design involves docking small fragments 

into the site and scoring them, novel drugs can then be created by linking the high 

scoring fragments. Visual inspection of molecules binding to the active site can lead to 

modifications to maximise the interactions. As proteins are flexible in solution they may 

occur as an ensemble of conformations. Dockings in a single rigid structure may not 
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reflect the results in solution. Protein flexibility can be accounted for by using NMR 

ensembles, or by using molecular dynamics or normal modes (Anderson, 2003). 

 

1.12 Modelling and characterization of mosquito P450s 

The next chapter, Chapter 2, covers details of the methods used in the studies in this 

thesis.  

 

In Chapter 3 The modelling procedure for each P450 is discussed, each model is tested 

using data obtained from the collaborators or the literature to determine if the model can 

replicate known experimental results. This aims to demonstrate that the models can 

replicate the known activity of the enzymes and may serve to rationalize further 

experimental data and to priorities ligands for study.  

 

The characteristics of pyrethroid metabolising and non-metabolising enzymes are 

discussed in Chapter 4. Insects express a large number of P450s and it is time 

consuming to characterize an individual enzyme to determine if it is capable of 

metabolism. An understanding of the requirements for binding pyrethroids can be used 

to select candidate P450s for further study. In this chapter, metabolisers are compared to 

the non metabolisers to determine these characteristics, and to suggest a „fingerprint‟ to 

identify metabolisers by their active site characteristics.  

 

The metabolism of other substrates is discussed in Chapter 5. This chapter discusses the 

activity of a number of P450s towards a range of fluorescent probes and acetylene 

inhibitors. As these probes are diverse in structure, the substrate preference gives an 

indication of the structure of the active sites of the enzymes. The residues forming the 

active site that produce the preference could be identified.  

 

A number of factors external to the active site affecting metabolism are discussed in 

Chapter 6. As active site characteristics alone may not explain P450 substrate 

preference and activity, other factors were investigated. The role of b5 in enhancing 

metabolism and shifting product profiles, the effects of membrane binding, and the role 

of SNPs are discussed.   

 

In Chapter 7, the results of the previous chapters are used to design novel pyrethroids 

and probes. Understanding how pyrethroids can bind to the active site for metabolism 
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can be used to place functional groups to mask metabolism, to produce toxic products 

upon metabolism or to produce poor contacts with the active sites to reduce metabolism. 

The design of pyrethroid-like acetylene probes can be used to label pyrethroid 

metabolising P450s for their identification.  

 

Chapter 8 discusses proteins with a role in inflammation in the host response to malaria. 

The central role of Mal and its interactions with proteins in the inflammatory cascade 

are discussed.   
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2. Method 
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2.0 Preface 

This chapter explains the theory behind the different methods used to carry out the work 

in this thesis. A range of tools are available that can be used for the characterisation of a 

protein. The overall strategy is illustrated in Figure 2.1. 

 

 

Figure 2.1 Overview of the strategy used in the characterisation of a protein. See the 

underlined sections for details of each step. 

 

2.1 Introduction 

With the development of large-scale genome sequencing, RNA expression and 

proteome scans, unknown proteins have been identified that are targets for a particular 

function. Although there are experimental structures for some proteins, there is a gap 

between the known sequences and known structures, and elucidating a protein‟s 

function relies on the analysis of structure/function relationships (Guerrucci and Belle, 

1995). A number of tools are available that allow the elucidation of protein structure and 

function and an understanding of these tools is required. 

 

2.2 Homology modelling 

Homology modelling aims to produce a 3D model of an unknown protein based on 

similarity to a known structure. It is based on the observation that the structure of a 
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protein is determined by its amino acid sequence, and similar sequences produce similar 

structures. The structure of proteins from the same family are more conserved than the 

sequence as many combinations of side chains can produce structures that are similar 

(Lesk and Chothia, 1980). Comparative modelling consists of five steps: finding related 

protein structures, selecting one of these structures as a template, aligning the target 

sequence to the template, model building and evaluation. If the evaluation suggests that 

the model is incorrect, the process can be repeated (Sanchez and Sali, 2000).  

 

2.2.1 Template selection 

Searching the PDB can suggest a number of potential templates. To select one or more 

template a number of factors are taken into account (Kopp and Schwede, 2004):  

 

Sequence similarity: The quality of the template is related to the overall sequence 

similarity and inversely related to the number and length of gaps. 

 

Phylogeny: Families of proteins can be organised into subfamilies and phylogenetic 

trees can be used to identify the template from the closest subfamily.  

 

Functional similarity: The similarity between the target and template can be considered. 

This can include similarities in ligands. A template that is bound to a similar ligand may 

be preferred for studying protein-ligand binding. However, in this study many of the 

targets were newly identified and had unknown ligand specificities.  

 

Template quality: The quality of the crystal structure needs to be taken into account. The 

resolution and R factor can indicate the accuracy of the structure. In this study where 

appropriate, the best quality crystal structure was used.  

 

In addition to this Baudry et al. (2006) suggested that to improve the predictive 

capabilities of P450 models there should be discrimination between P450 classes with 

structures subdivided into classes based on their known or presumed electron transfer 

partners. They found that using alignments that discriminate between the different 

classes could give models that are closer to crystal structures than when templates from 

different classes are combined. Therefore, templates from within the same class as the 

target were used for the modelling. 
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2.2.2 Sequence identity 

The first step in homology modelling is to identify a structural template. Templates can 

be identified based on similarities of the amino acid sequence. While transferring 

structural information from a template to a target is straightforward when similarity is 

high, it can be difficult where similarity is low or restricted to a region. A threshold of 

similarity sufficient for homology modelling was proposed by Sander and Schneider 

(1991), where they quantified the relationship between sequence and structural 

similarity, and alignment length. They produced a database of homology derived 

secondary structure of proteins (HSSP) and aligned sequences and structures. From a 

scatter plot of sequence and structural similarity and length, they determined a threshold 

for each alignment length so that any alignment with a similarity over the threshold 

represents structural homology. This length dependant threshold for significant 

sequence identity (the HSSP-curve) is the inverse square root of the length of 

alignment, for alignments between 7-80 residues, and 25% identity for sequences over 

80 residues (Sander and Schneider, 1991) (Figure 2.2).  

 

 

Figure 2.2 Taken from Rost (1999). The HSSP Curve (dotted circles) proposed by 

Sander and Schneider (1991) and the curve proposed by Rost (1999) (diamonds). 

 

This original curve was derived for sequence identity and not for similarity and does not 

take into account that the physico-chemical nature of amino acids, such as 

hydrophobicity, is more conserved than residue type. Rost (1999) produced a threshold 

for sequence similarity. This curve is 100% for alignments of less than 12 residues and 
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10% for alignments above 500 residues. Sequence identity between proteins is used to 

infer evolutionary relationships and similarities in structure. As proteins differ in length, 

identity is corrected and expressed as percent identity but the denominator used can 

affect this value. The four denominators used are the length of the shorter sequence, 

arithmetic mean sequence length, number of aligned positions (including gaps) and 

number of aligned residue pairs (excludes gaps). May (2004) suggested that as the 

number of gaps has a large affect, the arithmetic mean should be used. 

 

2.2.3 Sequence Alignment 

Comparative modelling methods assume a structural equivalence between aligned target 

and template residues. A misalignment of one residue can result in a 4 Å error in the 

model (Fiser and Sali, 2003). The alignment is the most important step in homology 

modelling as if the alignment is incorrect, all other steps will not lead to reliable models. 

Sequence alignment methods can give an optimal alignment given a table of scores for 

matches and mismatches between residues (PAM and BLOSUM matrices) and penalties 

for insertions or deletions of different lengths (Thompson et al., 1994).  

 

Sequence alignments between the template and target can be carried out by 3DCoffee 

(Poirot et al., 2004). This program uses three alignment methods: sequence-sequence, 

structure-structure and structure-sequence threading, and can produce alignments that 

are more accurate than alignments based on sequence information alone. The algorithms 

SAP was used for structure-structure alignment and Fugue was used for the structure-

sequence alignment. Given a data set, the program identifies sequences associated with 

a structure and those that are not. It considers all possible pairs and applies the correct 

algorithm. If both sequences have structures, 3DCoffee makes a global pairwise 

alignment, a local pairwise alignment, and a structure based alignment with SAP. If only 

one has a structure Fugue is used instead of SAP (Poirot et al., 2004).  

 

Sequence structure alignment methods such as Fugue use threading to fit a probe 

sequence onto the backbone of a known structure and evaluate its compatibility. This 

relies on structural similarity and can recognize sequence structure pairs with fold-level 

similarity. Residues in secondary structure tend to be more conserved than those in coil, 

and gaps are less likely to occur in secondary structure. Threading methods use a 

structure based gap penalty which calculates a penalty for each residue according to its 

position relative to secondary structure elements (Shi et al., 2001).    
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The resulting pairwise alignments are compiled into a list of pairs of residues and 

weighted according to the level of identity. When two or more alignments contribute the 

same pair their weights are added. This library of weighted residue pairs is used as a 

substitution matrix. During the multiple sequence alignment, the distance matrix of the 

sequences are used to estimate a guide tree. This tree controls the order sequences are 

included into the multiple sequence alignment (Poirot et al., 2004).  

 

The alignments can be improved manually and also by using programs such as 

RASCAL (Thompson et al., 2003). RASCAL divides a given alignment into regions 

and realigns the badly aligned areas without affecting the whole. It can therefore be 

used to correct alignments.  

 

2.2.4 Secondary structure prediction 

Alignments can be improved by taking secondary structure into account. Gaps should 

be avoided in structural elements and the alignment needs to be inspected in the view of 

the template structure. Secondary structure prediction tools can be used to predict the 

occurrence of helices, sheets and coils and predicted structural similarities to a template 

can also be used to confirm template selection (Arnold et al., 2006). Secondary structure 

prediction can be obtained from a number of tools. 

 

The GOR4 (Garnier et al., 1996) method predicts secondary structure by the use of an 

information function:  

                        

where S is a conformation and R is an amino acid, P(S|R) is the probability of 

conformation S when residue R is present, and P(S) is the probability of S. An 

estimation of I(S;R) can be derived from a database of known sequences and 

corresponding secondary structure. The method relies on the frequencies of structural 

states observed for residues in a 17-residue sliding window. These frequencies are 

converted to structure propensity for the central position of the window (Heringa, 

2000). 

 

Nnpred (Kneller et al., 1990) uses neural networks to predict secondary structure. 

Neural networks can determine the mapping between a set of inputs and outputs such as 

that between sequence and secondary structure. The network acts as a pattern matcher 
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by learning the optimal mapping between input and output patterns, with the mapping 

specified by weights of the network variables. The network is composed of a set of 

computational units linked to other units with connections of modifiable weight trained 

on a structural database. Input units receive the input sequence. Three output units 

correspond to the secondary structure α-helix, β-strand and coil. A sliding window of 13 

residues is inputted and the secondary structure of the central residue is assigned based 

on the output unit with the largest output. 

 

Phyre (Bennett-Lovsey et al., 2008) uses an ensemble of fold recognition systems that 

detect the similarity of a protein sequence with a sequence of known 3D structure, 

which are then combined to give a secondary structure prediction for the sequence. 

  

LOOPP (Meller and Elber, 2001) uses a threading approach which involves the 

matching of a sequence to a shape. The compatibility of a sequence to a structure is 

evaluated by using representations of protein structures and an energy score derived 

from the sum of interaction energies.  

 

2.2.5 BLAST 

Comparative modelling starts with searching known protein structures in the Protein 

Data Bank (PDB) (Berman et al., 2000) using the target sequence. Sequence similarity 

algorithms can be global or local. Global similarity methods optimise the overall 

alignment of two sequences while local methods align conserved subsequences. Local 

methods are preferred for database searching as the database may contain only partial 

sequences and as proteins may share regions of similarity. These methods assign scores 

to inserts and deletions to produce the least costly alignment to minimise the 

evolutionary distance and to maximise similarity. Although dynamic programming 

algorithms such as Needleman Wunsch can give an optimal alignment, they are 

impractical for searching large databases (Altschul et al., 1990). 

  

Blast (Basic Local Alignment Search Tool) (Altschul et al., 1990) was developed for 

database searches due to its speed. It uses a matrix of similarity scores for all possible 

pairs of residues such as the BLOSUM matrix. Identities and conservative replacements 

are assigned positive scores while non conservative replacements are given negative 

scores. Blast searches for exact matches or maximal segment pairs (MSP) which are the 
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highest scoring pair of identical length segments, with the boundaries of the MSP 

chosen to maximise the score. The MSP is a measure of local similarity for any pair of 

sequences and the highest MSP score S can be estimated. Firstly a list of high scoring 

words are compiled. BLAST seeks segment pairs that contain word pairs (of fixed 

length w, usually 3 for proteins) with a score of at least threshold T. A database can be 

scanned to see if it contains a word of length w that can pair with the query, with a score 

greater than the threshold T. This alignment is then extended outwards. The algorithm 

returns the best scoring local alignment. 

 

PSI-BLAST (Altschul et al., 1997) is preferred where there is a low sequence identity 

between targets and templates as this program is suited to finding distantly related 

members of a protein family, and could identify related templates with low sequence 

identities. PSI-BLAST is a position specific iteration of a BLAST search in which a 

profile or position specific scoring matrix is constructed automatically from a multiple 

alignment of an initial BLAST search. The profile is generated from the position scores 

with high scores for conserved regions and low scores for weakly conserved regions. 

This profile is used to perform a second BLAST search, and used to further refine the 

profile. PSI-BLAST searches therefore increase the sensitivity of a standard blast 

search.   

 

Templates of known 3D structure are needed for modelling and can be identified from 

the Protein Data Bank (PDB) (Berman et al., 2000) database by BLASTP (Altschul et 

al., 1990) or PSI-BLAST (Altschul et al., 1997). 

 

2.2.6 Phylogeny 

Neighbour joining (Saitou and Nei, 1987) is widely used to construct phylogenetic 

trees. The algorithm identifies neighbours. Neighbours are operational taxonomic units 

(OTUs) that are connected through a single interior node. The algorithm starts with a 

starlike unrooted tree with the assumption that there is no clustering of OTUs. Some 

pairs of OTUs will be more closely related than other pairs, and pairs are chosen to give 

the smallest branch lengths or total number of substitutions. This pair of OTUs is then 

considered to be a single OTU and the next pair of OTUs are chosen. This process is 

iterated until all interior branches are found (Figure 2.3). As this method does not 

explore all possible tree topologies, this may not produce the minimum evolution tree 

but is efficient. 
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Figure 2.3 (A) A starlike tree with no hierarchical structure. (B) a tree in shich OTUs 1 

and 2 are clustered into a single OTU. Taken from Saitou and Nei (1987).  

  

2.2.7 Model Building 

MODELLER (Sali and Blundell, 1993) attempts to find the most probable structure for 

a given alignment to a template. It involves a modelling method of three stages: 

alignment of the sequence to the template, extraction of spatial restraints on the 

sequence using the alignment, and satisfaction of the restraints to obtain a model. A 

restraint is defined as a probability density function p(x) for the feature x. A probability 

density function (pdf) is used as it gives more information than the mean of 

measurements and upper and lower bounds of a distance, and can be calculated using 

classical mechanics or empirically using a database. The spatial restraints on the target 

can be derived from homology, dihedrals and distances in the target are extracted from 

the alignment with the template. Spatial restraints on a sequence can be obtained from a 

statistical analysis of the relationships between features of protein structure. A database 

of 17 family alignments including 80 proteins was constructed to quantify relationships 

between Cα-Cα distances or between main-chain dihedral angles from related proteins. 

The values of main-chain dihedral angles are calculated from the type of residue, from 

main-chain conformations of an equivalent residue and from sequence similarity 

between the two proteins, and are described as pdfs. Stereochemical restraints such as 

bond length and angle are derived from the molecular mechanics force field 

CHARMM22, and statistical preferences for angles and distances from a representative 

set of proteins. Stereochemical restraints can be obtained from the amino acid sequence 

and include bond angles and distances, planarity of peptide groups and rings, chiralities, 
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and vdW contact distances.  

 

Models are then produced by optimising the pdfs and limiting violations of spatial 

restraints. A molecular pdf is assembled from the collection of feature pdfs and this 

function is optimised. The optimum of the molecular pdf is found by successive 

optimisations of increasingly complex target functions, starting with local restraints and 

introducing more long range interactions, and finally the true molecular pdf 

incorporating all restraints. Loops are modeled using an optimisation approach that 

relies on conjugate gradients and molecular dynamics with simulated annealing. 

 

The MODELLER program is able to generate high quality models automatically 

without user intervention. The alignment of the target and template tends to be the only 

input to the program and is therefore the determining factor influencing the quality of 

the model. MODELLER considers aligned residues to be structurally equivalent, and 

tries to derive a 3D model for the target that is as close to the template as possible. 

Inserted regions, that have no equivalent in the template, are modeled in the context of 

the whole molecule using their sequence alone (Sali and Blundell, 1993). ModLoop is a 

web server for the automated modelling of protein loops that uses the loop modelling 

routine of MODELLER that can be used to remodel loops. 

 

2.2.8 Model evaluation 

Homology modelling can provide good results when the sequence identity is high, but 

at low identities, errors can occur (Rodriguez et al., 1998). Models can be evaluated by 

checking the coordinates or stereochemistry of the model using programs such as 

PROCHECK (Laskowski et al., 1993). PROCHECK uses a Ramachandran plot to 

identify residues in the disallowed regions, and identifies bad contacts between non 

bonded atoms, and measures bond lengths and angles. This gives an assessment of the 

quality of the structure.  

 

2.2.8.1 ERRAT 

ERRAT (Colovos and Yeates, 1993) is a protein verification tool that identifies 

incorrectly folded regions of protein structures based on characteristic atomic 

interactions. ERRAT is useful as it gives the error score for each residue, identifying 

regions that need attention. ERRAT was developed to evaluate the correctness of protein 

structures. Carbon, nitrogen and oxygen atoms can form six distinct types of non-
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covalently bonded interactions, CC, CN, CO, NN, NO and OO. Only non bonded 

interactions where the distance between the atoms is less than a pre set limit (3.5 Å) are 

considered, and for a protein of n length the fractions of interactions are calculated. For 

example the fraction of CC interactions represent the fraction of all pairwise interactions 

that are of the CC type. These were calculated from a database of reliable crystal 

structures.  

 

These interactions occur with non random frequencies in proteins. CC, NO and NN 

interactions are more abundant than in a predicted random association, while CN and 

OO interactions are disfavoured and CO is random. The higher incidence of NO 

interactions may reflect H-bonding while the low incidence of OO interactions may be 

due to repulsions between charged oxygen atoms. Random distributions are expected to 

occur in incorrect regions and by distinguishing between correct and incorrect patterns 

of interactions, incorrectly folded regions can be identified (Colovos and Yeates, 1993). 

 

2.3 Docking 

Docking involves the prediction of the ligand orientation in the binding site, and can be 

used to predict the residues that could be involved in substrate binding. Docking is 

usually multistage, with docking algorithms that pose the ligand into the site, and 

scoring functions that evaluate the interaction, these are reviewed by Kitchen et al. 

(2004).  

 

There are three types of docking method: random search method where random changes 

are made to the ligand position, such as that used by GOLD (Jones et al., 1997) and 

AutoDock (Goodsell et al., 1993); a systematic search where all degrees of freedom of 

the ligand are explored, such as DOCK (Ewing et al., 2001), FlexX (Rarey et al., 1996) 

and Glide (Friesner et al., 2004); and simulation methods where molecular dynamics is 

used to simulate ligand binding such as the minimisation stages of DOCK.    

 

There are also three classes of scoring function: force-field based where molecular 

mechanics force-fields quantify the energies of the receptor-ligand interaction, such as 

DOCK and AutoDock; empirical functions that are fitted to reproduce experimental 

data, such as ChemScore (Baxter et al., 1998; Eldridge et al., 1997) and LUDI (Bohm, 

1994); and knowledge based that are designed to reproduce experimental structures 

rather than binding energies such as DrugScore (Gohlke et al., 2000).  
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In preparation for docking, a number of modifications need to be made to the model. 

MODELLERs output is a 3D model for the target sequence containing the mainchain 

and sidechain non-hydrogen atoms, therefore both the hydrogens and the heme need to 

be added to the model. MOE (Molecular Operating Environment, Chemical Computing 

Group, Inc., Montreal, Quebec) can be used to prepare the heme and to add hydrogens 

to standard positions on the protein. 

 

2.3.1 GOLD 

GOLD (Genetic Optimisation for Ligand Docking) (Jones et al., 1997) uses an 

evolutionary strategy to perform docking. This approach can rapidly identify good but 

not necessarily optimal solutions. It uses a genetic algorithm that mimics evolution by 

the manipulation of data structures called „chromosomes‟. Each chromosome is a 

possible ligand orientation within the binding site and is assigned a score. Instead of one 

large population of chromosomes, they are distributed between subpopulations, or 

islands, with migration between them. Migration involves chromosomes being copied 

from one island to the next with migration occurring 5% of the time. Parent 

chromosomes are chosen and genetic operators, crossover and mutation are applied. 

Crossover combines chromosomes while mutations introduce random permutations. 

Parents are chosen randomly with a bias towards the fittest to introduce an evolutionary 

pressure, the selection method used is termed 'roulette-wheel-selection' as it is 

analogous to a roulette wheel with each member of the population occupying a slice of 

the wheel that is proportional to its fitness.   

 

To prevent the GA converging to a sub-optimal solution and to maintain population 

diversity a low selection pressure of 1.1 is used. This is the relative probability of the 

best individual being selected compared with the average. To further increase diversity, 

when an individual is added to a population, niching is used to compare that individual 

to every member of the population to see if they inhabit the same niche. Chromosomes 

occupying the same niche have RMSDs of less than 1 Å. If the new chromosome is in 

the same niche as an individual in the population, then it replaces the least fit 

chromosome in that niche rather than the least fit in the population. This algorithm is 

stochastic in nature, starting from a randomly generated population, with mutation 

introducing random changes and parent chromosomes are selected at random with a bias 

towards the fittest (Jones et al., 1997). One of the problems of this algorithm is 
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reproducibility and many runs may be needed to elucidate the correct binding mode. In 

this study at least 50 runs were used for each ligand.  

 

The chromosome is represented as four strings. Conformational information such as the 

angle of rotation around a bond are represented by strings for both the protein and 

ligand in two binary strings. Two other strings suggest mappings between the ligand and 

active site. One of these is a mapping between lone pairs in the ligand to hydrogen 

atoms in the protein, the other a mapping of hydrogen atoms in the ligand to lone pairs 

in the protein. By mapping lone pairs with hydrogen atoms, H-bonds are suggested and 

when the chromosome is decoded, a least squares method is used to form as many H-

bonds as possible. However, for ligands with fewer than three hydrogen bond donors or 

acceptors, fitting is not possible. To account for this, for ligands with fewer than five 

donors or acceptors, a mapping is chosen and decoded by placing the acceptor on the 

donor hydrogen fitting point. Although this produces a result, it is less effective than the 

least squares fitting process (Jones et al., 1997). 

 

GOLD requires the user to define the size and location of the active site by specifying 

an origin and a radius. GOLD uses a flood-fill algorithm to locate the solvent accessible 

surface within the radius of the origin, and then identifies concave surfaces to which the 

ligand can bind. In this study the origin was specified as the heme Fe, and the radius as 

20 Å. 

 

2.3.2 ChemScore 

Ligand binding affinity represents the difference in free energy between the protein plus 

unbound ligand in solution, and their complex (Weber et al., 1992). ChemScore (Baxter 

et al., 1998; Eldridge et al., 1997) is an empirical scoring function that calculates an 

estimate of the free energy of binding for a given ligand receptor complex. The 

ChemScore function assigns atom types to all ligand atoms and to all receptor atoms in 

contact with the ligand: 

lipophilic: Cl, Br, and I which are not ions; sulphurs which are not polar or acceptor; 

carbons which are not polar. 

H bond donor: Nitrogens with hydrogens attached; hydrogens attached to N or O. 

H-bond donor/acceptor: Oxygens attached to hydrogens; imine nitrogen.  

H-bond acceptor: Oxygens not attached to hydrogens; N with no hydrogens and one or 

two connections; halogens that are ions; sulphurs with one connection.  
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Polar: N with no hydrogens and more than two connections; phosphorous; carbons and 

sulphurs attached to two or more polar atoms; fluorine; carbons attached to two or more 

polar atoms; carbons in nitriles or carbonyls; N with no hydrogens and four 

connections. 

Metal: metal atoms. 

                              
            

 

             
                   

       

 

            

 

Equation 2.1 The ChemScore empirical scoring function. ΔG terms are coefficients 

derived from multiple linear regression analysis on a training set. 

 

In the ChemScore equation (Equation 2.1) the H-bond term ΣiIg1g2 is calculated for all 

possibilities of hydrogen bonds between the receptor (I) and ligand (i) atoms with a 

penalty score for deviation from ideal angles and distances (Equation 2.2). The metal 

term is a simple contact term between acceptor/donor atoms in the receptor and metal 

atoms in the ligand (Equation 2.3). The lipophilic term is calculated for all lipophilic 

atoms in the receptor (L) and ligand (l) (Equation 2.4) (Eldridge et al., 1997). 

 

 

     
    

 

 

         
            

                                 

            

  

  
 
 

         
         

                         
         

  

 
 

Equation 2.2 The ChemScore H-bond term. Δr is the deviation of the H-bond length 

from 1.85 Å, and Δα the deviation from the ideal angle 180º. 
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Equation 2.3 ChemScore metal term.   

where: 

a= ligand acceptor/donor atoms 

M= receptor metal atoms 

f(r) = a contact term (Figure 2.4) where R1 is 2.2 Å and R2 is 2.6 Å 

raM = interatomic distance between  ligand and receptor atoms.  

 

    
       

Equation 2.4 The ChemScore lipophilic term. 

where: 

l= lipophilic atoms in the ligand. 

L= lipophilic atoms in the receptor. 

f(r) = a contact term (Figure 2.4) where R1 is the vdW radius of l and L +0.5 Å, and R2 

is R1 + 3.0 Å. 

 

 

    Interatomic distance 

Figure 2.4 The form of the function f(r). 

 

The torsional entropy term identifies frozen rotatable bonds. These bonds are considered 

frozen if both sides of the bond are in contact with the receptor, if the distance is less 

than the sum of the vdW radii plus 0.5 Å. If only one side of the bond is in contact, then 

rotation is only partly impaired and the penalty is not large. Large peptide ligands can 

have many frozen rotatable bonds and have an unrealistically high rotatable bond 

penalty. The contribution from rotatable bonds can be reduced as lipophilic peptides can 

fold into a low energy conformation in solution and the number of freely rotatable 

bonds is reduced. Lipophilic sidechains in contact with the receptor can retain entropy 

associated with the non-local nature of lipophilic interactions (Equation 2.5) (Eldridge 

et al., 1997).  
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Equation 2.5 The ChemScore torsional entropy term. 

Where:  

Nrot = number of rotatable bonds. 

Pnl(r) + P'nl(r) = percentage of non-lipophilic atoms either side of the bond.  

 

A clash term is used to penalise close contacts between ligand and receptor heavy atoms 

and depends on the atom types in the clash.  

 

For two atoms that could be involved in hydrogen bond contact the term is zero when 

r>1.60 Å, and for r   1.60 Å is: 

   
    

       
  
      

    
  

 

For a metal contact the term is zero when r> 1.38 Å and for r 1.38 Å the term is: 

  
    

       
  
      

    
  

 

For all other heavy atoms the term is zero when r > rclash and for r  rclash it takes the 

form: 

           
         
       

  

 

r is the distance between the ligand and receptor atom. rclash = 3.35 Å if the receptor 

atom is a sulphur, otherwise  rclash = 3.10 Å. 

The internal energy of the ligand is a sum of torsion and internal clash terms. The 

internal clash takes the same forms as the ligand receptor clash terms but is only 

evaluated for ligand atoms. The torsion term is: 

                  

Where: Φ is the torsion angle.  

For sp
3
-sp

3
 bonds A = 0.1875, n = 3.0, Φ0 =π. For sp

3
-sp

2
 bonds A = 0.09375, n = 6.0, 

Φ0 =0.0. For sp
2
-sp

2
 bonds A = 0.1875, n = 2.0, Φ0 =0 (Baxter et al., 1998). 

The final ChemScore value is obtained by adding the clash penalty and internal torsion 

terms. 
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Constraints can be applied to the dockings such as a distance constraint. The distance 

between a ligand and protein atom can be constrained to within a maximum and 

minimum distance bounds. If a distance lies outside of these bounds, a spring energy 

term is used to reduce its fitness score (Equation 2.6) (Eldridge et al., 1997). 

 

      

Equation 2.6 ChemScore constraint. 

where: x is the difference between the distance and constraint bound. 

k is the user defined spring constant.    

 

The ChemScore function was optimised against a training set of 82 protein ligand 

complexes taken from the PDB for which binding affinities (kJ/mol) are known. The 

function was able to reproduce the binding affinities with an error of 8.86 kJ/mol 

(Eldridge et al., 1997).  

 

2.3.3 DOCK 

The DOCK method (Ewing et al., 2001) is a rapid docking algorithm suited for docking 

databases. It is divided into three parts: 

 

1) Representation of the receptor and ligand and identifying the binding site. To identify 

the active site a program generates a set of spheres to fill all of the grooves on the 

protein surface, these spheres are then collected into binding sites. The sphere centres 

are the putative ligand atom positions. To orient the ligand into the active site, active 

site spheres are paired with ligand atoms. DOCK tries to produce a representation of the 

key in a 'lock and key' representation of ligand binding, If a ligand provides a good 

match then it should fit within the receptor spheres.   

 

2) Matching the receptor and ligand. Ligand and receptor spheres are matched by 

comparing the internal distances ligand-centre/ ligand-centre and receptor-

centre/receptor-centre distances. Sets of ligand centres match sets of receptor centres if 

the internal distances match within a distance tolerance. This allows the identification of 

geometrically similar clusters of spheres in the receptor site.  

 

3) Optimisation of the ligand position. Using a least squares algorithm, the ligand is 

rotated into the receptor spheres to reduce atom overlaps. Finally after the initial 
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orientation, the ligand may be minimised using a rigid body simplex to find a local 

minimum and minimise the energy score.  

2.3.4 DOCK anchor and grow 

For flexible docking, DOCK uses an anchor-and-grow algorithm. During flexible 

docking the ligand is represented by rigid segments separated by rotatable bonds. Using 

the anchor first search, a conformation is constructed and minimised one segment at a 

time starting from an anchor segment (Figure 2.5).  

Step 1) The largest rigid substructure is identified and rigidly oriented into the active 

site by matching ligand atoms to the receptor spheres of the active site.  

 

Step 2) The anchor orientations are evaluated and optimised using a scoring function 

and an energy minimiser. Orientations are ranked, clustered by RMSD. and pruned.  

 

Step 3) The flexible parts of the ligand are then built or grown into the receptor. During 

the growth phase an internal energy score computes the Lennard-Jones and Coulombic 

energy between all ligand atoms to minimise internal clashes.   

 

Step 4) When complete each conformation is locally optimised. 

 

Step 5) If any additional portions of the ligand can act as anchors the process is 

repeated. 

 

It is believed that the shape of the active site will restrict the sampling of the ligand to 

those that are most relevant (Ewing et al., 2001).  

2.3.5 DOCK Scoring 

A grid based score can be generated by DOCK. A simple energy score is based on an 

implementation of force field scoring. The force field scores approximate molecular 

mechanics interaction energies. These consist of van der Waals and Coulombic 

electrostatics components (Equation 2.7) (Meng et al., 1992). 
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Figure 2.5 The DOCK method taken from Ewing et al. (2001). 

 

      
   

   
    

   

   
       

     
    

 

   

   

   

   

  

Equation 2.7 The DOCK score. 

Where: 

E    Intermolecular interaction energy. 

rij   Distance between atoms i and j. 

Aij and Bij  van der Waals repulsion and attraction parameters. 

qi and qj  Point charges on atoms i and j. 

D   Dielectric function. 

332   Factor to convert electrostatic energy to kcal/mol. 

 

DOCK uses the program DISTMAP that produces a grid for a vdW contact score, for 

every receptor atom within contact range, the sum at a grid point is incremented by one 

unless a close contact limit is violated in which case a negative number is added. The 

electrostatic score is based on potentials calculated by DelPhi (Meng et al., 1992). The 

energy function lacks an explicit H-bonding, desolvation and hydrophobicity terms and 

it is known that the limitations of the scoring function affect the accuracy of the binding 

orientations (Kitchen et al., 2004).  
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2.4 Active site solvation 

The binding of a ligand to a protein takes place in aqueous solution and water can 

influence this process by mediating H-bonds, and the presence of a water in the binding 

interface has been shown to increase the range of ligands that can be bound by a protein 

(Ladbury, 1996).  

 

2.4.1 Solvation with DOWSER 

As side chain packing in proteins is not perfect, cavities exist that can accommodate 

waters. To stabilise a water, the cavity has to provide an energetically favourable 

environment comparable to that of liquid water so that the energy transfer of a molecule 

from liquid water to the cavity is negative. DOWSER (Zhang and Hermans, 1996) gives 

a quantitative measure of the hydrophilicity of cavities in proteins by calculating the 

energies of introducing a water molecule into the cavities. DOWSER identifies cavities 

on the surface of the protein, it then searches for the minimum energy positions of a 

water within a cavity. Polar cavities with interaction energies of below -12 kcal/mol 

tend to be filled with water and non-polar cavities with energies greater than this tend to 

be empty. This threshold energy is below the energy of liquid water (-10 kcal/mol) and 

near that of ice (-11.5 kcal/mol). 

 

2.4.2 MOE water soak 

The active site was also solvated using the 'water soak' option of the MOE program 

(Molecular Operating Environment). This solvates the selected parts with a sphere or 

cube with the size determined by the user. The added waters are extracted from a 

predefined box containing the water molecules. While the H-bond networks between the 

water molecules are optimised, H-bond networks between the waters and the protein 

may not be.  

 

2.4.3 GOLD Ligand Docking with water 

GOLD allows waters to be switched on or off and to rotate around three axes to 

optimise H-bonding. To predict if a specific water molecule should be bound or 

displaced, GOLD calculates the free-energy change (ΔGb) associated with transferring a 

water from the bulk solvent to its binding site in the protein. The free energy change for 

a given water molecule is: 
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where ΔGp(w) is a constant penalty for each water that is switched on and represents the 

loss of rigid-body translational and rotational entropy upon binding. ΔGi(w) is the 

binding affinity containing contributions from interactions that the water forms with the 

protein and ligand. For a water to be bound in the protein-ligand complex, its binding 

affinity must outweigh the loss of rigid-body entropy.   

 

This method was found to correctly predict whether a water is present or displaced in 

92% of the cases. The quality of the binding modes has been assessed for three 

categories: primary mediated complexes where a H-bond donor or acceptor H-bonds 

with a water but not with the protein; secondary mediated complexes where ligand 

donors and acceptors can H-bond with water and the protein; non-mediated complexes 

where the ligand displaces all waters in the active site. There was an improvement in the 

binding modes for primary mediated complexes, but there was no affect on the quality 

of the predicted binding modes for secondary and non-mediated complexes. This lack of 

improvement could occur because the interaction between a ligand and water represents 

only a small fraction of interactions a ligand forms and a reasonable binding mode can 

be predicted in the absence of important structural waters (Verdonk et al., 2005).  

 

In test sets where the water should be displaced or where decoy waters were present, 

Verdonk et al. (2005) found a decrease in success rate. They suggested that as these 

waters are in good positions to interact with the protein, they are not easily displaced, 

and including them prevents the algorithm from finding the correct mode. Each water 

included increases the search space, increasing the likelihood of a false positive, and it 

was advised to limit the number of waters in the active site to only include those that are 

known to be involved in ligand binding.    

 

2.5 Model validation 

The development of a computer based representation of the active site of P450s is an 

iterative process that relies on substrate binding data and mutagenesis to test the 

hypotheses driven by the initial models. The model produced should be consistent with 

the known experimental observations such as site directed mutagenesis and ligand 

binding, and the results of the dockings can be used to validate an homology model. 

Where substrates are able to dock with positions of known sites of metabolism above 

the heme, the models can be shown to produce results that are consistent with 

experimental results. A comparison between the ChemScores of docked ligands and the 
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experimentally derived IC50 values can be used as an assessment of model quality. The 

experimental log IC50 scores can be plotted against the negative ChemScores of the 

best ranked solution for each ligand, and the correlation can be used as an assessment of 

quality (Kemp et al., 2004).  

   

2.6 Identification of channels 

Molecular channels are a feature of many biomolecules. In P450s, the active site is 

buried inside the protein and routes exist that allow ligands to enter and leave the site. 

Identifying these channels is important as substrate specificity may not only be 

determined by the active site, but also by the selectivity of access routes (Wade et al., 

2004).  

 

Figure 2.6 Voronoi diagram (thin lines) and outer boundary (dotted line) of a molecule 

represented as atoms (circles).The optimal path (thick line) from a given starting point 

(black circle) represents a found tunnel (taken from Petrek et al, 2007). 

 2.6.1 MOLE 

MOLE (Petrek et al., 2007) was developed for the rapid location of channels, tunnels 

and pores in proteins and is able to give smooth channel profiles and identify 

bottlenecks. It finds channels by seeking an exit pathway from a point inside the protein 

cavity. With both the cavity and exterior defined, it finds the shortest, widest pathway 

between them. MOLE is based on Voronoi diagrams, it represents the protein by atom 

centred van der Waals spheres and constructs a Voronoi diagram. This diagram divides a 
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space according to the distances between the protein atoms and consists of cells 

representing the points closest to the atom in the centre of each cell, the boundary of a 

cell is comprised of facets that form the interface between neighbouring cells (Figure 

2.6). This mesh can be used to search for molecular channels leading from a given point 

to the outside. The boundary between the protein and environment is approximated and 

the cheapest pathway from the starting point and the exterior is identified. MOLE has 

been shown to be capable of identifying access or egress channels and channel 

networks. 

 

2.7 Protein-protein docking  

Protein-protein interactions play an important role in many biochemical processes. The 

goal of protein-protein interaction predictors is to take two proteins and derive a model 

of the bound structure. Protein docking is carried out in two stages, the initial stage and 

the refinement stage. In the initial stage the proteins are treated as rigid and all docking 

sites are explored to produce a number of complexes. In the refinement stage a small 

number of the complexes produced are refined with conformational searches using side 

and main chain rotamers and scored using more detailed energy functions (Chen et al., 

2003).  

 

2.7.1 GRAMM 

GRAMM (Vakser, 1995) contains a geometric algorithm. The coordinates of each 

protein are projected onto a three dimensional grid. Grid points are considered inside the 

molecule if they are within the van der Waals radius of an atom. Grid points at the 

surface of the protein are distinguished from the interior as a layer of finite width 

between the outside and inside. The surfaces of the two proteins are then matched. One 

molecule is moved relative to the other in each dimension and a correlation between the 

molecules is determined. If there is no contact between the molecules the correlation is 

0; if there is contact the correlation is positive (Equation 2.8).  

 

To prevent the penetration of one molecule into the other, ρ is given a large negative 

score while δ is given a small positive score so that when penetration occurs the 

multiplication of negative numbers by positive numbers results in a negative score. A 

good geometric match occurs where there are coordinates with a high positive 

correlation peak and the width of the peak gives a measure of displacement of the 

molecule before the match is lost. All possible orientations of the ligand molecule are 
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sampled with the positions of the ligand with the highest score retrieved (Katchalski-

Katzir et al., 1992).  

 

 

        
                            
                          
                     

  

 

        
                            
                        
                     

  

 

Equation 2.8 The GRAMM geometric recognition algorithm. 

 

A number of factors are known to affect this algorithm. As the atomic coordinates of 

both molecules are used excluding the hydrogens, the quality of the match is affected. 

Although conformational change is likely to occur, both molecules are assumed to be 

rigid leading to either gaps or overlaps in the contact area. While this can be tolerated 

by increasing the layer of grid points that form the surface, a thicker layer can lead to 

false matches by increasing the tolerance to the deviation away from the correct match. 

The grid size is an important parameter. A fine grid uses excessive computational time 

while with a large grid spurious correlations can occur. As no feature smaller than the 

grid step is considered it is the threshold for molecular data, and a large grid step can be 

used for molecules with no local details such as low resolution structures or models 

where there may be inaccuracies in the surface details. As geometric surface 

complementarity methods only maximises surface contact between molecules, they are 

known to have various problems. There may be a number of solutions for geometric fit 

so that the correct fit may occur along with many false solutions. As the algorithm 

assumes rigid bodies, it does not take into account the conformational changes that may 

occur and may result in failure when using the structures of the free compounds 

(unbound docking) (Katchalski-Katzir et al., 1992). 

 

2.7.2 PatchDock 

PatchDock (Duhovny et al., 2002) also determines surface complementarity but using a 

different strategy. Firstly, the surface of the protein is divided into patches based on 

geometric shape (concave, convex, flat). These are then filtered with hot-spots retained. 
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Protein-protein interaction faces tend to have conserved polar and aromatic hot-spot 

residues. Secondly, the patches are matched between the proteins, concave with convex 

and flat with any type. Thirdly, the complexes are scored with penalties for overlaps and 

scores for complementarity.  

 

2.7.3 Zdock 

Zdock (Chen et al., 2003; Chen and Weng, 2003) uses pairwise shape complementarity 

(PSC), desolvation (DE) and electrostatics (ELEC) to create a scoring function 

PSC+DE+ELEC. 

 

The favourable component of PSC is defined as the number of receptor ligand atom 

pairs within a distance cut off. This cut off is defined as a parameter D plus the receptor 

atom radius to account for different atomic radii. The unfavourable component is 

proportional to the number of overlapping grid points between the receptor and ligand. 

Rpsc and Lpsc describe the geometric characteristics for the receptor and ligand in an 

NxNxN grid. A solvent accessible surface layer is not defined. Instead for grid points in 

the open space, the number of atoms within a distance cut off are recorded.  

                  
                                          

                         
          

  

 

                  
                                              
          

   

 

                 

                                     
             
           

  

Equation 2.9 The Zdock PSC term. 

 

The penalties for different grid overlaps: 

core-core  -9*9 = -81 

surface-core   -3*9 = -27 

surface-surface -3*3 =-9 

The small penalty for surface overlaps allows a toleration of structural flexibility. The 

Re[] terms compute the favourable component of PSC, for each grid point in open 

space, Re[Rpsc] denotes the number of receptor atoms within the distance cut off. 

Re[Lpsc] records the nearest grid point for each ligand atom. Multiplying these two 

terms gives the total number of receptor-ligand atom pairs within the distance cut off. 
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The favourable and unfavourable components can be summed to give a single score 

with high scores indicating good shape complementarity.  

 

To estimate desolvation, the atomic contact energy (ACE) is used. ACE is defined as the 

change in free energy when breaking two protein-water contacts and forming protein-

protein and water-water contacts. The total desolvation score is the sum of the ACE 

scores of all receptor and ligand atoms within a distance cut off of 6 Å. ACE scores 

range from 1.334 (unfavourable ) to -1.827 (favourable) while the PSC scores give a 

score of 1 for atom pairs. To make the PSC and ACE scores compatible, the signs of the 

PSC are flipped and the penalty score reduced to -1.334. When PSC and ACE are 

summed, the more negative the score, the more favourable the interaction energy.  

Rde and Lde are used to describe the desolvation properties and Rpsc and Lpsc describe the 

shape. 

            

                                

              
           

  

 

 

                  
                                                   

          
  

 

                  
                                               
           

   

 

Equation 2.10 The Zdock desolvation term. 

Electrostatics are computed using the Coulombic formula. This is expressed as a 

function of the electrical potential generated by the receptor and partial charges of 

ligand atoms. This is multiplied by a scaling factor and added to the PSC and DE scores 

(Chen et al., 2003).  

2.7.4 DOT 

DOT (Daughter of Turnip) (Mandell et al., 2001) incorporates both van der Waals 

(geometric fit) and solvent continuum electrostatics provided by the Poisson-Boltzmann 

equation. Unlike the Coulombic model, this gives a more accurate energy term as it 

captures the dielectric constants of water, protein and lipid phases of a system. The 

Poisson equation finds the electric potential for a charge distribution and the Poisson-

Boltzmann equation is obtained when the charge distribution of counter ions in the 

solution is added to the charge distribution of the protein. DOT calculates the free 

energy landscape and can generate a hot-spot or cluster of favourable energies 
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surrounding a crystallographic solution. Such a cluster of favourable free energies could 

imply an energy funnel and productive binding.  

 

2.7.5 ClusPro 

Docking algorithms such as GRAMM produce thousands of millions of putative 

complexes covering the relative positions of the two molecules producing a few native 

structures among many false conformations. These need to be evaluated to identify the 

native complex. Complexes can be first filtered assuming that the native complex is at a 

global free energy minimum using desolvation and electrostatic energies to eliminate 

many false complexes It is also assumed that the native structure is the global minimum 

where the energy landscape will be broadest and deepest but that the surface will also 

have local minima narrower and shallower than the global minimum. Therefore the 

centre of the most populated cluster is expected to be closest to the native complex 

(Comeau et al., 2004a).  

 

ClusPro (Comeau et al., 2004a; Comeau et al., 2004b) is a fully automated web-based 

program for protein-protein docking. ClusPro uses either DOT or ZDOCK to perform 

rigid body dockings to generate many docked conformations. DOT uses a 128 Å x 128 

Å x 128 Å grid with a grid spacing of 1 Å and 13,000 rotations to generate 2.7x10
10

 

structures. ClusPro retains 20,000 of these based on surface complementarity scores 

which are then subjected to filtering by free energy. ZDOCK differs from DOT in that it 

combines shape complementarity with desolvation and electrostatics. Only 2000 of 

these structures are kept to be filtered.  

 

The complexes generated by either ZDOCK or DOT are filtered using the atomic 

contact potential to give a statistical measure of desolvation free energy, and a 

Coulombic model to give the electrostatic free energy. While the atomic contact is a 

smooth potential and resistant to side chain conformation, the electrostatic potential is 

sensitive to incorrect rotamers and a larger number of electrostatic structures pass 

though the filter. To identify the global minimum the 2000 most favourable structures 

are then clustered based on a pairwise binding site RMSD. For each of the structures 

where the ligand protein has an atom within 10 Å of the receptor protein, the distance 

between the Ca of that complex and the Ca of the remaining complexes are calculated. 

Clusters are formed by selecting the ligand with the most neighbours. Clustering occurs 

until at least 30 clusters are formed (Comeau et al., 2004a).      
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2.7.6 FireDock 

FireDock (Fast Interaction REfinement in molecular DOCKing) (Andrusier et al., 2007) 

is a method of refining and re-scoring rigid body docking solutions. Such refinement 

tries to improve the rigid body docking by considering the flexibility of the sidechains 

and backbone. Side chain flexibility is restricted to clashing residues at the interface. 

The interface is defined as a residue with at least one atom within 6 Å of any atom of 

the docking partner. Side chain flexibility is modeled by rotamers using the Dunbrack 

backbone dependent rotamer library. A rotamer set for each residue is created by 

collecting high probability rotamers. This is then followed by refining the relative 

position of the docking partners using Monte Carlo minimisation of the docking score. 

The refined candidates are then ranked by the docking score. The top 25 are refined 

again with full interface sidechain optimisation, in this stage the atomic radii are less 

smoothed.  

 

The docking score is an ACE based free energy score which is an approximation of the 

binding free energy. The binding free energy is the change in the free energy of the 

system which occurs upon complex formation: 

                

where G
C
 is the free energy of the receptor ligand complex and G

R 
and G

L
 are the free 

energies of the unbound receptor and ligand. As only interface residues can change their 

conformation the complex is split into interface and non-interface regions and the 

complex energy is split into intramolecular and intermolecular energy: 

           
         

           
         

   

              
                

                
  

ΔG is then described by the change in intermolecular complex energy and change in 

interface intramolecular energies of each molecule caused by binding. The desolvation 

free energy is estimated by the ACE potential, and is defined as the free energy change 

when a bond between two atoms is replaced by solvent bonds. The electrostatic 

contribution is approximated by the pairwise Coulombic energy (Andrusier et al., 2007). 

 

2.8 Electrostatics 

An important feature of the function of proteins is their specificity of binding to one and 

other and electrostatic interactions play an important role in this. Charge-solvent 

interactions are also important factors in the binding of charged substrates to proteins 



80 

 

and protein folding, ionised amino acids prefer to occur on the surfaces of proteins due 

to the favourable interactions between them and solvent (Gilson and Honig, 1988). 

DelPhi (Gilson et al., 1988; Honig and Nicholls, 1995; Rocchia et al., 2002) can be used 

to calculate solution electrostatics, it solves the Poisson–Boltzmann equation (PBE) for 

a protein-solvent system. PBE relates the charges on the atoms to the electrostatic 

potential at all points in space taking into account the effects of solvent. The 

electrostatic potential can be visually represented and displayed, and proteins can have 

unique patterns that indicate a functional role (Honig and Nicholls, 1995). 

 

2.9 Membrane binding  

P450s are membrane bound enzymes attached to the endoplasmic reticulum, and the 

interaction with the membrane may have a role in its function (Schleinkofer et al., 

2005).  

 

2.9.1 MAPAS 

MAPAS (Sharikov et al., 2008) was used to predict the number of residues in contact 

with the membrane and to predict the plane of attachment. MAPAS assumes that the 

planar region contacting the membrane must provide the binding energy to keep the 

protein at the membrane surface. MAPAS identifies all of the planar surfaces and 

produces a number of scoring methods to evaluate them. The membranephilic residues 

score (MRS) is calculated by using the membrane disengagement score W from a 

steered MD of each residue. An MRS>4 indicates support for membrane binding.  

 

 

                             
       

          
  

Equation 2.11 The membranephilic residues score. 

where: 

Nui = number of uncharged residues in the plane  

Nci = number of charged residues in the plane 

Sui = solvent accessible surface of the uncharged residue that is included in the plane 

Suimax = maximum solvent accessible surface of the uncharged residue that is included 

in the plane  

 

The membranephilic area score (MAS) assumes that the membrane contact area will 

contain membranephilic residues. An MAS of >40% indicates support for membrane 

binding. 
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Equation 2.12 The membranephilic area score. 

Stop(plane) = solvent accessible surface of the top 5 membranephilic residues  in the 

plane 

Sall(plane) = solvent accessible surface of all residues in the plane.  

 

Kmpha assumes that the overall surface properties will influence the tendency of the 

membranephilic region to bind to the membrane and is a measure of „membranephilic 

asymmetry. A Kmpa of >2 indicates that the protein is membrane contacting.  

 

 

      
     

 
             
             

 

 

Equation 2.13 The Kmpha score. 

Stop(protein) = the solvent accessible surface of the membranephilic residues of the 

entire protein 

Sall(protein) = the solvent accessible surface of all residues of the protein.  

 

2.9.2 HotPatch 

HotPatch (Pettit et al., 2007) predicts the locations of functional sites by finding patches 

of properties on protein surfaces. It can identify specific patches identified as the 

fraction of residues in the region that have a property. To identify a patch it evaluates the 

property of interest for all atoms of the protein and clusters the atoms with a high value 

of the property. It scores each patch to assign a statistical score to describe how probable 

it is for the patch to overlap a functional site.  

 

2.10 Pharmacophores 

A pharmacophore is a set of structural features in a ligand that are related to its 

recognition by a receptor and its biological activity. The spacial arrangement of these 

features to form a 3D pharmacophore represents the set of interactions of a ligand with 

its receptor. A given pharmacophore is limited in representing the mode of action of 

ligands that bind to the same target. There are two approaches to developing a 

pharmacophore, either the analysis of the receptor (structure based design) or from the 

set of ligands that bind to a target (ligand based design) (Wolber and Langer, 2005).  



82 

 

 

2.10.1 MOE 

The MOE pharmacophore analysis module (Chemical Computing Group) uses a ligand-

based approach. Features on a ligand are represented by points in space that are labeled 

to represent the pharmacophoric features at that location. A pharmacophore consensus 

can be used to generate a pharmacophore that is consistent with a set of aligned 

conformations. This consensus pharmacophore is composed of all features of all 

molecules.  

 

2.10.2 LigandScout 

LigandScout (Wolber and Langer, 2005) uses a structure based approach to 

pharmacophores. This method is associated with docking as the first step involves 

aligning the ligand into the receptor. It uses a rule set to automatically detect and 

classify protein-ligand interactions into H-bond, charge transfers and lipophilic 

interactions. This set of interactions forms the pharmacophore.  

 

2.10.3 SARvision 

Structure activity trends are important in drug discovery. SARvision (Reichard, 2008) is 

a tool to analyse patterns in collections of compounds. From these collections an 

algorithm identifies and sorts scaffolds into a tree of substructures. This tree allows the 

sorting or filtering of compounds, by clicking on a scaffold it creates a substructure 

filter that allows the interrogation of the subset, and as scaffolds can be sorted according 

to frequency and size, the structural distribution of a compound collection can be 

determined. Where a compound collection contains biological data, scaffolds can be 

sorted by this value to identify structure-activity trends for drug discovery.  

 

2.11 Site of metabolism prediction 

MetaSite (Molecular Discovery Ltd., London, UK) (Cruciani et al., 2005) predicts the 

metabolic biotransformations that are carried out by P450s based on both the reactivity 

and accessibility to the heme of ligand atoms. Each atom in the substrate is assigned a 

score that is proportional to the exposure of the substrate towards the heme and its 

reactivity.  

 

MetaSite calculates two sets of descriptors, one for the protein and one for the substrate, 

based on GRID interaction fields. A probe is used to measure the potential at each point 
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and many different probes are used to represent different chemical groups to give 

information on how the protein might interact with the ligand.   

 

The flexible mode of GRID was used. This allows the sidechains to move in response to 

attractive or repulsive interactions with the probe. Flexible interaction fields are 

independent of the initial sidechain position and can simulate the adaptation of the 

enzyme to the substrate by mimicking the movements that may occur. As substrates are 

flexible and as the conformation is relevant to substrate recognition, the substrate is 

modeled based on a low energy minimum conformation and the obtained conformers 

are induced by the interaction field and shape of the active site. Sets of descriptors of 

the protein and substrate are compared. 

 

The prediction of the site of metabolism is based on the hypothesis that the distance 

from the reaction centre of the protein and interaction points in the cavity should 

correlate with the distance between the reactive centre of the molecule and the position 

of the different atom types in the molecule. Each atom in the substrate is assigned a 

score that is proportional to the exposure of the substrate towards the heme.  

 

MetaSite calculates the reactivity of the atoms in the substrate. The formation of a 

radical species is needed for the reaction and Ri is the reactivity of atom i and represents 

the energy required to produce the intermediate. As ab initio methods to calculate Ri are 

slow, they collected druglike substrates for P450s and detected the non-redundant 

fragments and carried out ab initio calculations on the fragments to simulate hydrogen 

abstraction. Atomic positions were classified and ranked from stable (0.0) to strongly 

reactive (1.5). The fragments are recognised in the substrate and the Ri are assigned to 

the atomic positions (Cruciani et al., 2005).  

 

2.12 Dynamics 

Proteins can sample a large ensemble of conformations around an average structure but 

crystal structures and homology models are static snapshots. To understand protein 

function dynamics needs to be taken into account.  

 

2.12.1 Normal modes 

Normal mode analysis (NMA) is a computational method for studying the large 

amplitude motions that are involved in the function of proteins. It has been shown that 



84 

 

important transition pathways often follow the trajectories of one or a few low 

frequency normal modes. Protein structure is thought to have evolved to follow one or a 

few normal modes so that their structural flexibility facilitates the important 

conformations. NMA can be used to predict the conformational changes that a protein 

undergoes to carry out its function and protein motions can be represented as a 

superposition of normal modes fluctuating around an energy minimum (Suhre and 

Sanejouand, 2004). NMA can be used to address the problem of the flexibility of the 

protein during docking as it can be used to explore the collective motions that are 

functionally relevant and can provide structures that can be used for docking (Floquet et 

al., 2006).   

 

2.12.2 ElNémo 

The input to ElNémo (Suhre and Sanejouand, 2004) is a protein model that is the 

reference, and it determines the interaction matrix for the elastic model and computes its 

normal modes. The ElNémo normal mode calculation is based on an approximation of 

the energy function around a minimum energy conformation. The approximation allows 

the solution of the equations of motion by diagonalising the Hessian matrix. The 

eigenvectors of this matrix are the normal modes. A single-parameter Hookean potential 

is used which can yield low-frequency normal modes as accurate as those obtained by 

empirical force fields: 

              
  

 

   
    

 

where    is the distance between two atoms i and j,    
  is the distance between the 

atoms in the three dimensional structure, c is the spring constant of the Hookean 

potential, and Rc is a cut-off. This implies that the reference structure is the energy 

minimum conformation and all atoms have the same fixed value for the kinetic energy 

term. Building block approximation is used to group several residues into a single block 

super-residue. This approximation allows for a reasonable computational time and has 

little influence on the low frequency modes.    

 

The degree of collectivity is calculated that indicates the fraction of residues that are 

affected by a given mode. Maximal collectivity is indicated by 1 while for motions that 

involve few atoms it approaches 0. Low frequency modes related to function are 

expected to be collective. Localised motions tend to correspond to extended parts of the 
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system like the termini and are usually meaningless. ElNémo produces normal mode 

perturbed models that are the original reference structure with a perturbation that 

corresponds to the normal mode applied to every atom (Suhre and Sanejouand, 2004).  

 

2.12.3 Identification of protein domains 

Proteins can be crystallised in more than one conformation. They may have open and 

closed conformations, and these are thought to represent the conformations that are 

accessible under normal conditions. If a protein has more than one conformation, 

domains can be defined based on the groups of residues that move in a concerted 

fashion and the function of a protein can be can be related to the domain motions. 

DynDom (Hayward and Berendsen, 1998) identifies protein domains. Domains can be 

identified based on their differing rotational properties and can be identified from a 

structure and a set of displacement vectors. Such displacement vectors can be 

determined from a normal mode analysis.  

   

2.12.4 Molecular dynamics 

NAMD (Phillips et al., 2005) was designed to be an easy to use molecular modelling 

tool allowing access to dynamic information extrapolated from structures. NAMD 

simulates how the atoms of a molecule move according to Newtonian equations of 

motion. 

 

The total potential energy is dependent on all atomic positions and couples the motions 

of atoms. Potential energy is represented through the MD force field and is the most 

crucial part of the simulation as it must represent the interaction between atoms. For an 

all atom MD, all atoms experience a force specified by the force field that accounts for 

the interaction of that atom with the rest of the system. NAMD uses a common potential 

energy function: 

 

                                                

 

 where Ubond,Uangle and  Udihedral describe the stretching, bending and torsional bonded 

interactions: 
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where bonds counts each covalent bond, angles are the angles between each pair of 

bonds sharing an atom and dihedral describes atom pairs separated by three covalent 

bonds and the central bond subject to a torsional angle Φ.  

 

Uvdw and Ucoulomb describe interactions between non bonded atoms corresponding to the 

van der Waals force approximated by a Lennard-Jones 6-12 potential, and electrostatic 

interactions:  

 

             
   
   
 

  

  
   
   
 

 

 

    

 

          
    

       
    

 

 

For every particle the parameters such as   
    and     for the interactions are stated in 

the force field parameter files. In this study the parameters from CHARMM are used.  

 

To avoid surface effects at the boundary of the simulated system, periodic boundary 

conditions are used. The system is enclosed in a cell that is replicated by periodic 

translations so that when a particle leaves the cell on one side, it is replaced by a copy 

entering the cell on the opposite side. Each particle is subject to the potential from all 

other particles in the system including the images in the surrounding cells, thereby 

eliminating surface effects, although under the minimum-image convention each 

particle interacts with the closest image.  
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3. Modelling and characterisation of P450s 
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3.0 Preface 

This chapter covers the homology modelling and characterisation of a number of 

pyrethroid metabolising and non-metabolising P450s. Many of these have been 

identified by studies done in collaboration with the Liverpool School of Tropical 

Medicine where the expression and characterisation of these proteins were carried out 

while others have been identified from the literature. 

 

3.1 CYP6 family 

3.1.1 Evolutionary relationships between metabolisers 

The CYP6 family are related to the CYP3 and CYP5 families and are the most 

numerous of the insect P450 genes (Feyereisen, 2006). Sasabe et al. (2004) noted that in 

insects, a number of genes linked to insecticide resistance appear to be related to the 

CYP6 family. There have been studies demonstrating the metabolism of cyclodiene 

insecticides by CYP6A1 (Andersen et al., 1994), and pyrethroids by CYP6D1 and 

CYP6B8, and it has been suggested that there could be an evolutionary relationship 

between the allelochemical-inducible CYP6 genes and resistance. This suggestion has 

been further supported by the finding that CYP6A1, CYP6B8 and CYP321A1 can 

metabolise plant compounds. CYP6A1 was found to metabolise farnesyl, geranyl and 

neryl esters of plant origin (Sasabe et al., 2004), while CYP6B8 and CYP321A1 

metabolised a wide range of plant compounds as well as insecticides (Li et al., 2004; 

Sasabe et al., 2004). 

 

It is possible there could be evolutionary relationships between the pyrethroid 

metabolisers of humans and insects. The insect pyrethroid metabolising CYP6s are in 

the CYP3 clade and are related to vertebrate CYP3 and 5 families (Feyereisen, 2006), 

but show a high sequence identity to the CYP3A subfamily, members of which have 

been shown to metabolise pyrethroids. The insect CYP6 family has been considered to 

have only recently diverged from the CYP3 family, estimated divergence time between 

470 mya and 80 mya (Lewis et al., 1998). Here the Anopheles CYP6 and CYP9 are also 

identified as pyrethroid metabolising enzymes also belonging to the CYP3 clade.   

 

However, functional conservation between homologs does not explain all cases of 

pyrethroid metabolism. Not all pyrethroid metabolising enzymes occur within the CYP3 

clade. Members of the mammalian CYP1 and 2 families have also been found to 

metabolise pyrethroids. The CYP1 and 2 families diverged from the CYP3 clade an 
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estimated 800 mya (Lewis et al., 1998) and the rat CYP1A2 has been shown to be the 

most active P450 in deltamethrin metabolism. The overlapping substrate specificity for 

pyrethroids may be due to commonalities in active sites between pyrethroid 

metaboliers.  

 

3.1.2 Template selection 

Members of the CYP6 family were individually submitted to the PSI-BLAST server for 

three iterations. CYP3A4 was consistently identified as among the top hits and as 

having the highest sequence identity. In addition, the CYP6s have been identified as 

being members of the CYP3 clade along with CYP3A4. This is also shown by a 

neighbour-joining tree (Figure 3.1). The selection of CYP3A4 as a template was further 

supported by secondary structure predictors as the CYP6 sequences are predicted to 

have similar structural features as CYP3A4 (1TQN). Alignments to this template were 

submitted to Modeller v8.0 using the input script in Appendix A and the lowest energy 

models were selected. 

 

Figure 3.1 ClustalW neighbour joining tree for the insect CYP6s and the hits from PSI-

BLAST labelled as PDB ID_CYP_species. 
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3.1.3 Anopheles gambiae CYP6M2 

Muller et al. (2007) compared the pyrethroid resistant Odumasy strain with the 

susceptible Kisumu strain and found that a number of genes including CYP6M2 are 

over expressed in the resistant Anopheles gambiae.    

 

3.1.3.1 Alignment 

CYP3A4 was identified as the closest related to CYP6M2 and had the highest identity 

with a 30% identity over the aligned region or 33% over length the shortest sequence. 

CYP3A4 can also metabolise similar compounds such as deltamethrin and luciferin. 

3DCoffee was used to produce an alignment. However, an insert occurred in the BC 

loop that affected the positioning of residues in the active site. The 3DCoffee output 

was altered by moving the position of the insert as was suggested by a multiple 

alignment of related CYP3 clade pyrethroid metabolisers (Figure 3.2). In the model this 

insert is positioned at the surface of the protein which is consistent with the insertion of 

polar residues.  

 

Figure 3.2 Alignments of CYP6M2 with the template CYP3A4. (A) 3DCoffee output. 

(B) Edited alignment. (C) Multiple alignment of CYP3 clade pyrethroid metabolisers. 

The alignment display colours the amino acids according to physicochemical property 

(polar positive: blue; polar negative: red; polar neutral: green; non-polar aliphatic: 

white; non-polar aromatic: purple; Pro and Gly: brown; Cys: yellow). 

 

3.1.3.2 CYP6M2 model evaluation 

From an output of 30 structures from modeller a model was selected based on ERRAT 

profile and MODELLER score. The model chosen showed few regions of disorder and 

a good ERRAT score, and most disordered regions that were present corresponded to 
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inserts. The disordered region between residues 50 and 60 corresponded to a partial 

unwinding of the A helix due to the substitution for a proline within the helix (Figure 

3.3).  

 

 

Figure 3.3 Errat profile of the CYP6M2 model and template CYP3A4. * On the error 

axis the two lines represent the confidence with which it is possible to reject regions that 

exceed that error value. The overall quality is the percentage of the protein for which the 

error value is below the 95% rejection limit, for CYP6M2 this is 74%. 

 

3.1.3.3 Validation 

The activity of CYP6M2 towards luciferins has been determined for range of luciferins 

(Figure 3.4). The scores of the dockings reflect the activity towards the luciferins. The 

preferred substrates (L-PPXE, L-PFBE and L-BE) show higher scores than the poor 

substrates (L-H, L-ME) except for L-CEE (Table 3.1). The first ranked mode of PPXE 

was too distant for metabolism at 5.2 Å. A constrained docking was used to place the 

PPXE site of metabolism close to the heme between 1.5-4.5 Å. Although this was a 
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constrained docking, it produced a higher score than the free docking and indicates that 

PPXE is able to bind for metabolism with a high score (Table 3.2). Genetic algorithms 

like GOLD may not find the optimal solution but find reasonable solutions. The greater 

score of the constrained docking may be due to a smaller search space allowing for a 

denser sampling of conformations to find a more optimal solution.  

 

 

Figure 3.4 (A) The luciferin compounds tested: 6′-deoxyluciferin (-H), luciferin 6′-

methyl ether (-ME), luciferin 6′-chloroethyl ether (-CEE), luciferin 6′ benzyl ether (-

BE), luciferin 6′-pentafluorobenzyl ether (-PFBE) and luciferin-6' phenylpiperazinylyl 

ether (-PPXE). (B) Activity of CYP6M2 towards the luciferins: 6′-deoxyluciferin (L-H), 

luciferin 6′-methyl ether (L-ME), luciferin 6′-chloroethyl ether (L-CEE), luciferin 6′ 

benzyl ether (L-BE), luciferin 6′-pentafluorobenzyl ether (L-PFBE) and luciferin-6' 

phenylpiperazinylyl ether (L-PPXE) (McLaughlin, unpublished).  

A

B
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Table 3.1 ChemScores (kJ/mol) of productive modes of luciferins in CYP6M2. 

 rnk Score         ΔG    S(hbond)    S(metal) S(lipo)    H(rot)  ΔE(clash)ΔE(int) 

PPXE  1
st
 52.4         -57.9       0.5            0.0        484.9      2.3       2.5        2.9 

BE      1 47.1         -49.0       0.9            0.0        389.5      2.1       0.7        1.2   

PFBE   1   36.2         -44.3       0.9            0.0        361.9      2.7       6.2        1.8 

ME 1 33.8         -42.4       1.7            0.0        306.6      1.8       8.2        0.4 

CEE 1 38.8         -45.8       1.6            0.0        344.4      2.1       6.7        0.4 

H 1 33.7         -41.0       1.9            0.0        283.9      1.5       7.1        0.3    

 

Table 3.2 ChemScore (kJ/mol) of a restrained docking of PPXE in CYP6M2. 

  Score         ΔG    S(hbond)    S(metal)  S(lipo)  H(rot)  ΔE(clash) ΔE(int) 

PPXE_   65.8         -70.5       1.8            0.0         555.7      2.3       3.2        1.5              

 

To detect the fluorescent product, metabolism needs to occur on the carbon next to the 

oxygen to break the C-O bond and release the fluorescent luciferin. The binding modes 

of -ME, -CEE and the constrained -PPXE are similar and occur with the body of the 

luciferin perpendicular to the heme and H-bonds to residues of the G'G loop. In this 

position the body of the luciferin can π-stack with F123 and form hydrophobic 

interactions with H121 and the I helix, two H-bonds occur with Q241 and T242 of the 

G'G loop. The chain of PPXE can form additional aromatic interactions as it can π-stack 

between F110 of the BC loop and F367 of SRS5 (Figure 3.5, A and B).  

 

Figure 3.5 CYP6M2 binding -ME free docking (A), -PPXE constrained docking (B) and 

–BE free docking (C). Sires of metabolism indicated by arrows.  
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Figure 3.6 Two binding modes of deltamethrin in CYP6M2, binding for metabolism at 

the 4‟ (A) and the trans methyl (B). 

The binding mode of -BE and -PFBE differ, with the body of the luciferin towards 

SRS5 forming hydrophobic interactions with F376, the benzyl ring and the aromatic 

ring of the body stacks around F123 while a H-bond occurs with Q79 of beta strand 1-1 

(Figure 3.5, C). CYP6M2 has also been found to metabolise deltamethrin at the 4' and 

trans methyl. Deltamethrin binds according to the known regiospecifity with a mode 

that allows metabolism on the trans methyl and one that allows metabolism on the 4' 

(Figure 3.6). 

 

3.1.4 Anopheles gambiae CYP6P3 

CYP6P3 has been found to be upregulated in pyrethroid resistant A. gambiae 

populations (Djouaka et al., 2008). A PSI-BLAST search of the CYP6P3 sequence 

identified CYP3A4 as a template and a neighbour joining phylogenetic tree also 

confirms homology to the CYP6 family and the CYP3 clade. The CYP6P3 sequence 

was aligned to the template using 3DCoffee. However, this automated alignment may 

mis-position an insert. A structural re-alignment was carried out using secondary 

structure predictors to predict the structure and then realigning structural elements to the 

template.  

 

In the template the A helix is followed by a short loop of a single residue, and then beta 

strand β1-1, loop, β1-2. Compared to CYP3A4, CYP6P3 has an insert at this position. 

The 3DCoffee alignment positions this insert between beta strands β1-1 and β1-2. 

However, the secondary structure predictions suggest that this insert could form a beta 

strand rather than a coil. The insert was repositioned to between helix A and strand β1-1 

to align predicted secondary structure to that in the template (Figure 3.7). Models based 
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on the unedited 3DCoffee output show a region of disorder in the region of the insert 

around residue 60, but models based on the structural re-edit show less disorder in this 

region. In models based on both alignments there are regions of disorder around 

positions 260 and 280 that correspond to large inserts in the GH and HI loops (Figure 

3.8). 

 

Figure 3.7 Alignments of CYP6P3 with the template CYP3A4. (A) The 3DCoffee 

output. (B) The realignment based on secondary structure prediction.  

A  

B  

Figure 3.8 Errat profiles of the model based on the 3DCoffee output (A) and the model 

based on the structural realignment (B).   

3.1.4.1 Validation 

CYP6P3 has been found to metabolise deltamethrin with a similar HPLC metabolite 

profile as CYP6M2 and sites of metabolism are suggested to be on the trans methyl and 

4' (Figure 3.9) . The best ranked docking mode of deltamethrin is consistent with the 

experimental findings as it is positioned for metabolism on the trans methyl. This mode 

may occur due to an aromatic or hydrophobic network formed by F309, H121, F123 

and F110 that is in a position to bind the alcohol group distant from the heme and allow 

the acid group to approach the heme. In this mode the phenyl ring forms hydrophobic 

interactions with F309 of the I helix and H121, the benzyl ring can π-stack with F110. 

The residues immediately above the heme V380 and F123 form hydrophobic 

CYP6P3

CYP3A4

CYP6P3

CYP3A4

A

B
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interactions with the acid group and these vdW contacts may act to stabilise the site of 

metabolism. Although it was not found, a H-bond between the phenoxybenzyl O and the 

histidine H121 is possible (Figure 3.9).  

 

The activity of CYP6P3 towards a number of luciferins has been determined (Figure 

3.10). The docking scores reflect the activities: -PPXE and -BE are efficiently 

metabolised and show high docking scores, while the poor substrates show poor scores 

(Table 3.3). Although modes that allow metabolism of PPXE are low ranking, they are 

higher scoring than the highest ranked dockings of the other luciferins.   

 

Figure 3.9 CYP6P3 binding deltamethrin for metabolism on the trans methyl. 

 

Figure 3.10 Activity of CYP6P3 towards luciferins: 6′-deoxyluciferin (L-H), luciferin 

6′-methyl ether (L-ME), luciferin 6′-chloroethyl ether (L-CEE), luciferin 6′ benzyl ether 

(L-BE), luciferin 6′-pentafluorobenzyl ether (L-PFBE) and luciferin-6' 

phenylpiperazinylyl ether (L-PPXE) (McLaughlin, unpublished).   

4’

Trans
methyl
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Table 3.3 The ChemScores (kJ/mol) of docking modes of luciferins that allow 

metabolism in CYP6P3.  

 rnk Score         ΔG    S(hbond)    S(metal)  S(lipo)  H(rot)  ΔE(clash) ΔE(int) 

PPXE 54       51.9          -60.8       0.0        0.0         523.7       2.3       6.4        2.6 

BE  1 47.4          -49.9       0.9        0.0         399.5       2.1       1.5        1.2 

PFBE 1 37.2          -46.4       0.7        0.0         388.1       2.7       5.4        3.8 

ME     1 33.9          -35.1       0.9        0.0         264.9       1.8       0.5        0.6  

CEE    1 38.2          -39.0       0.9        0.0        307.1       2.1       0.3        0.6 

H 1  34.9          -35.4       0.9        0.0         260.6       1.5       0.3        0.0    

 

Luciferin-BE and -PFBE have similar structures differing only in that the H of the 

phenyl ring are replaced by fluorine in -PFBE. Despite these similarities, CYP6P3 

metabolises -BE well and -PFBE poorly. In the dockings the best ranked modes of both 

of these compounds bind for production of the fluorescent product but have different 

scores. The differences between the scores may be due a larger clash score in -PFBE, 

the -PFBE fluorines are larger than hydrogens and may provide steric clashes that are 

indicated in the higher clash score. However, the fluorine has a small size similar to 

hydrogen. Its vdW radius is 1.47 Å similar to that of hydrogen (1.2 Å) and can mimic 

hydrogen in ligands, and is unlikely to have a steric effect. Fluorine is known to have 

other effects on ligand metabolism, fluorine increases stability towards oxidation 

(Jeschke, 2004), and in the case of -PFBE it could stabilise the aromatic ring to 

oxidative attack.  

 

The preference for metabolism may be due to the size of the substrate, smaller 

substrates have fewer vdW contacts and show poor lipophilic scores while large ligands 

such as -PPXE can have more contacts producing a higher score. The activities may 

also be due to stability, small substrates may be more mobile within the active site while 

larger ligands with optimal contacts are more stable and can be metabolised more 

efficiently. However, some ligands such as -PFBE can only bind in positions for 

metabolism with clashes due to the shape of the active site.    

3.1.5 Anopheles funestus CYP6P9 

Anopheles funestus is a major African malaria vector. As no target site resistance has 

been found in this species, resistance is mediated by detoxification of pyrethroids by 

P450s and Amenya et al. (2008) found that CYP6P9 is overexpressed in pyrethroid 

resistant strains. CYP6P9 is the ortholog of CYP6P3 and is similar in sequence, and so 

CYP3A4 was also selected as a template. The insert near helix A is also conserved 

between the proteins, and structural prediction suggested that this should be situated 
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between helix A and beta strand 1-1 and this was manually realigned (Figure 3.11). 

Similar to CYP6P3, this also produced an improvement in errat profile in the region, 

and shows similar areas of disorder in the GH and HI loops (Figure 3.12). 

 

Figure 3.11 Alignment of CYP6P9 with the template CYP3A4. (A) The 3DCoffee 

output; (B) realignment based on structural prediction.  

 

A  

B  

Figure 3.12 Errat profiles of the realigned region of CYP6P9. The 3DCoffee output (A) 

and manual re-alignment (B). 

 

3.1.5.1 Validation 

As with CYP6P3, the activity of CYP6P9 towards luciferins has been determined 

(Figure 3.13). The binding scores are consistent with the activity of the enzyme, the 

preferred substrates -BE and -PPXE showing higher binding scores than the poor 

substrates (Table 3.4). 

 

CYP6P3

CYP3A4

CYP6P3

CYP3A4
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Figure 3.13 The activity of CYP6P9 towards luciferins (McLaughlin, unpublished).    

 

Table 3.4 The ChemScores (kJ/mol) of productive modes of luciferins in CYP6P9.  

          rnk Score         ΔG    S(hbond)    S(metal) S(lipo) H(rot)  ΔE(clash)ΔE(int) 

PPXE  31
st
   54.3         -66.4       1.0              0.0       542.5       2.3       9.8       2.2 

BE 1
st
  47.8         -49.2       2.8              0.0       339.1       2.1       1.2        0.2 

PFBE 6
th

  34.2         -40.5       1.5              0.0       313.8       2.7       0.7        5.6 

ME 1st 34.2         -35.3       2.8              0.0       215.6       1.8       0.2        0.8 

CEE  5
th

 36.6         -38.5       2.9              0.0       246.9       2.1       0.9        0.9 

H 1
st
  37.9         -38.5       2.7              0.0       238.2       1.5       0.5        0.2 

 

 

3.1.6 Anopheles gambiae CYP6Z family 

CYP6Z2 was identified as being over expressed in the DDT resistant strain XAN/U 

compared to the resistant strain kisumu. CYP6Z1 is expressed in the permethrin 

resistant Odumasy strain. Members of the CYP6Z family have been modelled 

previously by Chiu et al. (2008) and Mclaughlin et al. (2008). Chiu et al. (2008) 

modelled CYP6Z1 from the DDT resistant RSP strain and CYP6Z2 from the insecticide 

susceptible PEST strain, and compared their activities and active sites (Table 3.5).  

 

Table 3.5 Taken from Chiu et al. (2008) the activities of CYP6Z1 and CYP6Z2.       

                                   Activity (nmol/min/nmol P450) 

Substrate  6Z1   6Z2                           

DDT   3.91   ND   

Carbaryl  2.20   0.49   

Xanthotoxin  1.51   ND  
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However, these results contradict those of Mclaughlin et al. (2008) where CYP6Z2 was 

found to metabolise xanthotoxin, and where xanthotoxin was found to be a mechanism 

based inhibitor. Xanthotoxin has been shown to act as a mechanism based inhibitor of 

P450s caused by epoxidation and opening of the furan ring. Mao et al. (2006) suggested 

that metabolism of xanthotoxin is likely to occur by epoxidation of the 2'-3' position 

because of the higher electron density of the electron rich π bond (Figure 3.14). Letteron 

et al. (1986) suggested that epoxidation forms an unstable radicaloid that may bind 

covalently to P450s to inactivate them.  

 

Figure 3.14 Metabolism of xanthotoxin Taken from Mao et al. (2006). 

 

It is unclear what may produce the differences between the results of Mclaughlin et al. 

(2008) and Chiu et al. (2008). In both studies, the same CYP6Z2 sequence was used but 

in the Mclaughlin et al. (2008) study CYP6Z2 was co expressed only with Anopheles 

gambiae P450 reductase while in the Chiu et al. (2008) study this was co-expressed with 

both housefly P450 reductase and fruit fly b5.  

 

Chiu et al. (2008) found that the activities of CYP6Z1 and CYP6Z2 differed and 

suggested that the differences could be due to steric restrictions in the CYP6Z2 active 

site. Their dockings into the active sites indicated that while DDT and xanthotoxin 

could dock close to the heme in productive modes in CYP6Z1, they were either distant 

or in unproductive modes in CYP6Z2, while carbaryl could dock productively in both 

CYP6Z2 and CYP6Z1. They overlaid their CYP6Z2 model with the CYP6Z1 model 

with DDT bound to identify clashes between DDT and the side chains of CYP6Z2. 

They suggested that substitution or positioning of three active site residues (F115, 

G298I, N208R) caused clashes. R208 in CYP6Z2 is substituted for Asn in CYP6Z1, 

while they did not find any steric clashes with this residue, it projects substantially 

farther into the active site than Asn. The side chain of I298 of CYP6Z2 is longer than 

G298 in CYP6Z1 and was suggested to occur at a position on the I helix that could 

affect substrate binding. While F115 is conserved in both proteins, it projects further 
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into the active site of CYP6Z2 causing clashes. The substitution of small residues in 

CYP6Z1 for bulkier residues in CYP6Z2 reduces the active site volume (3,471 Å
3
 in 

CYP6Z1; 2,601 Å
3
 in CYP6Z2). They suggested that the three residues constrain the 

active site of CYP6Z2 to give unproductive positionings of DDT and xanthotoxin.  

 

3.1.6.1 Sequence Alignments 

The CYP6Z family were also modelled in this study. An alignment with the 6Z family 

show that CYP6Z2 and CYP6Z3 are very similar but that CYP6Z2 differs in the FG 

region due to the substitutions of polar and aromatic residues for aliphatic. The aromatic 

residues that are suggested to prevent metabolism in CYP6Z2 (F212, F222) are 

conserved in all 3 family members (Figure 3.15). 

 

In CYP6Z1 the substitution of one Phe for a Ile at position 216 occurs at the opening of 

the access channel 3 between the F and G loops and is in a position that may affect the 

access of hydrophobic substrates from the membrane (Figure 3.15). Another difference 

between CYP6Z1 and CYP6Z2 is in the I helix at position 302. in CYP6Z1 and 

CYP6Z3 this is a Glu while in CYP6Z2 this is an Asp. This position is equivalent to 

Asp251 of P450 101 which has been proposed to be involved in O2 activation. It has 

been suggested that an Asp may be more effective than a Glu as in P450d the mutation 

of the wild type Glu to Asp increases activity (Ishigooka et al., 1992). In CYP1A2, the 

mutation of Glu318Asp increases Kcat with no change in Km. It was suggested that the 

Asp carbonyl may be better positioned than the Glu (Hiroya et al., 1994).  

 

Models of CYP6Z2 have been produced previously by Chiu et al. (2008) and 

Mclaughlin et al. (2008). The model produced by Chiu et al. (2008) used a different 

alignment to that of Mclaughlin et al. (2008). In the Chiu et al. (2008) model, R208 

projected into the active site rather than R210. Here a third CYP6Z2 model was 

produced with R208 projecting into the active site. However, the Chiu et al. (2008) 

alignment was discarded as it produced models with poor errat scores and misaligned a 

number of residues (Figure 3.16). 
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Figure 3.15 The alignemnt of the CYP6Z family. The positions of residues predicted to 

affect metabolism are indicated by arrows. 

 

Figure 3.16 Alignment produced by Chiu et al. (2008). 

 

The alignments used to make the modes in this study involved finding an optimum 

alignment to the template for each protein and to give good errat scores. Unlike Chiu et 

al. (2008), different alignments were used for CYP6Z1 and CYP6Z2 because of 

substitutions between them, although this produced different positions for inserts. As 

substitutions between N and D are favoured while the substitutions of R and D are less 

favourable, in CYP6Z2 the N is aligned with the D of the template. The CYP6Z1 

alignment positions the gap in a different position but aligns the D with a D in the 

template (Figure 3.17, A and B). The CYP6Z3 alignment is similar to that of CYP6Z2 

(Figure 3.17, C). 

 

 

Figure 3.17 Alignments of the BC region of CYP6Z2 (A), CYP6Z1 (B) and CYP6Z3 

(C). 
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Figure 3.18 ERRAT scors for CYP6Z1/2/3 manually aligned region.  

 

Although both 1TQN and 1W0E were used as templates, the positioning of the basic 

residue within the active site was similar to 1TQN. As this residue is known to rotate 

out of the active site as its position varies between the 1TQN and 1W0E structures, it 

was repositioned using the MOE rotamer explorer. Rotamers that were close to that of 

the crystal structure 1W0E were chosen and only higher scoring rotamers than the one 

present in the modeller output were used. The ERRAT quality of the three models were 

consistantly high with areas of high error scores primarily occuring at the C and N 

termini (Figure 3.18). 

 

3.1.6.2 CYP6Z1 Verification 

It has been determined experimentally that CYP6Z1 is able to metabolise xanthotoxin, 

DDT and carbaryl (Chiu et al., 2008). This CYP6Z1 model is able to bind xanthotoxin 

and carbaryl. Although the metabolites are unknown, the model binds these in positions 

that correspond to known sites of metabolism in other P450s. Xanthotoxin binds for 
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epoxidation at the 2'3' bond (Figure 3.19, A), suggested to be the site of metabolism by 

Mao et al. (2006). The model is able to bind carbaryl in a position that corresponds to 

known sites of metabolism in human P450s 1A1, 1A2, 2B6, 2C19 and 3A4 (Tang et al., 

2002) (Figure 3.19, B). The best ranked mode allows for the production of 5-

hydroxycarbaryl. The binding mode of carbaryl is similar to that of xanthotoxin, the 

aromatic rings stack against F115 while two H-bonds can occur with N208. However, 

the dockings of DDT are not in positions that allow metabolism (Figure 3.19, C and D).  

 

 

 

Figure 3.19 (A) CYP6Z2 binding xanthotoxin for metabolism at the 2'3' bond. (B) 

Metabolites of carbaryl taken from Tang et al. (2002). (C) CYP6Z1 binding carbaryl for 

metabolism at the 5 position. (D) CYP6Z1 binding DDT in an unproductive mode.  

 

3.1.6.3 CYP6Z2 verification 

To evaluate this model, the ligands with known binding data were docked and IC50s 

compared to ChemScores as suggested by Kemp et al (2004). Some classes of 

compounds showed a good correlation between ChemScores and IC50 while others 

showed a poor correlation (Table 3.6 and Figure 3.20).  
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Table 3.6 Correlations of log10 IC50 vs negative ChemScore.  

   R  R
2
  

Phytoestrogens 0.47  0.2 

Insecticides  0.8  0.64 

Hormones/steroids 0.59  0.34 

Drugs   0.16  0.02  

 

 

Figure 3.20 The correlation of ChemScore (kJ/mol) and IC50 for ligands docked into 

CYP6Z2. (A) graph of phytoestrogens, (B) graph of insecticides and hormones.   

 

The mode of binding was also examined to determine if the model could bind 

compounds in positions that would allow metabolism. CYP6Z2 has been shown to be 

unable to metabolise carbaryl. However, in the CYP6Z2 model, carbaryl is able to bind 

in a position that allows metabolism. The 5
th

 ranked mode of xanthotoxin allows 

metabolism at the 2'3' bond. This is consistent with the suicide inhibition by furan-

containing compounds seen in CYP6Z2 (Figure 3.21). Unlike the CYP6Z1 dockings, 

CYP6Z2 can bind DDT close to the heme. However, this may be too distant for type II 

coordination that has been suggested to occur for the non-enzymatic dehalogenation, 

and may be consistent with a lack of metabolism. Isomers of permethrin and 

cypermethrin were docked. For all isomers there were both productive and unproductive 

modes. For (S trans) (R) cypermethrn the productive and non-productive modes were 

similar. The first ranked mode allowed metabolism on the methyls while the second 

ranked mode did not allow metabolism. Unlike the first, the second ranked mode 

showed a H-bond as well as π-stacking with  F212 (Figure 3.22).   
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Figure 3.21 (A) First ranked, (B) 5th ranked dockings of xanthotoxin in CYP6Z2 with a 

H-bond (red dotted line) with R210.  

 

Figure 3.22 (A) first ranked mode of (S trans)(R), (B) second ranked mode.  

A similar situation occurred with (Rtrans)(R), although the best ranked mode allowed 

metabolism but did not show a H-bond, the second ranked mode with a H-bond was an 

unproductive mode.  The first ranked mode of (Rtrans)(S), the (Strans)(S) second 

ranked and (Scis)(S) 6
th

 ranked modes docked within the access channel indicating that 

an intermediate binding site may occur. This may be consistant with a high affinity 

binding but a lack of metabolism. 

 

3.1.6.4 Fluorescent Markers 

It has been shown that CYP6Z2 can metabolise benzyl esters of resorufin efficiently, 

methoxy and  ethoxyresorufin less efficiently, and is unable to metabolise 

pentoxyresorufin. 

 

In the Mclaughlin et al. (2008) model, benzyloxyresorufin binds with the benzyl ring 

between the BC loop and SRS5. In this model benzyloxyresorufin binds in a different 

position. Instead of stacking between F115 and L365, it lies between SRS5 and the I 
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helix. This mode may occur where the Arg in the FG loop is rotated out of the active 

site and not occupying this space. No dockings occurred that allowed methoxyresorufin 

metabolism and only the 95
th

 ranked docking permitted metabolism of ethoxyresorufin. 

This may be due to the presence of R210 in the roof of the active site. This residue 

formed a H-bond with the resorufin in an unproductive mode, alternative rotamers of 

this residue may prevent this. Resorufins with small chains are able to bind in 

unproductive modes. They bind between SRS5 and the I helix placing the site of 

metabolism distant from the heme (Figure 3.23). This mode may be due to a lack of 

steric restrictions unlike benzyloxyresorufin. With benzyloxyresorufin, the steric bulk of 

the benzyl ring prevents binding in this unproductive mode. This is consistent with the 

experimental data showing a higher activity towards benzyloxyresorufin and low 

activity towards methoxy- and ethoxyresorufin. 

 

Figure 3.23 1
st
  ranked mode of methoxyresorufin with the site of metabolism 5.59 Å 

from the heme.   

 

With pentoxyresorufin a productive mode occurred (21
st
 ranked) but had a higher clash 

score. The higher scoring modes placed the site of metabolism distant from the heme 

with the body of the resorufin inverted. Modes also occurred where the site of 

metabolism was sterically screened by atoms of the pentyl chain. This is consistent with 

pentoxyresorufin as a non substrate. The scores of the dockings indicate improved vdW 

interactions for benzyloxy resorufin. The lower vdW scores for the smaller resorufins 

may indicate an increase in mobility that may cause the lower activity (Table 3.7).  
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Table 3.7 ChemScores (kJ/mol) of productive modes of resorufins in the CYP6Z2 

model. 

  Score         ΔG    S(hbond)    S(metal) S(lipo)   H(rot)  ΔE(clash) ΔE(int) 

Eth 95
th

 34.9          -35.5       0.9              0.0       253.9     1.1       0.4        0.2 

Pent 21
st
   40.5          -41.9       0.9              0.0       313.0     1.3       0.5        0.8 

Benz 9
th

 43.1          -44.8       0.8              0.0       339.7     1.2       1.0       0.6   

 

 

CYP6Z2 has also been found to metabolise luciferins (Figure 3.24). The luciferins are 

different from the resorufins. Although benzyloxyresorufin (7-BR) is metabolised 

efficiently, luciferin-BE is metabolised less efficiently, and while methoxyresorufin is 

poorly metabolised, methoxyluciferin is efficiently metabolised.  The dockings tend to 

agree with the experimental results in that although no dockings were found that would 

allow -BE to bind for metabolism, the best ranked dockings place -ME and -CEE for 

metabolism and no productive modes of -PFBE or -PPXE were found. The modes of -

ME and -CEE as well as 7-BR involve an H-bond with N113 while the luciferins form a 

second H-bond with R210 (Figure 3.25). Although metabolism of -CEE is reduced 6 

fold compared to -ME, the score for -CEE is greater than that of -ME due to a greater 

hydrophobic score (Table 3.8).  

 

 

Figure 3.24 Experimental results for CYP6Z2 (McLaughlin, unpublished).    
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Figure 3.25 Binding modes of 7-BR (A) and -ME (B) in CYP6Z2. 

 

Table 3.8 ChemScores (kJ/mol) of productive modes of luciferins in CYP6Z2. 

  Score         ΔG    S(hbond)    S(metal) S(lipo)  H(rot)  ΔE(clash)  ΔE(int)  

ME  1st 38.3         -38.9       1.1           0.0      293.8       1.8       0.2        0.4  

CEE 1st 42.5         -43.4       1.2           0.0      337.0       2.1       0.1        0.8 

H 9
th

 35.9         -36.6       1.0           0.0      270.3       1.5       0.1        0.6 

 

 

3.1.7 Musca domestica CYP6D1 

In Housefly Musca domestica, CYP6D1 has been identified as a metaboliser of 

pyrethroids and is over expressed in resistant strains. CYP3A4 1TQN was identified as 

a template by PSI-BLAST and phylogenetic analysis, and aligned with 3DCoffee.  

   

Housefly pyrethroid resistance is correlated with an increase in metabolism of other 

substrates. To determine this contribution, Wheelock and Scott (1992) treated housefly 

microsomes with anti 6D1lpr. Anti-lpr antibodies inhibited MROD activity by 83%, 

AHH activity by 100%, EROD activity by 78%, ECOD activity by 65% while PROD 

activity was not inhibited. CYP6D1 is the major cytochrome involved in metabolising 

B(a)P, methoxyresorufin and ethoxyresorufin. Ethoxycoumarin activity was only 

inhibited at the highest concentration of antiserum and may only be a poor substrate for 

CYP6D1 while pentoxyresorufin may not be a substrate. The rank order of substrate 

turnover in CYP6D1 is Benzo(a)pyrene > phenanthrene > methoxyresorufin. B(a)P may 

similar to the endogenous substrate of CYP6D1 as it is more efficiently metabolised 

(Korytko et al., 2000). 
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3.1.7.1 Verification 

B(a)P has been identified as the preferred substrate of CYP6D1 but no metabolites have 

been identified. In dogs the primary metabolite is 3 or 9 phenol, with also 7,8 and 4,5 or 

9,10 diol produced. In rats there is a tendancy to produce B(a)P 7,8 dihydrodiol. 

Dockings of B(a)P allow 2 possible docking positions: one that would allow 7,8 or 9,10  

metabolism, and the other metabolism at the 2,3,4 or 5 positions. This is consistant with 

the known sites of metabolism in mammals. In these positions there may be aromatic 

interactions with F115 and Y102 (Figure 3.26, A).  

 

Figure 3.26 Best ranked dockings of B(a)P (A) and phenanthrene (B) in CYP6D1. 

 

CYP6D1 was found to metabolise phenanthrene to produce a single unidentified 

metabolite. In the same study, dog liver microsomes were found to produce one 

metabolite of phenanthrene that had the same Rf value as the metabolite produced by 

CYP6D1, suggesting that these metabolites are identical (Korytko et al., 2000). The 

metabolite produced by CYP6D1 may be either 3,4; 9,10 or 1,2 dihydrodiol as these are 

the metabolites produced by other mammals (Nordqvist et al., 1981). In the best ranked 

dockings, phenathrene can bind for 1,2 metabolism that is consistant with the 

metabolism in mammals (Figure 3.26, B). The model was shown to bind these 

substrates with the positions of known sites of metabolism above the heme. The 

CYP6D1 model can therefore yield results consistent with most of the experimentally 

determined metabolite production.   

3.1.7.2 IC50 ChemScore correlation 

For CYP6D1, the IC50 data was produced by Scott et al. (2000). They used housefly 

microsomes from female houseflies homogenised and centrifuged to collect the 

supernatant. The supernatant pellet was re-suspended in buffer and used as the enzyme 

source. MROD activity was used to measure CYP6D1 activity, although in these 

microsomes CYP6D1 accounts for 83% of MROD activity. Also the IC50 scores were 
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only determined up to a cut off point of 10
-4

 (M). The log IC50 –ve ChemScore plots 

for CYP6D1 show a trend. The plots for all inhibitors, including competitive and non-

competitive, show poor R
2
 values. The plot of the competitive inhibitors alone show 

values closer to 0.2 (Figure 3.27). 

  

Figure 3.27. The R
2
 values for all ligands and for competitive inhibitors docked in 

CYP6D1. 

The poor correlation between ChemScore and experimental IC50 may be due to a 

number of factors. The model itself may be of poor quality regarding the docking of 

ligands. The method of scoring may have an affect. The ChemScore method has been 

found by Kemp et al. (2004) to underpredict the strength of binding of the tightly 

binding ligands, and they also found initial R
2
 scores of 0.28 and 0.11 for their ligand 

sets, and removal of the tightest binding ligands may improve the scores.   

 

Alternatively, the types of ligands and experimental methods used may affect the IC50 

scores. There can be variation between published studies in Km and Vmax values as 

well as inhibition constants Ki and IC50. Masimirembwa et al. (1999) suggested that 

these differences could be due to individual variation from using microsomes from 

different individuals, different expression systems or different experimental procedures 

or conditions. A large number of factors have been shown to affect enzyme kinetics: 

type of buffer and ionic strength, amounts of P450 reductase and b5, protein content, 

and phospholipids, glutathione and detergents. Although there are variations in the 

values of kinetics, it was found that the ranking of the substrate specificity and inhibitor 

selectivity were the same regardless of the conditions used. The rank order of 

ChemScores of the dockings is generally in accordance with the rank order of IC50 for 

the ligands, with a small number of exceptions, and may indicate that the model is of 

sufficient quality. The types of ligands used by Scott et al. (2000) were predominantly 

potential suicide inhibitors rather than competitive inhibitors or substrates. These 

included aryl acetylene compounds and methylenedioxyphenyl compounds. When these 
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suicide inhibitors were removed from the data set, the R
2
 values increased from 0.08 to 

0.2. 

3.1.8 CYP6B family 

Helicoverpa zea (corn earworm) is one of the most devastating crop pests due to its 

ability to metabolise both toxic xenobiotics in host plants, and insecticides. The 

polyphagous H. zea  has been found to be resistant to a wide range of insecticides such 

as carbamides, organophosphates and pyrethroids. CYP6B8 and CYP321A1 have been 

identified as involved in the metabolism of both insecticides and xenobiotics but with 

differing rates (Table 3.9 and 3.10). While CYP6B1 is able to metabolise xenobiotics it 

is unable to metabolise pyrethroids.  

Table 3.9 CYP6B8 and CYP6B1substrates taken from Li et al. (2003). 

 

Vmax 

Km, 

mM  Clearance 

 

 µmol/µmol of  

 

 ml/µmol of  

Xenobiotic   P450 per min    P450 per min 

CYP6B8  

      Allelochemicals  

         Coumarin  NDA  

        Flavone    6.95 0.158      44.1 

      Rutin    0.89 0.02      44.3 

      Xanthotoxin    3.67 0.066      55.6 

      Chlorogenic acid  13.3 0.235      55.7 

      Indole-3-carbinol    1.56 0.013    121.8 

      Quercetin    5.3 0.02    260.5 

   Insecticides  

         Carbaryl  NDA  

        Diflubenzuron  NDA  

        α-Cypermethrin  12.72 0.085    149.3 

      Aldrin  22.42 0.084    267.8 

      Diazinon  38.92 0.088    442.9 

CYP6B1  

      Allelochemicals  

         Coumarin  NDA  

        Flavone    2.35 0.059      39.8 

      Rutin  NDA  

        Xanthotoxin  22.24 0.012 1,859.90 

      Chlorogenic acid  NDA  

        Indole-3-carbinol  NDA  

        Quercetin  NDA  

     Insecticides  

         Carbaryl  NDA  

        Diflubenzuron  NDA  

        α-Cypermethrin  NDA  

        Aldrin  NDA  

        Diazinon  50.52 0.197     256.5 

NDA, no detectable activity.  
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Table 3.10 Activity of CYP321A1 and CYP6B8. Taken from Sasabe et al. (2004). 

Substrate 

Metabolic activity (µmol/µmol P450 per 

minute) 

  321A1 6B8v1     

Xanthotoxin     1.28     1.88 

  Angelicin     0.88     0.45 

  α-Naphthoflavone     0.94     0.23 

  Aflatoxin     2.60     ND 

  α-Cypermethrin     1.60     2.44 

  Aldrin     5.28   14.33 

  Diazinon     1.35     2.33     

ND, not detectable. 

3.1.8.1 Alignments 

Li et al. (2003) found that CYP321A1 is closely related to the CYP6 family as it forms 

a clade with the CYP6B genes (Figure 3.28). However, CYP321A1 has been suggested 

to have evolved from a different progenitor gene due to differences. The CYP6B genes 

contain a single intron positioned two residues downstream of the conserved cysteine 

that binds the heme, while the CYP321A1 does not contain any introns (Sasabe et al, 

2004). Consistent with the findings of Li et al. (2003), in this study, in a ClustalW 

phylogenetic tree CYP321A1 forms a cluster with the CYP6B family. This group was 

identified as related to the CYP3 clade with the highest identity to CYP3A4 (Figure 

3.29). CYP3A4 was identified as a template and 3DCoffee was used to produce an 

alignment. Modelling was attempted with either 1TQN and 1W0E as templates. For 

CYP6B8, the 1W0E template produced the best model.  

 

Figure 3.28 CYP321A1 identified as forming a clade with the CYP6B family (grey) 

Taken from Li et al. (2003), identifying CYP321A1 as closely related. 
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Figure 3.29 NJ tree produced from sequences aligned with clustalW2 (CYP_PDB ID).  

3.1.8.2 Helicoverpa zea CYP6B8 verification 

CYP6B8 is able to metabolise quercetin, and metabolism by P450s at the 6 or 8 position 

has been previously shown to occur (Halbwirth and Stich, 2006) (Figure 3.30). 

 

Figure 3.30 Numbering and metabolism of quercetin by P450 F6H. Adapted from  

Halbwirth and Stich (2004). 

The dockings into the CYP6B8 model are consistent with this mode of metabolism as 

the first ranked docking allows metabolism on the 8 position while the second ranked 

mode allows metabolism on the 6 position. Quercetin makes a number of H-bonds with 

the sidechains of E107 and Y214 as well as the main chain of Q375, S210 and A305. 

The A ring also π-stacks with F118 (Figure 3.31).  

8
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Figure 3.31 The best ranked mode of quercetin in CYP6B8 allows metabolism on the A 

ring at position 8. 

 

Figure 3.32 (A) Flavone structure and nomenclature (taken from Nikolic et al, 2004). 

(B) Flavone binding for metabolism on the B ring in CYP6B8.   

Flavone can bind for metabolism on the A or B rings. Unlike quercetin, only one H-

bond is found with Y214, but π-stacking is found with F118 (Figure 3.32). The 

CYP6B8 metabolism of flavone and quercetin differ with a higher clearance rate and 

lower Km for quercetin. This difference may be due to the large number of H-bonds that 

quercetin is able to form that may stabilise the ligand within the active site although the 

docking score is lower for quercetin than flavone.  

 

Α-Naphthoflavone (ANF) can be metabolised and binds in a similar mode as the 

flavones but is lacking the H-bond that occurs with Y214 as the H-bond acceptor is 

orientated away from Y214. The CYP6B8 model binds aldrin in a mode that is 
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consistent with epoxidation (Figure 3.33). 

 

Figure 3.33 Best ranked mode of aldrin (A) and ANF (B) binding in CYP6B8. 

 

CYP6B8 can metabolise indole-3-carbinol, although the metabolites have not been 

determined, the metabolism of indole is known to occur on the 6 and 3 positions, 

although the 6-hydroxylation product was only found to be produced at low levels by 

CYP2A6 (Gillam et al., 2000) (Figure 3.34).  

 

 

Figure 3.34 Metabolites of indole P450 metabolism. Adapted from Gillam et al. (2000). 

 

CYP6B8 binds indole-3-carbinol in a single mode for metabolism at the 6 position. This 

is constant with known positions of metabolism (Gillam et al., 2000). In this mode, 3 H-

bonds are possible with Y214, E107 and the backbone of S210, π-stacking also occurs 

with F118 (Figure 3.35).  
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Figure 3.35 The best ranked binding mode of indole-3-carbinol in CYP6B8.  

 

Although indole-3-carbinol is a substrate, coumarin and carbaryl that have a similar 

structure, are poor or non-substrates. As with indole-3-carbinol, both coumarin and 

carbaryl bind in modes that allow metabolism with similar modes and interactions, but 

with fewer H-bonds possible. While 3 H-bonds are possible with indole-3-carbinol, two 

are possible with carbaryl and one is possible with coumarin. Although all three of these 

small compounds have similar structures, only indole-3-carbinol acts as a substrate. 

While the binding mode of indole-3-carbinol is consistent with the experimental 

findings, the dockings of coumarin and carbaryl are inconsistent. The docking scores are 

also inconsistent with equivalent scores for coumarin and indole-3-carbinol, and higher 

scores for carbaryl (Table 3.11). 

Table 3.11 ChemScores (kJ/mol) of ligands in CYP6B8. 

  Score         ΔG    S(hbond)    S(metal) S(lipo)  H(rot)  ΔE(clash) ΔE(int)  

Indole  31.5         -31.6       2.7           0.0        176.5       1.4       0.0          0.1 

Carbaryl 34.5         -35.3       1.6           0.0        236.4       1.3       0.4          0.4 

Coumarin  30.3         -32.2       0.9           0.0        202.9       0.0       1.8          0.0        

 

Xanthotoxin is a substrate and known to be metabolised on the furan ring. However, the 

top ranked binding modes are inconsistent with this metabolism, although the 15
th

 

ranked mode allows metabolism on the furan ring (Figure 3.36). This mode is lower 

ranking than the non-productive mode because no H-bonds occur, although no H-bonds 

occur, there is a higher vdW score.  
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Figure 3.36 In CYP6B8, xanthotoxin binding in a mode inconsistent with metabolism of 

the furan ring, forming two H-bonds (A). Xanthotoxin binding in a mode consistent 

with metabolism of the furan ring, no H-bonds are possible (B).    

 

Similar to xanthotoxin, angelecin is also expected to be epoxidised on the furan ring. 

The highest scoring mode of binding is consistent with this metabolism with the furan 

ring binding close to the heme. Chlorogenic acid and rutin are large molecules that are 

known to be oxidatively cleaved by P450s, and CYP6B8 has been found to be able to 

metabolise both of these. Although the model can bind both of these molecules in 

positions that allow hydroxylation, they do not bind in positions that would allow 

oxidative cleavage (Figure 3.37).  

 

Although CYP6B8 has been shown to metabolise α-cypermethrin, no metabolites have 

been identified. Two modes occur for both isomers of α-cypermethrin: the highest 

scoring allows metabolism on the dimethyls while the lower scoring allows metabolism 

at the 4' position. Both isomers bind in similar modes with similar interactions. In the 

best ranked mode, the phenoxybenzyl group is surrounded by aromatic residues and 

stacking can occur with F300, F108, H119 and F118. A H-bond is also possible 

between the cyano group and Y214. The acid group is surrounded by F118 and V371 

that provide vdW interactions. In the lower ranked mode, the molecule is inverted and 

metabolism is possible on the 4' position. In this mode π-stacking is also possible with 

F108 and F118 but no H-bonds occur (Figure 3.38).    
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Figure 3.37 (A) The 5
th

 ranked docking of rutin binds in a position that allows 

hydroxylation. (B) The first ranked mode of chlorogenic acid allows metabolism in 

CYP6B8. 

 

Figure 3.38 (A) Best ranked mode, (B) 45
th

 ranked mode of cypermethrin (Rcis)(S) 

bound in CYP6B8.  

 

Aflatoxin is a non-substrate of CYP6B8 but is able to bind within the active site in a 

mode that is consistent with metabolism. However, the binding scores for aflatoxin are 

poor compared to the scores for the other ligands.  

 

Overall the CYP6B8 model tends to be able to bind substrates in positions that place 

known sites of metabolism above the heme and indicates a good quality model able to 

replicate experimental findings.   

 

3.1.8.3 Helicoverpa zea CYP321A1 verification 

CYP321A1 also occurs in Helicoverpa zea, and its subsrates have been identified 
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(Table 3.12). It metabolises similar substrates as CYP6B8 but with a reduced rate.  

 

Table 3.12 CYP321A1 substrates taken from Sasabe et al. (2004). 

Compound  nmol metabolised / min / nmol p450  

Xanthotoxin   1.46 

Angelicin  2.50 

α-Naphthoflavone 3.27 

α-Cypermethrin 3.22      

 

 

CYP321A1 differs from CYP6B8 in that it is missing the aromatic residues in the BC 

loop. These are replaced by polar residues (D107 and T119). It does have an aromatic 

residue in the G helix (F236) and F299 of the I helix projecting into the site that may 

contact the ligand. These aromatic residues may have a similar role as F118 of CYP6B8 

or F115 of CYP6D1, but may have a non optimal position to form aromatic interactions. 

The missing aromatic residues and the possible non-optimal location of the aromatic 

residues that are present may contribute to the reduced metabolism in CYP321A1.  

 

The best ranked modes of both isomers of α-cypermethrin bind in similar positions for 

metabolism on the gem dimethyl groups. In this mode, the alcohol group is surrounded 

by aromatic residues of the G'G loop and I helix, and hydrophobic residues of the BC 

loop. There are a number of aromatic residues near an access channel. ScisR can bind in 

an alternative mode with the alcohol group binding near this channel surrounded by 

these residues F212, F371 and H103. These residues may hold the ligand distant from 

the heme (Figure 3.39). CYP321A1 can metabolise xanthotoxin and the model of 

CYP321A1 binds xanthotoxin in a mode that is consistent with epoxidation. 

 

Figure 3.39 Cypermethrin binding modes in CYP321A1.  
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Figure 3.40 The best ranked mode of ANF binding for 7 or 8 metabolism (A), the best 

ranked mode of aldrin binding for epoxidation (B) in CYP321A1.  

 

The ANF metabolites produced by CYP321A1 have not been identified but metabolism 

has been predicted to occur on the 7 or 8 carbons (Rupasinghe et al., 2007). The model 

is consistent with this prediction as it binds ANF for metabolism on the 7 or 8 positions 

(Figure 3.40, A). CYP321A1 has been found to metabolise aldrin. Although metabolites 

have not been identified, Rupasinghe et al. (2007) predicted that metabolism in 

CYP321A1 occurs by epoxidation to produce dieldrin as occurs in CYP6A1. The model 

is consistent with this prediction as it binds aldrin in a position for this epoxidation 

(Figure 3.40, B).  

 

Niu et al. (2008) found that CYP321A1 metabolises aflatoxin B1 (AFB1) to two 

metabolites, with the primary mode of metabolism O-demethylation to AFP1. A second 

unidentified minor metabolite was also produced with a ratio of 1.8:1. In the model 

produced here, although the best ranked modes do not allow metabolism, two modes 

occur that allow metabolism. The best ranking of these modes allows metabolism on the 

8-methoxy group consistent with the O-demethylation product as the primary 

metabolite. A second low ranking mode occurs that would allow epoxidation of the 8-9 

bond. The docking results for aflatoxin are consistant with the known experimental data 

for CYP321A1, where two metabolites are detected with the O-demethylation product 

being the major metabolite (Table 3.13 and Figure 3.41).  

Table 3.13 ChemScores (kJ/mol) of modes that allow metabolism of aflatoxin in 

CYP321A1. 

Mode(rank) Score         ΔG    S(hbond)    S(metal) S(lipo)   H(rot)  ΔE(clash)ΔE(int) 

8-methoxy(7) 30.5          -31.1       1.6           0.0        195.7       1.0       0.5        0.1 

8-9 bond(24) 29.9          -32.6       1.8           0.0        201.0       1.0       2.3        0.3      
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Figure 3.41 In CYP321A1 the 7
th

 ranked mode allows for metabolism on the methyl to 

give the O-demethylated product (A). The 24
th

 ranked mode allows epoxidation on the 

8-9 double bond (B).  

Although experimental data shows CYP321A1 incapable of metabolising coumarin, the 

model is able to bind coumarin for metabolism. However, the docking score is the 

lowest with a poor vdW score which may be consistent with poor metabolism (Table 

3.14). Although the model reproduces the experimental results for the majority of 

ligands, there are some inconsistencies but indicates a good quality model. 

 

Table 3.14 ChemScores (kJ/mol) of substrates of CYP321A1. 

   Score         ΔG    S(hbond)    S(metal)   S(lipo) H(rot)  ΔE(clash)ΔE(int) 

Angelicin 33.3          -33.5       0.9            0.0           211.8       0.0       0.1       0.0  

ANF  45.1          -45.9       0.9            0.0           320.9       0.0       0.8       0.0  

Aflatoxin 32.1          -34.5       2.6            0.0           195.0       1.0       2.1       0.3  

Xanthotoxin 32.1          -33.1       0.9            0.0          232.4       1.0       1.0       0.0  

Coumarin 30.4          -30.4       0.7            0.0           194.7       0.0       0.1       0.0  

ScisR  45.7          -51.7       2.8            0.0         351.0       1.6       2.3       3.8  

RcisS  47.6          -49.9       1.0            0.0           386.8       1.6       0.3       1.9  

Diazinon 31.6          -32.8       1.9            0.0           219.4       1.9       0.4       0.9  

Aldrin  40.6          -40.7       0.0            0.0           300.9       0.0       0.0       0.0  

 

 

3.1.9 Anopheles minimus CYP6AA3 

The sequence was aligned to CYP3A4 in 3DCoffee. However, the 3DCoffee output 

places an insert within helix A which produced a poor ERRAT profile. Secondary 

structure prediction suggested that the loop could be positioned between helix A and the 

beta strand and this was realigned. In addition to this there was a repositioning of a gap 

in the BC region. 
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3.1.9.1 Verification  

It has been found by Boonsuepsakul et al. (2008) that CYP6AA3 metabolises 

deltamethrin to produce phenoxybenzaldehyde by oxidative cleavage of the ester bond. 

In a free docking deltamethrin binds in a similar position as in CYP6M2 with the 

methyls close to the heme. A constrained docking of deltamethrin to place the alpha 

carbon above the heme also placed the cyano group in a position to coordinate with the 

iron in the top ranked modes. However, in the 73
rd

 ranked mode, the cyano group can 

H-bond with the Lys of the FG region to position the cyano group away from the heme 

and prevent coordination to allow ester bond cleavage. Bioallethrin has been found not 

to be a substrate of CYP6AA3, in the dockings. The best ranked modes bind for 

metabolism but other low ranked modes position the ligand distant from the heme.  

 

3.2 Aedes aegypti CYP9J family 

Aedes aegypti is a vector for yellow fever and dengue fever and a number of CYP9s 

have been tested for metabolism of pyrethroids. CYP9J24, 9J26, 9J28 and 9J32 were 

found to be metabolisers while CYP9J19 was a non-metaboliser.  

3.2.1 Alignments 

Both PSI-BLAST and a phylogenetic tree produced by ClustalW indicates that the 

CYP9s are related to the CYP3s (Figure 3.42) and 1TQN was used as a template. Initial 

alignments were produced by 3DCoffee and manually realigned. The models of CYPs 

9J24, 9J26 and 9J28 resemble the CYP6 metabolisers CYP6M2 and CYP6P3/9 and may 

indicate necessary conservations in the active site for pyrethroid metabolism, while 

CYP9J19 has substitutions that may affect metabolism.  

3.2.2 Model structure 

3.2.2.1 BC loop 

Generally in P450s, the BC loop can contain varied secondary structure such as a large 

helix as in 3DAX or beta sheet as in 2Q9G. In all of the CYP9 family, a large insert 

occurs relative to CYP3A4. The 3DCoffee output positioned the loop in a position that 

would disrupt the B' helix and so this was repositioned. Some secondary structure 

predictors indicated that secondary structure could occur between the C and B helices. 

This was predicted to be either helix or sheet, but with sheet more commonly predicted. 

A number of secondary structure predictors were used which varied in their predictions 

for a given sequence. The predictions also vary among the members of the family. A 

single beta strand was consistently predicted to occur in CYP9J24, two strands were 

predicted to occur in CYP9J28 but no strands were predicted to occur in CYP9J26, 9J32 
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and 9J19. The locations of the predicted strands in CYP9J28 suggest that a sheet could 

occur similar to that of CYP46A1 (Figure 3.43). The BC loop has been shown to adopt 

a variety of conformations between P450s and due to the existence of a large insert and 

predicted sheet, the conformation of the BC loop may be inaccurate.  

 

 

Figure 3.42 Phylogenetic tree produced by ClustalW of the CYP9 family and the hits 

from PSI-BLAST labelled as CYP_PDB ID _species.  
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Figure 3.43 CYP9J28 with the positions of the predicted beta strands highlighted in 

pink.  

 

3.2.2.2 G-I region 

Compared to the template, the CYP9J family have a large insert in the region between 

the G and I helices. In most of the family, this insert was predicted to form a helix. A 

difference occurred between CYP9J32 and the other CYP9J family members in this 

region. In CYP9J32, only one helix was predicted to occur, and this could correspond to 

the H helix that occurs in the template. In the other CYP9J members, two helices were 

predicted to occur in this region (Figure 3.44). As no additional helix occurs in the 

template, the remainder of the insert occurred as a random coil and produced a poor 

Errat profile. The large inserts between helices G and I and within the BC loop could 

have large affects on the structure of the protein that cannot be represented in the 

models.  

 

A large insert is predicted to occur between the H and I helices, and secondary structure 

predictors suggest that this may form an alpha helix. Helix-helix packing has a role in 

determining tertiary structure, with preferred geometries of interaction to produce an 

optimal packing. In the template the H-I loop is not clearly identified and this loop is 

known to show high mobility as it is completely exposed to the solvent. The presence of 

an additional helix in the 9Js could have large affects on helix packing and 

rearrangements could alter the tertiary structure or the shape of the active site.      
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Figure 3.44 CYP9J24 with the predicted locations of helices highlighted in pink. 

 

3.3 Conclusion 

In insects there has been an expansion of the CYP6 family, and many of the insect 

pyrethroid metabolisers tend to occur in this family, while in mammals metabolisers 

have been identified across families. This study modelled a range of CYP6 and CYP9 

P450s that had been tested for activity towards pyrethroids. This identification and 

modelling of both metabolisers and non-metabolisers is a starting point to identify 

commonalities between metabolisers and their differences from the non-metabolisers, to 

understand the requirements for the metabolism of insecticides.  

 

In this study, homology models were produced for a range of identified metabolisers 

and non-metabolisers. Templates were selected for each P450 and alignments were 

produced to optimise the strucuture. The models produced in this study were validated 

in a number of ways. Firstly, the structural evaluation of the models produced, verified 

that the models were structurally sound and not misfolded. An automated alignment, 

such as that carried out by 3DCoffee, does not fully take into account secondary 

strucure as inserts were found to occur in structural elements. Using secondary structure 

predictions and multiple sequence alignments of family members, the placement of 

inserts can be manually corrected to improve model quality. 

 

Each model was also extensivly validated to show that the models were consistant with 

the known experimental observations of each individual enzyme. Experimentally 
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derived substrate binding data and kinetics were compared with the model docking 

scores to show correlations that give an indication of the model quality. The poses of 

the ligands docked gives a prediction of the site of metabolism as ligand atoms exposed 

to, and within range of the heme iron could be hydroxylated. This prediction when 

compared to the reported sites of metabolism show that a model is consistant with the 

activity of the enzyme. In this study, the models produced were generally consistant in 

showing a correlation between known kinetics and docking score, and in binding 

substrates for metabolism with the correct regiospecifity.  

 

There were some inconsistancies with the data, but a number of factors were found that 

may explain the inconsistancies. Generally, inconsistencies occured where the 

experimental studies were carried out on whole microsomes containing many P450 

isoforms rather than on a single isolated isoform. Inconsistancies also occured when 

comparing the IC50s of suicide inhibitors to the docking score. Another inconsistancy 

occurred where models were able to bind non metabolites for metabolism. However, 

factors external to the active site may prevent metabolism, such as access from the 

membrane, and may not indicate a poor model.  
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4.0 Preface 

This chapter identifies P450s involved in pyrethroid metabolism and their metabolites, 

and attempts to identify commonalities between them. This study uses modelling to 

identify active site residues, and docking to identify at the atomic level the mode of 

binding of pyrethroids. Identifying commonalities between metabolisers can be used to 

produce a 'fingerprint' of binding to identify uncharacterised metabolisers so that 

candidate P450s can be prioritised for further study. 

 

4.1 Insect P450 CYP6 metabolisers 

4.1.1 Housefly CYP6D1  

4.1.1.1 Metabolism of natural pyrethrins 

The metabolism of naturally occurring pyrethrins in housefly was studied by Yamamoto 

et al. (1969). They found that housefly homogenates could only metabolise pyrethroids 

in the presence of NADPH and that stereochemistry did not affect the metabolism 

pathway. All of the metabolites of allethrin were esters that were more polar than the 

original allethrin and it was determined that metabolism was carried out by P450s.  

 

They found that the major modifications occurred on the acid, the ester linkage was not 

affected and the alcohol moiety was not modified. The major metabolic pathway for the 

metabolism of allethrin was oxidation of the trans-methyl group of the isobutenyl 

moiety. They also found a minor pathway involving the hydroxylation of the cis-methyl 

of the isobutenyl moiety (Figure 4.1). The metabolism of pyrethrin, phthalthrin and 

dimethrin were also presumed to be metabolised in a similar way although their 

products were not well characterised. It was found that these trans hydroxymethyl 

compounds have a low toxicity and that the increase in polarity or ionisation may 

prevent or slow the penetration of the nerve (Yamamoto et al, 1969).  

 

4.1.1.2 Pyrethrin metabolism by CYP6D1 

The regiospecificity of metabolism of the naturally occurring pyrethrins and pyrethrin 

analogues have been shown in housefly. As the primary pyrethroid metabolising P450 in 

housefly is CYP6D1, it is assumed that this is able to metabolise the pyrethrins as 

described by Yamamoto et al. (1969).  
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Figure 4.1 Metabolism of allethrin in housefly, adapted from Yamamoto et al. (1969).  

 

 

Figure 4.2 The best ranked dockings of allethrin (A) and pyrethrin I (B) both binding in 

a position for trans methyl metabolism. Best ranked mode of phalthrin (C) and 33
rd

 

ranked mode of dimethirn (D) docked into the CYP6D1 model.  

 

The pyrethrins were docked and the regiospecificity of the dockings for allethrin and 

pyrethrin I agree with the experimental findings as the best ranked dockings allow 

metabolism of the trans methyl. The model may explain this regiospecificity. The shape 

of the active site may pre-dispose the ligand to dock in a position for metabolism of the 

trans methyl. The alcohol moiety of these pyrethroids contains H-bond acceptors and 
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may prefer to bind to the more polar part of the active site near the access channel 2a 

(Wade et al., 2004) and form H-bonds with N392 or K213 as well as hydrophobic 

interactions with F115 and Y102. With the alcohol group in this position, the acid group 

lies within the hydrophobic pocket above the heme. This orientation places the trans 

methyl closest to the heme (Figure 4.2, A and B).  

 

However, the dockings for dimethrin and phalthrin do not support the suggestion that 

metabolism occurs on the trans methyl. The highest scoring modes of dimethrin and 

phalthrin do not place the acid group above the heme, but place the alcohol for 

metabolism (Figure 4.2, C). However, a lower scoring mode of dimethrin places the 

acid group above the heme that would allow metabolism of the trans methyl.(Figure 4.2, 

D).  

 

4.1.1.3 Metabolism of synthetic pyrethroids by CYP6D1 

As the isobutenyl group of crysanthamates is photolabile and susceptible to oxidative 

metabolism, this group is often substituted. The replacement with a dichlorovinyl group 

often increases potency. The substitution of the methyls in allethrin for halogens to 

produce dichloroallethrin increases the killing potency in houseflies by 3 fold. 

Incorporation of an α-cyano group also increases potency, with the α-S configuration 

having more potency than the α-R isomer (Ruzo and Casida, 1977). Unlike the 

pyrethrins, in the cis- and trans-dichoro pyrethroids the isobutenyl group methyls are no 

longer present as they are substituted by chorines, and metabolism of these compounds 

is shifted either onto the gem dimethyl groups, with a stereospecificity that varies 

between organisms or onto the 4', 2' or 6 positions on the phenoxybenzyl group (Casida, 

1980). Generally the substitution of the methyls of the isobutenyl group with chlorine 

increases the toxicity of the pyrethroid, and may remove sites of hydroxylation and shift 

the metabolism to less preferred sites. 

 

The metabolites produced by housefly microsomes have been identified. Shono et al. 

(1979) found that there was a stereospecificity in the metabolism of the gem dimethyl 

groups of permethrin in houseflies with the trans methyl of the trans permethrin, and the 

cis methyl of the cis permethrin the preferred sited of metabolism (Table 4.1). However, 

Ruzo et al. (1977) found that in the metabolism of an isomer mixture the trans methyl is 

preferably metabolised.  
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Table. 4.1 Isomer metabolism in housefly taken from Shono et al. (1979). 

Isomer   rank order of metabolism  

trans permethrin  trans > 4' > 6 

cis permethrin  cis > 4' = trans > 6   

 

There may be more than one P450 involved in pyrethroid resistance in housefly, 

Wheelock and Scott (1992) found that treatment with anti P450lpr decreased the gem 

dimethyl metabolism of deltamethrin while increasing metabolism of the alcohol 

moiety. The metabolites identified from microsomes may be the products of multiple 

isoforms. The isoform CYP6D1 has been shown to be involved in the metabolism of a 

number of pyrethroids. CYP6D1 has been shown to metabolise cypermethrin with 4'OH 

cypermethrin as the major metabolite, as anti-CYP6D1 prevents metabolite production 

(Zhang and Scott, 1996). CYP6D1 has also been shown to metabolise deltamethrin 

(Wheelock and Scott, 1992).  

 

4.1.1.4 Dockings of synthetic pyrethroids in CYP6D1 

The dockings of the four isomers of permethrin show that each isomer can bind for 

metabolism on either the 4' or trans methyl. This is inconsistent with the studies on 

whole microsomes but is consistent with the metabolism of pyrethroids in isolated 

CYP6D1. The best ranked modes of Rtrans, Scis, and Strans place the 4' in a position 

for metabolism while Rcis binds for metabolism on the trans methyl while a lower 

scoring mode places the 4' for metabolism. Similarly, deltamethrin and all isomers of 

cypermethrin except RtransS bind for metabolism of the 4'. RtransS binds for 

metabolism of the cis methyl but a lower scoring mode places the 4' for metabolism 

(Figure 4.3). The 4' binding mode for these synthetic pyrethroids is similar for 

deltamethrin cypermethrin and permethrin. The phenyl ring π-stacks with F115 while 

the benzyl ring interacts with both F115 and Y102. These interactions position the 

phenoxybenzyl group for metabolism at the 4' position. The steric bulk of L388 in SRS5 

may restrict the space available above the heme and restrict metabolism on the bulky 

acid group while allowing metabolism on the phenyl ring. These interactions may 

contribute to the regiospecificity of oxidation on the 4'.    
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Figure 4.3 The CYP6D1 model binding synthetic pyrethroids.  

 

4.1.2 Anopheles gambiae CYP6M2 

CYP6M2 has been shown to metabolise deltamethrin into a range of products in a three 

step process. The native deltamethrin is metabolised at either the 4' or trans methyl, with 

the 4'OH the major metabolite. The 4'OH product is then oxidised at the 1' to cleave the 

ether bond to give cyano(3-hydroxyphenyl)methyl deltamethrate. This product is further 

metabolised at the alpha carbon for ester cleavage to give deltamethric acid (Figure 4.4).   

 

 

Figure 4.4 The metabolism pathway of deltamethrin in CYP6M2 (McLaughlin, 

unpublished). Deltamethrin is metabolised in a three step process. 
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4.1.2.1 Regiospecificity of the native deltamethrin in CYP6M2 

When deltamethrin is docked into the CYP6M2 model, two modes occur that score 

highly, a mode that allows metabolism on the trans methyl and one that allows 

metabolism on the 4'. The best ranked mode places the trans methyl above the heme 

while the cis methyl is distant. This is consistent with the known regiospecificity of 

deltamethrin metabolism on the trans methyl. The second highest scoring mode places 

the phenyl ring above the heme in a position that would allow 4' metabolism. This is 

also consistent with the known metabolite produced. However, the scores of the 

dockings are inconsistent with the preference for metabolism, the higher scoring mode 

for trans-OH is a minor metabolite while the lower scoring 4' mode is the major 

metabolite. This may be explained by inadequacies in the scoring method. A constrained 

docking to place the oxygen bonded carbons of either the phenyl ring or the benzyl ring 

above the heme produces modes that are higher scoring than the free dockings. There 

may be inadequacies in the search space of the free dockings or in the scoring.  

 

There may be a number of factors affecting regiospecificity. The similarity in score 

between the modes (Table 4.2) may indicate that there are two high scoring orientations 

and that metabolite preference may be determined by reactivity. This was tested using 

MetaSite. MetaSite indicated that the 4' carbon was the most reactive site of the ligand 

while the gemdimethyl group was relatively unreactive. Although CYP6M2 may be 

able to bind the ligand to place both the trans methyl and 4' carbons above the heme, the 

reactivity of the 4' carbon could lead to a greater amount of product produced. Both the 

binding modes of deltamethrin and the MetaSite reactivity prediction are consistent with 

the experimental findings.  

 

Table 4.2 ChemScores (kJ/mol) of the native deltamethrin bound in CYP6M2.  

       Score         ΔG    S(hbond)    S(metal) S(lipo)  H(rot)  ΔE(clash)  ΔE(int) 

trans(1
st
)      41.5     -46.5       0.0              0.0      386.9       1.6       2.7        2.4 

4'(2
nd

)      41.1     -43.3       0.0              0.0      358.7       1.6       0.5       1.7      

 

The dockings offer an explanation for the regiospecificity for the sites of metabolism of 

the native deltamethrin. The regiospecificity for the trans methyl may be explained 

partly by the orientation of the acid group in the active site and partly by the relatively 

exposed nature of the trans methyl. With the acid group docked above the heme and the 

alcohol group stacking with F110, the halovinyl group lies between F123 and V372. In 

this position the trans methyl projects towards the heme while the cis is distant. It may 
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be the steric restrictions produced by F123 and V372 that restrict the space available 

and constrain metabolism to the trans (Figure 4.5, A).  

 

 

Figure 4.5 Best ranked mode of native deltamethrin in CYP6M2 placing the trans 

methyl 3.3 Å above the iron, and the cis methyl 5.7 Å (A). The 2
nd

 ranked mode of 

deltamethrin placing the phenyl ring above the heme (B).  

In the second high scoring mode, the phenyl ring can bind above the heme, although the 

regiospecificity for 4' metabolism is less well explained as the 4' carbon as well as the 2' 

and 6' are close to the heme, although the 4' carbon is closer at 4.25 Å while the ortho 

carbons are 4.44 Å and 4.32 Å (Figure 4.5, B). 

 

4.1.2.2 Successive reactions and unobserved metabolites 

It has been shown with a number of P450s that a single substrate can be repeatedly 

metabolised to a number of products. P45017α,lyase catalyses the 17α-hydroxylation of 

progesterone and pregnenolone, and the C17-C20 bond cleavage of the 17α-

hydroxylated steroids to form androgens such as androstenedione. Tagashira et al. 

(1995) showed that the 17α-hydroxy intermediate was successively oxidised without 

being displaced from the active site. When pregnenolone was metabolised in the 

presence of radio-labelled 17α-OH intermediate, the androgens produced retained the 

same isotope as the original pregnenolone, showing that the released 17α-OH cannot be 

the intermediate for further metabolism. If the intermediates did leave, the active site 

would be occupied by the substrate that is present in large amounts. The androgens are 

produced from a non-dissociating intermediate. In this successive reaction, a portion of 

the 17α-OH progesterone is displaced while the remainder is metabolised by a second 

monooxygenase reaction. The rate of the first reaction is higher than the second. In the 

second reaction, it is necessary for the intermediate to change its orientation in the 

active site and this was suggested to cause the slower rate in the successive reaction. 
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After the initial metabolism of the native deltamethrin, the 4'OH is then further 

metabolised to 3-hydroxyphenyl while the trans-OH is not. Free dockings of the 

metabolites show that there is a large difference in score between the metabolites that 

are further metabolised and those that are not. Trans-OH binds with a low score while 

4'OH binds with a high score. As 4'OH deltamethrin is able to bind with a high score it 

may be retained in the active site to be further metabolised, while the poorer binding 

metabolites may be displaced (Table 4.3). However, the modes of the free dockings of 

the metabolites do not reflect the sites of metabolism for 4'OH or 3-hydroxyphenyl 

(Figure 4.6). It is possible that while the metabolite is retained, it tumbles within the site 

to reposition for further metabolism. In this case little movement of the ligand is 

required as the second site of metabolism is close to the first.   

Table 4.3 ChemScores (kJ/mol) of the metabolites of deltamethrin bound in CYP6M2. 

               Score         ΔG    S(hbond)    S(metal)  S(lipo)  H(rot)  ΔE(clash) ΔE(int) 

4'OH    40.3      -43.7       0.9              0.0      354.2       2.4       1.5        1.9  

4=O  42.9      -45.2       1.0              0.0      353.8       1.9       1.0        1.4 

transOH 39.9      -43.3       0.5              0.0      366.6       2.6       1.1        2.3 

 

 
Figure 4.6 The docking modes of the free dockings of the deltamethrin metabolites in 

CYP6M2.  

4.1.2.3 Alcohol metabolism and ether bond cleavage 

From the metabolites identified, cleavage of the ether bond of the phenoxybenzyl group 
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may occur. P450s have been shown to be able to cleave the diarylether bond of p-(p-

nitrophenoxy)phenol to produce p-nitrophenol and hydroquinone. Ohe et al. (1994) 

using 
18

O showed that this was accompanied by replacement of p-nitrophenoxy group 

by the oxygen atom in an ipso-substitution. In this case the hydroxy group was found to 

be necessary as p-(p-nitrophenoxy)phenol analogues that lack the hydroxy group were 

not cleaved. Ohe et al. (1995) suggested a mechanism for the cleavage that involves 

abstraction of one electron and one proton or one hydrogen radical to give a phenoxy 

radical. This radical de-localises on the aromatic ring and redistributes to the ipso 

position. Hydroxylation at the ipso position gives a hemiketal which breaks down 

(Figure 4.7). 

 

 

Figure 4.7 Ipso substitution reaction adapted from Ohe et al. (1994). 

 

This reaction can only occur in arylethers after aromatic hydroxylation. For ether bond 

cleavage to occur with pyrethroid phenoxybenzyl groups, prior hydroxylation at the 4' 

may be required. As ether bond cleavage by P450s has been shown to occur by ipso 

substitution of an hydroxylated phenyl ring, ipso substitution of the 4' hydroxylated 

deltamethrin could lead to ether bond cleavage. The 4'OH deltamethrin needs to be 

oxidised on the 1' carbon for ipso substitution. Free dockings support this suggestion as 

this mode occurred but was low scoring. Although the scores of the free docking do not 

explain the preference for metabolism, this may be due to inadequacies of the search 

space as a constrained docking to place the oxygen bonded carbon of the phenyl ring 

above the heme produces modes that are higher scoring than the free dockings (Table 

4.4). 
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Table 4.4 ChemScores (kJ/mol) of the best ranked modes of a constrained docking in 

CYP6M2. The dockings involved constraining the oxygen bonded phenyl carbon close 

to the heme.  

    Score    ΔG   S(hbond)   S(metal)   S(lipo)    H(rot) ΔE(clash) ΔE(int)ΔE(con) 

Native    42.3     -43.9       0.0          0.0    364.3      1.6       0.2            1.5        0.0 

4'OH      41.9     -45.7       0.9          0.0    370.7      2.4       0.8            2.9        0.0 

 

When the oxygen bonded carbon of the phenyl ring is constrained close to the heme, the 

phenyl ring lies close to the heme in a similar mode as in the free docking, but with an 

improved score. This may indicate a deficiency of sampling in the free docking that this 

higher scoring mode was not found. After 4' hydroxylation the product may be retained 

in this position for hydrogen abstraction. MetaSite indicated that after hydrogen 

abstraction, the 1' carbon is activated for metabolism so that ipso substitution can occur.  

 

4.1.2.4 Ester bond cleavage 

In the free dockings of native deltamethrin no modes occur that allow metabolism of the 

alpha carbon. In constrained dockings to place the alpha carbon above the heme, the 

cyano group coordinates with the iron in a mode that would produce type II inhibition. 

This may be consistent with the finding that native deltamethrin is not cleaved at the 

ester bond but must be modified before this occurs. Deltamethrin is converted to 3-

hydroxyphenyl before the ester bond is cleaved, the removal of the phenyl ring may 

alter the binding mode to allow metabolism on the alpha carbon. 

  

To prevent finding coordination with the cyano, two restraints were used one to 

constrain the alpha carbon above the heme with a restraint of 1.5-4.5 Å and a second to 

prevent the cyano approaching the heme.  

Table 4.5 ChemScores (kJ/mol) for dual restrained dockings.  

              Score      ΔG    S(hbond)    S(metal) S(lipo) H(rot) ΔE(clash) ΔE(int) ΔE(con) 

Native    33.1     -37.2       0.0            0.0      306.9       1.6       0.5         2.6       0.9 

4'OH      31.4     -47.7       1.0            0.0      386.3       2.4      10.5        5.7       0.0 

transOH 33.6     -38.0       1.0            0.0      307.6       2.6       1.0         2.9       0.5 

3-hyd     28.1     -33.1       0.7            0.0      263.1       2.2       1.7         1.3       1.9 

 

Although 3-hydroxyphenyl deltamethrin is further metabolised at the alpha carbon, no 

free modes find this pose and the restrained docking produces poor scores (Table 4.5). 

However, the absence of the phenyl ring produces a lower internal torsional strain than 

when the phenoxybenzyl ring is intact and a lower clash score than the 4' OH. To allow 
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the 3-hydroxyphenyl alpha carbon to approach the heme for ester cleavage, the phenyl 

ring stacks between F123 and the I-helix (Figure 4.8). As there is limited space 

available in the area between the BC loop and I-helix, the absence of this ring in 3-

hydroxyphenyl may be preferred. MetaSite also indicated the alpha carbon as a reactive 

site for metabolism.  

 

Figure 4.8 The docking modes of a dual restrained docking of 3-hydroxyphenyl in 

CYP6M2. 

4.1.3 Anopheles gambiae CYP6P3 

CYP6P3 and CYP6M2 produce similar metabolite peaks of deltamethrin and can bind 

in similar modes. The best ranked mode places the 4' in a position for metabolism while 

a lower ranking mode places the trans methyl for metabolism (Figure 4.9). In the mode 

that allows 4' metabolism, the benzyl ring stacks with F123 while the phenyl ring stacks 

above the heme. F110 and L216 form hydrophobic contacts with the acid group. In the 

mode that allows metabolism of the trans methyl, the benzyl ring stacks with F110 

while the acid forms hydrophobic contacts with L380 and F123. 

 

Figure 4.9 Deltamethrin binding in CYP6P3 the best ranked mode (A) and second 

ranked mode (B).  
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4.1.4 Anopheles funestus CYP6P9 

Like CYP6M2 and CYP6P3, CYP6P9 is also predicted by the dockings to bind 

deltamethrin for metabolism on either the 4' or trans methyl. In the best ranked mode, 

deltamethrin binds for metabolism on the trans methyl. Like CYP6P3, this mode 

involves π-stacking of the benzyl ring with F110 and hydrophobic contacts between the 

acid group and F123 and V380 (Figure 4.10, A). A mode occurs that also allows 

metabolism at the 4' position. Although CYP6P9 is the orthologue of CYP6P3 it has 

substitutions within the binding site and this binding mode differs. In this mode there is 

a H-bond with R54 that positions the acid group distant from the heme. The benzyl ring 

binds between V380 and F123 and π-stacking may occur with F123. The phenyl ring 

may also stack with F123 (Figure 4.10, B).  

 

4.1.5 Anopheles minimus CYP6AA3 

CYP6AA3 has a similar active site to CYP6M2 and CYP6P3, CYP6AA3 has similar 

aromatic residues in the BC loop (H120, F112, Y109) and conserved aliphatic residue in 

SRS5 (V376), but shows a different regiospecifitiy for deltamethrin. It has been found 

that CYP6AA3 metabolises deltamethrin to produce phenoxybenzaldehyde by oxidative 

cleavage of the ester bond. In a free docking, deltamethrin binds in a similar position as 

in CYP6M2 with the methyls close to the heme (Figure 4.10, C). A constrained docking 

of deltamethrin to place the alpha carbon above the heme also placed the cyano group in 

a position to coordinate with the iron in the top ranked modes. However, in the 73
rd

 

ranked mode, the cyano group can H-bond with the Lys of the FG region to position the 

cyano group away from the heme and prevent coordination (Figure 4.10, D). It may be 

this substitution that shifts the preference for metabolism onto the alpha carbon for the 

native deltamethrin. 
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Figure 4.10 The best ranked binding mode of deltamethrin in CYP6P9 places the ligand 

in position for metabolism on the trans methyl (A) while the 6
th

 ranked mode places it 

for metabolism on the 4' (B). The best ranked mode (C) and the 73
rd

 ranked mode (D) of 

deltamethrin binding in CYP6AA3. 

 

4.1.6 Helicoverpa zea CYP6B8 

Although CYP6B8 has been shown to metabolise alpha-cypermethrin, no metabolites 

have been identified. Two modes occur for both isomers of alpha-cypermethrin: the 

highest scoring allows metabolism on the dimethyls while the lower scoring allows 

metabolism at the 4' position. Both isomers bind in similar modes with similar 

interactions. In the best ranked mode, the phenoxybenzyl group is surrounded by 

aromatic residues and stacking can occur with F300, F108, H119 and F118. A H-bond is 

also possible between the cyano group and Y214. The acid group is surrounded by F118 

and V371 that provide vdW interactions (Figure 4.11, A). In the lower ranked mode, the 

molecule is inverted and metabolism is possible on the 4' position. In this mode π-

stacking is also possible with F108 and F118 but no H-bonds occur (Figure 4.11, B).    
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Figure 4.11 The best ranked mode (A) and 45
th

 ranked mode (B) of cypermethrin 

(Rcis)(S) binding in CYP6B8.  

 

4.1.7 Regiospecificity comparisons 

The identified metabolisers metabolise deltamethrin with different regiospecificities, 

CYP6D1 metabolised deltamethrin on the 4' position while CYP6M2 and CYP6P3 

metabolise both the alcohol and acid groups. There are a number of conservations and 

substitutions between these P450s that could indicate the reason for the difference in 

regiospecificity.   

 

4.1.7.1 BC loop 

The CYP6 metabolisers have two conserved aromatic residues in the BC loop. In these 

P450s, the BC loop aromatic residues are involved in binding the ligand in different 

binding modes. In CYP6D1 both BC loop aromatic residues are involved in stacking 

with the aromatic rings of deltamethrin while in CYP6M2/6P3 they may be involved in 

hydrophobic interactions as well as π-stacking. CYP6M2 and CYP6P3 have an 

additional aromatic residue H121 in the BC loop that is in a position to interact with the 

ligand, this is absent in CYP6D1 and may contribute to differences in regiospecificity. 

This additional His may provide aromatic interactions, or may form a H-bond with the 

phenoxybenzyl oxygen, but as the His replaces an Asn in CYP6D1, H-bonding may not 

the primary factor (Figure 4.12). 
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Figure 4.12 CYP6P3 binding deltamethrin for metabolism on the methyls (A) and 

CYP6D1 binding deltamethrin for metabolism at the 4' position (B). In CYP6P3 the 

additional His is in a position to provide additional aromatic interactions where 

deltamethrin is in a position for metabolism on the acid group. 

 

4.1.7.2 FG loop 

CYP6D1 has a H-bond donor in the FG loop that is in a position to form H-bonds with 

the phenoxybenzyl oxygen while deltamethrin is in a position for 4' metabolism. In both 

CYP6M2 and CYP6P3 this is substituted and a H-bond is not possible.   

 

4.1.7.3 SRS5 

There are differences between CYP6D1 and CYP6M2/6P3 in SRS5. In CYP6D1 this is 

a Leu while in CYP6M2/CYP6P9 this is a smaller Val. In CYP6D1, the size of the 

active site is sterically restricted as both F115 and L388 project into the site. To access 

the heme a ligand must bind between F115/L388 and the I helix. As the acid group is 

relatively bulky, metabolism on the methyls may be sterically restricted while the planar 

phenyl ring is able to bind. These steric restrictions may also be responsible for 

CYP6D1s preference for planar ligands. The substitution of the large L388 in CYP6D1 

for the smaller V372 in CYP6M2/6P3 may provide space for the acid group to bind. 

CYP6D1 also has a H-bond donor (N392) in SRS5. This can form a H-bond with the 

cyano group while deltamethrin is in a position for 4' metabolism. N392 in SRS5 is 

substituted in CYP6M2 for F376 and it is possible that the loss of this H-bond could 

contribute to differences in regiospecificity (Figure 4.13).  
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Figure 4.13 CYP6D1 binding cypermethrin with H-bonds to N392 (dotted red line). 

 

4.2 Insect CYP6 non-metabolisers 

4.2.1 Anopheles gambiae CYP6Z2 

It has been found that CYP6Z2 is capable of binding cypermethrin and permethrin as 

they are capable of inhibiting BROD activity with a low IC50 (0.6 and 3.0 μM 

respectively), but has not been shown to metabolise them (McLaughlin et al, 2008). 

Although this may be due to the absence of b5, the dockings suggest that pyrethroids 

can adopt a non productive binding mode due to aromatic and polar residues distant 

from the heme. Two aromatic residues F212 and F222 appear to be a major determinant 

of binding with additional H-bonds formed with K48 and N369. In the non-productive 

binding mode the phenoxybenzyl group is held distant by aromatic interactions with 

F222 and F212 while the halogens approach the heme. In contrast, the metaboliser 

CYP6D1 has both of these substituted for non aromatic residues K213 and N222 and 

the ligand is able to bind productively (Figure 4.14).   

 

4.2.2 Aedes aegypti CYP6CB1 

CYP6CB1 has also been shown to be a non-metaboliser and the model shows a similar 

binding mode to CYP6Z2 with the alcohol group held distant by an aromatic network. 

An alignment shows that this aromatic network is conserved between CYP6Z2 and 

CYP6CB1; the residues F212 and F222 of CYP6Z2 align with W211 and F221 of 

CYP6CB1 (Figure 4.15). These aromatic residues in the FG loop were identified as 

involved in preventing metabolism in CYP6Z2 and may also contribute to a lack of 

activity in CYP6CB1. Both of these positions are substituted in the metabolisers 

CYP6D1, CYP6M2 and CYP6P9/3. 
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Figure 4.14 The binding modes of pyrethroids in CYP6Z2 and CYP6D1. (A) 

Permethrin in CYP6Z2; (B) cypermethrin in CYP6Z2; (C) permethrin in CYP6D1 and 

(D) cypermethrin in CYP6D1 taken from McLaughlin et al. (2008). 

 

Figure 4.15 An alignment of the FG region of CYP6Z2 and CYP6CB1 showing 

conserved aromatic residues (arrows). 

 

W211 is in a position to interact with the ligand but F221 is distant, although, as it 

occurs in an access channel it may have an influence on access. Unlike CYP6Z2, 

CYP6CB1 has additional aromatic residues contributing to this binding mode, in 

addition to W211, H104 of the BC loop and F378 of SRS5 are also in positions to stack 

with the ligand in this non productive mode (Figure 4.16).  

 

Table 4.6 ChemScore (kJ/mol) of the best ranked mode of deltamethrin in CYP6CB1.  

Score         ΔG    S(hbond)    S(metal)    S(lipo)     H(rot)   ΔE(clash)     ΔE(int) 

43.2          -54.6       1.7            0.0            408.3       1.6         7.9        3.4         
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Figure 4.16 First ranked mode of deltamethrin in CYP6CB1, deltamethrin binds in a 

non-productive mode with two H-bonds to K209 and S374 (red dotted lines). 

This non-productive mode is also high scoring (Table 4.6) due to the presence of two H-

bonds with K209 and S374 (Figure 4.16). There may be other factors contributing to the 

lack of activity, the steric bulk of W211 may restrict access or binding within the active 

site. The aliphatic residue of SRS5 that is conserved in the metabolisers is substituted 

with a Ser, while this forms H-bonds with the ligand in the unproductive mode, it may 

also affect the hydrophobicity of the active site and affinity for hydrophobic ligands 

such as pyrethroids.  

 

4.2.3 Papilio polyxenes CYP6B1 

It has been previously shown that CYP6B1 is incapable of metabolising α-cypermethrin 

(Rcis S and Scis R mixture). Similar to CYP6Z2, in the CYP6B1 model cypermethrin 

binds with the halogens oriented towards the heme. The phenoxybenzyl group of 

cypermethrin is also surrounded by an aromatic network formed by F116, and F106 in 

the BC loop and Y210 in the FG loop. In the model these residues may hold the 

phenoxybenzyl group distant, allowing the halogens to orient towards the heme, with 

this mode occurring as the highest ranked modes for both isomers of α-cypermethrin. In 

addition, cypermethrin H-bonds to the sidechains of Y210 and T372 and the main chain 

of Q373 (Figure 4.17). However, in lower scoring modes the methyls are close to the 

iron which is inconsistent with the lack of activity found in CYP6B1. As the network of 

residues occurs along an access channel, they may affect access to the active site rather 

than positioning within the active site.  
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Figure 4.17 Cypermethrin binding in CYP6B1 with H-bonds to Q373, T372 and Y210 

(red dotted lines).  

 

4.3 CYP6 Metabolisers and Non-metabolisers comparisons 

4.3.1 BC loop 

The CYP6 metabolisers share a number of conservations. In the BC loop two aromatic 

residues are conserved. These correspond to F110 and F123 in CYP6M2 (Figure 4.18, 

A). In CYP6B8 an insert occurs but F108 aligns with the template F102 to place it 

within the active site. The known non-metabolisers of pyrethroids also share the 

conserved aromatic residues in the BC loop, but there are substitutions in the FG and 

SRS5 regions. Similarities in the active site between metabolisers and non-metabolisers 

could indicate that there may be other factors affecting metabolism such as binding in 

an unproductive mode or ligand access.  

4.3.2 SRS5 

In SRS5, the metabolisers have a conserved aliphatic residue that aligns with V372 of 

CYP6M2 (Figure 4.18, B). While metabolisers tend to have bulky aliphatic residues 

projecting into the site, the non-metabolisers may have small or polar residues at this 

position (Figure 4.18, C). The larger active site produced by Ala and Ser may allow 

positioning in non-productive modes or the substrate may not be stabilised above the 

heme. In metabolisers this bulky aliphatic residue may form hydrophobic interactions 

that may be absent in some non-metabolisers.  
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A  

B    

C  

D  

Figure 4.18 (A) Alignment of the BC loops of CYP6 metabolisers, the positions of F110 

and F123 of CYP6M2 are identified. (B) Alignment of metabolisers SRS5 region, the 

position of V372 in CYP6M2 is identified. (C) Alignment of the SRS5 region of non-

metabolisers, the position of L365 in CYP6Z2 is identified and is in an equivalent 

position to V372 in CYP6M2. (D) Alignment of the FG region of non-metabolisers the 

positions of F212 and F222 in CYP6Z2 are identified. 

4.3.3 FG loop 

In the CYP6Z2 model a number of residues were predicted to affect ligand access. One 

of these, F212, was in a position to π-stack with the alcohol moiety. An aromatic residue 

is conserved in this location in the other CYP6 non-metabolisers CYP6CB1 and 
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CYP6B1 and may be a feature in affecting access in these also. CYP6Z2 and CYP6CB1 

have an additional aromatic residue F222 (Figure 4.18, D). Both of these residues are 

substituted in CYP6D1, CYP6M2 and CYP6P3. 

 

4.4 Helicoverpa zea CYP321A1 

CYP321A1 has not been considered to be part of the CYP6 family as it arose 

independently from a different progenitor gene, but phylogenetic analysis indicates that 

CYP321A1 forms a clade with the CYP6Bs that is separate from the other CYP6 clades 

(Li et al., 2003). It has been shown to metabolise α-cypermethrin at a lower rate than 

CYP6B8, 1.6 µmol/µmol P450 per minute for CYP321A1 compared to 2.44 µmol/µmol 

P450 per minute for CYP6B8 (Rupasinghe et al., 2007). 

 

Figure 4.19 Cypermethrin RcisS binding in two modes in CYP321A1. 

 

CYP321A1 differs from CYP6B8 in that it is missing the aromatic residues in the BC 

loop that are present in CYP6B8. These are substituted for S117 and L106. However, it 

contains aromatic residues in other locations that may be involved in binding. 

Cypermethrin binds for metabolism on the dimethyls by stacking with F299 of the I 

helix and may form aromatic interactions with F236 of the GG' loop. The CYP321A1 

model can also bind cypermethrin for 4' metabolism. In this position there may be 

aromatic interactions between the phenyl ring and F299 (Figure 4.19). The aromatic 

residues F299 and F236 may have a similar role as F110 and F123 of CYP6M2, and 

may represent an alternative mechanism of pyrethroid binding than the CYP6s. The 

placement of the aromatic residues may be non-optimal positions for π-interactions that 

may contribute to the lower metabolism in CYP321A1.  
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4.5 Aedes aegypti CYP9 family 

CYP9J26, 9J32, 9J28 and 9J24 are capable of metabolising pyrethroids, CYP6CB1 and 

CYP9J19 are non metabolisers. Compared to CYP6P9, it was shown that deltamethrin 

is metabolised preferentially over permethrin (Figure 4.20). 

 

Figure 4.20 The experimentally determined (McLaughlin, unpublished) activities of 

P450s towards permethrin, deltamethrin and DDT. 

 

4.5.1 Pyrethroid metabolisers  

4.5.1.1 CYP9J24 

In CYP9J24, both pyrethroids bind for metabolism of the alcohol group with the benzyl 

ring stacking with F126. H-bonds occur between K224 and both pyrethroids, but the 

deltamethrin cyano group forms additional H-bonds with the backbone and has a higher 

H-bond score. The presence of a additional stabilising H-bond may contribute to the 

preference for deltamethrin (Figure 4.21, A and B).   

4.5.1.2 CYP9J26 

Both pyrethroids bind for metabolism of the acid group with the benzyl ring stacking 

with F111. CYP9J26 shows similar clearance for both permethrin and deltamethrin and 

deltamethrin docks with a poorer score. However, the highest scoring deltamethrin 

mode shows a high H-bond score while the permethrin Rcis isomer does not show a H-

bond. With the acid bound above the heme, H-bonds are possible between the cyano 

group and K228 (Figure 4.21, C and D). Rcis permethrin binds in a similar mode but no 

H-bonds occur, although other isomers form a H-bond with S131.  
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Figure 4.21 CYP9J24 binding deltamethrin (RcisS) (A) and Rcis permethrin (B). 

CYP9J26 binding deltamethrin (C) and Rcis permethrin (D).  

 

4.5.1.3 CYP9J28 

CYP9J28 is similar to CYP9J26 in that similar modes occur for both deltamethrin and 

permethrin with the benzyl ring stacking with F109. A H-bond occurs with deltamethrin 

that does not occur with Rcis permethrin (Figure 4.22, A and B). However, the other 

isomers bind in alternate modes and can form H-bonds.  

 

4.5.1.4 CYP9J32 

With CYP9J32 a large difference in metabolism is seen between deltamethrin and 

permethrin but the scores for deltamethrin are poor. Both pyrethroids bind with the acid 

group above the heme with the benzyl ring stacking with F111. The best ranked modes 

of both permethrin and deltamethrin form single H-bonds, the permethrin forming H-

bonds with S128 while deltamethrin forms H-bonds with the main chain of the FG loop 

F226 (Figure 4.22, C and D). As there are similar H-bond scores, the presence of an 

additional stabilising H-bond may not explain the higher metabolism of deltamethrin.  
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Figure 4.22 CYP9J28 binding deltamethrin (A) and permethrin (B). CYP9J32 binding 

deltamethrin (C) and permethrin Rcis (D). 

 

4.5.2 Remaining questions 

The models do not offer an explanation for the difference in clearance between 

permethrin and deltamethrin nor an explanation for why this difference occurs in the 

CYP9s but not the CYP6s. In all models, permethrin has similar modes and scores 

higher than deltamethrin. This is inconsistent with the experimental results that show 

that permethrin is metabolised either similarly or poorly. The possibility that the larger 

bulk of deltamethrin provides an increase in stability is not supported as deltamethrin 

tended to show lower vdW scores than the highest scoring permethrin isomer. Both the 

CYP9s and CYP6s show higher scores for the permethrin isomers than deltamethrin. 

This may be due to a lower rotatable bond freezing term for permethrin compared to 

deltamethrin as deltamethrin has 10 rotatable bonds compared to 9 in permethrin.  

 

An alternative possibility could be the existence of additional H-bonds. Unlike 

permethrin, deltamethrin can form H-bonds with the cyano group, It may be 

deltamethrins ability to form additional stabilising H-bonds that allows for a greater 

clearance. However, this was not found as the H-bond score for deltamethrin was not 

consistently higher than that of permethrin and the cyano group does not offer 
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additional H-bonds except in CYP9J24. Additionally, the H-bonding pattern differs 

between P450s with no donor shared between the metabolisers. It is possible that factors 

external to the active site may play a role in substrate selectivity. 

 

4.5.3 Non-metaboliser CYP9J19 

CYP9J19 has a number of substitutions of residues conserved in the metabolisers. Both 

BC loop Phes are substituted and the aliphatic residue in SRS5 is substituted with a Thr 

(CYP6CB1 also has a similar substitution for a Ser) (Figure 4.23). Although CYP9J19 

is a non metaboliser, the best ranked modes bind for metabolism, although unproductive 

modes occur involving H-bonding to the SRS5 Thr. The productive mode is low scoring 

(Table 4.7) and this appears to be due to a low vdW/hydrophobic score which may be 

due to the substitution of a Phe for Ser, but may also be due to the substitution of a Ile 

conserved in the I helix of the other CYP9s for a smaller V337 that gives poor vdW 

contacts.  

Table 4.7 ChemScores (kJ/mol) of the best ranked mode of deltamethrin. 

  Score         ΔG    S(hbond)    S(metal)    S(lipo) H(rot) ΔE(clash)   ΔE(int)  

9J19 37.1     -40.4       0.0                0.0           334.4       1.6       2.8       0.6 

9J24 48.4     -52.6       1.7                0.0           389.1       1.6       0.4        3.8  

9J26 44.8     -48.6       1.4                0.0           365.7       1.6       1.1        2.8  

9J28 49.7     -53.7       1.5                0.0           405.8       1.6       0.9        3.2 

9J32 44.0     -50.7       1.0                0.0           394.1       1.6       4.5        2.2       

 

Both non metabolisers CYP6CB1 and CYP9J19 both have a polar residue in SRS5 that 

can H-bond with deltamethrin in non-productive modes. Alternatively it may be the 

substitution of a non polar for a polar residue that affects the hydrophobicity of the 

active site and its affinity for hydrophobic ligands.     

 

4.5.4 Comparison of CYP9 metabolisers and non metabolisers 

The CYP9J metabolisers share conservations with the CYP6 metabolisers CYP6P3, 

CYP6P9 and CYP6M2 such as two conserved aromatic residues in the BC loop and an 

aliphatic residue in SRS5. This suggests common binding interactions between these 

metabolisers. The CYP9J2s also have similarities that are particular to this family such 

as conserved aliphatic residues on the I helix (I331), a Ser in the BC loop (S127) and a 

basic residue in the FG loop (R224) (Figure 4.23). While CYP9J28, CYP9J26 and 

CYP9J24 have similar active sites, CYP9J32 and CYP9J19 differ from this group. 
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Figure 4.23 An overlay of CYP9J24, CYP9J28 and CYP9J26 showing active site 

conservations. The numbering corresponds to CYP9J28. 

 

Figure 4.24 The binding modes and active sites of CYP9J32 (A) and CYP9J19 (B).   

 

CYP9J32 and CYP9J19 both differ from the 9J2 group and differ from the other 

metabolisers. In both CYP9J32 and CYP9J19 the conserved BC loop Phe above the 

heme is substituted for a Val, but while CYP9J32 still shares the second conserved Phe, 

in CYP9J19 this is substituted for a Ser. While CYP9J32 has one of the conserved 

residues substituted, it still shares the second conserved BC loop Phe and is able to bind 

deltamethrin in a similar mode as CYP6M2, and the Phe is in a position to form 

aromatic interactions with the benzyl ring of deltamethrin. This residue may act as a π-

anchor for this particular binding mode. The Phe above the heme is not in a position to 

form aromatic interactions in this binding mode and may provide only hydrophobic 
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interactions and the substitution of this Phe for an aliphatic residue may be tolerated 

(Figure 4.24). 

 

4.6 Pharmacophore and pyrethroid binding fingerprint 

4.6.1 'Typical' metabolisers 

All of the metabolisers CYP9J24, CYP9J26 and CYP9J28 are closely related and share 

active site similarities. These similarities are also shared with the CYP6 metabolisers 

CYP6P9, CYP6P3, CYP6M2 CYP6B8 and CYP6D1 and may be termed 'typical' 

metabolisers. The conservations between this group of metabolisers may indicate 

common ligand binding interactions. In all of these metabolisers, there are two 

conserved aromatic residues that both project into the active site (Figure 4.25, A). 

Within the BC loop there are few other conservations and large inserts occur in the 

CYP9J2 group. There is also the conservation of an aliphatic residue in SRS5 although 

this varies in size (Figure 4.25, B). Few conservations occur in the FG loop, but a 

conserved polar residue tends to occur above the heme and project into the active site 

(Figure 4.25, C). 

 

4.6.2 Non-typical metabolisers and non-metabolisers 

CYP9J32 and CYP321A1 are metabolisers but differ from the 'typical' metabolisers in 

that the conserved aromatic residues are substituted. In CYP9J32 the conserved BC loop 

aromatic residue above the heme is substituted by V/G but still shares the second 

conserved residue. In CYP321A1 both of the conserved residues substituted but other 

aromatic residues on the I helix and FG loop may act as substitutes. Some non-

metabolisers resemble the metabolisers, CYP6B1 and CYP6CB1 both share the 

conserved residues that occur in the metabolisers, while CYP9J19 has both of these 

residues substituted (Figure 4.26, A). In SRS5, both non metabolisers CYP6CB1 and 

CYP9J19 have the conserved aliphatic residue substituted with a polar Thr or Ser 

(Figure 4.26, B). 
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Figure 4.25 (A) Conserved aromatic residues of the BC loop identified by alignment 

with CYP6D1. (B) A conserved aliphatic residue in SRS5, with L388 in CYP6D1 

identified.(C) A conserved polar residue in the FG loop alignment with N210 in 

CYP6D1 identified. 

The use of docking and pharmacophores were used here to suggest a pyrethroid binding 

fingerprint to explain the ability of both the 'typical' and 'non-typical' metabolisers to 

bind pyrethroids. This also suggests an explanation for the lack of metabolism in P450s 

that show substitutions that differ from the metabolisers. However, the active sites of 

some non-metabolisers share the same conservations that occur in the 'typical' 

metabolisers and the lack of metabolism cannot be attributed to differences in the active 

site.      
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Figure 4.26 (A) The BC loop alignment of metabolisers and non-metabolisers with the 

BC loop residues aligning with CYP6D1 Y102 and F115 identified. (B) Alignment of 

metaboliser and non-metaboliser SRS5 region with residues aligning with housefly 

L388 identified. 

 

4.6.3 CYP6/9 clade pharmacophore 

The metabolisers with bound ligands (CYPs 6M2, 6P3, 6P9, 6B1, 6B8, 321A1, 9J24, 

9J26, 9J28, 9J32) were structurally aligned using MOE, which overlapped the bound 

ligands. A consensus pharmacophore was produced from the overlapped ligands to 

identify common interactions with the receptor. From the structural alignment of the 

receptors the bound ligands were well overlaid despite having differing binding modes, 

and the pharmacophore features of the ligands could be grouped into a consensus 

pharmacophore (consensus threshold of 30%) (Figure 4.27, A). The pharmacophores 

were produced in MOE. Structural features are represented as points in space and 

annotated encoding its structural features. The label 'Aro' is applied to an aromatic 

centre, 'Hyd' to hydrophobic regions, 'ML' to metal ligands, and 'Acc' to H-bond 

acceptors.    
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Figure 4.27 The pyrethroids bound in metabolising CYPs were aligned based on a 

structural alignment of receptors. The pharmacophore was produced from a consensus 

of this alignment (A). The pharmacophore was coloured according to the presence 

(green) and absence (orange) of aromatic features and grouped into sites (B). The label 

'Aro' is applied to an aromatic centre, 'Hyd' to hydrophobic regions, 'ML' to metal 

ligands, and 'Acc' to H-bond acceptors. 

 

Features of this consensus pharmacophore could be grouped into sites (Figure 4.27, B) 

consisting of two groups of hydrophobic and aromatic features (sites 1 and 2) separated 

by a group of hydrophobic and H-bond acceptor features (acceptor site). Pyrethroids 

bind with either the acid or alcohol groups above the heme. These are clustered into a 

single bulky feature (site1). This feature implies an interaction with the heme and 

hydrophobic and aromatic residues of the BC loop, I helix and SRS5 above the heme. 

Above this are two clusters consisting of hydrophobic and H-bond acceptor features 

(acceptor site), which were identified due to clustering of the ester bond and cyano 

groups. Above the ester bond are other acceptor and aromatic features that correspond to 

the overlaid phenoxybenzyl groups (site2). 

 

From all of the metabolisers two general modes are identified: dockings with either the 

acid or alcohol groups above the heme, and a pharmacophore consisting of two sets of 

hydrophobic and aromatic features separated by an acceptor/hydrophobic feature may 

account for the two docking modes found. Both docking modes can be overlaid onto the 

pharmacophore, indicating that similar interactions may occur with both modes. With 
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docking modes placing the acid group above the heme, such as with CYP6M2 (Figure 

4.28, A and B), the bulky acid group occupies the area of site 1 while the 

phenoxybenzyl group occupies site 2. The ester bond and cyano groups occupy the 

acceptor features between the sites. The ligands bound within CYP321A1 6B8, 9J26, 

2J28 and 9J32 overlay with the pharmacophore in a similar way as CYP6M2. With 

docking modes where the alcohol group binds above the heme such as in CYP6D1 

(Figure 4.28, C and D), the alcohol group spans both aromatic sites with the phenyl ring 

within site 1 and the benzyl ring within site 2. The acceptors of the phenoxybenzyl and 

ester oxygens occupy the acceptor area. 

 

As both binding modes are overlaid into a common pharmacophore, they may indicate 

common binding interactions. The common features of both modes include a π-stacking 

between the conserved aromatic residue in the BC loop (site 2) and the benzyl ring, and 

hydrophobic or aromatic interactions with the residues immediately above the heme 

(site 1). In both modes the acceptors of the ester bond and cyano groups are overlaid but 

no common interactions with the protein occur with these acceptors. 

 

In both of these possible modes, both aromatic and hydrophobic interactions may be 

important in docking, and the placement of the pharmacophore within the active sites of 

the metabolisers shows the common active site features that may be involved in 

binding. The two conserved BC loop aromatic rings are complementary to the position 

of the pharmacophore aromatic sites 1 and 2. The large aromatic and hydrophobic site 1 

is surrounded by complementary aromatic and hydrophobic residues on the BC loop I 

helix and SRS5. The position of the aromatic site 2 corresponds to the position of the 

conserved aromatic residue on the BC loop aligned with Y102 (CYP6D1). However, the 

acceptor region only shares complementary electrostatic sites with a few metabolisers 

and H-bonding may have a minor role in individual enzymes.     
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Figure 4.28 (A) The pharmacophore overlaid over the CYP6M2 docking (viewed 

towards the I helix) and (B) the ligand bound in the CYP6M2 active site. (C) The 

pharmacophore is overlaid onto the docking of deltamethrin into CYP6D1 (viewed 

towards the I helix) and (D) the ligand bound in the CYP6D1 active site. 

 

4.6.4 Non-'typical' metabolisers pharmacophore comparison 

The non-typical metaboliser CYP321A1 lacks both of the conserved aromatic residues 

on the BC loop but the placement of the pharmacophore into the active site shows two 

Phes in complementary positions for interaction with aromatic sites 1 and 2, as well as 

hydrophobic residues surrounding site 1 (Figure 4.29). The ligand also overlays into the 

pharmacophore with the bulky acid occupying site 1 and the phenoxybenzyl group 

occupying site 2 (Figure 4.30). Despite the substitution of the conserved BC loop 

residues, there may be an occurrence of similar interactions in the non-'typical' 

metabolisers. This indicates that there may be a common binding fingerprint for both 

the 'typical' and non-'typical' metabolisers. 
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Figure 4.29 RcisS cypermethrin bound in CYP321A1 (A) and the pharmacophore 

positioned within the active site (B), the aromatic residues F236 and F299 are in 

positions that are complementary to the aromatic sites of the pharmacophore.  

 

 

Figure 4.30 The pharmacophore overlaid onto the docking of deltamethrin into 

CYP321A1.  

4.6.5 A pyrethroid binding fingerprint 

Based on the pharmacophore and commonalities between the binding interactions in the 

metabolisers, a pyrethroid binding fingerprint is suggested. This offers an explanation 

for the occurrence of alternative but superimposable binding modes as well general 

explanations for the occurrence of mutations that have P450 and substrate specific 

affects. This fingerprint consists of two primary aromatic/hydrophobic features that may 
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be common to all metabolisers and a minor H-bond feature that may be P450 specific: 

 

1) Hydrophobic/vdW or aromatic interactions above the heme (pharmacophore site1). 

2) A π-anchor (pharmacophore site 1 or 2). 

3) A H-bond with either the ester or cyano groups (pharmacophore acceptor site). 

  

4.6.5.1 Hydrophobic/aromatic site 1 

The aromatic or hydrophobic residues above the heme in the BC loop and SRS5 tend to 

be conserved among metabolisers. This may provide a hydrophobic cavity for the 

binding of the acid group as in CYP6M2. It has been demonstrated that mutations that 

increase the hydrophobicity of the active site increase turnover. In P450cam the 

mutations Y96F and Y96A removed the hydroxyl group to give a more hydrophobic 

active site and improved activity. It has been proposed that hydrophobic side chains 

interact more strongly with hydrophobic substrates and promote the displacement of 

water molecules from the active site upon substrate binding (Nickerson et al., 1997). 

This hydrophobic cavity may be necessary for the binding of hydrophobic substrates 

such as deltamethrin.  

 

In the metabolisers, SRS5 has a conserved aliphatic residue of varying size which may 

contribute to the hydrophobicity of the cavity above the heme. In addition to this, 

residues in this position are known to have effects on regiospecificity. The differences in 

the size of this residue could produce the preference for the docking of either the acid or 

alcohol above the heme. The BC loop Phe above the heme may have a similar role as 

the aliphatic residue in SRS5 in providing a hydrophobic environment, or could provide 

an additional π-anchor for the binding of the alcohol group. 

 

4.6.5.2 π-anchor 

Aromatic interactions may act as a π-anchor to position the substrate. The presence of a 

π-anchor appears to be a common interaction as it occurs among the 'typical' 

metabolisers but also occurs in the 'non-typical' metabolisers such as CYP9J32 and 

CYP321A1. The presence of two conserved aromatic residues in the BC loop allow for 

the possibility of two π-anchors, and the role each plays could be determined by the 

preference for binding mode, and mutations of these residues could have P450 specific 

effects depending on the importance of π-stacking. In CYP6D1 both of these residues 

could be involved in π-stacking, while in the best ranked mode of CYP6M2 only one 
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may be involved in stacking. The presence of two possible π-anchors in the active site 

may allow deltamethrin to bind in alternative modes and to produce a range of 

metabolites. 

 

A role for a π-anchor has been previously proposed in CYP2C9 by Haining et al. (1999) 

when it was found that mutation of an aromatic residue, the π-anchor, in the active site 

affected the metabolism of aromatic substrates but not aliphatic ones. Haining et al. 

(1999) suggested that F114 could act as a source of π-stacking interactions for certain 

aromatic substrates. They found that the effects of the F114L mutation were substrate 

selective with a graded response. The mutation had no affect on the aliphatic substrates 

lauric acid and arachidonic acid metabolism but affected both efficiency and metabolite 

profiles for the aromatic warfarin with novel metabolites produced, with intermediate 

affects for dichlofenac. The F114L mutation retained 16% of the warfarin activity, but 

70% of the lauric acid activity. The substrate dependant affects of this mutation may 

vary with the importance of π-stacking as a determinant of binding for a given substrate.  

 

A number of studies on CYP2C9 have shown that the F114L mutation decreased the 

efficiency of metabolism, or abolished metabolism for the aromatic substrates warfarin, 

flurbiprofen, diclofenac and tienilic acid. However, the F114W mutation preserved the 

aromaticity and maintained wildtype activity for warfarin and flurbiprofen. Mosher et 

al. (2008) suggested that the aromatic interaction between substrates and F114 could be 

important for normal catalytic activity.      

 

Mutagenesis studies in a number of P450s have shown that aromatic residues in these 

positions in other P450s have important roles in substrate selectivity, regiospecificity 

and rates, but mutations have been shown to have P450 and substrate specific affects. In 

CYP3A4 mutagenesis of F108 showed a significant change in activity and a shift in 

preference for regiospecificity. Mutagenesis for a larger residue F108W, showed a 

higher preference for 1'-OH of midazolam while mutation for a smaller residue F108A 

showed no change in regiospecificity (Khan et al., 2002). However, in CYP2C9 

mutations of this position (F100L) were silent. From the dockings in this study, while 

the residues are conserved they show different interactions with the substrate, P450 

specific effects of mutations could be expected between metabolisers.  

 

Apart from substrate binding this Phe may have other roles such as access or egress. Li 
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et al. (2007) used steered MD to accelerate the unbinding of metyrapone from the active 

site of CYP3A4 (1W0G) to identify the unbinding pathways. They found that F108 and 

I120 act as gate keepers to prevent the ligand from exiting the active site by forming 

hydrophobic interactions. To allow the ligand to exit, F108 rotated to expand the volume 

of the channel.  

 

4.6.5.3 H-bond 

This may be a minor factor in determining metabolism as the occurrence of H-bonds 

may be P450 specific and no common H-bond donors occur.  

 

4.6.6 Non-metabolisers pharmacophore comparison 

Three non metabolisers (CYP6CB1, 6B1 and 9J19) were also aligned but fewer 

consensus features were found. Hydrophobic and aromatic features above the heme 

were the only consensus features. This may be due to having only a small number of 

non metabolisers identified, but they lack a consistent binding mode this may indicate 

that they lack the interactions present in the metabolisers (Figure 4.31, A). All of the 

ligands bound within the metabolisers overlap the metaboliser pharmacophore well. By 

contrast, the non-metaboliser CYP9J19 overlaps poorly with the metaboliser 

pharmacophore with only the phenoxybenzyl group overlapping with site 1 (Figure 

4.31, B).  

 

The placement of the pharmacophore into the non-metaboliser CYP9J19 shows few 

complementarities to the active site (Figure 4.31, D). Like CYP321A1, the aromatic 

residues of the BC loop are substituted but only F227 in the FG loop is near to the 

aromatic site 2. The positioning of this residue may be in a non-optimal position as it 

does not form aromatic interactions with deltamethrin in modes that allow metabolism 

(Figure 4.31, C), but can form interactions in non-productive modes. The occurrence of 

both a reduced hydrophobic interaction and a reduced ability to form π-interactions may 

contribute to the lack of metabolism in CYP9J19.  
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Figure 4.31 A Consensus pharmacophore based on the overlap of deltamethrin bound 

within the active sites of non-metabolisers (A). The metaboliser pharmacophore 

overlaid onto the docking of deltamethrin in CYP9J19 (B). Best ranked mode of 

deltamethrin binding to CYP9J19 (C). The pharmacophore overlaid in to the CYP9J19 

active site (D).   

 

4.6.7 Regiospecificity 

As similar interactions occur with both modes, differences in regiospecificity may not 

be due to differences in interactions with the protein but may be due to steric factors. 

CYP6D1 which has bulky residues above the heme, shows metabolism on the alcohol 

while those with smaller residues bind also for metabolism on the acid group. The 

difference in regiospecifitiy may be due to impairing the space available for the docking 

of the acid group in this region while permitting the binding of the alcohol, but similar 

interactions occur with both modes.   

 

4.6.8 Pharmacophore summary 

A pharmacophore was produced based on the overlap of deltamethrin or cypermethrin 

bound within the active sites of the CYP6/9 metabolisers. This pharmacophore consists 

of one large aromatic/hydrophobic site (site 1), a collection of smaller aromatic sites 

(site 2) and a collection of acceptor sites (acceptor region). There is a close agreement 
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between this pharmacophore and active sites of the metabolisers with the aromatic 

residues of the BC loop complementing the aromatic sites 1 and 2 and hydrophobic 

residues surrounding site 1. Based on this there appears to be two primary factors 

determining the binding of deltamethrin, an aromatic and a vdW/hydrophobic 

interaction, with other minor factors being P450 specific. 

 

A π-anchor hypothesis is suggested for the anchoring of the aromatic alcohol group. The 

occurrence of two possible π-anchors in the BC loop could explain the alternative 

binding modes of deltamethrin as similar interactions could occur in alternative modes. 

With similar interactions the regiospecificity of deltamethrin may be determined by 

other P450 specific characteristics such as steric restrictions. The two π-anchors may 

have different roles in the binding of different substrates, this could indicate a 

mechanism of how the mutagenesis of similar residues in other P450s have been shown 

to be substrate specific. The second steric and hydrophobic interaction is determined by 

aromatic/aliphatic residues immediately above the heme. Both of these interactions 

appear to be important in deltamethrin binding in all of the CYP6/9 metabolisers, and 

the non-metaboliser CYP9J19 has substitutions that affect both of these interactions.  

 

4.7 Comparisons of P450s to the fingerprint 

A range of known pyrethroid metabolising P450 families from rat and human were also 

analysed. There may be different factors in each family that determine metabolism but 

the stacking of the pyrethroid ligand with aromatic residues are a factor across clades, 

the metabolisers tend to contain aromatic groups in range to contact the ligand in 

productive poses. In the CYP6, CYP9 CYP2 and CYP3 families, two aromatic residues 

tend to be conserved on the BC loop that may be determinants of pyrethroid binding as 

they can act as π-anchors to bind the phenoxybenzyl group. However, non typical 

metabolisers can occur in each family that differ from this pattern, but which have their 

own alternate pattern of aromatic residues to act as π-anchors. These proteins may 

represent alternate solutions to the problem of pyrethroid binding.    

 

While the metabolisers share commonalities in pyrethroid binding, the non metabolisers 

are more diverse. There may be a number of reasons why the non metabolisers fail to 

metabolise pyrethroids, some P450s lack the aromatic residues found in the 

metabolisers such as CYP9J19, and CYP2D1. Some non metabolisers have aromatic 

networks that may bind the ligand in non-productive poses such as CYP6Z2, CYP6CB1 
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CYP2B6 and CYP2C12. Others may have structural architecture that prevents efficient 

binding such as in CYP2D1 and CYP2D2 that have small active sites that provide poor 

contacts with the ligand.  

 

4.8 Unknown P450s comparisons to the fingerprint 

The fingerprint may be used to predict metabolism in candidate P450s. A number of 

P450s have been linked to resistance but experiments have not yet been undertaken to 

determine if they are able to metabolise pyrethroids. CYP6E1 was identified in 

pyrethroid resistant Culex quinquefasciatus (Kasai et al., 1998). CYP6F1 is over 

expressed in deltamethrin resistant Culex pipiens pallens (Gong et al., 2005). 

CYP6AA3 and 6P7 are correlated with deltamethrin resistance in Anopheles minimus 

(Rodpradit et al., 2005). The expression of CYP6D3 is also increased in LPR housefly 

compared to the susceptible CS strain and is 78% identical to CYP6D1 (Kasai and 

Scott, 2001). Kamiya et al. (2001) also found CYP6D1, 6D3v2 and CYP6A24 over 

expressed in the pyrethroid resistant housefly strain (YPER). CYP6A36 is over 

expressed in both larvae and adults of a pyrethroid resistant strain (ALHF), by contrast 

CYP6A37 does not show any expression differences (Zhu et al., 2008). Zhu et al. 

(2008) found a differential expression of two alleles in a pyrethroid resistant strain 

(ALHF). CYP6A5 showed no difference in expression between susceptible and resistant 

strains, but CYP6A5v2 showed a 1000 fold over expression in ALHF compared to the 

susceptible CS strain.  

 

The P450 candidates for pyrethroid metabolism can be compared to the 'fingerprint' to 

predict if they are capable of pyrethroid metabolism, this could also prioritise candidates 

for experimental studies. Metabolisers tend to have two aromatic residues in the BC 

loop. A multiple alignment of a number of candidates shows that an aromatic residue at 

the position of Y102 in CYP6D1 is conserved across all candidates (Figure 4.32, A). 

The position of F115 is conserved as aromatic in most but not all of the candidates. 

However, CYP6A36 that is linked to resistance shows a substitution for an aliphatic 

residue while CYP6A37 which is not linked to metabolism shows conservation of both 

aromatic residues. The known metabolisers tend to lack aromatic residues in the FG 

loop and contain a polar residue. Most of the candidates are missing aromatic residues 

that could align with F212 of CYP6Z2 and restrict metabolism (Figure 4.32, B). The 

P450s identified as candidates by over expression are similar to the fingerprint and may 

be suggested for further experimental characterisation.   
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Figure 4.32 (A) Multiple alignment of the BC loops of P450 candidates. (B) Alignment 

of the FG loops of candidates. 

 

4.9 Conclusion 

The metabolism pathway of CYP6M2 has been experimentally determined and the 

regiospecificities of metabolism can be explained by the homology model produced in 

this study. The initial metabolism of the native deltamethrin involved a major pathway 

to metabolise the 4' and a minor metabolite on the trans methyl. This regiospecificity is 

recreated in the model and the preference for the 4' metabolite can be explained by its 

greater reactivity. Similarly reasons for the further successive reactions can also be 

rationalised. 

 

A number of P450s have been identified as being involved in pyrethroid resistance and 

some have had their activities characterised. Homology models of both pyrethroid 
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metabolisers and non-metabolisers have been produced to identify commonalities 

between metabolisers and differences to the non-metabolisers. The modelling suggests 

that the metabolisers may have common aromatic or hydrophobic interactions with 

pyrethroids, while the non-metabolisers are diverse and may have a number of factors 

preventing metabolism. 

 

The commonalities between metabolisers were used to suggest a 'fingerprint' that could 

be used to predict metabolism in other P450s. This 'fingerprint' primarily consists of one 

or more aromatic residue in the active site that may act as π-anchors for aromatic 

substrates such as pyrethroids. Aromatic interactions appear consistently in pyrethroid 

metabolising enzymes across P450 clades and across species. In most metabolisers 

identified, these aromatic residues occur on the BC loop, but some non typical 

metabolisers have aromatic residues on the I helix or FG loop.  

 

Non metabolisers are diverse, some resemble the metabolisers and share active site 

conservations, but have other factors preventing productive binding, while other non-

metabolisers are lacking in the residues conserved in the metabolisers.  
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5.0 Preface 

This chapter covers studies to understand the substrate preferences of insect CYP6 

pyrethroid metabolisers. Their activity towards substrates, fluorescent markers and 

inhibitors may give some insight into the structure of the active site.  

 

5.1 Fluorescent markers 

Resorufins and luciferins are fluorescent markers used to determine P450 metabolism. 

Both markers consist of a fluorescent body with an alkyl chain bonded to an oxygen. In 

this form the marker does not fluoresce but when the oxygen is dealkylated, the body is 

released and becomes fluorescent. The alkyl chain can be released by the hydroxylation 

of the carbon adjacent to the oxygen to produce an unstable hemiacetal or hemiketal that 

decomposes to cleave the bond between the carbon and oxygen and yield the O-

dealkylated body and an aldehyde or ketone chain.   

 

5.2 Experimental results 

Six luciferin compounds were tested (Figure 5.1) with CYPs 6M2, 6P3, 6P9 and 6Z2 

and their activities determined (McLaughlin, unpublished). It is assumed that 

metabolism needs to occur on the carbon next to the oxygen to break the C-O bond and 

release the fluorescent luciferin.  

 

Figure 5.1 The luciferin compounds tested: 6′-deoxyluciferin (-H), luciferin 6′-methyl 

ether (-ME), luciferin 6′-chloroethyl ether (-CEE), luciferin 6′ benzyl ether (-BE), 

luciferin 6′-pentafluorobenzyl ether (-PFBE) and luciferin-6' phenylpiperazinylyl ether 

(-PPXE) 
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Figure 5.2 Experimentally determined activity towards luciferins by CYPs 6P3, 6P9, 

6M2 and 6Z2 (McLaughlin, unpublished). 

CYPs 6P3, 6P9 and 6M2 all prefer to metabolise the high molecular weight compounds 

-BE and -PPXE while CYP6Z2 prefers to metabolise the low weight compound -ME 

(Figure 5.2). A comparison of the active sites of these enzymes and an analysis of the 

docking poses of the ligands may be used to explain the observed substrate preferences.   

 

5.3 Active site comparison 

5.3.1 SRS5 

In SRS5 of all the P450s studied, an aliphatic residue projects into the site that aligns 

with A370 in the CYP3A4 (1TQN) template, this is conserved as a V372 in CYP6M2 

and CYP6P9/3 but in CYP6Z2 this is substituted for a Leu which reduces the size of the 

active site in CYP6Z2. There may be structural differences between CYP6M2 and 

CYP6P3/9 that could affect substrate binding. In all three proteins a Val projects into the 

active site from SRS5. Although this is conserved, residues either side of this differ. In 

CYP6M2, V372 is flanked on either side by prolines, while in CYP6P3 and CYP6P9 

the Val is flanked by a Pro only on the N terminal side (Figure 5.3). Proline can have an 

effect on the preceding residue as the bulk of the pyrrolidine ring restricts the 

conformational space. The space available for the preceding residue is restricted by 

steric conflicts between the Cδ attached to the imide nitrogen and the NH and Cβ of the 

preceding residue (MacArthur and Thornton, 1991).  
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The presence of preceding prolines in CYP6M2 and CYP6Z2 could affect backbone 

dihedrals and sidechain rotamers, and this is seen in the models. An overlay of 

CYP6M2 and CYP6P3 shows that the backbone conformation in CYP6P3 cannot occur 

in CYP6M2 due to steric restrictions between the proline and the carbonyl oxygen. The 

backbone position of CYP6P3 and CYP6P9 differs from that of CYP6M2 and this 

affects the sidechain conformation of the Val. The methyls of the Val project to a greater 

degree into the active site of CYP6M2, while in CYP6P3/9 they project to the rear of 

the site (Figure 5.4). CYP6Z2 has a similar backbone conformation as CYP6M2 and the 

Leu projects into the active site.  

 

Figure 5.3 SRS5 region of an alignment of CYPs 6M2, 6P3, 6P9 and 6Z2. 

 

Figure 5.4 A structural alignment of the SRS5 region of CYP6P3 (Pink), with (A) 

CYP6P9 (blue) and (B) CYP6M2 (green) the Val of CYP6M2 projects further into the 

active site. The Val aligned with CYP6M2 V372 is identified. 

 

5.3.2 FG loop 

In the CYP3A4 crystal structure 1TQN, a channel through the FG loop is closed off by 

a network of aromatic residues (Yano et al., 2004). Aside from a conserved aromatic 

residue aligning with F108 in the BC loop, these tend to be substituted in CYP6P3 and 

CYP 6M2 but both CYP6Z2 and CYP6P9 have aromatic residues in the FG loop that 

align with members of the aromatic network in CYP3A4 (Table 5.1). In CYP6P9 one of 

these residues, F216, aligns with a member of this network and is in a position that 

could affect access through access channel 3 (Figure 5.5).  
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Table 5.1 Substitutions of residues closing the FG loop in CYP3A4.  

P450  Residues         

CYP3A4
1
 F108  F213  F215  F241  F304 

CYP6P3 F110  L216  E/L216            T242  L313 

CYP6P9 F110  F216  L218  T242  L313 

CYP6Z2
2
 Y102  R210  F212  L236  I298 

CYP6Z2
3
 Y102  N211  F212  L236  I298 

CYP6M2 F108  I215  I215/S216 T240  L303  
1 residues closing the channel through the FG loop in the CYP3A4 structure 1TQN, 

determined by Yano et al. (2004).
2
 model produced here.

3
 model produced by 

McLaughlin et al. (2008). 

 

Figure 5.5 (A) The FG loop position of the aromatic network in CYP3A4, (B) position 

of aromatic network in CYP6P9. In CYP6P9, the F216 in the FG loop stacks with F110 

of the BC loop.   

5.3.3 BC loop 

In the BC loop all four proteins have conserved aromatic residues but CYP6P9/3 and 

CYP6M2 differ from CYP6Z2 in that they have an additional His while in CYP6Z2 this 

is substituted for a Asn. As this Asn can form H-bonds with luciferin, it may have an 

affect on specificity.  

 

5.4 Luciferin Dockings 

5.4.1 -H, -ME, -CEE 

In experiments CYP6M2, CYP6P3/9 show no activity for the small luciferins -H, -ME, 

and -CEE while CYP6Z2 shows activity for -ME and -CEE. In the dockings, while 

productive binding modes occur for -ME and -CEE for all proteins, the scores for these 

tend to be higher for CYP6Z2 due to improved vdW interactions (Table 5.2). There may 

be improved vdW interactions between the small luciferins and the smaller CYP6Z2 

active site, and poorer packing in the larger active sites of CYP6M2, CYP6P3 and 
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CYP6P9 that could account for the activity profile. -H is not well metabolised in any 

P450 tested and the scores for -H are low in all proteins although the highest ranked 

modes are productive modes. In CYP6Z2, -ME is metabolised more efficiently than -

CEE. The first ranked dockings of both allow metabolism but the preference is not 

explained as -CEE has a higher score than -ME, but non productive modes of -CEE 

show a steric screening of the site of metabolism that could not occur with -ME. All 

proteins except CYP6P9 bind -ME, -CEE and -H in a similar mode. The luciferin is 

perpendicular to the heme and lies between the BC loop Phe and the I helix (Figure 5.6, 

B). In his mode part of the luciferin lies within access channel 3. In CYP6P9 as channel 

3 is closed and this mode is not possible, -ME binds in a different orientation between 

V380 and F123 (Figure 5.6, A). 

Table 5.2 ChemScores (kJ/mol) of the productive modes of luciferins. 

P450 ligand  rnkScore    ΔG    S(hbond)   S(metal)  S(lipo)  H(rot)  ΔE(clash)ΔE(int) 

6P3 ME     1    33.9     -35.1       0.9         0.0            264.9       1.8       0.5       0.6  

 CEE    1    38.2     -39.0       0.9          0.0            307.1       2.1       0.3       0.6 

 H 1    34.9     -35.4       0.9          0.0            260.6       1.5       0.3       0.0 

6P9 ME 1    34.2     -35.3       2.8          0.0            215.6       1.8       0.2       0.8 

 CEE  5    36.6     -38.5       2.9          0.0            246.9       2.1       0.9       0.9 

 H 1
 
   37.9     -38.5       2.7          0.0            238.2       1.5       0.5       0.2 

6Z2 ME  1    38.3     -38.9       1.1          0.0            293.8       1.8       0.2       0.4  

  CEE 1    42.5     -43.4       1.2          0.0            337.0       2.1       0.1       0.8  

 H 9    35.9     -36.6       1.0         0.0            270.3       1.5       0.1       0.6 

6M2 ME 1    33.8     -42.4       1.7         0.0            306.6       1.8       8.2       0.4 

 CEE 1    38.8     -45.8       1.6         0.0            344.4       2.1       6.7       0.4 

 H 1    33.7     -41.0       1.8         0.0            283.9       1.5       7.1       0.3 

 

Figure 5.6 CYP6P9 (A) and CYP6P3 (B) binding -ME showing differing orientations. 

 

5.4.2 -PPXE 

-PPXE is the largest of the luciferins tested. CYP6P3 shows the greatest activity 

towards this while CYP6M2 and CYP6P9 show reduced activity. CYP6Z2 shows no 

activity, this is not reflected in the docking scores (Table 5.3) though may be explained 
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by the poses. In CYP6P3, -PPXE can bind for metabolism in a similar mode as -ME. 

The body of luciferin lies perpendicular to the heme. The tail packs into the active site 

between F123 and V380 and this mode shows a good vdW score, and despite large 

clashes this mode has a high score. In this mode the ligand partly lies within access 

channel 3 between the F and G loops (Figure 5.7, A).  

 

Table 5.3. ChemScores (kJ/mol) of modes that allow metabolism of -PPXE. 

      Score         ΔG    S(hbond)  S(metal) S(lipo)  H(rot)  ΔE(clash)  ΔE(int) 

6P3      4
th

       51.9         -60.8       0.0          0.0      523.7       2.3       6.4           2.6 

6M2
1
   1

st
 52.4         -57.9       0.5          0.0      485.0       2.3       2.5           3.0  

6P9 
1
    1

st
   54.3         -66.4       1.0          0.0      542.5       2.3       9.8           2.2 

1
 the docking pose placed the site of metabolism over 5 Å. 

 

Figure 5.7 (A) Productive mode (54
th

 ranked mode) of -PPXE in CYP6P3. (B) 

Unproductive binding mode of -PPXE in CYP6P9. 

 

In CYP6P9, channel 3 may be closed due to an aromatic network as seen in CYP3A4. 

This affects the binding of luciferin as it cannot lie within the access channel as in 

CYP6P3 but instead -PPXE binds between SRS5 and the BC loop (Figure 5.7, B). In 

this mode the tail group of -PPXE cannot be accommodated, and the site of metabolism 

is distant from the Fe which could affect the efficiency of metabolism. This may explain 

the different activities of CYP6P3 and CYP6P9 despite sequence conservation. In 

CYP6M2 the positioning of Val in SRS5 may sterically restrict the accommodation of 

the tail and it binds in a similar mode as in CYP6P9. The site of metabolism is also 

distant at 5.2 Å. This may account for the lower activity in CYP6M2. In CYP6Z2, no 

modes were found that allow metabolism. This may be due to the smaller size of the 

active site compared to the other three P450s.  
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5.4.3 -BE, -PFBE 

Luciferin-BE and -PFBE have similar structures differing only in that the hydrogens of 

the benzyl group are replaced by fluorines in -PFBE. Despite these similarities, all 

CYPs tested metabolise -BE well and -PFBE poorly. As fluorines are only slightly 

larger than hydrogens it is unlikely that the increase in the steric bulk of the ring that 

affects binding. In CYPs 6M2 6P3 and 6P9 the first ranked docking allows metabolism 

of -BE. -PFBE can also bind in similar positions that allow metabolism (Figure 5.8) but 

with a lower score due to clashes (Table 5.4). The addition of fluorines affects the 

positioning of the ring to alter the interaction with the BC loop Phe and this may be 

producing poorer vdW interactions to give lower scores. In addition, the halogens have 

other effects. Electron withdrawing halogen groups can stabilise an aromatic ring to 

oxidative attack. Fluorine is electronegative and C-F bonds are strongly polarised. 

Fluorine can affect the acidity or basicity of neighbouring functional groups and 

strengthen neighbouring bonds (Jeschke, 2010) and the effects of the fluorine may 

prevent metabolism by P450s.        

 

Table 5.4 ChemScores (kJ/mol) of modes that allow metabolism. 

             Score  ΔG  S(hbond)    S(metal) S(lipo) H(rot)  ΔE(clash) ΔE(int) 

6P9 BE 1
st
 47.8   -49.2       2.8        0.0         339.1       2.1       1.2       0.2 

PFBE 6
th

  34.2   -40.5       1.5        0.0         313.8       2.7       0.7       5.6 

6M2 BE       1st 47.1   -49.0       1.0        0.0         389.5       2.1       0.7       1.2   

            PFBE  1st  36.2   -44.3       1.0        0.0         361.9       2.7       6.2       1.8 

6P3 BE 1
st
  47.4   -50.0       0.9        0.0         399.51     2.1       1.5       1.2 

            PFBE 1
st
  37.2   -46.4       0.7        0.0         388.09     2.7       5.4       3.8 

 

 
Figure 5.8 CYP6P3 binding -BE (A) and -PFBE (B). 

 

With deltamethrin both F110 and F123 are involved in π-stacking, in the luciferins, 

F123 is involved in stacking while F110 is either distant or forms hydrophobic contacts. 

While either F123 or F110 could act as a π-anchor for deltamethrin, F123 may act as a 
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π-anchor for the luciferins. 

5.5 Resorufin metabolism in CYP6D1 

The activity of CYP6D1 towards a number of substrates was determined by Wheelock 

and Scott (1992) by treating housefly microsomes with anti 6D1lpr. CYP6D1 was found 

to be the major cytochrome involved in metabolising methoxyresorufin and 

ethoxyresorufin. Ethoxycoumarin activity was only inhibited at the highest 

concentration of antiserum and may only be a poor substrate for CYP6D1 while 

pentoxyresorufin was not identified as a substrate (Figure 5.9) (Wheelock and Scott, 

1992). 

 

Figure 5.9 Structures of ligands tested in CYP6D1. 

 

5.5.1 Dockings 

Methoxyresorufin and ethoxyresorufin can both bind in positions that allow O 

dealkylation. In the docking modes of methoxy- and ethoxyresorufin, a face on face 

stacking may be possible with F115, and an edge on face stacking could occur with 

Y102 (Figure 5.10, A and B). Similarly, in the best ranked mode of ethoxycoumarin 

there is a face on face π-stacking between F115 and the coumarin aromatic ring (Figure 

5.10, C), there is also an H-bond with N113 of the BC loop and these interactions 

position the ligand for metabolism. However, the score is lower than the resorufins 

(Table 5.5), as it is missing the second aromatic ring that occurs in the resorufins. It 

makes fewer contacts with the protein that may account for its lower metabolism in 

CYP6D1. The preference for the resorufins over the coumarin may be due to the 

additional aromatic group in the resorufins. With the resorufins a larger or more stable 

aromatic network may be formed with F115 and Y102. In the model these ligands also 

have higher ChemScores than ethoxycoumarin, indicating a stronger binding. 

Alternatively, with the absence of a second ring, the coumarin may stack with F115 in a 

position that would not allow metabolism. Pentoxyresorufin does not dock in a position 
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that would allow metabolism. The large alkoxy tail may sterically prevent a docking 

close to the heme or may sterically screen the site of metabolism (Figure 5.10, D).  

 

In CYP6D1 the preference for alkoxyresorufins decreases as the alkoxy substituent 

increases in length. The preference may be due to the steric restrictions of the active 

site, in the model F115 and L388 project into the site. A long hydrocarbon tail may not 

be accommodated that may prevent metabolism of pentoxyresorufin while resorufins 

with shorter tails may be accommodated and metabolised.  

Table 5.5. ChemScores (kJ/mol) of CYP6D1 substrates. 

               Score    ΔG    S(hbond)   S(metal)  S(lipo) H(rot)  ΔE(clash)ΔE(int) 

ethoxycoumarin 28.5  -30.9     1.9           0.0         186.5      1.1     2.1     0.3 

methoxyresorufin    33.6  -35.6     1.9           0.0         225.9      1.0   2.0     0.0 

ethoxyresorufin      34.6  -35.1     0.0           0.0         277.3      1.1   0.4     0.0 

pentoxyresorufin    38.6  -40.0     0.9           0.0         298.7       1.3     1.2     0.2 

 

Figure 5.10 The best ranked docking modes of methoxyresorufin (A), ethoxyresorufin 

(B), ethoxycoumarin (C) and pentoxyresorufin (D) bound in CYP6D1. 

 

5.5.2 Substrate preference 

A number of hypotheses have been previously suggested to explain the preference of 

P450s towards particular fluorescent markers such as resorufins that differ in their 

chains. The rate of alkoxyresorufin dealkylation has been shown to be determined by 

three factors: substrate binding affinity, substrate-binding induced reduction of the heme 
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by water displacement, and binding orientation and mobility with respect to the heme. 

In addition, other factors such as substrate access/exit and electron transfer may also 

have a role.  

 

The steric bulk of residues at equivalent positions to L388 in CYP6D1 have previously 

been shown to affect metabolism of such substrates. CYP1A1 and CYP1A2 have been 

shown to differ in their substrate preferences for alkoxyresorufins, with CYP1A1 

metabolising ethoxyresorufin and CYP1A2 metabolising methoxyresorufin. These 

enzymes differ in the SRS5 position corresponding to L388 in CYP6D1, with CYP1A1 

having a Val and CYP1A2 having a Leu and the size of the aliphatic residue affects 

metabolism of resorufins with differing lengths of alkoxy tail. Reciprocal mutations of 

this one residue have been shown to inter-convert the function of these enzymes. 

CYP1A2 L382V showed reduced MROD activity but unchanged EROD activity. From 

a 5 ps MD, it was suggested that in this case methoxyresorufin was less stable than in 

the wild type as the increase in active site volume occurs at the position where the 

methyl group would bind. A change in the hydrophobic pocket destabilises an 

interaction allowing less productive orientations to occur. A L382A mutation showed 

that this occurred for both resorufins as the pocket is further expanded (Liu et al., 2004). 

 

In CYP1A1, V382 in SRS5 is in a position to interact with resorufin substrates. Liu et 

al. (2003) found that in the wild type CYP1A1, 7-methoxy, 7-ethoxy and 7-pentoxy 

bound in similar positions with the planar part of the molecules superimposed and the 

alkoxy chain in the space close to the heme and V382. In the wild type, activity was 

highest towards 7-ethoxy and lowest to 7-pentoxy resorufin. While these resorufins 

could all bind without steric hindrance in CYP1A1, during a 5 ps MD simulation only 

7-ethoxyresorufin remained 3 Å from the heme, 7-pentoxy and 7-methoxy moved away 

from the site of metabolism. In addition the site of metabolism in 7-pentoxy could 

become sterically screened by the other atoms of the alkoxy chain. When V382 is 

mutated to an Ala, activities for 7-methoxy and 7-ethoxy fell by 10 fold while 7-pentoxy 

activity increased 2 fold. The V382A mutation enlarged the active site leading to 

increased mobility of 7-ethoxy and 7-methoxy resorufin, with the oxidation site of 7-

ethoxy remaining further from the heme. In contrast, the 7-pentoxyresorufin could now 

approach the heme allowing metabolism. When V382 is substituted for a Leu there was 

a decrease in activity for all substrates. The position of the smaller resorufins were 

dramatically affected with increased distances from the heme. The increased bulk of the 
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side chain pushed the resorufins out of productive binding orientations.   

 

A similar situation has been identified in CYP2B1 by Kobayashi et al. (1998) with 

alkoxycoumarins with chains of differing length. While other mutations had little effect, 

mutation of V363 in SRS5 produced alterations in activity towards alkoxycoumarins. 

The wild type showed a particular preference for length of alkoxy chain: 

C2 > C4 > C3 > C1 > C5 > C6 = C7 

They found that the C2 could be docked into the active site with no vdW overlaps, but 

increasing the length of the chain caused overlaps to occur with V363. The decreased 

activity towards C1 was explained by the increased mobility of the substrate, while C2 

could fill the active site optimally.  

 

Mutations to Ala and Leu alter preference for chain length. The V363A mutation 

increases the volume of the active site, allowing C4 to dock in an orientation that allows 

metabolism (Figure 5.11, A). In addition, it showed a greater activity towards 7-

butoxycoumarin analogues with branched alkyl chains, and they were a better fit to the 

active site than in the wild type. Smaller substrates could exhibit higher mobility while 

larger substrates have vdW overlaps lowering activity. 

 

The mutation to Leu was similar to the wild type in having a high activity towards C2, 

but unlike the wild type, activity towards chains greater than 2 atoms was reduced 

(Figure 5.11, A), and activity towards analogues with branched chains was undetectable. 

It was suggested that the larger Leu prevented the substrates form binding in productive 

orientations, and that this was indicated by the appearance of vdW overlaps. Other 

residues were identified as involved in resorufin binding, the mutation F206L in the BC 

loop was associated with very low rates of activity (Figure 5.11, B). It was suggested 

substituting the Phe for a smaller more flexible Leu could increase the size of the active 

site and lead to substrate mobility. This was indicated with a decrease in coupling of 

NADPH to product formation and uncoupling to water (Kobayashi et al., 1998). 

 



182 

 

 

Figure 5.11 Taken from Kobayashi et al. (1998). The preference for coumarins with 

varying chain length in CYP2B1 wild type and mutants.  

 

5.5.3 Luciferin preference summary 

The activity profiles of the CYP6s could be explained by steric and vdW interactions. 

There may be optimal filling of the active site by the preferred ligands, steric clashes 

with larger ligands and a greater mobility of smaller ligands. The P450s with larger 

active sites prefer larger substrates while the smaller active sites prefer the smaller 

substrates. CYP6M2, CYP6P3/9 have a Val in SRS5 and a preference for substrates 

with large chains. The lack of activity of CYPs 6P3/9 and 6M2 towards the smaller 

substrates be explained by poor vdW interactions or increased mobility, while the higher 

activity towards the larger -PPXE may be explained by greater vdW interactions. The 

bulk of L388 in CYP6D1 may produce the preference for methoxy- over 

ethoxyresorufin, and the Leu in CYP6Z2 may produce the preference for the small 

chain luciferins. 

 

This study has shown that the candidate P450s have particular preferences for 

fluorescent probes, this preference will be used in assays to study the binding of 

inhibitors and to design acetylene probes specific to the active sites of these enzymes. 

Luciferins can also be used as selective probes of P450 architecture. They are sensitive 

to mutagenesis of the active site and may be used to study the function of a particular 

residue.  

 

5.6 Acetylene Inhibitors 

5.6.1 Aryl acetylenes as suicide inhibitors 

Acetylenes are P450 suicide inhibitors that cause a time dependant destruction of P450s. 

Suicide inhibition takes place by a regiospecific oxidation of the terminal carbon of the 
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triple bond to generate a ketene intermediate. The oxygen of this ketene is derived from 

molecular oxygen and so is formed by transfer of enzymatically activated ferryl oxygen 

(Chan et al., 1993). 

 

There are two mechanisms of inhibition by these acetylenes. N-alkylation of the heme 

can occur leading to the loss of the heme by the formation of an adduct where the 

acetylene is bound to the nitrogen as a 2-oxoalkyl group. The second mechanism 

involves modification of the protein, nucleophilic amino acids within the P450 can react 

with the ketenes to form a covalent bond. One of the characteristic reactions of ketenes 

is their reaction with nucleophiles at the electrophilic β-carbon. The insertion of an 

oxygen at the terminal carbon results in protein modification while insertion at the 

internal carbon results in heme modification. Alternatively, the ketene can be 

hydrolysed to form carboxylic acid and fail to inhibit the enzyme (Figure 5.12). The 

conserved I helix threonine has been proposed as the site of covalent binding to the 

protein. A modified CYP2B4 lacking the T302 is inactivated more slowly than the wild 

type (Roberts et al., 1996).  

 

Figure 5.12 Taken from Roberts et al. (1996). Oxidation of the acetylene can occur at 

the internal (A) carbon or external or terminal carbon (B). The insertion of oxygen at the 

terminal carbon can lead to the modification of nucleophilic amino acids. Alternatively 

it can react with water to form an acid. 

 

5.6.2 Substrate specificity 

Acetylenes can act as selective inhibitors. Hopkins et al. (1992) found that the shape of 

the aromatic ring system and the placement of the triple bond of these compounds affect 

the type and potency of inhibition. Suicide inhibition varied between P450s with some 

inhibitors selective for certain enzymes. 1EP, 2EPh, 3EPh 3PPh 2PN and 4EAA only 

caused suicide inhibition in CYP1A1 but not CYP1A2, CYP2B1 or CYP2B2. The 

A

B
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enzyme system was also found to have a large affect on the type of inhibition. Some 

compounds were effective suicide inhibitors in purified rat CYP1A2 but were less 

effective inhibitors in purified rabbit CYP1A2. As the suicide inhibition reaction is 

dependent on regiospecific oxidation, the correct orientation of the ligand within the 

active site is needed, producing a selectivity of inhibition for different enzymes.  

 

The size of the aromatic ring system also affected inhibition. Compounds with large 

ring systems such as biphenyl, pyrene and phenanthrene tended to be suicide inhibitors 

in the CYP1A family, while those with smaller aryl rings were inhibitors of CYP2B1. 

Hopkins et al. (1992) reported structure activity relationships for inhibitors of CYP1A1 

and CYP2B1. They showed that in addition to size and shape, the positioning of the 

carbon-carbon triple bond is important in selectivity of suicide inhibition. In CYP2B1, 

only 1EN, 2EN, 1EA, 9EPh were found to be suicide inhibitors (Figure 5.13). It was 

suggested that in CYP2B1 aryl acetylenes must be small and compact for the proper 

orientation of the ethynyl group. 1EP and 2EP were considered too large to bind in an 

orientation that could lead to suicide inhibition. 1EP was a better inhibitor of CYP1A1 

because the larger aromatic system produced a more favourable binding interaction to 

the large active site, but 2EP did not produce suicide inhibition indicating that the 

correct placement of the acetylene group is needed.  

 

Figure 5.13 Taken from Hopkins et al. (1992). The structures of suicide inhibitors of 

P450s. 
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5.6.3 CYP6P3 acetylene inhibitors 

A number of acetylene inhibitors were tested in CYP6P3 (Figure 5.14, Table 5.6). The 

experimental results show that some acetylene ligands act as mechanism inhibitors 

while others do not. The mechanism inhibitors were found to covalently bond to the 

protein rather than destroy the heme. A number of the smaller ligands (I1-I4 and I9) 

dock in modes that are inconsistent with the experimental results. This may be a 

limitation of the docking algorithm in placing small hydrophobic molecules that make 

few contacts with the protein. I1 has been found to be a mechanism inhibitor that does 

not destroy the heme but binds with the internal carbon close to the heme, which is 

inconsistent. I2 does not show mechanism inhibition but the best scoring modes place 

the internal and external carbon above the heme. I3 is a mechanism inhibitor and while 

the best ranked mode places the internal carbon close to the heme, no modes occur that 

place the external carbon for metabolism. I4 is not a mechanism inhibitor but the best 

ranked mode places the internal carbon above the heme (Figure 5.15).  

 

Figure 5.14 The acetylene inhibitors tested in CYP6P3. I10 is deltamethrin used as a 

comparison. 
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Figure 5.15 The docking modes that allow metabolism of the acetylene group I1-4 in 

CYP6P3. 

Table 5.6 The remaining activity of CYP6P3 towards L-PPXE substrate in the presence 

of acetylene inhibitors (McLaughlin, unpublished). Pink highlights the inhibitors that 

act as suicide inhibitors as they decrease activity in the presence of NADPH. 

Compounds   
Log p 
value  

Concentration 
uM  

 Remaining activity 
after 30min 

preincubation -
/+NADPH   

NADPH 
Factor  

-NADPH   +NADPH  

I1  
3.06 

10uM  70 22 3 

1uM  147 56 3 

I2  
2.51 

10 uM  104 114 1 

1 uM  109 120 1 

I3  
3.73 

10 uM  64 6 11 

1 uM  66 69 1 

I4  
3.87 

10 uM  84 92 1 

1 uM  88 101 1 

I5  
7.36 

10 uM  146 106 1 

1 uM  78 95 1 

I6  
6.68 

10 uM  70 52 1 

1 uM  88 65 1 

I7  
5.02 

10 uM  1 0 0 

1 uM  50 15 3 

I8  
4.8 

10 uM  3 0 0 

1 uM  21 13 2 

I9  
2.12 

10 uM  85 21 4 

1 uM  102 126 1 

I10  
6.93 

10 uM  37 65 1 

1 uM  110 96 1 

No Inhibitor     0 100 100 1 
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With both I5 and I6, the planar alcohol binds perpendicular to the heme, stacking with 

F110 and F123. The acid group occupies the cavity above the heme and forms 

hydrophobic contacts with F123, V380 and T318. In this position, the acetylene group is 

positioned distant from the heme. No productive modes were found for either I5 or I6 

which is consistent with their lack of mechanism inhibition. I5 and I6 are found to be 

weak competitive inhibitors. This may be due to an inability to access the active site due 

to their higher logP or their hook shape.  

 

I7 and I8 were shown to be both mechanism inhibitors and to be strong competitive 

inhibitors. For I7 the best ranked mode does not allow metabolism on the acetylene but 

binds with the acid above the heme. Lower scoring modes occur that allow metabolism 

on the acetylene group external carbon, and that position the cyano group for 

coordination (Table 5.7 and Figure 5.16). These modes may explain both the high levels 

of inhibition in the absence of NADPH and mechanism inhibition in the presence of 

NADPH. In a free docking, I8 binds for coordination in a similar mode as I7, but no 

modes are found that allow metabolism on the acetylene. I7 and I8 are good inhibitors 

in the presence and absence of NADPH. This may be because they contain a cyano 

group and their strong inhibition in both the presence and absence of NADPH may be 

due to type II coordination. 

Table 5.7 ChemScores (kJ/mol) of modes of binding for I7 and I8 in CYP6P3, a mode 

positioning the acid above the heme is the best ranked mode. Modes placing the 

external carbon and cyano group also occur. 

        Score    ΔG   S(hbond)  S(metal) S(lipo) H(rot) ΔE(clash)ΔE(int) 

I7 (1)   38.7     -39.5       0.0         0.0          328.3   1.7       0.2       0.7 

I7 external (20) 34.8     -38.2       0.0         0.0          317.0   1.7       1.5       1.9 

I7 coord (23)  34.2     -41.1       0.0         1.0          291.0   1.7       3.3       3.6       

I8 (1)        33.8     -37.7       1.5         0.0          278.2   2.1       1.2       2.6 

I8 coord (7)    32.9     -36.6       0.0         1.0          261.4   2.1       1.5       2.3      
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Figure 5.16 Three binding modes for I7 in CYP6P3, placing the acid above the heme 

(A), binding for mechanism inhibition (B), and for coordination (C). 

 

5.6.4 Pyrethroid-like Probes 

In addition to the acetylene probes tested in CYP6P3, a pyrethroid-like probe was tested 

in CYP6M2 and CYP6P3 (Figure 5.17, Table 5.8). CYP6P3 shows a NADPH 

dependant decrease in activity in the presence of NADPH while CYP6M2 does not, 

indicating that CYP6P3 metabolises the probe acetylene while CYP6M2 does not. The 

best ranked modes in both CYP6M2 and CYP6P3 do not bind productively. However, a 

high scoring mode of CYP6P3 is able to bind productively while a low scoring mode of 

CYP6M2 binds productively. This may be consistent with the experimental results in 

that CYP6P3 may be more likely to bind the probe for metabolism than CYP6M2. In 

CYP6P3 the binding mode of the probe is similar to I5 and I6 as the planar naphthalene 

of the probe stacks with F123 and F110 (Figure 5.18). Although the probe binds in a 

similar mode as I5/6, it is able to be metabolised on the acid acetylene to produce 

mechanism inhibition. 

 

Figure 5.17 Pyrethroid-like probe. 
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Table 5.8 Remaining activity towards L-PPXE of CYP6M2 and CYP6P3 after treatment 

with different concentrations of probe (McLaughlin, unpublished).  

CYP6P3 
Concentration uM*   

 Remaining activity 

after 30min 

preincubation -

/+NADPH    

NADPH 

Factor  

  -NADPH   +NADPH   

  20 70 25 2.7 

  10 83 34.5 2.4 

  1 93 66 1.4 

      

CYP6M2 
Concentration uM*   

 Remaining activity 

after 30min 

preincubation -

/+NADPH    

NADPH 

Factor  

  -NADPH   +NADPH   

  20 57 42 1.4 

  10 58.8 59.5 1 

  1 71 80 1 

 

 

5.6.5 CYP6P3 vs CYP6M2 

The best ranked mode of CYP6M2 does not allow mechanism inhibition while a low 

scoring mode similar to that in CYP6P3 allows metabolism on the internal carbon. The 

difference in score between CYP6P3 and CYP6M2 may be due to steric differences 

between the active sites. In CYP6M2 the V372 projects further into the active site in a 

position to cause clashes with the acetylene. This is caused by the presence of two 

flanking prolines in CYP6M2. The presence of a proline preceding the SRS Val in 

CYP6M2 affects both the backbone dihedrals and sidechain rotamer so that the Val of 

CYP6M2 projects further into the active site. The difference in rotamer affects the steric 

restrictions imposed by the Val. An overlay of CYP6M2 and CYP6P3 shows that the 

Val in CYP6M2 is in a position to cause clashes with the ligand. Productive modes in 

CYP6M2 differ from those in CYP6P3 as the ligand must bind in a less favourable 

orientation for metabolism to occur (Figure 5.19).  
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Figure 5.18 First ranked mode of I5 (A) and 3
rd

 ranked docking of the probe (B) in 

CYP6P3. 

 

Figure 5.19 The probe bound in CYP6P3 (blue) with CYP6M2 (pink) overlaid. The 

rotamer of the valine in SRS5 differs between proteins.  

 

5.6.6 Nucleophilic target 

For mechanism inhibition to occur, the inhibitor reacts with the protein, nucleophilic 

amino acids such as threonine, serine and cysteine are available for attack by the ketene. 

In CYP6P3, the position of the acetylene group of the probe is consistent with 

modification of the I helix T308. This is consistent with previous studies showing that 

covalent binding to the I helix conserved Thr occurs in CYP2B4 (Roberts et al., 1996). 

If T308 is the site of attack this could be demonstrated by mutation to an Ala. To 

determine if such a mutation could have any other affect on ligand binding, a T308A 

model was used for docking. The T308A mutant was not found to affect the productive 

mode. An overlay of the mutant and wild type shows that the ligand binds in a similar 

position with a similar score. However, T308 occurs on the I helix at the electron 

transfer groove and may have an effect on enzyme function.  
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5.7 Prediction of novel substrates- database screening 

The models of CYPs have been shown to be able to explain the observed experimental 

results. They may also be used for receptor based virtual screening to predict novel 

substrates to guide further experimental studies. Virtual screening of a database is 

complementary to experimental high throughput screening of compounds and is used in 

the lead identification stage of drug discovery. Virtual screening can be either ligand 

based or receptor-based. For ligand based methods, information about known ligands 

can be used to identify other compounds with a similar structure or properties, and this 

can be done using similarity or substructure searching. Where there are no known 

ligands or where a structure of the target is available, receptor based screening can be 

done. This involves the explicit docking of each ligand in a database into the target to 

give a measure of the quality of fit. The compounds can be ranked by score to select a 

small subset for experimental testing.      

 

Although compounds could be selected based on a simple ranked order, this tends not 

be advisable as virtual screening is inaccurate at predicting the affinity of a ligand for a 

receptor due to inadequacies of the scoring functions. Post-analysis strategies can be 

used to minimise false positives in the selected subset to give a list of true hits. A 

common post-analysis strategy is to use consensus scoring. After compounds are 

docked, a number of scoring methods are used to re-score the poses. Only compounds 

that score well with each scoring function are chosen. Geometric analysis is another 

post-analysis strategy that can involve calculating surface complementarity between 

protein and ligand, or can be knowledge based where particular interactions are known 

to be desirable (Lyne, 2002).   

 

5.7.1 Structure based virtual screening caveats 

A number of problems are known to occur with virtual screening, Kitchen et al. (2004) 

reviewed the caveats. Firstly docking scores scale poorly with molecular mass and the 

number of rotatable bonds. This is because large compounds can form many interactions 

with the active site and so generate better scores than small compounds. The number of 

rotatable bonds also has an affect because immobilisation of a rotatable bond leads to a 

loss of torsional or rotational entropy, torsional entropy penalties need to be correctly 

weighted or artefacts may occur. When a ligand binds to a protein and becomes less 

mobile the loss of torsional entropy can oppose the attractive force that drives the 

binding. If such entropy penalties are included in the scoring function, large flexible 
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molecules score lower than rigid molecules. It has also been shown that structure based 

virtual screening tends to select compounds that are biologically promiscuous and are 

termed „frequent hitters‟ which show non-specific inhibition. This has been attributed to 

their hydrophobic character that favours their detection in docking simulations.  

 

It is not just the treatment of the ligands that can affect virtual screening. The 

characteristics of the active site has an effect. Hydrophobic active sites produce better 

results than hydrophilic sites as hydrophobic sites can be approximated by shape 

complementarity, while electrostatic interactions are not precisely modelled. The 

placement of water molecules that are directly involved in binding and the rigidity of 

side-chains can dramatically influence the posing of ligands. And where conformational 

changes upon binding occur, rigid active sites are limited in their ability to predict poses 

(Kitchen et al., 2004).  

 

The majority of database screening tends to be carried out using DOCK but consensus 

scoring using two or three independent scoring methods has been shown to outperform 

single scoring. It is suggested that consensus scoring is able to combine information 

from different scores to balance errors in single scores, and to identify 'true' ligands. 

However, consensus scoring has little potential if scoring functions are correlated as this 

could amplify errors (Kitchen et al., 2004).  

 

In this study, Dock and GOLD were selected for consensus scoring as they use different 

methods to dock the ligand into the active site. GOLD uses a random/stochasic 

approach. Dock uses a systematic approach. DOCK and GOLD also use different 

scoring methods. Dock uses a forcefield method while ChemScore is an empirical free 

energy scoring function. While there are advantages and disadvantages with both 

methods, the differences between them may avoid amplification of errors. 

 

DOCK uses a systematic approach to docking by exploring all of the degrees of 

freedom of the molecule. To avoid a large search space, it grows the ligand into the 

active site incrementally by anchoring a rigid fragment and growing the flexible 

sidechains one bond at a time with pruning to remove unfavourable conformations. 

GOLD uses a random search using a genetic algorithm. A 'chromosome' is 

stochastically varied. The best chromosomes are subjected to crossover and mutations to 

produce the next generation, but may fail to find the optimal pose. Force field based 
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scoring such as the DOCK energy score does not include any solvation or entropic 

terms and non bonded interaction cutoffs are arbitrarily chosen. Empirical scoring 

functions such as ChemScore are fitted to reproduce experimental data such as binding 

energies by summing individual uncorrelated terms, and unlike the force field scores 

there are explicit H-bonds and penalties for rotational entropy. The disadvantage of 

empirical scoring is that they are dependent on data sets for fitting.  

 

Kitchen et al, (2004) suggested that despite all of the approximations involved in 

database screening, screenings are successful because they are an enrichment process. 

Rather than selecting good binding ligands, they deselect inappropriate ones to enrich a 

short list and deselecting is more easily achieved with the limitations of the calculations 

than selecting good candidates. Also the ranking of ligands is unimportant as long as 

actives are present within the shortlist. Kitchen et al, (2004) states that it is this 

enrichment that explains the success of virtual screening despite false positives and 

negatives.   

 

5.7.2 Screening Methods 

The ZINC database (Irwin and Shoichet, 2004) subset of 100, 000 lead-like compounds 

was chosen for screening and converted to mol2 format using MOE. Both DOCK and 

GOLD were used. DOCK and GOLD tend to be used together. As they use different 

docking strategies and scoring functions the results of GOLD can support those of 

DOCK. The first calculations were done using DOCK. From this initial DOCK 

screening, the top 500 and bottom 500 scoring compounds were used as the input for 

GOLD. For each compound, 10 docking runs were used. From these only the top and 

bottom scoring ligands were selected for use. Therefore the top set scored highly with 

both methods while the bottom set scored poorly with both methods.   

 

As many of the hits are similar, a diverse subset was determined using MOE. To 

produce the diverse subset the top and bottom 100 were fingerprinted using MDL 

MACCAS where each key describes a substructure of 1-10 non hydrogen atoms. A 

MACCAS fingerprint then indicates if one of 166 substructure keys are present in a 

molecule. Distance is then calculated between molecules using the Tanimoto similarity 

coefficient and molecules are then ranked by assigning 1 to the first entry and then 

repeatedly choosing the farthest from those already ranked.  
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5.7.3 Screening Results 

From a database screening into the CYP6M2 model, the top hits from DOCK tend to 

have many flexible side chains and tend to not to have many rings (Figure 5.20, A). The 

presence of side chains may be due to the lack of a torsional entropy penalty in the 

DOCK scoring method. The top scoring hits tend to fill the crevices of the active site 

(Figure 5.21). This may give a high surface complementarity and may be responsible 

for their high DOCK scores, but may be spurious as torsional entropy is not taken into 

account. Also, no H-bonds were identified in many of the top hits and this may be due 

to a lack of an explicit H-bond function in DOCK. The low scoring ligands from DOCK 

tended to be large and containing rings similar to the known substrates for CYP6M2, 

and also steroids similar to testosterone (Figure 5.20, B).  

 

From the DOCK screening the top 500 and bottom 500 were selected to be docked 

using GOLD. The top and bottom ranked compounds from GOLD were different from 

those of DOCK. Unlike DOCK, the top ranked ligands tend not to have side chains, 

which may be due to the torsional entropy penalty, and they tend to be large 

hydrophobic planar ligands with aromatic rings (Figure 5.22, A). A number of the high 

scoring ligands bind with similar interactions to the known ligands of CYP6M2. The 

second ranked ligand binds with similar interactions to the luciferins, with the ligand 

perpendicular to the heme, forming aromatic or hydrophobic interactions with F123 and 

F110 of the BC loop, and forming H-bonds with Q241 of the G'G loop (Figure 5.23, A, 

D). The 5
th

 ranked ligand binds in a similar mode to deltamethrin. The structure of the 

ligand resembles the structure of the alcohol group and binds in a similar position with 

hydrophobic interactions with F110, H121 and F123 (Figure 5.23, B, E). A number of 

ligands also bind in a similar position to luciferin-PPXE with the ligands binding 

against F376 of SRS5 (Figure 5.23, C, F). 
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Figure 5.20 (A) The top five ligands produced by the Dock screening. (B) Examples of 

low scoring ligands from DOCK. 

 

 

Figure 5.21 The first (A) and second (B) scoring compounds identified by DOCK bound 

in CYP6M2.   
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Figure 5.22 Examples of a high scoring (A) and low scoring (B) ligands from GOLD. 

 

Figure 5.23 (A) The second highest scoring ligand from the GOLD docking, bound in 

CYP6M2. (B) The fifth highest scoring ligand from the GOLD docking binding in a 

similar mode as the deltamethrin acid group. (C) A high scoring ligand from the GOLD 

docking binding in a similar mode as luciferin-BE. CYP6M2 binding L-BE (D), 

deltamethrin (E) and L-PFBE (F). 

 

By contrast, the low scoring ligands tend to be small ligands with few rings and 

containing polar groups such as NO2 and COOH (Figure 5.22, B). Ligands with many 

flexible sidechains are also low scoring, this may be due to the torsional entropy 

penalty. The identification of large ligands as high scorers and small ligands as poor 

scorers is consistent with the caveats identified by Kitchen et al, (2004) and may be due 

to large ligands having many contacts with the protein while small ligands have few 

contacts. However, a docking score that increases with ligand size is also consistent 

with findings that the free energy of binding increases with ligand size. Previous studies 

ED F
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have shown that binding free energy increases with increasing numbers of nonhydrogen 

atoms, with a contribution of up to 1.5 kcal/mol per nonhydrogen. However, each 

additional atom contributes less as the mass of the ligand increases and no improvement 

occurs in ligands with around 15 heavy atoms (Kuntz et al., 1999). 

 

5.7.4 MOE analysis 

A set of the top 100 and bottom 100 compounds were selected for an analysis of 

properties. To determine differences between the top and bottom scoring compounds 

and to identify common features within each set, molecular descriptors were calculated 

using MOE which were then correlated with ChemScore. 

 

Among simple 2D descriptors there were a number of correlations. There was a 

correlation between ChemScore and the number of aromatic atoms (R
2
 = 0.62), and 

number of hydrophobic atoms (R
2
 = 0.5). However, this may be due to a bias for smaller 

ligands being poor scorers and large ligands being good scorers as there was also a 

correlation with the number of heavy atoms (R
2
 = 0.61) and with molecular weight (R

2
 

= 0.61). There was a negative correlation for the number of oxygen atoms (R
2
 = 0.64) 

while there was a positive correlation for the number of nitrogen atoms (R
2
 = 0.55). 

There was also a positive correlation with total positive partial charge (R
2
 = 0.1) and a 

negative correlation with total negative partial charge (R
2
 = 0.03).  

 

Ligands that were hydrophobic tended to produce good scores. There was a strong 

correlation with SlogP (R
2
 = 0.56) and a negative correlation with logS, the log aqueous 

solubility (R
2
 = 0.49). There was a correlation with the sum of vdW surfaces of 

hydrophobic atoms (R
2
 = 0.46) and a negative correlation with that of polar atoms (R

2
 = 

0.21). This is constant with a hydrophobic active site for CYP6M2 but also with the 

caveat of Kitchen et al. (2004) that hydrophobic ligands tend to be high scorers. There 

was a positive correlation between ChemScore and the number of rings (R
2
 = 0.55) 

indicating that aromatic interactions may be favourable. This is consistent with the 

presence of aromatic rings in both the known ligands and the CYP6M2 active site. The 

top scoring ligands are similar to the known substrates for CYP6M2 as they were of 

similar size, hydrophobicity, and tended to contain ring structures (Figure 5.24). The top 

100 compounds had on average 23 heavy atoms and a molecular weight of 328.6. They 

contained on average 13.6 aromatic atoms, 14.14 hydrophobic atoms and contained 3.4 

rings. The average logP (o/w) 3.02 and SlogP (3.15) and the logS (-4.76) indicated that 
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the top hits were large hydrophobic molecules. 

 

 

Figure 5.24 MOE calculated properties of the known substrates for CYP6M2.  

 

5.8 Conclusion 

The homology models of CYPs 6M2, 6P3, 6P9, 6D1 and 6Z2 produced in this study 

can be used to explain the preferences towards the luciferins and acetylene inhibitors, 

and give some insight into the active sites of the pyrethroid metabolisers by identifying 

residues involved in producing these preferences. The models can also be used to 

predict novel substrates for testing that may be further used for the development of 

novel pyrethroids or inhibitors.  

 

The CYP6 metabolisers show individual preferences towards luciferins and resorufins 

with varying substituents. CYPs 6P3, 6P9 and 6M2 preferred large substrates while 

CYPs 6D1 and 6Z2 preferred small substrates. A number of factors were found to affect 

the preference, the size and structure of the active site could be a major determinant. 
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The P450s with larger active sites prefer larger substrates while the smaller active sites 

prefer the smaller substrates. In particular, the size of the residue in SRS5 appears to 

determine the preference for chain length. Those with a Val had a preference for 

substrates with large chains, those with a Leu had a preference for the small chain 

luciferins. Sequence difference alone may not account for differences in preference, the 

sidechain rotamer may also have an effect. Rotamers are affected by the presence of 

prolines, and differences in rotamers may have a steric affect on preference for 

substituent size. The activity profiles could further be explained by optimal filling of the 

active site by the preferred ligands, steric clashes with larger ligands and greater 

mobility by smaller ligands. 

 

There are similarities between the binding of luciferins and the binding of pyrethroids. 

These similarities could indicate a preference for aromatic substrates that occupy the 

volume above the heme. While there are similarities, the binding interactions of the 

luciferins differ from deltamethrin. With deltamethrin, two BC loop aromatic residues 

are involved in π-stacking while in the luciferins, only one is involved. This suggests 

that while the substrates share similarities, their interactions with the active site may 

differ and active site residues may have different ligand specific roles.  

 

The structure of the active site can also be tested by the use of acetylene probes. These 

are selective for P450s by differing in size and shape and the positioning of the 

acetylene. The probes that produced the most potent inhibition in CYP6P3 were large 

and hydrophobic further indicating a preference of this enzyme for such substrates. 

Some probes were poor inhibitors, which may be due to their high logP or shape 

preventing their entry into the active site indicating that other factors external to the 

active site may have an effect. There were differences in the metabolism of pyrethroid-

like probes in CYP6M2 and CYP6P3. The difference in preference was similar to that 

of the luciferins with the residue in SRS5 having a steric affect on binding and 

metabolism. 

 

As the models were able to explain the observed experimental results, they may be used 

for database screening. Database screening can be used to identify candidate substrates 

but the results may be spurious due to the nature of the docking and scoring methods. 

This effect can be minimised where two different scoring methods are used to score the 

same ligands. DOCK and GOLD differ in both their docking and scoring methods and 
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may be used for consensus scoring. Receptor based screening using the CYP6M2 model 

identified candidate substrates that are similar to the known substrates of CYP6M2, 

hydrophobic ligands with aromatic rings, but further identified novel candidate ligands. 

Screening in this way gives an indication of the nature of the active site, as the ligands 

identified were a good structural and chemical match to the CYP6M2 active site. 
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6. Factors external to the active site affecting 

metabolism  
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6.0 Preface 

This chapter addresses factors external to the P450 active site that can affect substrate 

preference and metabolism. In section 6.1 the role of cytochrome b5 is discussed. The 

presence of b5 is known to affect pyrethroid metabolism by P450s and may exert its 

role in stabilising the protein or acting as a second electron donor. In section 6.2-6.3 the 

role of protein flexibility is discussed. Flexibility needs to be taken into account in 

docking, and b5 may also have an influence on stabilising protein conformation. In 

section 6.4 the role of b5 as a second electron donor is discussed in relation to DDT. In 

section 6.5-6.6 membrane interactions are discussed, the interaction of the P450 with 

the membrane may have an influence on ligand access. In section 6.7 the occurrence of 

SNPs are discussed.  

 

6.1 Cytochrome b5 

Cytochrome b5 is a 17 kDa membrane anchored heme protein that participates in a 

range of electron transfer reactions. It has a role in augmenting P450 reactions by direct 

transfer of the second electron to the P450, and by allosteric stimulation without 

electron transfer. Although the overall structure of cytochrome b5 is not known, it is 

described as having 3 domains, a water soluble heme containing domain, a 

transmembrane anchor domain and a linker region which connects the two (Figure 6.1) 

(Durr et al., 2007b). b5 interacts with P450s but in a P450 specific way. Some P450s 

show an enhanced activity; some show no affect while others are inhibited; the 

interaction can also be substrate specific. The strength of binding also varies with some 

P450s showing strong Kd values while in others is it undetectable (Durr et al., 2007a).  

 

  

Figure 6.1 (A) Topology of b5, (B) model of b5, (C) CYP2B4 (1SUO). Taken from Durr 

et al. (2007a). 
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A number of possible binding sites have been proposed for b5. These sites include the 

distal site with interactions with the A, F and I helices. A second site perpendicular to 

the heme plane on the B' helix, and a third site on the proximal face with the C, K and L 

helices and meander region. It has been demonstrated that b5 could share an 

overlapping but non-identical binding site with reductase on the proximal surface as at 

high ratios of b5 to reductase, b5 inhibits the activity of reductase. b5 has been shown to 

be required for the CYP6D1 mediated metabolism of cypermethrin. This was suggested 

to be due to its role as a second electron donor although other influences were not 

investigated (Zhang and Scott, 1996).  

 

6.1.1 The effects of b5 on CYP6M2  

In CYP6M2, the presence of b5 shifts the ratio of metabolites for DDT, and the 

metabolism of permethrin and deltamethrin was increased 2.5 fold in the presence of b5. 

Experimental studies also suggest that b5 increases the stability of CYP6M2 

(McLaughlin, unpublished). To determine the effects of b5 on CYP6M2, the site of 

binding of b5 needs to be determined. From the literature, mutagenesis studies affecting 

b5 binding can be used to predict the binding site on CYP6M2 and understand how b5 

binds with different strengths to different P450s. This may give some insight into the 

effects of b5 binding to CYP6M2. 

 

As both b5 and CYP6M2 are membrane bound, the orientation of interaction with the 

membrane may have an influence on the interaction with b5. The interaction of 

CYP6M2 with the membrane was estimated by using MAPAS. In the top scoring mode 

the hydrophobic patch on the A', F' and G' helices is in contact with the membrane. The 

heme iron is around 24 Å from the membrane surface similar to the model proposed for 

CYP2C5, the protein is also tilted which could expose its proximal surface for the 

binding of redox partners (Clarke et al., 2004).  

 

6.1.2 b5 binding site 

Tamburini et al, (1985) characterised the interaction between b5 and P450s using 

chemical modification of b5. b5 was modified by amidination to alter the structure of 

the ε-amino group of lysine but not the charge, acetylation to remove the cationic 

charge, and methylamidation to remove the carboxyl anionic charge. Native b5 bound 

tightly with P450s RLM3 and LM2, and the presence of b5 increased p-nitroanisole 
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demethylation activity. The amidinated and acetylated b5 exhibited similar patterns to 

those of the native b5 showing that neither positive charge or sidechain structure of the 

lysene residues were involved in complex formation with the P450s. By contrast 

modification of carboxyl groups interfered with p-nitroanisole demethylation activity 

stimulation. This demonstrates that amino groups were unimportant but carboxyl groups 

were essential for electron transfer between b5 and P450s. They suggested that there 

may be a need for charge pairing for efficient electron transfer. Tamburini et al. (1986) 

also showed that the heme propionates are important for b5 binding. Esterification of 

heme propionates to produce DME-b5 (dimethyl ester b5) causes anionic charge 

neutralisation. DME-b5 showed a weaker affinity for P450 RLM5 than native b5.  

A number of possible binding sites have been proposed for b5. Mutagenesis has 

indicated roles for the basic residues on the P450 proximal face. Using chemical cross 

linking of ion pairs, the electrostatic interactions between CYP2E1 and b5 have been 

identified, these have also been confirmed using mutagenesis (Gao et al., 2006) (Table 

6.1).  

Table 6.1 From mass spectrometry two cross linked ion pairs were identified by Gao et 

al. (2006).  

Region  CYP2E1 b5    

meander K428  E53    

B bulge K434  E56 D60   

 

These ion pairs place the binding site on b5 on the surface where the heme propionates 

project into the solvent, while the binding site on the proximal face of CYP2E1 occurs 

where the heme is closest to the surface of the P450. Mutagenesis suggested that 

CYP2E1 K428 and K434 are structurally responsible for the stimulatory affects of b5. 

Mutagenesis of either of these reduced the stimulatory affect of b5 and simultaneous 

mutagenesis decreased the stimulatory affect by up to 82%. K434A has the greatest 

effect indicating it may be involved in a second ion pair interaction, this was predicted 

to be with b5 D60 (Gao et al., 2006). From modelling, Gao et al. (2006) also predicted 

other ion pairs (Table 6.2).   

Table 6.2 Other ion pairs identified by Gao et al. (2006). 

Region  CYP2E1 b5    

C helix  R126  D60   

J helix  K342  E43    

J helix  R344  E48 E44  

L helix  R444  E48 

meander K422  E48   
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The mutagenesis by Gao et al. (2006) places the site of binding on b5 on the helices 3 

and 4 (Figure 6.2, A). The site on CYP2E1 was on the proximal surface (Figure 6.2, B). 

Site directed mutagenesis in CYP2B4 has also identified possible binding sites for b5 

and reductase on this P450. In a study using both mutagenesis and protein-protein 

docking, Bridges et al. (1998) and Zhang et al, (2005) identified seven residues 

involved in b5 binding. The seven residues were identified to be involved in binding b5 

by the lack of b5 stimulation of metabolism and by an increase in b5 dissociation 

constant. These are R122, R126, R133, F135, M137, K139 and K433, and occur along 

the C helix (Figure 6.3).  

 

Figure 6.2 (A) Rat b5 (1AW3) with the residues involved in the two ion pairs identified 

by mass spectrometry and the predicted pair highlighted in pink. (B) CYP2E1(3E6I) 

proximal surface. The ion pairs identified experimentally are highlighted in pink. The 

pairs identified by modelling (Gao et al., 2006) are highlighted in blue.  

 

Figure 6.3 The seven residues identified by Zhang et al, (2005) to be involved in b5 

binding highlighted in pink.  
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The site of b5 binding is similar in both CYP2E1 and CYP2B4. This may be due to 

sequence conservations. The seven residues of CYP2B4 are either conserved or are 

conservatively substituted in CYP2E1. Similarly some of the basic residues of the J and 

L helices identified in CYP2E1 are conserved in CYP2B4. Of the residues identified as 

involved in b5 binding there were only substitutions in the J helix (the K342 of CYP2E1 

replaced by D341 in CYP2B4) and meander (the CYP2E1 R428 replaced by M427 in 

CYP2B4). 

6.1.3 b5 interaction differences 

It has been shown that different P450s show different strengths of interaction with b5 

(Shimada et al., 2005) (Table 6.3). An alignment of these sequences was produced with 

Tcoffee to determine if differences in b5 interaction could be attributed to residue 

substitutions, and the mutagenic studies in CYP2B4 and CYP2E1 were used to identify 

positions that have been shown to be involved in b5 binding.  

 

Table 6.3 Kd values of b5 interaction with P450s taken from Shimada et al. (2005). 

Enzyme  Kd  (µM)            

Rat P450 1A2     0.09 ± 0.02 

Rabbit P450 1A2  5.4 ± 1.9 

Human P450 1A2   ND 

P450 2A6          0.13 ± 0.07 

P450 2C19        ND 

P450 2D6         0.14 ± 0.02 

P450 2E1        0.55 ± 0.45 

P450 3A4         0.05 ± 0.01 

Kd ± SE 

ND, not detectable  

 
Figure 6.4 The positions of residues identified as involved in b5 binding in CYP2B4.  

CYP2E1 

CYP1A2 (rabbit)

CYP1A2 (Human)

CYP1A2 (rat)

CYP2C19   (Human)
CYP3A4

CYP2A6

CYP2D6

CYP2B4
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At the proximal surface, there is a high degree of sequence conservation. The residues 

involved in b5 binding identified in CYP2B4, tend to be conserved in other P450s with 

the exception of the CYP1A2 group (Figure 6.4) which may explain their poor binding 

to b5. Non conservative substitutions also occur in CYP3A4 and CYP2D6 although 

they have strong interactions with b5, and other substitutions may compensate for these. 

There is an additional basic residue (K96). The CYP3A4 K96 is in a position to interact 

with b5 as it is at the C terminal of the B helix. In the CYP1A2 group, substitutions of 

some of the b5 binding residues occur. While human CYP1A2 has no detectable 

interaction with b5, rat and rabbit CYP1A2 showed stronger interactions. In the rabbit 

and rat sequences an additional basic residue occurs that substituted for N145 in human 

CYP1A2. The position of this residue in the crystal structure of human CYP1A2 shows 

that this residue is in a position to interact with b5 (Figure 6.5) and its substitution in 

human CYP1A2 may contribute to the reduced interaction with b5. Shimada et al. 

(2005) found that CYP2C19 interacted weakly with b5. CYP2C19 does not have any 

substitutions of the residues identified to be involved with b5 interaction, and has an 

additional basic residue on the N terminus of the C helix. As the lack of interaction in 

this case cannot be understood basis on sequence in this case, there may be other factors 

such as structural differences or membrane interaction that affects b5 binding.   

 

 

Figure 6.5 The position of N145 on the proximal surface of human CYP1A2 (2HI4). 

 

6.1.4 Proximal surface of CYP6M2 

The proximal surface of P450s is suggested to be the site of binding for b5, with basic 

residues involved in the interaction. The proximal surface of CYP6M2 can be analysed 
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for these features to identify residues that may be involved in binding to b5. Although in 

CYP2E1 two basic residues have been identified as important for b5 binding, both of 

these are substituted in CYP6M2, of the other basic residues identified by modelling 

(Gao et al, 2006) some are substituted while others are conserved.  

 

The two basic residues identified on the CYP2E1 J helix are substituted, but a basic 

residue on the CYP6M2 K helix occurs in a similar position. Although the basic residue 

on the CYP2E1 L helix is substituted, a basic residue occurs on the CYP6M2 L helix in 

an adjacent position that is shifted towards the B and C helices similar to CYP3A4. The 

basic residue on the CYP2E1 C helix is conserved, although this may be conserved due 

to its role in binding a propionate. 

 

In addition to the residues identified in CYP2B4 and CYP2E1, a number of basic 

residues occur on the CYP6M2 proximal face that may indicate a b5 binding position 

(Figure 6.6). Two basic residues occur on each of the B and C helices in CYP6M2 and 

CYP3A4, that are also conserved in the other pyrethroid metabolising CYP6s (Table 

6.4). A basic residue is also conserved on the L helix, although its position is shifted 

towards the C helix in the CYP3s relative to its position the CYP2s. This along with the 

absence of the basic residues on the J helix may act to shift the binding position of b5 

towards the BC loop in CYP6M2.  

 

Table 6.4 Basic residues in the CYP3 clade. 

  C helix   Lhelix   B helix   D 

helix 

6M2  R131 R134  R450 R457  K94 K99  K147 

3A2  K R  R K  K K  K 

3A5  K R  R K  R K  K 

3A4  K R  R K  K K  K 

321A1  K R  R L  Q S  K 

6B8  R R  R L  K K  K 

6D1  R R  R K  R T  K 

6P3  R R  R K  K K  K

  

2E1  R122  R126     K87 K94   

2B4  K122 R125     R85 A92   
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Figure 6.6 CYP6M2 proximal face with basic residues highlighted in pink.  

 

6.1.5 Docking predictions for b5 binding sites in CYP6M2 

Protein-protein docking of b5 with CYP6M2 may also be used to identify binding sites. 

GRAMM can be used for prediction of protein interactions of ultralow resolution 

structures (7 Å) to give general preferences for sites of interaction and therefore can be 

used with homology models. It does not produce real coordinates but a distribution of 

positions around the binding site. An ultralow resolution docking was used where 

structural details are averaged up to 6.8 Å to predict the gross binding features. From 

100 output conformations a primary cluster occurred on the distal surface while a much 

smaller cluster occurred on the proximal surface. The top 50 dockings consisted only of 

dockings on the distal surface.  

 

A ClusPro docking was performed using either DOT or ZDOCK and retaining 2000 of 

the electrostatic hits. Using DOT two main clusters occur on the proximal and distal 

surfaces. There are also some dockings on the lateral surface on the BC loop although 

they are diffuse. A number of the dockings on the proximal surface places the b5 heme 

close to the heme of CYP6M2. Similar to the DOT output, with ZDOCK there is a large 

cluster on the proximal surface and diffuse dockings on the lateral surfaces. Unlike 

DOT there are two clusters on the distal surface although they occur close together. This 

difference may be due to differences between the algorithms. Zdock has a desolvation 

component that DOT lacks and this additional cluster may be due to a favourable 
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desolvation score where b5 binds to the hydrophobic patch.  

 

A single cluster on the proximal surface is consistent between both DOT and Zdock and 

may indicate an actual binding site. However, the orientation of the b5 with the P450 

varies within the cluster with some orientations positioning the b5 heme away from the 

proximal surface while others position it towards it. As the b5 heme propionates and 

residues close to the heme have been shown to be involved in the binding of b5 to 

P450s, b5 dockings with the heme at the binding interface were assumed to be the 

naturally occurring orientation. In addition a proximity of the hemes may be needed for 

electron transfer. 

 

The second ranked mode of Zdock places the hemes of b5 and CYP6M2 close to each 

other, the distance between the irons of the two heme groups is 16.9 Å while the 

distance between the propionates is 5.6 Å. As it has been found that electrons can travel 

up to 14 Å between redox centres (Page et al., 1999), this pose may be close to that 

needed for electron transfer. This docking places b5 at the rim of the concavity binding 

with the B, C, and N terminal parts of both the D and L helices (Figure 6.8). In this 

binding mode b5 partly occupies the concavity of the proximal surface, as it has been 

suggested that other redox partners also bind at this surface, this binding mode may only 

occur in the absence of the reductase. 

 

In this docking mode the start of the b5 linker region was 57 Å from the membrane 

surface as predicted by MAPAS. Human b5 has a 15 amino acid linker region. If this 

were extended like a beta sheet its length could be 51 Å whereas if it were an α-helix its 

length would be 22 Å. It has been found that if the linker region is shortened to 7 amino 

acids, this causes it to be unable to interact with CYP2B4 as the predicted binding 

surface was 15-20 Å above the membrane (Clarke et al., 2004). The predicted binding 

site in CYP6M2 is further from the membrane than that predicted in CYP2B4. 

However, Anopheles b5 has an insert in the linker region that may extend the region to 

19 amino acids (Figure 6.7). The increased length of the linker region may allow b5 to 

bind in this position.  
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Figure 6.7 Alignment of Anopheles, rat and housefly b5. Positions of the linker region 

and transmembrane domain were identified according to Clarke et al. (2004). The insect 

b5s have an insert in the linker region. 

 

 

Figure 6.8 Second ranked docking using ClusPro Zdock. The heme of b5 (pink) is close 

to the heme of CYP6M2 (green) and b5 is distant from the membrane surface (blue 

plane). 

 

The dockings of b5 at the distal surface may be an artefact due to the presence of the 

hydrophobic membrane binding patch and a concavity. As protein docking algorithms 

assume that the protein is surrounded by water, the binding on the distal surface may be 

due to a favourable desolvation score. Also there is a concavity on both the distal and 

proximal surfaces, as b5 is a similar size to both of these cavities, docking algorithms 

may be identifying a good shape complementarity between the surfaces. The interaction 

between CYP6M2 and the membrane was predicted using MAPAS. If this is the correct 

orientation, dockings on the distal face place the water soluble heme binding domain of 

b5 into the membrane (Figure 6.9). As this binding mode may not be possible, the 

dockings on the distal surface were regarded as an artefact.    
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Figure 6.9 The 3rd ranked Cluspro Zdock docking of CYP6M2 and b5 with the position 

of the membrane predicted (blue plane). 

 

A FireDock refinement of the ClusPro-Zdock poses was carried out. Of the top 10 

scoring modes, the dockings ranked 1-5 and 10 occurred on the lateral surfaces. 

Although these modes were high scoring, they were diffuse and may not represent 

actual binding sites. Modes 6,7,8 were clustered on the proximal surface with modes 6 

and 7 orienting the heme of b5 towards the heme of CYP6M2. The 9
th

 ranked mode was 

on the distal surface. The scores indicated that the dockings on the proximal surface 

involved strong electrostatic interactions as these scores were high, this is consistent 

with the binding of b5 involving ion pairs. The dockings on the lateral surface had 

higher van der waals scores indicating that these dockings may be driven by surface 

complementarity (Table 6.5). 

Table 6.5 Scores for the cluspro-Zdock FireDock refinement. Position indicates the 

surface of binding: L: lateral ; P: proximal; D: distal. 

 

 

Zdock was also used alone. Unlike the ClusPro output, the primary cluster was on the 

distal surface on the hydrophobic patch while a much smaller cluster occurred on the 
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proximal surface. Also unlike ClusPro, the docking on the proximal surface is shifted 

further onto the rim (helices B and C) away from the concave surface, this was also 

suggested by the position of basic residues on these helices. Docking on the rim of the 

proximal surface may be in a position to stabilise the interaction with P450 reductase.  

 

The binding position of P450 reductase can be predicted from the crystal structure of 

the P450BM3-reductase complex 1BVY. To model the CYP6M2-FMN complex, 1BVY 

was aligned to CYP6M2. In the mammalian P450 reductase, the FMN domain is buried 

within the structure but as the domain is tethered by a single flexible linkage, it may be 

possible for it to approach the heme in this way as suggested by Williams et al. (2000). 

In the CYP6M2-FMN complex the FMN occupies the concave surface of CYP6M2 and 

would exclude b5 from this site. However, the Zdock mode positioning the b5 further 

onto the rim of the proximal surface could allow the reductase to bind and may stabilise 

the interaction. However, there was some overlap between the FMN and b5 (Figure 

6.10). Alternatively, b5 binding to the lateral surface could also stabilise the binding of 

the reductase although docking modes on the lateral surface are diffuse and do not 

indicate a particular binding site.   

 

This stabilising of the reductase has been previously suggested as b5 has been shown to 

affect the stability of CYP3A4. Voice et al. (1999) found that in E. coli cells expressing 

CYP3A4 and NADPH in the presence of testosterone lead to a decrease in spectrally 

active CYP3A4, but in cells also expressing b5 the levels of active CYP3A4 were 

unchanged. In this case it was suggested that this was a result of b5 improving the 

coupling of CYP3A4 with NADPH reductase to reduce the levels of damaging reactive 

oxygen species. It was also found that in the absence of substrate, b5 led to a loss of 

spectrally active CYP3A4. They suggested that an increased coupling in the absence of 

substrate could produce a futile cycle that could destroy the enzyme.  

 

The site of b5 binding on CYP6M2 is predicted to be on the proximal surface where it 

may bind in a position that allows it to donate electrons or alternative poses that may 

stabilise the interaction with the reductase. This indicates roles for b5 in increasing 

CYP6M2s metabolism towards pyrethroids. 
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Figure 6.10 CYP6M2 (green) with the best ranked binding mode in Zdock (pink) and 

the superimposed position of FMN from 1BVY (blue). 

 

6.2 Protein flexibility 

The binding of b5 may influence the stability of CYP6M2, to identify a mechanism for 

this stability, the flexibility of CYP6M2 was investigated. From the normal mode 

analysis, the position of binding of b5 on the proximal face could stabilise a hinge 

bending motion to increase the rigidity of the protein.  

 

6.2.1 P450 flexibility 

The use of X-ray structures to understand the flexibility of P450s is limited. X-ray 

structures do not provide direct evidence of protein flexibility, which are based on 

temperature factors or comparisons of ligand bound and unbound structures. X-ray data 

may be affected by the non-physiological conditions and by crystal packing to give non-

native contacts.  

 

Zhao et al. (2006) identified five plastic regions (PR) from the crystal structure of 

CYP2B4. PR1 consists of the A helix; PR2 includes the B', B'C loop, helix C and the 

CD loop; PR3 consists of the C-terminal half of helix E. PR4 consists of the C-terminal 

half of helix F through to the N-terminal half of helix I. PR5 consists of part of the C-
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terminal loop. Zhao et al. (2006) suggested that the most conformationally flexible 

regions of CYP2B4, the BC loop and FG regions, are embedded in the membrane and 

may be dependent on the lipid environment. They suggested that this region could act to 

recognise and deliver diverse substrates to the active site. Skopalik et al. (2008) found 

that P450s have regions of low or high malleability. The heme-binding core is rigid. The 

proximal side where the redox partners bind is moderately malleable. The distal side 

that binds with the membrane is highly malleable and may contribute to the substrate 

specificity, as substrate entry and release can occur without disrupting the active site 

arrangement or interaction with the redox partner. This may be the case in CYP6M2 as 

the FG loop in contact with the membrane spans three domains and contains hinge 

regions.       

 

It has been demonstrated in CYP4A7 that b5 can have a conformational role rather than 

an electron transfer role as heme-depleted apo b5 increased turnover of laurate and 

myristate indicating it plays a conformational role as it is not involved in electron 

transfer (Loughran et al., 2001). Loughran et al. (2001) characterised CYP4A7 in the 

presence and absence of b5, they suggested that it enhances the interaction between 

P450 reductase and the P450. They determined the flexibility of the active site on fatty 

acid substrates with different chain lengths, CYP4A7 prefers shorter chain lengths in the 

presence or absence of b5, but apo b5 was required for the metabolism of longer chain 

lengths. The greater the chain length the greater the dependence on b5. They suggested 

a conformational role for b5 which may dock at the proximal surface to open a channel 

for the access of substrates with varying bulk. A spectral characterisation showing a 3 

fold increase in the spectral binding constant of lauric acid in the presence of b5 

indicates a change in how the substrate binds to the protein. They suggested that b5 acts 

as a conformational modifier that causes an increase in overall activity as there is a three 

fold increase in hydroxylation in the presence of b5 and heme depleted b5. Yamazaki et 

al. (1996) also found that while b5 is traditionally considered to be involved in electron 

transfer, heme depleted b5 (apo-b5) can replace b5 for the oxidation of substrates of 

CYP3A4. 

 

6.2.2 Normal modes 

Normal mode analysis (NMA) predicts the movements of a molecule and has been used 

with proteins to predict the kinds of conformational changes that occur during normal 

function. Half of the known movements can be modelled by at most two normal modes 
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(Suhre and Sanejouand, 2004). Normal modes are harmonic oscillations around a local 

energy minimum, the starting point for normal mode analysis is one particular stable 

conformation that represents a potential energy minimum. The potential energy 

landscape of a protein is multiscale. At the large scale a stable conformation 

corresponds to a local minimum. If several local minima exist they represent different 

conformations. At a smaller scale the potential well is not smooth but has many local 

minima that represent conformational sub-states that may be different arrangements of 

sidechains.  

 

In proteins, conformational change usually involves the relative movement of rigid 

structural elements. The degree of collectivity is the fraction of residues that are affected 

by a given mode. For maximal collective movements the degree of collectivity tends to 

be a value of 1. For localised motions the value approaches 0. While low frequency 

modes are expected to be collective, they can be localised and usually correspond to the 

movement of extended parts of the system such as loops. As these are meaningless they 

can be ignored and the extended parts are usually removed before normal mode 

computation. ElNémo was used for normal mode analysis. The model of CYP6M2 was 

submitted to the elNémo server. In all of the first 5 models there was low collectivity. 

Low frequency modes are expected to be collective while localised motions may 

correspond to extended parts of the system such as N or C termini. The cause of the 

localised motions was identified as the transmembrane domain. With the 

transmembrane sequence removed only one of the modes show low collectivity. The 

lowest frequency mode is number 7. The first six correspond to translation and rotation 

of the protein. The vector field representation of mode 7 identifies the B and C helices 

as moving in opposite directions (Figure 6.11). In this mode there is collective motion 

of three domains: the beta sheet region, the FG region and the I,J,K helices. The B helix 

appears to be part of the beta sheet domain and shows a collective motion along with 

this domain. The BC loop is acting as a hinge region between domains.  
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Figure 6.11 The vector field representation of the displacements of mode 7 of CYP6M2. 

Vectors represent the direction of the domain displacements.  

 

6.2.3 Domain analysis 

DynDom was used to identify domains. In the CYP6M2 elNémo normal mode 7, three 

domains are identified (Figure 6.12). The domains identified correspond with those 

identified by Arnold et al. (1997) in P450BM3: 

β B sheet region 

α' FG, N terminal part of I helix 

α''  C terminal part of I helix, JK and L helices C terminal loop.  

With helices B', C, D and E acting as transition regions between domains.  

 

 

Figure 6.12. The CYP6M2 domains of mode 7 highlighted. (A) distal surface, (B) 

lateral surface. β domain (blue). α' domain (red). α'' domain (yellow), between these 

domains are hinge regions (green). Positions of the BC loop, I helix and SRS5 in the 

active site. 

C
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In normal mode 7, the B helix forms part of domain β while the C helix forms part of 

domain α' with a hinge region in the BC loop. The BC hinge region consists of residues 

F110-E113. In this normal mode there is a bending of the I helix. The I helix is divided, 

with one part in α' domain and the other part in the α'' domain separated by a hinge at 

the electron transfer groove. The I helix straightens and flexes along with the domain 

movement. ElNémo Normal Mode 8 is in agreement with mode 7 in identifying 3 large 

domains. Unlike mode 8 it identifies the G' helix as being a fourth domain. Also unlike 

mode 7 the BC loop hinge region is extended to the C helix.   

  

While CYP6M2 shows 3 domains, CYP6P3 shows 6 domains. However some of these 

domains correspond to surface loops, excluding these there are three large domains 

similar to that found in CYP6M2. The BC loop acts as an interdomain region between 

the α' and β domains in both CYP6M2 and CYP6P3. The template CYP3A4 (1TQN) 

also shows three main domains and a similar domain motion. In both CYP6P3 and 

CYP6M2 there is a hinge in the I helix, next to this hinge is a second hinge in helix E 

and a third in the D helix. Together, these hinges occur between two domains and may 

form an interdomain region between domains α' and α''.  

 

The F and G helices are in the α' domain, but the FG loop is part of the β domain. The α' 

domain moves in the opposite direction to the β domain and the FG loop acts as a hinge 

between the two domains. Along with the domain motion, the FG loop bends laterally. 

This can act to change the dimensions of the access channel 3 that runs through the 

loop. From ElNémo, it was found that the C helix occurs in one domain while the B 

helix occurs in another. Both domains move in opposite directions with a hinge region 

in the BC loop. The predicted b5 binding site occurs at the B and C helices. Binding in 

this position could stabilise the domain motions to increase the rigidity of the P450.  

 

In the non metaboliser CYP6B1, as with the metabolisers and template, there are also 

three domains. The domain motion of the FG loop is similar to CYP6M2 and CYP6P3, 

with a change in the dimensions of the FG loop, but as there are bulky residues in the 

FG loop the domain motion may act to partly open and close the channel.  

 

6.3 b5 effects on isomers 

In the template CYP3A4, the topology of the active site has been shown to be affected 

by the binding of b5. Methyl phenyldiazene carboxylate azo ester is used to obtain 
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topological information about the active site. When oxidised by a P450, the phenyl ring 

of the compound attacks an available nitrogen on one of the four heme pyrrole rings A, 

B, C or D to produce one of four regioisomers (NA, NB, NC, ND). The ratio of these 

regioisomers reflects the space available above each pyrrole ring. In the absence of b5 

and P450 reductase CYP3A4 was found to primarily produce the NA regioisomer. In the 

presence of b5 formation of all regioisomers was decreased with the effect smaller for 

NA. There were changes in regioisomer profile for SRS mutants, in the absence of b5, 

the BC loop mutation S119W significantly enhanced all regioisomers but in the 

presence of b5 these increases were suppressed indicating that b5 binding causes a 

conformational change in the BC loop. This is consistent with the binding of b5 to 

residues of the C helix (Yamaguchi et al., 2004).  

 

It is possible that the interaction with b5 could affect metabolism of different 

stereoisomers of permethrin in CYP6M2. From the dockings of the isomers it was 

found that the cis/trans positioning of the halovynal group affects binding of the 

isomers, while the R/S has less of an affect. With the trans isomers the halovynal tends 

to lie between the BC loop and the I helix while the cis isomers tend to lie between the 

BC loop and SRS5 or between SRS5 and I helix. In these modes, the alcohol moiety 

binds in a similar position and the structure of the acid moiety affects the position of 

binding of the halovynal group. However, with lower scoring modes, the halovinyl 

group can bind in alternative positions (Table 6.6 and Figure 2.12). 

 

Table 6.6 ChemScores (kJ/mol) of the best ranked dockings and lower scoring 

alternative modes that differ in the position of the acid group.  

Isomer  Position   score  rnk  

(R)trans  between BC and I helix 46.4  1 

(R)trans between BC and SRS  43.3  7 

 

(S)trans between BC and I helix 44.4  1 

(S)trans between BC and SRS5 42.5  9 

 

(R)cis  between BC and SRS5 42.3  3 

(R)cis  between BC and I helix 42.0  4 

 

(S)cis  between SRS5 and I helix 43.1  1 

(S)cis  between BC and I helix 41.6  2  

 

6.3.1 Normal mode and docking 

To determine if the effect of b5s on domain stabilisation could have an affect on the 
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metabolism of permethrin isomers, the isomers were docked into normal mode 

perturbed models of CYP6M2. This method of docking has been previously suggested 

to represent receptor flexibility (Cavasotto et al., 2005). The flexibility of the receptor 

has been one of the problems in computational drug design. Dealing with receptor 

flexibility may be crucial to accurately predicting the binding orientation and 

interactions within the active site, the use of a single rigid target may reduce the chances 

of finding the correct binding mode of ligands. A number of methods have been 

proposed to address this problem including allowing side chain flexibility during 

docking (Leach, 1994), the use of multiple receptor conformations (Teodoro and 

Kavraki, 2003) or using an ensemble of structures collected from molecular dynamics 

(Lin et al., 2002) and normal mode analysis (Cavasotto et al., 2005). 

 

There is evidence that there is a relationship between the pre-existing conformations of 

the receptor in the unbound state and structural changes upon ligand binding. In solution 

proteins exist in a range of conformations and their populations follow statistical 

distributions. Upon ligand binding the equilibrium may shift in favour of the bound 

conformation (Ma et al., 1999). Ma et al. (1999) proposed an alternative to the induced 

fit mechanism. They suggested that there may be pre existing subpopulations of 

conformations that preferentially bind to corresponding ligands. This proposal is an 

extension of the concept of energy landscapes and folding funnels. The energy 

landscapes in protein folding are represented by hills corresponding to high energy 

landscapes and valleys corresponding to favourable conformations and protein folding 

can be viewed as an ensemble of molecules going downhill through an energy funnel. If 

the bottom of the valley is smooth then the protein is expected to have only small 

changes in conformations, while if it is rugged there may be an ensemble of 

conformations.  

 

Ma et al. (1999) suggested that this ensemble of conformations may be the origin of the 

induced fit upon binding. The 'lock' may exist as a range of conformations some of 

which fit the 'key'. As a ligand binds to the correct conformation the equilibrium may 

shift in favour of the bound conformation. Ma et al. (1999) suggested that these motions 

are primarily hinge bending domain motions. The domains being structural units that 

move with respect to another structural entity around a swivelling point, although the 

domains are not entirely rigid they are relatively rigid compared to the swivelling 

region. There may be selection at the hinge or at interdomain boundaries limiting the 
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extent of the motions and producing preferred motions. However, side chain flexibility 

or local motions may not be uncoupled from ligand binding and ligand binding can also 

be seen as a conformational selection stage of partly fitting structures followed by 

structural rearrangements, an induced fit stage.  

 

As equilibrium conformations could be represented using normal mode analysis 

(NMA), Cavasotto et al. (2005) proposed using low frequency NMA to generate 

multiple receptor conformations to incorporate ligand flexibility in ligand docking. 

They selected modes relevant to ligand binding and perturbed along these modes. 

Floquet et al. (2006) found that docking using a single energy minimised structure 

produced incorrect binding poses. They generated a number of intermediate structures 

for a normal mode and found that ligands could be correctly docked. They showed that 

NMA could provide structures that may be more appropriate for docking.  

 

6.3.2 Normal mode perturbed models 

The CYP6M2 normal mode perturbed models were used for docking of the isomers. 

The normal modes define only the direction but not amplitude of the conformational 

change, reasonable amplitudes needs to be selected to prevent distortions and to reflect 

motions at room temperature (Suhre and Sanejouand, 2004).   In all of the structures 

similar binding modes occurred although there were differences in scores (Table 6.7). 

Some structures show higher scores than others and may indicate a sub-population with 

a preference for permethrin as proposed by Ma et al. (1999). The effects of b5 to 

increase metabolism may be due to the stability of a conformation that improves 

binding of pyrethroids.  

Table 6.7 ChemScores (kJ/mol) of dockings into normal mode perturbed structures (1 

and 11) from modes 7 and 8. Isomers of permethrin were docked in each model.   

Isomer  6M2  Mode 7_(1) Mode 7_(11) Mode 8_(1) Mode 8_(11) 

(R)cis  42.5  43.7  40.6  42.7  41.7 

(S)cis  43.1  41.6  40.8  44.0  42.8 

(R)trans 46.4  46.3  45.3  46.9  44.6  

(S)trans 44.4  43.9  45.0  45.4  43.1  

 

 

6.4 DDT metabolism 

The preference of P450s to de-halogenate aliphatic-halogenated hydrocarbons occurs in 

the order iodine> bromine> chlorine >fluorine, with the strength of the halogen-carbon 
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bond increasing in the same order. This F-C bond is considered to be inert and difficult 

to break and has been used to prevent biodegredation of compounds. With aromatic-

halogenated hydrocarbons, the order of elimination is reversed, fluorine > chlorine > 

bromine > iodine. This may be due to the higher electronegativity of fluorine. 

Dehalogenation can occur either by a one or two electron reductive pathway or by 

oxidative hydroxylation followed by a loss of the halogen by non-enzymatic destruction 

of an unstable intermediate (Cnubben et al., 1995). 

 

DDT can be dechlorinated to DDD under anaerobic conditions. Both ligand binding and 

metabolism has been shown to be enhanced in sodium dithionite reduced P450. DDT 

may directly coordinate at the 6
th

 coordination site with the reduced heme iron to accept 

electrons directly. This reductive metabolism of DDT may be due to a non-enzymatic 

interaction as reduced heme in solution can catalyse the formation of DDD (Baker and 

Van Dyke, 1984) and dehalogenation is increased in boiled microsomes as there may be 

greater access to the heme. It has been shown that under aerobic conditions halogen 

compounds bind to the protein part of the P450, but under anaerobic conditions they 

change to type II substrates after reduction by NADPH (Fujii, 1995). 

 

In rats, the pathway of DDT metabolism involves the non-enzymatic reduction of DDT 

to DDD. This is the first and rate limiting step in DDT metabolism. Human CYPs 2B1, 

3A1, 2B6 and 3A4 have been shown to dechlorinate DDT. Some activity is also shown 

with CYPs 2C9, 1A1/2, 2A6 and 2D6 (Kitamura et al., 2002). The P450 is reduced by 

P450 reductase, while under normal conditions molecular oxygen would bind to the 

iron. During reductive dehalogenation a second electron reduction can occur with a 

rapid transfer of an electron to the halogenated hydrocarbon. This eliminates a halogen 

ion and a radical. Diclofol is a metabolite of DDT in which there is hydroxylation of the 

methylene bridge carbon. In rat liver microsomes, unlike DDD formation, this process 

is oxidative (Kitamura et al, 2002). 

 

A number of residues have been identified as being involved in DDT metabolism. While 

the wild type Drosophila melanogaster CYP6A2 does not metabolise DDT, the point 

mutations R335S, L336V and V476L increase both the affinity for, and metabolism of 

DDT. This CYP6A2vSVL mutant produces the metabolites 

dichlorodiphenyldichloroethane (DDD), dichlorodiphenyl acetic acid (DDA) and 

dicofol. As these point mutations are far from the active site and are clustered around 
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the distal end of the I helix, It was suggested that these mutations affect the structure of 

the protein (Amichot et al, 2004). 

   

6.4.1 CYP6M2 DDT metabolism 

CYP6M2 has been shown to metabolise DDT to produce the metabolites dicofol and 

DDE (Figure 6.13), the ratio of the metabolites are about 2:1 without b5 and 20:1 with 

b5. DDT is metabolised to DDE by dehydrochlorination and dicofol by hydroxylation. 

Assuming that dechlorination to produce DDE is reductive, reductive dechloriantion 

involves a single electron transfer provided by the reductase, while hydroxylation to 

produce dicofol would involve a second electron from b5. The effect of b5 on 

metabolite ratio could be due to its role as a second electron donor. Alternatively, as 

DDT stacks with F123, any conformational change of the BC loop could affect the 

binding of DDT and regiospeicifity.  

 

Figure 6.13 Structures of DDT, DDE and Dicofol. 

 

6.4.2 CYP6Z2 and CYP6P3 non-metabolisers 

CYP6Z2 and CYP6P3 have been shown to be incapable of metabolising DDT. The 

CYP6Z2 model binds DDT distantly due to restrictions in the active site due to L365 

and F115. DDT can also stack with F112 which may contribute to holding the ligand 

distantly (Figure 6.14, A). CYP6P3 is able to bind DDT for metabolism (Figure 6.14, 

B), but this score is reduced compared to CYP6M2 due to a low lipophilic score (Table 

6.8). The position of V380 in CYP6P3 increases the space within the active site that 

reduces the contacts with DDT while L365 in CYP6Z2 reduces the space available for 

docking.  
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Figure 6.14 CYP6Z2 (A) and CYP6P3 (C) binding DDT.  

 

Table 6.8 ChemScores (kJ/mol) for DDT in CYP6M2, CYP6Z2 and CYP6P3. 

  Score         ΔG    S(hbond)    S(metal)    S(lipo)      H(rot)  ΔE(clash)    ΔE(int)     

6Z2 39.8          -40.7       0.0           0.0           322.6        1.0       0.1               0.8 

6P3 42.6          -46.1       0.0           0.0            369.4        1.0       2.6               0.9  

6M2 47.0          -47.9       0.0           0.0            384.2        1.0       0.5               0.4  

 

 

6.4.3 P450 activation 

P450 activation can occur by several mechanisms. Huang et al. (1981) found that 

flavanoids activate B[a]P hydroxylation by enhancing the interaction between P450 and 

the reductase facilitating the flow of electrons. Lee et al. (1997) found that caffeine and 

7,8-benzoflavone activates CYP3A2 and that this can be inhibited by replacing NADPH 

with CHP, but the activation by caffeine can be blocked by b5 antibodies. The activation 

by caffeine is mediated by b5 transfer of the second electron. The combination of 

caffeine and 7,8-benzoflavone caused less activation than when they were included 

separately and indicates that they operate by different and antagonistic mechanisms with 

simultaneous binding preventing the optimal interaction of either molecule with the 

protein.  

 

P450s can also be activated by substrates. Shou et al. (1994) found that phenanthrene 

metabolism can be activated by 7,8-benzoflavone and that this also acts as a substrate. 

Both occupy the active site simultaneously and have access to the oxygen as neither 

competitively inhibits the other. The Km of phenanthrene was not affected by the 

presence of 7,8-benzoflavone indicating that one does not affect the binding affinity of 
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the other and do not displace each other. Shou et al. (1994) suggested that the activator 

altered the dimensions of the active site. 

 

6.4.4 Sodium cholate activation of CYP6M2 

In CYP6M2 DDT metabolism only occurs in the presence of sodium cholate (Figure 

6.15), but the chemically similar cholesterol does not activate CYP6M2. Cholate has an 

optimal concentration of 1mM and high concentrations of cholate, over 10mM, inhibit 

both the metabolism of DDT and deltamethrin (McLaughlin, unpublished). The 

presence of sodium cholate may activate CYP6M2 to metabolise DDT but the 

mechanism of activation is unclear.  

 

Figure 6.15 Structure of sodium cholate. 

Sodium cholate has been found to show similar effects in other enzymes. Its effects on 

phospholipase C are biphasic. It enhances rates up to 0.3-0.6 mM but is inhibitory above 

this rate. The lag time decreases monotonically with concentration. Ruiz-Arguello et al. 

(1999) hypothesised that this effect may be caused by a stimulation of enzyme activity 

during the lag phase and an inhibition of the post lag active form. Sotiroudis et al. 

(1983) found that the effect of cholate on phosphorylase b at first increases than 

decreases activity as the concentration is raised. This effect was specific as other bile 

acids and detergents were ineffective. They suggested that this effect was caused by an 

allosteric shift towards an active conformation with the cholate binding at hydrophobic 

pockets. They suggested two classes of cholate sites. The first class are saturated at a 

low concentration and are responsible for activation. A second class are saturated at 

higher concentrations. Jacobson et al. (1990) suggested that bile salts can cause a 

conformational change in pancreatic cholesterol esterases, possibly by binding at 

specific sites in the enzyme. At concentrations of 70-100 nm there was a conformational 

change. Higher concentrations caused a second conformational change  

 

Sodium cholate may also have an effect on CYP6M2 by altering the membrane. Cholate 
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has been suggested to stabilise the lamellar phase over the hexagonal phase of a 

monolayer, but also alter the curvature in the direction of the hexagonal structure. Its 

effects could be attributed to the perturbation of the lamellar phase or be modifying the 

electric charges in the bilayer (Ruiz-Arguello et al., 1999). While sodium cholate 

stimulates metabolism by Anopheles CYP6M2, it is not an endogenous compound 

produced by the insect. However, there are other derivatives of cholesterol, such as 

ecdysone, that are produced by insects that may have similar endogenous roles.    

 

6.5 Membrane interactions 

The membrane bound members of the P450 superfamily have been proposed to interact 

with the membrane by a common membrane binding domain, the N-terminal trans 

membrane helix. Additional membrane attachment surfaces have been previously 

proposed because P450s lacking the transmembrane helix are still able to associate with 

membranes.  

 

In CYP2C5 the membrane binding surface has been predicted to be formed by N 

terminal residues 30-45, 60-69, and by β-strand 2-2 residues 376-379 and by the C 

terminal end of the FG loop. If this is the case, this would place the opening of a 

substrate channel into the membrane that could be favourable for the entry of lipophilic 

substrates (Williams et al., 2000a). Residues in these regions are more hydrophobic than 

those of the soluble microsomal enzymes. Compared to the soluble BM3 the FG loop of 

CYP2C5 has 12 hydrophobic residues verses the 5 in BM3. The binding of a P450 to a 

membrane has an affect on substrate metabolism, in CYP3A4, there are differences in 

binding kinetics between soluble and membrane bound CYP3A4 (Nath et al., 2007). 

Substrate access channels may have an affect on substrate selectivity. CYP2C9 prefers 

small acidic lipophilic substrates while the related CYP2C19 shows no preference for 

acidic compounds. CYP2C9 has no basic residues in the active site to account for this 

preference but in an access channel CYP2C9 has Lys72 while CYP2C19 has a 

glutamate (Williams et al., 2003).  

  

Pyrethroids are hydrophobic ligands and P450s that metabolise pyrethroids may have a 

preference for such ligands. As it has been suggested that access channel or membrane 

binding features may affect ligand preference, in this study such features are 

investigated to explain preferences towards hydrophobic ligands. Lewis et al. (2004) 

reviewed the preferences of P450s towards their substrates and found that the logP of a 



227 

 

substrate can give an indication of its P450 selectivity (Table 6.9). P450s such as 

CYP2A6 and CYP1A2 prefer hydrophilic ligands while others such as CYP3A4 and 

CYP2C8/9 prefer hydrophobic substrates. Although substrate access may have an 

influence on selectivity, Lewis et al. (2004) suggested that the preference for logP may 

be due to variations in hydrophobicity of each active site and could provide a measure 

of the degree of hydrophobicity in the heme environment.  

Table 6.9 The average logPs of substrates of P450s. 

CYP average logP (Lewis, 2000)  average logP (Lewis et al., 2004)  

1A1 4.51     3.41 

1A2 1.57     2.01 

2A6 1.66     1.41 

2C8 Not determined   3.38 

2C9 3.15     3.2 

2C19 2.12     2.56 

2D6 3.18     3.08 

2E1 0.63     2.07 

3A4 2.94     3.10      

 

Table 6.10 Membrane interaction predictions from the OPM database. The average logP 

of substrates determined by Lewis et al. (2004). 

 PDB  log P depth in membrane ΔG transfer tilt angle (°) 

                                               (Å)    (kcal/mol)    

2A6 1Z10  1.44   6.3 ± 1.0  -10.3  38 ± 12 

1A2 2HI4  2.01   6.2 ± 1.0   -16.9  68 ± 5 

2D6 2F9Q  3.08   8.7 ± 1.4   -16.8  34 ± 4 

3A4 1TQN  3.1 10.2± 1   -20.7   61 ± 11 

2C9 1R90  3.2   7.5 ± 1.0   -10.7  57 ± 10 

2C8 1PQ2  3.38   7.6 ± 0.9     -9.4  20 ± 10 

 

Table 6.11 MAPAS membrane interaction predictions.  

   Memb.    MRS     MAS     Kmpha 

2A6 1Z10  21     3.82   40.20    1.13  

1A2     2HI4  19     3.78    40.09    1.42 * 

3A4     1TQN  41    4.03    38.00    0.93 * 

 1W0F  35     4.20    52.49    1.27 

2C9 1OG5  33     4.11    47.08    1.25 * 

 1OG2  32  4.07  45.57  1.24 - 

2C8 2NNI  32     4.42    52.63    1.32 - 

 1PQ2  19   4.37   54.67   1.37 *  

2D6- none found         

Memb: the number of residues in contact with the membrane (within +- 0.5 Å of the 

membrane). MRS: membranephilic residues score. MAS: membranephilic area score. 

Kmpha: membranephilic asymmetry.  

*Visually superimposable to the opm prediction.- no prediction available in OPM.  

These predictions are for the crystal structures where the N terminus is deleted or 

replaced by hydrophilic residues.  
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The OPM (Orientations of Proteins in Membranes) (Lomize et al., 2006) database was 

accessed for data on the binding of the crystal structures to membranes (Table 6.10) and 

MAPAS was used to predict the number of residues in contact with the membrane and 

to predict the plane of attachment (Table 6.11).  

 

6.5.1 MAPAS and OPM validation 

To determine how suitable MAPAS and OPM are for the prediction of membrane 

interactions for P450, their outputs were compared to experimental results. CYP2C5 has 

a hydrophobic patch formed by residues 30-45, 60-69, 376-379. Proteolysis liberates a 

peptide 75-C terminus, and this region clustered around P30 corresponds to a cluster of 

epitopes that only bind with antibodies with soluble CYP2s but not the membrane 

bound proteins. In addition residue 46 of CYP1A2 has been identified as embedded in 

the membrane. This corresponds to residue 37 in CYP2C5 (Williams et al., 2000a). The 

OPM server identified these hydrophobic residues as contacting the membrane with 

both the CYP2C5 structures (1DT6 and 1NR6) but with different orientations in the 

membrane. As the two structures are similar, the difference in the prediction between 

the structures may occur because the 1DT6 structure is missing the F' and G' helices that 

are present in 1NR6. The HotPatch prediction for lipid interaction using both the neural 

network and hydrophobicity identified a hydrophobic patch buried by the OPM 

membrane for both 1NR6 and 1DT6.  

 

6.5.2 Correlation between membrane attachment and logP 

While there is no clear correlation between logP and depth of transfer or tilt, P450s with 

a preference for hydrophobic substrates have a larger number of residues in contact with 

the membrane, and are predicted to have a larger area of contact on the membrane than 

those that prefer hydrophilic substrates (Table 6.12).  

Table 6.12 Correlations between membrane interaction scores and logP. 

Score  R       

#residues   0.83 

MRS    0.85 

MAS    0.59 

Kmpha   -0.1 

depth    0.67 

ΔG   -0.9 

tilt   -0.22  
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Table 6.13 Number of residues and surface area in contact with the membrane predicted 

by HotPatch.  

P450   Number of residues  Area of patch (Å
2
)   

2A6    11      772 

1A2    14    1293 

2D6     7      687 

3A4   25    1641 

2C9    28    1894 

2C8   25    1857    

 

HotPatch was also used to identify hydrophobic patches on the surfaces of the proteins. 

In HotPatch, for each atom, a value of the property score x is assigned and patches are 

identified by a clustering algorithm to find patches of high x. HotPatch indicated that 

P450s that prefer hydrophobic ligands also have a larger hydrophobic patch involving a 

larger number of residues (Table 6.13). 

 

The surface of the hydrophobic patches identified by HotPatch were consistent with the 

membrane interaction predicted with MAPAS as the hydrophobic surface is buried by 

the MAPAS membrane surface (Figure 6.16). However, HotPatch was unable to 

differentiate between the surface of the protein and the interior active site and access 

channels. The hydrophobic surface identified in CYP3A4 was not restricted to the 

surface but also lined the channel between the F' and G' helices and the active site 

(Figure 6.16, A and B). Similarly, in both CYP2C8 and CYP2C9 the hydrophobic patch 

extends through the access channel. By contrast, the hydrophobic patches of CYP1A2 

and CYP2A6 are restricted to the area of membrane contact and does not extend along 

the access channel (Figure 6.16, C and D). These results may indicate a failure of 

HotPatch to correctly differentiate between the hydrophobic membrane binding surface 

and interior and may be unsuitable for such an analysis. However, the identification by 

HotPatch that the surface hydrophobic patch extends through the access channel in 

P450s that bind hydrophobic ligands, may indicate adaptations within the access 

channel for the transfer of these ligands to the active site. P450s that prefer hydrophilic 

ligands lack this feature.  
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Figure 6.16 (A) CYP3A4 (1TQN), (B) CYP2C9 (1OG5), (C) CYP1A2 (2HI4) and (D) 

CYP2A6 (1Z10) with the MAPAS predicted membrane surface (blue line) and HotPatch 

predicted hydrophobic patch (pink). In both A and B, the hydrophobic patch extends 

into the active site. In C and D the hydrophobic patch is restricted to the site of 

membrane contact and is separate from the hydrophobic patch within the active site 

(pale blue). 

6.5.3 Structural Features 

There may be structural features affecting the interaction with the membrane which 

could affect ligand access. The FG loop membrane contacts of CYP2A6 (1Z10) and 

CYP1A2 (2HI4) are small with openings of the access channel exposed to the solvent. 

The structure of the F and G helices, such as the disruption of the F helix in CYP1A2, 

may be a structural adaptation that acts to reduce the contact with the membrane to 

facilitate ligand access from the solvent (Figure 6.17, A). The structures of CYP3A4, 

CYP2C8/9 have larger contacts between the membrane and FG loop and the opening of 

the access channel is exposed to the membrane, the structures of the FG region may be 

adapted for this placement. In CYP2C8/9 the disruption of the F and G helices into the 

F' and G' helices orients the mouth of the access channel towards the membrane (Figure 

6.17, B), while in CYP3A4 the F' and G' helices are in contact with the membrane and 

part of the access channel opens directly onto the membrane (Figure 6.17, C).  
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Figure 6.17 The FG regions of CYP1A2 (2HI4) (A) and CYP2C8 (2NNI) (B), the 

entrance to the channel is between the F and G helices (arrow), in CYP1A2 the entrance 

is oriented towards the solvent, in CYP2C8 it is oriented towards the membrane. (C) 

The FG region of CYP3A4 (1W0F) binding progesterone (pink). The F' G' helices place 

the mouth of the access channel onto the membrane. The plane of the membrane is 

predicted using MAPAS (blue plane). 

 

This is consistent with the suggestion by Williams et al. (2004) that the FG loop acts to 

orient the substrate access channel towards the membrane surface. Williams et al. 

(2004) found that in the crystal structure of CYP3A4 (1W0F) the binding of 

progesterone may be at a substrate recognition site as it lies along an access channel 

along which substrates from the can move directly from the membrane into the active 

site (Figure 6.17, C). A similar recognition site has also been proposed in P450cam by 

Ludemann et al. (2000). It was suggested that before being able to enter the active site, 

camphor will weakly associate with hydrophobic crevices on the surface of the protein, 

such as the hydrophobic patch near pw2a and pw3. Ligand access from the membrane 

has also been proposed by Zhao et al. (2006). Their crystal structure of CYP2B4 was 

predicted to have the FG and BC loops embedded in the membrane and had an access 

channel connecting the hydrophobic core of the membrane and the active site. Zhao et 

al. (2006) suggested that the most conformationally flexible regions of CYP2B4, the BC 
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loop and FG regions, are embedded in the membrane and that the conformations of the 

membrane binding regions could be dependent on the lipid environment of the 

membrane, and the conformational plasticity of the membrane binding region could 

encounter, recognise and deliver substrates to the active site. 

 

6.5.4 FG loop mutations 

The interaction between the FG loop and ligand access from the membrane is consistent 

with previous studies where the FG region has been shown to be simultaneously a site 

of membrane binding and ligand access where the substrate is not soluble in water. This 

has been demonstrated in P450s that metabolise cholesterol (CYPs 27A1, 11A1 and 

7A1). In CYP27A1 and CYP11A1, mutations of the F and G helices have been shown 

to alter the metabolites produced. The CYP27A1 mutants 1211K and F215K produced a 

new metabolite but were located outside of the active site as mutations did not alter 

dissociation constants (Kd) (Pikuleva et al., 2001). This mutagenic data is consistent 

with an access channel passing between the F and G helices and the residues lining the 

channel orienting the substrate before it arrived in the active site. It was suggested by 

Pikuleva et al. (2001) that these residues may have a structural role with steric 

restrictions only allowing access to the ligand in certain orientations producing regio- 

and stereospecificities. The physicochemical properties of the FG region have also been 

shown to affect ligand access. Replacements in CYP27A1 of residues lining the FG 

region access channel (F207, I211 and F215) with polar residues had a larger affect than 

mutations to alanine. Pikuleva et al. (2001) suggested that this may be due to steric 

hindrance, or may be due to making the hydrophobic access channel more polar with 

the substrate (cholesterol) less likely to partition into the active site.  

 

Non conservative mutations of membrane binding residues (L219N, Y220A, Y220S, 

F223A, K226R, R229A) of the CYP27A1 FG loop impaired activity, showing that 

surface residues outside the active site can affect catalysis inside the active site. 

Murtazina et al. (2002) suggested two explanations for this, firstly that the weakening of 

the membrane interaction increases water access to the active site. Water acts as a 

proton donor and can affect the proton transfer pathway to the bound oxygen affecting 

catalysis. Secondly, they suggested that alteration of protein-membrane interactions 

could slow product exit to decrease Kcat.  

 

Nakayama et al. (2001) found that there may be two types of residues involved in 
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membrane binding, those that interact with the membrane and those that prevent deep 

insertion into the membrane with the size of the side chains having a role. In CYP7A1 

mutations (F215A, L218A, L218N, L218V, I224A, F227A) resulted in a tighter binding 

to the membrane. They suggested that these residues also control the depth of insertion 

into the membrane. Three of the mutants that showed either no activity or reduced 

activity (L218N, I224A, F227A) had altered membrane interactions as they were bound 

more tightly than the wild type and the decrease in activity may be due reduced amounts 

of substrate reaching the active site.  

  

6.5.5 Candidate membrane interactions 

Pyrethroid metabolising and non metabolising P450s were also tested with MAPAS. 

Similar to CYP3A4, the FG loops of all candidate P450s were in contact with the 

membrane with the mouth of the access channel oriented towards the membrane.  

Table 6.14 MAPAS scores for pyrethroid metabolising and non-metabolising (*) P450s. 

P450  Memb.   MRS    MAS   Kmpha   

6M2  38    4.43   35.54      1.02   

6B8  18    4.80   42.25      1.14 

6P3  43    4.20   37.77      1.10 

6P9  43    4.39   45.64      1.28 

9J32  39    4.12   39.50      1.18 

*6B1  16    4.03   42.12      1.09 

*6CB1  40    4.01   33.26      1.04   

Memb: the number of residues in contact with the membrane (within +- 0.5 Å of the 

membrane). MRS: membranephilic residues score. MAS: membranephilic area score. 

Kmpha: membranephilic asymmetry.  

From the MAPAS scores (Table 6.14), there is no relationship between the number of 

residues in contact with the membrane and ability to metabolise pyrethroids. However, 

the MRS score is higher in the metabolisers than in the non-metabolisers indicating a 

more membranephilic surface. This may indicate that binding a hydrophobic substrate 

such as deltamethrin may require other general adaptations for the binding of 

hydrophobic ligands such as an increased contact with the membrane.  

 

6.6 Access channels 

As pyrethroids are hydrophobic ligands, they may access the P450 from the membrane. 

P450s that prefer to metabolise hydrophobic ligands may have features of their access 

channels to promote ligand access form the membrane, pyrethroid metabolising P450s 

may share these features for the access of hydrophobic ligands such as pyrethroids. 

Examining the orientations of access channels with respect to the membrane for P450s 
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with a range of logP preferences can be used to identify these features.  

 

Access channels were initially named based on a Thermal Motion Pathway (TMP) 

analysis of P450cam. In TMP, chains of atoms with elevated temperature factors are 

used to indicate there channels could open. Access channels have also been identified 

and named by Wade et al. (2004). To determine how membrane interactions could 

facilitate the binding of hydrophobic ligands from the membrane, the location of the 

access channels with respect to the membrane were examined. MOLE was used to 

identify the locations of access channels and named according to Wade et al. (2004).  

 

The three channels identified in CYP2A6 open into the solvent, but with channel 2c 

closest to the membrane. For a hydrophobic ligand dissolved in the membrane to pass 

into the active site, it must first pass into the solvent (Figure 6.18, A). This is consistent 

with the CYP2A6 preference for hydrophilic ligands. In CYP1A2, the prediction for the 

plane of the membrane differ between MAPAS and OPM, but with either membrane 

position, the channels open into the solvent (Figure 6.18, B) also consistent with its 

preference for hydrophilic ligands. In CYP2C8, the solvent channel opens close to the 

membrane (Figure 6.18, C), and in CYP3A4, MOLE identifies the pathway Pw2b as 

opening onto the membrane (Figure 6.18, D). This is consistent with the preference of 

CYP3A4 and CYP2C8 for hydrophobic ligands.  

 

There appears to be a correlation between the placement of access channels and the 

preference for the logP of substrates. CYP2A6 and CYP1A2 prefer hydrophilic 

substrates and have access channels that open into the solvent while CYP2C8 and 

CYP3A4 that prefer more hydrophobic substrates have channels that open into the 

membrane. This preference for logP may also explain the ability or lack of ability of a 

P450 to metabolise hydrophobic ligands such as pyrethroids. CYP2A6 and CYP1A2 are 

also poor or non metabolisers of pyrethroids while CYP2C8 and CYP3A4 are 

metabolisers. In the CYP6 pyrethroid metabolisers, a channel is possible through the FG 

loop. This channel in CYP6M2 opens onto the membrane and may contribute towards 

its ability to metabolise pyrethroids by allowing its access from the membrane to the 

active site.     
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Figure 6.18 (A) CYP2A6, (B) CYP1A2 (2HI4), (C) CYP2C8, (D) CYP3A4 (1TQN) 

with the membrane position identified by MAPAS and OPM (dotted plane), and the 

access channels identified by MOLE. 

 

These results are consistent with previous studies suggesting entry from the membrane 

of hydrophobic ligands. Pw2a has been suggested to be a channel for hydrophobic 

substrates as the protein around the entrance of pw2a, the FG loop, is hydrophobic and 

dips into the membrane. Egress pathways are likely to differ as the water soluble 

products are likely to be released into the cytoplasm (Winn et al., 2002). 

Schleinkofer et al. (2005) proposed that there may be alternative mechanisms of ligand 

access depending on the cellular location of the substrate. The substrates of membrane 

bound P450s are hydrophobic and are likely to come from the membrane. As the 

products are hydrophilic they are likely to be released into the aqueous environment. 

The predominant pathway for access and exit are likely to differ between P450s. In 

soluble bacterial P450s, access was found to be most common through pw2a. In the 

CYP2C5 chimera, pw2c was found to be the predominant pathway. They suggested that 

in CYP2C5, lipophilic substrates could enter from the membrane through pw2a and 

leave by pw2c, while soluble substrates could enter and leave by pw2c (Figure 6.19). 

The extent to which pathways are used could depend on the nature of the substrate and 
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the interactions of the membrane that could affect the opening of channels.   

 

Figure 6.19 Taken from Schleinkofer et al. (2005), (A) lipophilic substrates enter from 

the membrane through pw2a and products leave through pw2c. (B) soluble substrates 

enter and products leave through pw2c.  

 

6.6.1 Normal modes and channel gating 

Channels in the protein allow substrates to enter and products to leave the buried active 

site. Protein motions are known to be essential for substrate access and product egress 

as they can cause the opening of channels as well as changing the dimensions of the 

channels. This has been shown by Winn et al. (2002) using random expulsion MD. They 

found that in both P450cam and P450eryF breathing motions of the enzyme and 

induced fit opens channel pw2a. The FG region is lined by the most commonly 

observed channels (2c, 2a, 2f, solvent channel) a number of studies have shown that 

channels in this region can open to allow egress, with opening dependant on the position 

of the FG region. Cojocaru et al. (2007) reviewed the mechanisms of channel gating and 

suggested that channels could be classified based on gating mechanism. The opening of 

channels 2c, 2ac, 2a, 2b, and 2f require the relative movement of secondary structure 

elements, while channels passing through loops such as 2e, 2d and 4 require a 

conformational change of the flexible BC or FG loop they pass through. Cojocaru et al. 

(2007) suggested the opening of channels surrounding the FG region can merge to 

provide a larger channel and that the insertion of the FG region into the membrane 

could facilitate opening of channel pw2a. There may also be structural rearrangements 

upon membrane binding as different CYP2B4 crystals show differing secondary 

structures with plasticity of the FG and BC loops. In one structure the F' and G' helices 

are combined into a single helix  

 

From the NMA of the CYP6M2 model, it was found that the opening and closing of 
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channels occurs during normal mode 7. There is an opening of pw2f, pw4 and the 

solvent channel with a narrowing of pw2b. The use of algorithms such as MOLE may 

not be accurate at identifying possible access channels in P450s as this does not account 

for dynamic gating mechanisms.  

 

6.7 CYP6M2 SNP Mutants 

A number of single nucleotide polymorphisms (SNPs) have been found in wild A. 

gambiae populations (McLaughlin, unpublished). Although most SNPs are 

disadvantageous, it is possible that some SNPs may have a selective advantage in 

metabolism. The positions of the SNPs and possible affects were predicted based on the 

location on the model (Table 6.15).  

Table 6.15 List of SNPs identified in CYP6M2 (McLaughlin, unpublished), their 

position on the model and their possible roles.  

SNP1  Position2   Possible role    

11[V/M]          N terminal loop   Membrane interactions 

65[D/A]           A helix               

68[G/V]           A helix – β1-1 loop               

240[T/I]  G'G loop    Access channel (channel 3)         

285[D/G]  H-I loop   

328[E/Q] J helix     

359[I/V] K helix    

382[H/Y]  β1-4 β1-3 loop   Access channel  (channel 2b)  

392[A/S]  β1-4 β1-3 loop   Access channel  (channel 2b)   

407[P/L]          K' K'' loop            

409[V/E] K'K'' loop 

412[N/T] K'K'' loop 

474[V/I] C terminal loop       
1 position on the wild type CYP6M2 database sequence AAAB01008964. 
2 position in the model.  

 

Figure 6.20 The effects of CYP6M2 SNPs on the Km of deltamethrin (McLaughlin, 

unpublished).  

The positions of access channels were predicted using the MOE sitefinder tool to 

identify cavities within the model. These were compared to the positions of access 
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channels identified by Wade et al. (2005). The SNPs T240I and A392S occur at the 

mouths of substrate access channels 3 and 2b and one of these may project into the 

active site. Both of these SNPs involve a transition from a polar to a non-polar residue. 

The third, H382Y is close to an access channel. All but one of the SNPs are located at 

the surface of the protein, while I359 is buried. The three SNPs located near to the 

access channel were tested by mutagenesis and were found to alter the kinetics (Figure 

6.20). All mutants appear to be active and exhibit the same instability in membrane 

preparations as observed for native CYP6M2. H382Q and A392S appear to have 

reduced the affinity for deltamethrin while T240I increases affinity.  

6.7.1 T240I 

T240I occurs on the G' G loop and is situated at a putative access channel that is 

identified by MOE sitefinder (Figure 6.21). This channel, corresponding to the channel 

3 identified by Wade et al. (2005), occurs between the F and G helices. In the CYP3A4 

crystal structure 1TQN a channel through the FG loop is closed off by a network of 

aromatic residues (Yano et al., 2004) but in CYP6M2 this network is substituted and a 

channel is possible (Table 6.16).  

 

Figure 6.21 (A) egress routes identified by Wade et al. (2005). (B) Access channel 3 

(arrow) identified by MOE alpha site finder tool.  

Table 6.16 Residues closing the FG loop in CYP3A4 that are substituted in CYP6M2 to 

create an additional access channel.  

P450  Residues         

CYP3A4
1
 F108  F213  F215  F241  F304 

CYP6M2
2
 F108  I215  I215/S216 T240  L303  

 
1
 residues closing the channel through the FG loop in the CYP3A4 structure 1TQN, 

determined by Yano et al. (2004). 
2
 residues of CYP6M2 aligning with CYP3A4 determined from a pairwise alignment 

and an alignment of structures. 

In an alignment of CYP6M2 and CYP3A4, T240I aligns with F241 of CYP3A4. In the 

crystal structure this residue packs closely with other aromatic residues to close off the 

channel in the crystal structure 1TQN (Yano et al., 2004) while in the model this 

channel is open. This residue occurs on an access channel which opens onto the 
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membrane, and the position of T240 could be involved in the transfer of hydrophobic 

ligands from the membrane into the active site (Figure 6.22). F241 of CYP3A4 projects 

into the active site of the crystal and therefore T240I is also predicted to project into the 

active site. In the model T240I is involved in H-bonding with luciferins, and may be 

involved in ligand or product entry or egress, substrate recognition, or may be involved 

in forming an intermediate binding position. The mutation of a small polar T for a larger 

aliphatic I may affect access though this channel.  

 

Figure 6.22 (A) CYP6M2 binding deltamethrin. The SNP T240I occurs in the G'G loop 

and lines access channel 3 in a position to affect access of ligands (arrows). (B) The 

position of T240 and access channel 3 (arrows), the channel opens onto the MAPAS 

membrane (blue plane) to allow access of ligands.  

This sidechain also projects into the active site in a position to contact the substrate. 

Alterations in kinetics could reflect either changes in access or a change in substrate 

binding in the active site. Deltamethrin binds in a similar mode in both the mutant and 

wildtype. The increase in lipophilic score of the mutant (Table 6.17) may reflect the 

substitution of a polar residue for an aliphatic or may reflect increased vdW interactions 

of a larger side chain (Figure 6.23) and may account for the increase in affinity. 

However, the effects of the mutant could be due to other structural factors. T240 aligns 

with the template F241. In the CYP3A4 template, F241 occupies a hydrophobic pocket 

and π-stacks with a Phe cluster that closes the roof of the active site. This alignment also 

places T240 within a hydrophobic pocket. While the mutant I240 may be well 

positioned within this pocket, the more polar T240 may not be well positioned within 

this pocket and its ability to H-bond may cause an alteration in structure of the GG' 

loop.   
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Table 6.17 ChemScores (kJ/mol) of wildtype and mutant CYP6M2 deltamethrin 

dockings. 

  Score         ΔG    S(hbond)    S(metal) S(lipo)  H(rot)  ΔE(clash) ΔE(int) 

Wild  41.0          -45.5       0.0           0.0         377.0     1.6       2.0           2.5 

T240I  42.2          -47.0       0.0           0.0         390.7     1.6       2.6           2.2  

 

Figure 6.23 Deltamethrin binds in a similar mode in both the wild type (A) and mutant 

(B). 

 

6.7.2 H382Q and A392S 

H382Q and A392S also occur at the mouth of an access channel. This channel is a large 

channel that is also present in the CYP3A4 structure 1TQN (Yano et al., 2004). It 

extends along the surface of sheet β-1 and between the F' helix and B-C loop, and 

corresponds to channel 2b identified by Wade et al. (2005). In 1TQN, R106 extends 

across this channel to participate in a stabilising H-bonding network. This residue also 

divides the access channel into two. In CYP6M2, this residue is substituted by a Gly 

and therefore the entrance to this channel is larger. Also in CYP6M2, many of the 

residues forming the H-bonding network in CYP3A4 are substituted by aliphatic or 

aromatic residues (Table 6.18). This may make this access channel a possible entrance 

point for hydrophobic ligands such as deltamethrin. As with channel 3, this channel 

opens near to the membrane but does not open directly onto the membrane as channel 3 

does (Figure 6.24, A). The positions of A392S and H382Y could also be in positions to 

affect the access of hydrophobic ligands along the surface of the membrane.  
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Table 6.18 Residues of the H-bonding network in CYP3A4 and the substitutions in 

CYP6M2. 

P450  Residue       

CYP3A41  R106  E374 D76 R372 D61 Y53 

CYP6M22  G106  F374 Q77 V372 K60 I49  
1 residues involved in the H-bonding network in the CYP3A4 structure 1TQN 

determined by Yano et al. (2004). 
2 residues of CYP6M2 aligning with CYP3A4 determined from a pairwise alignment 

and an alignment of structures. 

 
Figure 6.24 (A) CYP6M2 with the position of access channel 2b (arrow) and the 

positions of SNPs H382Q and A392S (pink), with the position of the membrane 

predicted by MAPAS (blue dotted plane). (B) Positions of the mutants relative to the 

access channel 2b identified by MOLE (blue). 

 

The normal mode analysis of CYP6M2 also identifies the β-sheet (sheet β-1) as being 

mobile (Figure 6.11), particularly in normal mode 7. In this normal mode, this domain 

moves away and towards the membrane and may be involved in promoting ligand 

access. The changes in Km for these SNPs may be due to changes in substrate access, 

product egress or may form a peripheral binding site. It has been previously shown that 

surface  substitutions increased Km but not Kd (Pikuleva, 2006). A392S is located at the 

mouth of access channel 2b and is in a position to affect entry or egress. However, 

H382Q is distant from the access channel and is unlikely to have a direct influence on 

this channel (Figure 6.24, B). It is possible that a peripheral intermediate binding site 

could occur and either of these mutants could be involved. Dockings at the entrance of 

the access channel place deltamethrin within clefts on the surface. Deltamethrin can 

dock in a cleft formed by the β1-4 β1-3 loop and A'' helix which is lined by A392 

(Figure 6.25). The high scoring modes are distant from this residue but the low scoring 

modes dock close to this residue which could have an effect on peripheral binding. 
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A392S produces similar docking modes to the wildtype but a H-bond occurs that is 

absent in the wildtype.  

 

Figure 6.25 A surface docking of deltamethrin to CYP6M2 forming a H-bond with the 

mutant A392S. The surface docking was constrained within 10 Å of the mutant residue.  

Mutations outside the active site can affect metabolism by causing changes in reductase 

binding, altering substrate channels, affecting conformational changes that occur during 

catalysis, and producing global changes that affect the active site. This has been 

demonstrated in CYP1A2 where mutations distant from the site affected metabolism. In 

this case the mutations were also distant from access channels and the reductase binding 

site, and were suggested to cause changes in global folding or domain motions (Kim 

and Guengerich, 2004). 

 

The SNP mutants occur in the β1-4 β1-3 loop. In the template this loop is ordered into a 

beta sheet, and a beta sheet is also predicted in CYP6M2 by secondary structure 

predictors, but in CYP6M2 an insert occurs in the loop and the secondary structure is 

disordered to form a single loop. This loop has been found to vary between crystal 

structures of the same protein. For CYP2C9 it occurs as a loop in the 1OG2 and 1OG5 

structures but occurs as an anti-parallel sheet in 1R90. However, the sheet region in 

1R90 was identified as poorly ordered and may not be precisely modelled. The position 

of the sheet also differs between P450s. In CYP2D6 it closely packs with the underside 

of sheet 1 due to the presence of small hydrophobic sidechains while in CYP2C9 there 

is looser packing.  
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The mutations could be affecting the conformation of the loop and ModLoop was used 

to remodel the β1-4 β1-3 loop. Both of the H382Q and A392S mutants produced similar 

loops that differed from the wild type (Figure 6.26). These mutants could have their 

effects by the conformational changes on this loop. Alternatively, as this loop occurs on 

the proximal surface it may have an affect on reductase binding. Both H382Q and 

A392S were shown to increase Km and are close to an access channel. As other studies 

have demonstrated that the mutations of access channel residues can increase Km, the 

increase in Km for the SNPs may also indicate a role for access. Overall, the effects of 

the A392S could be explained by a possible affect on access. The effect of T240I could 

be explained by its affect on substrate binding but also access. However, the effects of 

H382Q could not be fully explained but may be due to changes in conformation, 

reductase binding or the presence of a peripheral binding site.  

 

Figure 6.26 ModLoop re-modelling of the β1-4 β1-3 loop. All of the remodelled loops 

differ from the Modeller output, but both of the mutants produce similar loops that 

differ from the wild type.  

 

6.8 SNPs within populations 

In P450s SNPs tend to occur within hot spots or hyper-variable regions. The SNPs 

occurring in CYP6M2 were compared to those occurring in other pyrethroid 

metabolising P450s to determine any commonalities. Six alleles of CYP6D1 have been 

identified in 6 strains of housefly (Table 6.19) and polymorphism has been identified at 

some positions. The alleles found in the insecticide resistant strains have some unique 

substitutions compared to the susceptible strains and may represent adaptations for 

metabolism. Some of these substitutions occur in the same areas as the substitutions in 
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CYP6M2. In both CYP6M2 and CYP6D1 substitutions occur in the C terminal loop, A 

helix and the FG loop. In CYP6D1 the cluster of substitutions in the FG loop also line 

an access channel (Table 6.20). Sequence variations also occur in CYP6B8 at similar 

positions to CYP6M2, with SNPs at the β1-4 and β1-3 loop and G' helix (Table 6.21). 

Although these positions may have some functional significance, these locations may 

represent hyper-variable regions common to all P450s and variations in these regions 

may not affect function.  

 

Table 6.19 CYP6D1 alleles identified from 6 strains, adapted from Scott et al. (1999). 

Strain  allele  strain characteristic      

LPR        v1   pyrethroid resistant strain 

aabys       v3   insecticide susceptible  

CS       v2   insecticide susceptible 

ISK       v4   insecticide susceptible 

OCR       v5   pyrethroid susceptible, cyclodiene resistant 

Cornell-R v6   pyrethroid susceptible, organophosphate resistant.  

 

Table 6.20 Residue differences between the 6 alleles of CYP6D1 identified in 

Swissprot. 

  Strain 

Position LPR AABYS CS ISK OCR   C-R  Location
1
 

2  L -  L L L   L  C terminus 

55   M L  M M L           L  A helix 

150  D   A  A A A   A * D helix 

153  I L  L L L   L * D helix 

165  T S  S S S   S * D helix 

182  I I  I I N           I  E helix 

218  E Q  Q Q E  Q ^  FG loop 

220  I F  F F F  F * FG loop 

225  T N  N N T  N ^ FG loop 

227  M I  I I M  I ^ FG loop 

262  K K  K K T   GH loop 

266  R P  R R R   GH loop 

447  D D  D D N   K'' L loop 

469  I M  M I I   L helix  

* substitutions unique to LPR; ^ substitutions in LPR and OCR 
1
 position in the CYP6D1 model. 

 

 

 

 

 

 



245 

 

Table 6.21 Locations of SNPs in variants of CYP6B8. 

Position  Variant      Location 

  6B8v1 6B8v4  6B8v3 6B8v2      

226  L L  L S  G' helix 

283  D D  G D  HI loop 

322  S S  S T  I helix C terminus 

367  M M  V M  K helix C terminus 

375  Q Q  Q R  β1-4 

377  K K  K R  β1-4 

379  T S  T T  β1-4 

388  D D  G D  β1-4 and β1-3 loop 

 

Of the SNPs that occur in CYP6B8, only Q375R is in a position to directly affect the 

binding of a substrate in the active site. The substitutions on beta strand 1-4 occur on the 

side of the strand that lines access channel 2b, L226S occurs on access channel 3. 

Overall, in the pyrethroid metabolising CYPs 6M2, 6D1 and 6B8, SNPs tend to occur 

around channels 3 and 2b.  

 

6.9 Conclusion 

As the structure of the active site and conservations of active site residues can not alone 

explain preferences towards substrates, factors external to the active site were explored 

and a number of factors were found to have an effect on substrate preference, 

metabolites produced and activity.  

 

The presence of b5 has been found by our collaborators to enhance the activity of 

CYP6M2. In CYP6M2 the site of b5 binding was predicted to be on the proximal 

surface near the BC loop. NMA identifies the BC loop as a hinge region between 

structural domains and the binding of b5 to this region may stabilise the conformation 

of the protein. It may also stabilise the interaction with the reductase. b5 also has a role 

as a second electron donor and its presence can shift metabolite profiles. In the absence 

of b5, DDT is reductively dehalogenated involving a single electron transfer. In the 

presence of b5, a second election enables DDT to be hydroxylated.  

 

There may be a number of factors other than binding within the active site that affect 

ligand binding. P450s may have adaptations that promote the binding of particular 

ligands. In this study, it was shown that P450s that metabolise hydrophobic ligands tend 

to have a larger area of contact with the membrane and have structural adaptations for 

the binding of hydrophobic ligands, such as placing the openings of access channels 
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into the membrane. As pyrethroids are hydrophobic, metabolisers may also be expected 

to have sequence or structural features that facilitate access of hydrophobic ligands. The 

pyrethroid metabolisers were shown to have larger surface areas in contact with the 

membrane and the openings of access channels oriented towards the membrane. In 

addition, the hydrophobic patches in contact with the membrane extended through the 

access channel into the active sites, this may represent adaptations for the delivery of 

hydrophobic ligands. Non metabolisers of pyrethroids tend to prefer hydrophilic ligands 

and tend to lack these features, with access channels oriented towards water and poorer 

contacts with the membrane. Some non metabolisers of pyrethroids tend to have similar 

active site characteristics to the metabolisers and activity cannot be explained by the 

active site alone. Features required for the binding of hydrophobic ligands may also 

determine activity towards hydrophobic pyrethroids, and active site characteristics alone 

may not be the determinant of activity.   

 

CYP6M2 SNPs occur in wild populations and were shown to affect the kinetics of 

pyrethroid binding. Some of these occur around access channels and their effects on 

kinetics could reflect their effects on ligand access. One SNP, T240I, increases affinity 

for pyrethroids, it occurs on an access channel and projects into the site to contact the 

bound ligand, and may be an adaptation for pyrethroid binding. The locations of these 

SNPs correspond to locations of SNPs also identified in other pyrethroid metabolising 

P450s, and may be general adaptations for pyrethroid metabolism or common hyper-

variable regions. 
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7. Design of novel pyrethroids 
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7.0 Preface 

Pyrethroids are the only class of insecticide used on bed nets to prevent malaria, but 

metabolism by insect P450s can lead to a failure of control. This chapter explores the 

requirements of pyrethroids for toxicity and how changes in structure can affect both 

toxicity and metabolism. The understanding of how pyrethroids bind to metabolising 

P450s can be used to design novel pyrethroids that are capable of binding to the sodium 

channel target but avoid metabolism by P450s.  

 

7.1 Designing pyrethroids 

A number of methods have been used to design pyrethroids that have increased toxicity 

or decreased metabolism. The masking of sites of metabolism has been shown to shift 

metabolism to other parts of the molecule. The addition of groups that act as mechanism 

inhibitors can reduce resistance. Altering the structure of either the acid or alcohol can 

affect metabolism. As CYP6M2 binds deltamethrin for metabolism on the dimethyl 

group and 4', understanding the mode of binding can be used to design novel structures 

that bind poorly by steric clashes or by poor interactions, or fail to bind for metabolism.   

 

7.1.1 The effects of pyrethroid structure on metabolism 

As metabolism by P450s has been shown to be the primary mechanism of resistance in 

a number of insects. Altering the structure of pyrethroids may affect binding and 

metabolism and therefore resistance, and the structure of the alcohol moiety in 

particular has been shown to greatly affect pyrethroid toxicity. Scott and Georghiou 

(1986) found that pyrethroid metabolism in CYP6D1 may be restricted to specific sites 

on the phenoxybenzyl group particularly the 4' site. Similarly CYP6M2 metabolism also 

primarily occurs at the 4' site. This restriction suggests that P450 mediated resistance 

may not confer resistance to a variety of insecticides and that structural modifications 

can reduce or eliminate P450 mediated resistance.  

 

Changes to the pyrethroid structure have been shown to affect toxicity. To determine the 

relationship between pyrethroid structure and resistance, Scott et al. (1986) tested 

pyrethroids with diverse structures. These were tested on a Learn-PyR strain that was 

selected with permethrin and had a 6073 fold resistance to permethrin compared to the 

susceptible NAIDM strain. Scot et al. (1986) identified a number of factors concerning 

resistance: the presence of an α-CN group did not affect resistance, and had no clear 

affect on toxicity. The presence of an unsubstituted phenoxybenzyl alcohol moiety was 
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always associated with high levels of resistance while modifications of the acid affected 

toxicity but not resistance ratio (Table 7.1). This pattern was also seen in bollworms as 

similar changes to the structure of the alcohol group also affects toxicity (Yang et al., 

2005). The oxygen of the phenoxybenzyl group may not be important for high 

resistance as some pyrethroids lacking this group have high RRs, while others have low 

resistance ratios. 

Table 7.1. Taken from Scot et al. (1986). Toxicity of pyrethroids in housefly
a
.  

 
a
(RR) Resistance ratio: LD50 of LPR strain /LD50 of NAIDM strain. LD50: µg/fly.  

Although different pyrethroid structures have been shown to affect LD50 and resistance 

ratio, it is difficult to determine whether this is due to metabolism or due to other factors 
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such as kinetics and target site interactions. To determine the role of P450s, Scott et al. 

(1986) tested some pyrethroids with and without piperonyl butoxide (PBO). They found 

that PBO reduced the LD50s (µg/fly) of cyhalothrin from 33 to 0.11, of fenfluthrin from 

2 to 0.38 and of RU 38702 from 120 to 0.13. They indicated that P450 metabolism is 

the primary mechanism of resistance in housefly, and this mechanism could be 

overcome by changes to the alcohol moiety, but not the only mechanism and 

metabolism alone may not explain differences in toxicity.  

 

7.1.2 Alcohol substitution 

Scot et al. (1986) found that the presence of an unsubstituted phenoxybenzyl alcohol 

moiety was always associated with high levels of resistance. Bioallethrin, bioresmethrin 

and phenothrin have identical acid groups but different alcohol groups and differ in their 

toxicity to houseflies (Table 7.2). The difference in toxicity may be due to the 

availability of sites of metabolism. Phenothrin was shown to have the lowest toxicity. 

This may be due to sites of metabolism on both the unsubstituted isobutenyl methyls 

and the phenoxybenzyl group. Bioallethrin had a higher toxicity than phenothrin that 

may be due to fewer sites available for metabolism, as bioallethrin metabolism was 

shown to be exclusively on the acid group and does not occur on the alcohol group. The 

only sites of metabolism were on the isobutenyl group. Bioallethrin, that has neither a 

phenyl nor a benzyl group also had a low resistance ratio. This indicates that there may 

be preferential attack on benzyl, phenyl or similar groups. The alcohol group of 

bioresmethrin is similar to bioallethrin in that it contains a hydrophobic ring, and similar 

to phenothrin in that it contains an aromatic ring. Although it has additional sites for 

hydroxylation, it has a higher toxicity than either phenothrin or bioallethrin indicating 

that the availability of sites of metabolism may not be a primary determinant of 

resistance. 

 

The difference in toxicity between pyrethroids may be due to the alcohol group 

structure. Changes to the alcohol structure have been shown to have the greatest affect 

on LD50 compared to changes to the acid group. Scott et al. (1986) found that 

pyrethroids with un-substituted phenoxybenzyl groups were always associated with low 

levels of toxicity while substitutions of the aromatic rings increased toxicity, and this 

has been found to be due primarily to P450 detoxification.  
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Table 7.2 A comparison of the structure of the alcohol group and toxicity (adapted from 

Scott et al, 1986). 

 

 

Altering the orientation of the phenoxybenzyl rings also affects toxicity. The fluorine 

added to the benzyl ring of cyfluthrin causes the 3-phenoxy ring to become twisted 

relative to the benzyl ring, due to the electrostatic interaction between the fluorine and 

the 3-phenoxy ring. There is also a relationship between insecticidal activity and this 

twisted structure (Jeschke, 2004). The increase in toxicity of cyfluthrin may be due to 

this twist producing a less preferred binding position with CYP6D1. In the CYP6D1 

model cyfluthin binds for metabolism at the 4' position and the twisted orientation of the 

alcohol group may produce less preferred π interactions with the BC loop aromatic 

residues (F115, Y102) or poorer contacts (Figure 7.1) as cyfluthrin has a poorer score 

compared to permethrin (Table 7.3). However, pyrethroids with non-coplanar aromatic 

rings may have an improved interaction with the sodium channel, and this increase in 

toxicity may be due to target site interactions. Nakagawa et al. (1982) found that the 

position of the phenoxy relative to the benzyl ring could have an affect on neurotoxicity. 

There was the highest affect when a benzyl group was attached to the benzyl ring in the 

meta position, and lowest in the ortho position. 
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Table 7.3 The ChemScores (kJ/mol) of cyfluthrin compared to permethrin. 

  Score        ΔG   S(hbond)    S(metal) S(lipo) H(rot)  ΔE(clash) ΔE(int) 

cyfluthrin 36.1     -37.0       0.8              0.0     286.0       1.7       0.2        0.8 

Rtrans  39.8     -45.1       1.0              0.0      342.5       1.5       3.6        1.7 

 

Figure 7.1 Cyfluthrin binding in CYP6D1. 

 

7.1.3 Masking 

Scott et al. (1986) found that the substitution of the permethrin phenoxybenzyl alcohol 

with a pentafluorophenyl as in fenfluthrin reduced resistance from 6073 to 41 fold. This 

resistance could not be further lowered by PBO indicating that the remaining resistance 

could be due to target site insensitivity or decreased penetration. The high oxidative 

activity of the Lean-PyR strain did not confer resistance to fenfluthrin. The masking of 

all sites of hydroxylation on the alcohol group almost entirely eliminates P450 

metabolism. A number of factors could affect the metabolism of fenfluthrin. The 3-

phenoxy ring is absent and the benzyl ring is replaced by a pentofluorophenyl ring. This 

ring may prefer to bind distant from the heme with the inert chorines of the acid towards 

the heme in an unproductive binding mode (Figure 7.2, B). Where the ring is close to 

the heme metabolism may also be prevented by the absence of a phenoxy ring and the 

masking of any sites of metabolism on the benzyl ring by fluorines. 

 

The addition of a chlorine to the 4' position of permethrin to produce CGA decreased 

resistance from 6073 to 400 fold. CGA has a similar mode of binding to permethrin. 

The presence of the fluorine in the 4' position may prevent metabolism at this position, 

leading to the lower resistance shown. The additional bulk of the fluorine may also 

cause the pyrethroid to dock further from the heme than those with a hydrogen in this 

position (Figure 7.2, A). This may also prevent metabolism at the 2' or 6 position, 

further contributing to a decreased resistance.  
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Figure 7.2 CYP6D1 binding CGA (A), and fenfluthin (B).  

 

Interactions with P450s is only one factor affecting toxicity, pyrethroids primarily have 

their toxic effects by interactions with the sodium channel target site. Bioresmethrin has 

a 5-benzyl-3-furylmethyl alcohol group. Pyrethroids with this group have been found to 

have high degrees of toxicity despite a high degree of P450 metabolism (Berteau and 

Casida, 1969). Bioresmethrin may have a high toxicity due to target site interactions. 

Sheppard and Norton (1980) identified a trend in synthetic pyrethroids where 

pyrethroids containing the 5-benzyl-3-furylmethyl alcohol groups were 2-3 fold more 

potent than those with the phenoxybenzyl alcohol. However, Berteau and Casida (1969) 

found that in housefly treatment with PBO could significantly synergise the activity of 

5-benzyl-3-furylmethyl pyrethroids, indicating that despite increase toxicity there is also 

a high degree of metabolism limiting its activity.  

 

Toxicity effects could be due to interactions not only at the sodium channel but also at 

alternative targets. Burr et al. (2004) have found that while all pyrethroids have a similar 

mode of action on the sodium channel, some pyrethroids can also have an additional 

target, the chloride ion channel, where they reduce the chance of the channel opening. 

Bioallethrin and cyfluthrin, along with permethrin, cypermethrin and deltamethrin, were 

found to interact with chloride channels to reduce open channel probability, while 

cyhalothrin, bioresmethrin and non ester pyrethroids were found not to decrease the 

probability. 

 

7.1.4 Toxicity to Anopheles 

Hougard et al. (2003) compared a susceptible Anopheles gambiae strain and a strain 

homozygous for the kdr gene for susceptibilities to a range of pyrethroids. Differences 

in pyrethroid structure affect toxicity, but as the resistant strain had a mutation in the 
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sodium channel it is unclear what is producing the resistance. Cypermethrin and 

deltamethrin were identified as the most effective pyrethroids (Table 7.4).  

Table 7.4 Mortality rates of A. gambiae susceptible and resistant strains taken from 

Hougard et al. (2003). 

          WHO recommended   25% recommended  

                                                           concentration              concentration 

   (mg/m
2
) Susceptible       Resistant      Susceptible Resistant 

     (%)  (%)  (%)  (%) 

Alpha-cypermethrin   40  100  94  100  70 

Bifenthrin    25    61    8    24    7 

Cyfluthrin    50    74    0    47    8 

Deltamethrin    25  100  14    92    4 

Etofenprox  200    94    6    56    4 

Lambdacyhalothrin   20    43    0    43    2 

Permethrin  500    60    2    44    2 

 

7.1.5 CYP6M2 dockings 

The pyrethroids with toxicities determined by Hougard et al. (2003) were docked and 

the dockings show some correlations with the known toxicity of the pyrethroids (Table 

7.5). Lambdacyhalothrin (RcisS and ScisR) has low toxicity in A. gambiae. It binds 

with a low score but it is able to bind in a position for metabolism at the 4' and the 

extension of the fluoromethyl to the halovynal does not prevent the binding for 

metabolism of the trans methyl (Figure 7.3, A and B).  

 

Table 7.5 ChemScores (kJ/mol) of pyrethroids in the CYP6M2 model.  

             Score      ΔG   S(hbond)  S(metal)S(lipo) H(rot) ΔE(clash)ΔE(int) 

Cypermethrin RcisS  39.7       -45.2       0.0        0.0        375.2    1.6    1.9           3.5 

Cypermethrin ScisR  41.4       -44.3       0.0        0.0        367.4    1.6    0.3           2.7  

Bifenthrin   41.9       -47.9       0.0        0.0        396.7    1.6    3.1           2.8 

Cyfluthrin  41.7       -47.6       0.0        0.0        397.4    1.7    4.6           1.2  

Deltamethrin  41.5       -46.6       0.0        0.0        386.9    1.6    2.7           2.4 

Etofenprox  50.1       -52.6       0.8        0.0        409.8    1.4    0.2           2.2 

Cyhalothrin RcisS 39.2       -43.4       0.0        0.0        368.6    2.1    2.2           2.0 

Cyhalothrin ScisR 38.4       -40.6       0.0        0.0        344.9    2.1    0.1           2.1 

Permethrin Rcis 42.4       -45.8       0.0        0.0        375.9    1.5    2.3           1.0 

Permethrin Rtrans 45.7       -48.5       0.0        0.0        399.7    1.5    0.8           2.1   

Permethrin Scis 42.1       -47.3       0.0        0.0        389.2    1.5    2.6           2.6  

Permethrin Strans 44.7       -46.6       0.0        0.0        383.6    1.5    0.9           1.1 
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Figure 7.3 CYP6M2 binding ScisR cyhalothrin, the first ranked mode(A) and the 3
rd

 

ranked mode(B). The first ranked modes of cyfluthrin(C) and bifenthrin(D). 

 

Bifenthrin and cyfluthin also have low toxicity in A. gambiae. Both of these bind with 

high scores and in modes that allow metabolism indicating that they may be substrates 

for CYP6M2 (Figure 7.3, C and D). However, some pyrethroids with a high toxicity 

also have higher scores, deltamethrin, permethrin and cypermethrin bind with high 

scores with etofenprox giving the highest score. Although the scores of permethrin and 

deltamethrin are consistent with them being substrates with a high turnover in 

CYP6M2, the binding scores of pyrethroids to CYP6M2 do not entirely correlate with 

their recorded toxicity. As toxicity is affected by a large range of factors, the ability of 

pyrethroids to bind metabolising enzyme may not be used to predict toxicity.   

 

In addition, a structurally diverse range of other untested pyrethroids were docked to 

determine the requirements for binding. Modifications to the acid group had effects on 

the binding score. Large aliphatic extensions tended to reduce the score while the 

addition of aromatic rings tended to increase the score (Table 7.6).  
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Table 7.6 The ChemScores (kJ/mol) of pyrethroids docked in CYP6M2. 

  Score       ΔG   S(hbond)  S(metal) S(lipo)  H(rot)  ΔE(clash)  ΔE(int) 

Acaranthrin 32.2     -38.8       0.0        0.0      354.1       3.2       1.1        5.5 

Flucythrinate 43.6     -48.1       0.0        0.0      414.7       2.3       0.4        4.1 

Fluvalinate 43.2     -45.6       0.0        0.0      385.6       2.0       0.4        2.0 

Fenvalerate 47.9     -53.6       0.0        0.0      447.8       1.7       1.5        4.3 

Allethrin 35.9     -36.8       0.0        0.0      298.8       1.4       0.1        0.8  

Phalthrin 33.6     -34.5       0.0        0.0      288.6       1.9       0.2        0.6 

Dimethrin 40.0     -41.6       0.0        0.0      335.2       1.2       0.8        0.8 

Fenfluthrin 29.2     -31.1       0.0        0.0      261.0       1.9       1.5        0.4 

Acrianthrin has a low score due to a large clash score with the extended acid group. 

However, the best scoring mode places it for metabolism of the 4' position. High scoring 

pyrethroids flucythrinate, fluvalinate and fenvalerate had additional aromatic rings in 

the acid group and also productive modes (Figure 7.4). The higher score may be due to 

additional interactions with the BC loop aromatic residues (F110, F123). Low scoring 

pyrethroids tend to be the natural pyrethroids that lack aromatic groups such as allethrin 

and phalthrin, or small pyrethroids with only a single aromatic group such as dimethrin 

or fenfluthrin. This indicates that binding is affected by the presence of aromatic groups 

in the ligand. 

 

 

Figure 7.4 CYP6M2 binding fluvalinate, flucythrinate and fenvalerate. 

 

7.2 Pyrethroid requirement for activity at the sodium channel  

The sodium channel is the target site for pyrethroids. Pyrethroids bind to site 7 on the 

sodium channel to stabilise the open state and prevent its closing. The movement of 

sodium in to the neuron produces persistent depolarisation and repetitive nerve firing 

that causes paralysis and death of the insect (O'Reilly et al., 2006).  

 

7.2.1 Alcohol group 

O'Reilly et al. (2006) produced homology models of the insect sodium channel. They 
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determined that some of the pyrethroid isomers were inactive due to an inability to bind 

to the sodium channel. The inactive isomer of fenvalerate 1R could not bind to the 

channel in the same way as the active 1S isomer due to steric hindrance. O'Reilly et al. 

(2006) also determined some features required by pyrethroids for binding to the 

channel. The key requirement was for the alcohol group of the pyrethroid to match in 

volume the hydrophobic cavity of the binding site. They suggested that the maximum 

dimensions of the alcohol were represented by two benzene rings with a bridging atom, 

but the nature and dimensions of the rings are important for activity. A cyclic group has 

a higher activity when attached at the meta rather than the para position. The rings 

should also be non-coplanar due to steric restrictions.  

 

Naumann et al. (1998) attempted to map the pyrethroid binding site by using analogues 

to determine the structure activity space and to assess the maximum volume of the acid 

and alcohol components before activity is lost. For this, a range of pyrethroid structures 

were studied for their toxicity in insects and a number of structural constraints have 

been suggested for pyrethroid design. From this study it was found that a positive 

charge at the 4' position abolishes activity (Figure 7.5, A compound i) but replacement 

of the CN in cypermethrin for an N-(n'-methyl)piperazinylmethyl retained activity 

(Figure 7.5, A compound ii). Unlike O'Reilly et al. (2006), they found that large 

extensions of the alcohol group could be tolerated but there were spatial restraints with a 

limited space available for extension of the para position, as large extensions in this 

direction cause a loss in activity, but other extensions are tolerated (Figure 7.5 B and C).  

 

7.2.2 Acid group 

Ford et al. (1989) identified a number of factors required for toxicity including a 

gemdimethyl group on the cyclopropane ring of the acid group. Byberg et al. (1987) 

further developed a pharmacophore for pyrethroid acid and alcohol groups by mapping 

the ether oxygen, methyl groups and aromatic ring. O'Reilly et al. (2006) suggested that 

the acid group is tolerant to a large degree of steric and electronic substitution before 

activity is lost and that these acid substitutions could be accommodated in the binding 

pocket. The extension of the acid group as occurs in acrianthrin was suggested to 

account for its activity.  

 

7.2.3 Ester bond 

The ester bond has been found to be a requirement for activity as replacement with 
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other groups always leads to a loss of activity. O'Reilly et al. (2006) suggested a role of 

the ester for binding to the sodium channel as the sodium channel T929 could form H-

bonds with the carbonyl oxygen of the ester group. 

 

Figure 7.5 (A) A range of alcohol variants tested in Plutella maculipennis larvae (values 

LC95 mg/litre). Activities of flattened permethrin with extensions in the meta (B) and 

para (C) positions, against Plutella maculipennis (values LC95 mg/litre) taken from 

Naumann et al. (1998). 

 

7.3 Designing pyrethroids to overcome resistance 

The CYP6M2 model was used to design a number of pyrethroids that may overcome 

metabolic resistance.  

7.3.1 Good binding P450 inhibitors 

Conventional drug design approaches have been used to develop P450 inhibitors. 

Inhibitor design has usually been focused around aromatic nitrogen heterocycles such as 

imidazole as they can coordinate with the iron to give a type II inhibition. While there 

have been reports of imidazole fungicides acting as pyrethroid synergists, there have 

been no commercial pyrethroids containing imidazole groups.   
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Figure 7.6 Imidazole nomenclature. 

Imidazole inhibitors have certain requirements to produce inhibition. Their inhibition is 

correlated to their lipophilicity and steric factors. Imidazoles with substituents at the 2 

or 4 positions (Figure 7.6) show little inhibitory activity. As inhibition is derived from 

the direct interaction between the non-bonded electrons of the 3-nitrogen and the sixth 

ligand of the heme, the 3-nitrogen must be able to freely approach the heme. 

Substitutions of the 2 or 4 positions may introduce steric clashes with the heme that 

prevent coordination, but substitutions are allowed at positions 1 and 5 and allow for the 

addition of active site contacts (Rogerson et al., 1977; Verras et al., 2004).  

 

In this study, pyrethroids with imidazole substituents were designed to determine if a 

pyrethroid P450 inhibitor could be effective. The phenyl ring was replaced with an 

imidazole ring with the coordinating 3-nitrogen at a similar position as the 4' of the 

phenyl ring. As CYP6M2 prefers to metabolise deltamethrin at the 4' position, the 

nitrogen at this position may coordinate to prevent metabolism. To prevent steric 

hindrance to type II coordination, the imidazole was added at the 5 position. A number 

of pyrethroid ligands were designed and produced using MOE and docked into the 

CYP6M2 model (Figure 7.7). The direct replacement of the phenyl ring by an imidazole 

ring (imi8) produces modes that allow metabolism of the acid group, with lower scoring 

modes allowing metabolism on the imidazole ring. One of these variants (imi10) could 

bind with the 3 nitrogen above the heme in a high scoring mode. This binding mode 

may not allow coordination, but metabolism at the 4' may be prevented (Figure 7.8).  

 

7.3.2 Good binding non metabolised pyrethroids 

An attempt was made to design pyrethroids that bind in non productive modes as occurs 

in some non metabolisers such as CYP6Z2. The molecule was designed to have a high 

affinity for parts of the active site and access channel that were remote from the heme, 

to give high scoring non productive modes. However, the access channels of 

metabolisers are more variable than the active sites so ligands that are able to bind non 

productively within the active site may be more suitable as candidates than those that 

bind within access channels to avoid selectivity for a particular P450.   
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Figure 7.7 The ChemScores (kJ/mol) of pyrethroid variants with imidazole substitutions 

in modes that place the imidazole above the heme. 

 

Figure 7.8 Imi10 binding with the imidazole ring above the heme. 
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Table 7.7 ChemScores (kJ/mol) for the productive mode (trans methyl) and non 

productive mode (non) of deltamethrin. 

       Score         ΔG    S(hbond)    S(metal)    S(lipo) H(rot) ΔE(clash)ΔE(int) 

trans methyl    40.7         -43.2       0.0           0.0           357.9       1.6       0.9        1.6 

non   35.3         -39.0       0.0           0.0           322.6       1.6       1.0        2.7 

 

Non productive modes occur for deltamethrin but are low scoring. The deltamethrin 

productive modes have scores of around 40.6 kJ/mol, while the non productive modes 

have low scores below 36 kJ/mol (Table 7.7). A variety of deltamethrin variants were 

designed and screened with 10 dockings to identify the occurrence of non productive 

modes. A primary amine rather than the tertiary cyano group was used because as it was 

able to make H-bonds with the protein in a larger variety of poses. The majority of 

deltamethrin variants only produced productive modes, but a small number gave high 

scoring non-productive modes. It was found that the addition of an amine onto the 

benzene ring gave two high scoring non-productive modes. The first of these places the 

variant in a non productive mode as occurs in CYP6Z2. The amine on the benzene ring 

is in a position to H-bond with the semi conserved acidic residue in the BC loop (E216) 

to form a H-bond that positions the ligand in a non-productive mode (Figure 7.9). This 

mode has a high score of 41.2 kJ/mol. The second non productive mode places the 

variant within the access channel with the alpha carbon amine H-bonding the FG acidic 

residue and the benzene ring amine bonding with an acidic residue on the A'A loop. A 

residue in this position was suggested to have a role in stabilising the non productive 

binding mode in CYP6Z2.  

 

Figure 7.9 The addition of an amine on the benzene ring provides a H-bond (dotted line) 

to position the ligand in a non-productive mode.  
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The replacement of the phenyl ring with a cyclohexane ring also produced non 

productive modes. These molecules bind non productively as the cyclohexane binds 

within a hydrophobic pocket between the BC loop and the I helix while the benzyl ring 

stacks with the conserved Phe (F110) in the BC loop. This hydrophobic pocket is 

formed by F302, V302, L305 of the I helix and L118 and H121 of the BC loop, the 

binding of the cyclohexane within this pocket places the gem dimethyls distant and the 

bromines of the halovynal group above the heme (Figure 7.10). However, productive 

modes also occur that place the cyclohexane for metabolism at the 4' position. This 

unproductive mode is not found with the native deltamethrin and may occur due to 

improved hydrophobic contacts between the cyclohexane and the hydrophobic pocket. 

The best ranked modes of the cyclohexanes bind non productively but also with high 

scores similar to or higher than the best scoring mode of native deltamethrin (Table 7.8). 

 

Figure 7.10 The best ranked modes were unproductive for 2 cyclohexane deltamethrin 

variants Hex1 (A) and Hex2 (B). 

     

Table 7.8 ChemScores (kJ/mol) of pyrethroids with cyclohexane substitutions.  

 Score         ΔG    S(hbond)    S(metal)  S(lipo) H(rot)  ΔE(clash)   ΔE(int)    

Hex1 43.4          -49.4       0.9           0.0         376.5       1.3       2.5        3.6  

Hex2 40.3          -47.1       0.9           0.0         370.7       1.9       4.3        2.6      

 

7.3.3 Poor or transient binders 

Drug discovery usually involves finding the best possible binder by either screening 

molecular libraries or by rational drug design based on knowledge of the target. 

Conventionally the tightest binding drugs have been assumed to have the highest 

potency and selectivity and weak binding drugs have been overlooked as they are 

assumed to have low specificity or be unable to produce a response. However, there has 

been some interest in designing weak binders as it has been shown that transient binders 
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can show a high specificity, specificity is a ratio of affinities between desired and non-

desired interactions which can be higher for a weak binder depending on the affinity of 

cross-binding. Weak binders can also have as high an efficacy as strong binders. While 

the binding is weak, if local concentrations of a weak binder are high, it can drive 

equilibrium and fill receptor sites. A number of drugs such as alcohol, aspirin and 

ibuprofen are transient binding drugs. Fragment based drug design can be used for the 

design of transient binders. While conventional design involves finding good binding 

fragments to grow them into a high affinity compound, the design of transient binders 

involves finding fragments with very weak affinities (Ohlson, 2008). This method was 

used to design pyrethroids that weakly bind CYP6M2 that may show limited 

metabolism.  

 

The database screen of CYP6M2 was used to select weak binding compounds. 

SARvision was used to identify scaffolds in these poor scoring ligands, and the 

scaffolds were then used for constructing deltamethrin variants. As a large number of 

fragments were identified in the weak binders, fragments were selected to retain the 

characteristics of pyrethroids and were used to substitute either the alcohol or acid 

moiety. They were selected for use based on the criteria for pyrethroid activity, due to 

the spacial restraints they were restricted in size in the para position and a positive 

charge at the 4' was avoided but allowed elsewhere. In addition, as O'Reilly et al. (2006) 

found a π-stacking interaction between the benzene ring and the sodium channel. 

Fragments were selected that retained a benzene ring. The fragments were also similar 

in dimensions as two benzene rings connected by a bridging atom, to complement the 

binding site on the sodium channel. To identify poor binders an arbitrary cut off of 30 

kJ/mol was used as described by Kemp et al. (2004). In general, the substitution of the 

acid scored well with some ligands having higher scores than the native deltamethrin, 

while substitution of the alcohol scored poorly. It may be that the phenoxybenzyl group 

a major determinant of pyrethroid binding in CYP6M2 and its substitution affects 

binding.  

 

7.3.3.1 Deltamethrin variants 

The phenoxybenzyl group was substituted for the low scoring fragments that maintain 

the requirement of an aromatic ring in the position of the benzyl ring, and 12 fragments 

were selected. A number of pyrethroid variants were produced with the fragment 

attached at the meta position as this is the active structure (O'Reilly et al, 2006). 
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Secondly, these fragments were then used to substitute the deltamethric acid, these were 

attached at the para position as occurs in other commercially produced pyrethroids 

(Figure 7.11). These substitution variants were docked and scored. 

 

 

Figure 7.11 Examples of pyrethroids with substitutions for low scoring fragments. (A) 

deltamethrin with the alcohol group substituted for a fragment (P3) attached at the meta 

position. (B) deltamethrin with the acid group substituted for the fragment attached at 

the para position.  

 

 

Figure 7.12 (A) Examples of commercially produced pyrethroids with alternative acid 

and alcohol groups. (B) Examples of a pyrethroid with both acid and alcohol groups 

substituted for a low scoring fragment (P3).  
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Table 7.9 ChemScores (kJ/mol) of dockings of acid, alcohol and dual substitutions. 

 

 

As none of the phenoxybenzyl or acid substitutions scored below the cutoff, a second 

set was constructed containing only the required ester bond with both the acid and 

alcohol groups substituted with low scoring scaffolds to produce dual substitutions. A 

number of commercially produced pyrethroids differ in having alternative acid and 

alcohol groups. These dual substitutions resemble commercial pyrethroids such as 

flufenprox and flucythrinate by having aromatic acid and alcohol groups, or imiprothrin 

and furethrin in having a penta heterocycle (Figure 7.12, A). An additional set were 
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based on the flufenprox structure with the dimethyl group substituted for a CF3 and an 

aromatic group substituting the deltamethric acid (Figure 7.12, B). This addition also 

acts to match the acid pharmacophore suggested by Byberg et al. (1987). 

 

All alcohol substitution variants scored lower than the native deltamethrin while one 

scored just above the cutoff of 30 kJ/mol. However, variants with substituted acid 

groups scored consistently higher than those with substituted alcohol groups, further 

indicating that the phenoxybenzyl group has an important role in binding (Table 7.9).  

 

7.3.3.2 Acid and alcohol dual substitution 

A number of the dual substitutions scored below the threshold for binding and others 

scored just above the threshold (Figures 7.13). Aside from a poor score, some of these 

also bind non-productively. Two non-productive modes occur. One of these occurs with 

P14 and involves two π-stacking interactions between the rings of both groups and the 

BC loop F110 and the FG loop F215 (Figure 7.14, A). In a second mode, π-stacking also 

occurs with rings of both groups and F110 and F376 of SRS5. H-bonds also occur and 

may contribute but differ between ligands (Figure 7.14, B).  

 

Figure 7.13 The structures of poor binders of CYP6M2. 
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Figure 7.14 P14 (A) and I7 (B) binding in a non productive modes in CYP6M2. 

As it is known that the size of the ligand has an affect on binding score as larger ligands 

make more contacts, the docking scores were correlated with molecular weight and 

number of heavy atoms to determine if a poor score was due to a smaller size of ligand.  

A correlation plot shows a correlation between ChemScore and either molecular weight 

or heavy atom number with the larger ligands scoring poorly. The low score could not 

be attributed to a reduced size of the ligand (Figure 7.15). There was no correlation 

between score and number of rotatable bonds indicating that the low score could not be 

attributed to the torsional entropy penalty (Figure 7.16).  

 

Figure 7.15 Correlation between number of heavy atoms, molecular weight and score.  

 

Lipinski et al. (1997) suggested a 'rule of 5' that predicts drug absorption. There is poor 

absorption when there are more than 5 H-bond donors 10 H-bond acceptors, a molecular 

weight above 500, and a logP greater than 5. The dual substituted pyrethroids fit the 

criteria of having no more than 5 H-bond donors, not more than 10 H-bond acceptors 

and a logP less than 5. However, they have molecular weights above 500 daltons. 
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Figure 7.16 Correlation between the number of rotatable bonds and score.   

 

7.3.4 Pyrethroid activation 

Some insecticides are non toxic but become toxic by activation by P450s. This has also 

been previously attempted with pyrethroids. Scott et al. (1986) designed Pyr-III to be 

both a pyrethroid and synergyst by incorporating a methylinedioxyphenyl (oxidase 

inhibiting) moiety, the addition of this mechanism inhibitor group lead to a low 

resistance.  

 

Other activated components could be incorporated into pyrethroids so that their 

metabolism could yield toxic metabolites rather than inactive products. The design of 

such insecticides is similar to the design of anti cancer drugs such as cyclophosphamide. 

Cyclophosphamide requires activation at the 4 position to form 4-

hydroxycyclophosphamide which is a precursor for the metabolites acrolein and 

phosphoramide mustard (Figure 7.17). In this study, deltamethrin variants with a 

cyclophosphamide moiety were designed to place the 4 position of activation at 

equivalent positions as the sites of metabolism of the native deltamethrin so that the 

variant could be activated upon metabolism. The toxic metabolites would be produced 

where the P450s are expressed, in the brain and midgut of the insect.  
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Figure 7.17 Cyclophosphamide activation by CYP2B1 taken from Doehmer et al. 

(1993). 

 

Substitution of either the acid or alcohol with a cyclophosphamide group produces 

modes that allow metabolism, but modes that allow activation also occur. The alcohol 

substituted deltamethrin prefers to bind with the acid group above the heme and the 

mode of binding placing the 4 position is low scoring. An alternate structure substituting 

the acid group for a cyclophosphamide group was also produced but this also 

preferentially binds for metabolism on the 4' and only binds for activation in a low 

scoring mode (Figure 7.18 and Table 7.10). However, as both of these variants are 

capable of binding CYP6M2 for metabolism at the 4 position required for production of 

the toxic metabolite, the substitution for a cyclophosphamide group could be used to 

produce a toxic metabolite upon metabolism of the pyrethroid.  

 

Table 7.10 ChemScores (kJ/mol) of dockings of the alcohol substituted (alc) and acid 

substituted (acid) binding for metabolism and activation.  

                     rnk    Score ΔG    S(hbond)  S(metal) S(lipo) H(rot)  ΔE(clash) ΔE(int) 

alc(metabolism) 1st    43.6  -47.8       2.6        0.0         322.1     1.5       2.4          1.8 

alc(activation)   10th 33.8  -37.0       0.0        0.0         303.5     1.5       0.2          3.0 

 

acid(metabolism)1st 37.0  -39.3       2.7        0.0         255.2     1.9      0.1           2.2 

acid(activation)  8th    31.4  -33.4       0.0        0.0         281.3     1.9      0.5           1.6 
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Figure 7.18 The cyclophosphamide alcohol substituted pyrethroid binds preferentially 

for metabolism on the acid (A), but a low scoring mode allowing activation occurs (B). 

The acid substituted pyrethroid prefers to bind for metabolism at the 4' (C), but a low 

scoring mode allowing activation occurs (D).   

 

7.4 Probe Design 

Understanding the binding of pyrethroids can be used to design activity-based probes 

that can label pyrethroid metabolising P450s. A pyrethroid like probe that contains an 

acetylene group can covalently bond to the protein upon metabolism. A second 

acetylene group could bind to a label to allow detection (Wright and Cravatt, 2007). 

Deltamethrin mimics with two acetylene groups were designed and docked into P450 

models to determine an optimum design (Figure 7.19). These results were compared to 

the experimentally derived binding data (Figure 7.20). 



271 

 

 

Figure 7.19 The deltamethrin probes tested (McLaughlin, unpublished).  

 

 

Figure 7.20 Heat maps (McLaughlin, unpublished) illustrating probe labelling profiles 

for individual P450 enzymes. (A) Absolute fluorescence signals of probe labelling 

events.(B) Normalized fluorescence signals of probe labelling events, where data for 

each P450 enzyme are shown as a ratio of the strongest labelling signal for that enzyme. 

“1” is the strongest binding event for an individual P450. 

 

Most of the probes tested show little labelling, while probes P7 and P8 show the highest 

labelling. This is reflected in the docking scores where probes P7 and P8 show the 

highest binding scores.  
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In CYP6P3, P7 and P8 probes can bind in modes that allow the metabolism of the 

acetylene and also place the ketene intermediate in a position that facilitates 

nucleophilic attack on I helix Thr. The modes that bind close to the heme for efficient 

metabolism score higher in P8 than in P7. This may indicate that P8 may be preferred 

due to a better fit to the active site. The poses also differ in the position of the click 

handle. The poses for P7RS place the click handle projecting out of the active site in a 

position that may allow less labelling. The P8RS place the click handle projecting into 

the cavity of the active site where it may be in a better position for labelling (Figure 

7.21).  

 

Figure 7.21 P8R and P8S bind with their click handles projecting into the active site 

(A). P7S and P7R bind with their click handles projecting out of the active site (B). 

 

Probe P7 shows a selectivity for CYP6M2 with a higher labelling in this isoform. The 

selectivity for P7 in CYP6M2 cannot be fully explained in the dockings alone. The 

scores for P7 are lower than P8. However, P7SR docks in a different mode in CYP6M2 

than in CYP6P3 that places the click handle in a different position. In CYP6P3 the click 

handle of P7 is oriented out of the active site into the protein which may affect labelling. 

In CYP6M2 the click handle is oriented into the active site that might improve labelling. 

 

In CYP6Z2 the labelling of P7 and P8 was not found to be due to metabolism. In 

CYP6Z2 although productive modes occur, modes that are similar to the unproductive 

modes of the pyrethroids also occur. The best ranked modes place the ligand in non 

productive poses in a pocket distant from the heme. This pocket is formed by the FG 

loop F222, F212 and the BC loop Y102 (Figure 7.22). These residues form aromatic 

interactions with the phenoxybenzyl group. Other hydrophobic interactions occur with 

the A helix and beta sheet. These residues may form a hydrophobic pocket to hold the 
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ligand distant from the heme. This may explain the experimental results showing 

labelling in the absence of metabolism.  

 

Figure 7.22 The positioning of the probe distant from the heme in CYP6Z2.  

 

7.5 Conclusion 

Insects use P450s to detoxify pyrethroids, and the homology models of the P450s 

involved in metabolism can be used to guide the development of novel pyrethroids that 

are resistant to metabolism. 

 

Altering the structure of a pyrethroid is known to affect its metabolism by P450s, with a 

number of factors affecting metabolism such as the presence of a cyano group and the 

structure of the acid group. However, the structure of the alcohol group was found to 

have the largest effect on resistance, with the phenoxybenzyl group associated with 

resistance. The homology models produced in this study also indicate that the structure 

of the alcohol group has an affect on binding within the active site that may explain the 

changes in resistance towards pyrethroids with modified alcohol groups. 

 

Identifying or predicting the site of metabolism of pyrethroids is useful as it can guide a 

number of developments. Sites of metabolism can be masked by the addition of 

halogens to produce pyrethroids that are metabolism resistant. Knowing sites of 

metabolism can guide the design of pyrethroids that are activated by metabolism into 

toxic products or to produce mechanism based inhibitors. Dockings of these designs 

into the homology models can screen for those that bind in the best positions or with the 
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best scores. 

 

Identifying the binding interactions with active site residues can be used to produce 

pyrethroids that bind unproductively. Database screening can be used for scaffold based 

ligand design. Unlike conventional drug design, the design of poor binders requires 

novel methods such as the identification of scaffolds that are associated with poor 

binding. 

 

Pyrethroids mediate their toxicity by binding to the sodium channel. An understanding 

of the requirements of pyrethroids for toxicity or binding to the sodium channel is 

required to guide the design of novel pyrethroids that have activity. The design of the 

pyrethroids in this study was restricted to contain the features shown to be required for 

toxicity. 

 

Understanding the binding of pyrethroids can be used to design activity-based probes 

that can label pyrethroid metabolising P450s. Such probes can be used on undefined 

mixtures of P450s taken from pyrethroid resistant populations and used to identify the 

metabolising isoforms. The models showed that they could explain the experimental 

results and can be predictive in designing probes.  
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8. The role of Mal in malaria 
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8.0 Preface 

Infection by malaria can lead to a severe inflammatory response in the host and the 

adaptor protein Mal is involved in the inflammatory pathway. Variations in Mal affect 

both the susceptibility and the hosts response to severe malaria and an understanding of 

the role of this protein can identify targets for drug development.  

 

8.1 Inflammation 

Inflammation is one of the mechanisms by which the innate immune system prevents 

infection. A normal inflammatory response localises infection but an unchecked 

inflammatory response can lead to inflammatory disorders. Severe malaria can develop 

into a diffuse encephalopathy called cerebral malaria (CM) that is a major contributor to 

mortality. 

 

Toll like receptors (TLRs) are immune sensors that mediate the activation of the host 

innate immune response. TLRs are expressed at the cell surface and have an ectodomain 

that is involved in ligand recognition, a transmembrane domain, and a cytoplasmic 

domain that contains a Toll-IL-1 receptor domain (TIR) for signal transduction. 

Bacterial, viral or parasitic pathogen-associated molecular patterns are recognised at the 

cell surface and create changes in docking platforms within the TIR domains, allowing 

recruitment of adaptor proteins. The glycosylphosphatidylinositol (GPI) from the 

malaria protozoan parasite act as a ligand for both TLR2 and TLR4. Mal (MyD88-

adapter-like), encoded by the gene TIRAP (SWISSPROT Acc. No. P58753) acts as a 

bridging adaptor in TLR2 and TLR4 signalling. Bridging adaptors act by delivering 

cytoplasmic signalling adaptors to the cell surface TLRs. After stimulation of TLRs, the 

signalling cascade causes the activation of NF-κB (nuclear factor that binds the kappa 

immunoglobulin light chain gene enhancer) and the activation of pro-inflammatory 

genes (Piao et al., 2008).  

 

Mal has a central position in the TLR2 and TLR4 pathways and genetic variation of Mal 

affects susceptibility to disease. Mal S180L hetrozygosity has been shown to be 

protective against malaria as well as tuberculosis and bacteremia. The wild type Mal 

Ser180 is able to activate NF-κB while Leu180 was inactive. An excessive host 

inflammatory response causes individuals to be more susceptible to severe forms of 

malaria and this mutation is suggested to be involved in attenuating the interaction with 

TLR2 and reducing the NF-κB activation. However, too little signalling leads to an 
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inadequate response and heterozygotes have an optimal protection (Khor et al., 2007). 

The understanding the regulation of TLR signalling can lead to new treatments for 

infectious diseases.   

 

8.1.1 Mal Cycle overview 

The Mal Cycle has been proposed by Sheedy et al. (2007) (Figure 8.1). Signalling by 

TLR2 and TLR4 involves the adaptor protein Mal. Mal acts as a bridge to recruit the 

adaptor MyD88 (myeloid differentiation factor 88) leading to NF-κB activation.  

 

Figure 8.1 Taken from Sheedy et al. (2007). The Mal Cycle.  

 

After activation, the TLRs interact with the adaptor proteins by their TIR domain and 

the adaptor recruits downstream molecules. Mal contains a TIR domain in its C 

terminus that interacts with the TIR domains of TLR4, TLR2 and MyD88. Mal also 

contains a PIP2 (phosphatidylinositol 4,5-bisphosphate) binding domain at the N-

terminus (residues 15 to 35) which binds to PIP2, this recruits Mal to PIP2 rich regions 

in the plasma membrane and functions to recruit MyD88 to the membrane. Mal 

therefore acts as a bridging adaptor bringing MyD88 into the TLR signalling complex, 

MyD88 acts as a signalling adaptor leading to downstream events. Mal undergoes 

modification by tyosine phosphorylation by Bruton‟s tyrosine kinase (Btk) upon 
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activation by TLR2 and TLR4. This is required for downstream signalling to activate 

NF-κB. The phosphorylation of Mal is also required for its degradation and acts to 

terminate its signalling. Following phosphorylation, Mal is degraded by SOCS-1 that 

recognises a proline, glutamic acid, serine, and threonine rich area (PEST) N-terminal to 

its TIR domain.  

 

8.1.2 Mal subcellular localisation 

TLR2 and TLR4 require Mal to induce MyD88-dependant signalling and it has been 

proposed that Mal functions to recruit MyD88 to TLR2/4. Kagan and Medzhitov (2006) 

found that tagged MyD88 occurred as foci throughout the cytosol, but when expressed 

with Mal it was relocalised to the cell periphery and became enriched at the plasma 

membrane. Mal was therefore shown to deliver MyD88 to the membrane and in 

contrast, MyD88 was not required to deliver Mal to the cell surface. A Mal point 

mutation in the BB loop (P125H) to produce a non functional TIR domain was 

ineffective at delivering MyD88 showing that recruitment is TIR dependant. In addition, 

the PIP2 domain was found to be necessary as chimeras lacking this domain were also 

ineffective. Mal knockout cells are deficient in TLR4 signalling. This requirement for 

Mal in signalling could be bypassed by a MyD88 chimera with an added PIP2 binding 

specificity, indicating that Mal‟s function is to recruit MyD88 to PIP2 containing 

membranes for the initiation of TLR signalling. Monie et al. (2009) suggested that as 

Mal is not needed. MyD88 may bind to the receptor with a low affinity and that Mal 

only enhances the sensitivity of the signalling, or may be a „sorting‟ adaptor and may 

not form a complex with the receptor. 

 

8.1.3 Mal phosphorylation 

Mal is phosphorylated during TLR signalling and tyrosines at positions 86 and 106 have 

been identified as possible sites. Wild type Mal strongly activates NF-κB while the 

mutations Y86F Y106F and Y187F are less active and have been identified as critical 

residues for NF-κB activity. Mal forms with mutations at either Y86 or Y187 act as 

dominant negative inhibitors of signalling (Gray et al., 2006). Piao et al. (2008) also 

found that the Y86A, Y106A and Y159A mutants increase the interaction with TLR4 

allowing the mutants to act as negative inhibitors of TL4 activation. Gray et al. (2006). 

identified tyrosines at positions 86, 106 and 187 as possible phospho-accepting sites but 

not at position 159; while Piao et al. (2008) have identified tyrosines at positions 86, 

106 and 159 as possible phospho-accepting sites and have suggested that mutagenesis 
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of tyrosine 187 did not affect Mal tyrosine phosphorylation. Both studies have shown 

tyrosines 86 and 106 as possible phosphorylation sites, while they do not agree on the 

roles of tyrosines 159 and 187. Therefore, the roles of Tyr86 and Tyr106 were 

investigated. 

 

8.1.4 The role of Mal phosphorylation 

Mal contains a TIR domain similar to that of CheY bacterial chemotaxis protein. TIR 

domains tend to consist of a central five stranded parallel β-sheet surrounded by five 

helices. The conserved residues tend to be buried in the core but some are solvent 

exposed. The TIR fold is similar to that of CheY, which is transiently phosphorylated at 

an Asp. This induces a conformational change in a Tyr residue in a loop between the 

fourth β-sheet and fourth α-helix (Dunne et al., 2003). Gray et al. (2006) suggested that 

as Mal is similar to CheY. A structural conformational change may occur following 

phosphorylation. 

 

Mal is phosphorylated upon activation of the receptors and this phosphorylation is 

required for the activation of Mal. However, the roles of Mal and its phosphorylation 

are unclear. Piao et al. (2008) suggested that Mal could act exclusively at the level of 

the plasma membrane, associating with TLR4 to recruit cytoplasmic MyD88. In this 

case, Y86 could have a role in initiating conformational changes to the PIP2 domain. 

They also suggested an alternative mechanism where Mal acts as a shuttle to recruit 

MyD88 to TLR4 from the cytoplasm to the membrane. As phosphorylation of TRAM 

initiates its translocation from the membrane, phosphorylation of Mal could affect its 

translocation. The phosphorylation of Mal leads to a decreased association with TLR4. 

The signal-incompetent Y86A Mal with stronger associations may be retained at the 

membrane. Mal phosphorylation may confer the ability of Mal to shuttle from the 

membrane to bind non-activated downstream intermediates and deliver them to TLR4 

and initiate assembly of the signalosome. They suggested that dephosphorylated Mal 

would be incapable of translocating from the membrane or not able to bind inactive, 

non-oligomerised cytoplasmic intermediates to recruit them to TLR4.  

 

8.1.5 TLR binding 

The initial step in signal transduction by TLR4 involves its dimerisation induced by 

binding to LPS. LPS binding causes the conformational changes in the receptor to allow 

dimerisation of the TIR domains to provide a new scaffold that allows recruitment of 
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adaptor proteins to form a signalling complex. The BB loop of TLR4 was proposed as 

the site of dimerisation as the BB loop peptide prevents dimerisation by competing with 

the receptor BB loops. The BB loop peptides from Mal, MyD88, TEAM and TRIF all 

block both Myd88 dependent and independent signalling by TLR4 indicating a 

„receptor knockout‟ rather than an „adaptor knockout‟ and indicating that the BB loops 

of these proteins interact with TLR4. The Mal BB loop peptides were weak inhibitors of 

TLR2 signalling, indicating that Mal does not use its BB loop in the formation of the 

TLR2 signalling complex (Toshchakov et al., 2005). Khor et al. (2007) proposed that 

Mal interacts with TLR2 via the DD loop on the opposite side of the protein to the BB 

loop. They mutated Ser180 that occurs on a surface exposed loop close to the DD loop 

and found that unlike the wild type, the S180L failed to bind to TLR2 but had no affect 

on its interaction with itself or with MyD88. Mal may therefore have different 

interactions with TLR2 and TLR4. 

 

Mal could engage directly with the TLR4 dimer to create a new surface for the 

recruitment of MyD88. Nunez Miguel et al. (2007) suggested that Mal binds at the 

interface of the TLR4 homodimer at a site that overlaps the TRAM binding site. 

Although the Mal phosphorylated on the tyrosines is the active form of Mal needed for 

NF-κB activation, the phospho forms of Mal do not bind TLR4. The role of 

phosphorylation is not clear, the activation of NF-κB by LPs is strongly inhibited by 

Mal Y86F showing that tyrosine phosphorylation of this residue is critical for TLR4 

signalling (Nunez Miguel et al., 2007).  

 

8.1.6 MyD88 

Activation of the TLR receptors involves dimerisation and recruitment of MyD88 and 

the protein kinase IRAK (interleukin 1 receptor-associated kinase). MyD88 is modular 

with a TIR domain and a protein interaction domain termed the death domain. The TIR 

domain interacts with the receptor and the death domain interacts with the IRAK N-

terminus death domain. Post receptor signalling leads to the activation of the 

transcription factor NF-κB. MyD88 forms homodimers and activates IRAK-4 and 

IRAK-1. MyD88 binds to IRAK-4 and promotes phosphorylation of IRAK-1 by IRAK-

4. In response to this IRAK-1 autophosphorylates and its interaction with TRAF6 

(tumour necrosis factor receptor associated factor 6) leads to the activation of the 

inhibitory κB kinase (IKK) and mitogen-activated protein kinases and p38. These 
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kinases activate transcription factors such as NF-κB that produce the proteins for 

inflammatory responses (Loiarro et al., 2005).  

 

 

Figure 8.2 Taken from Ohnishi et al. (2009). The Proposed complexes of Mal and 

MyD88 with the critical residues in red.  

Dunne et al. (2003) suggested non-overlapping binding sites on TLR4 for Mal and 

MyD88. Mal is predicted to interact with TLR4 through its DD and DE loops and 

MyD88 is predicted to bind via its AA, CD DD loop surfaces. They suggested that Mal 

and MyD88 also interact with each other to give a symmetrical arrangement via the 

hydrophobic area of the BB-loop and polar residues of the fourth α-helix. Ohnishi et al. 

(2009) solved the solution structure of MyD88 showed through mutagenesis that the 

TIR domain of MyD88 has two binding sites for Mal and it is possible that two Mal-

TIR can make simultaneous contact with one MyD88 TIR (Figure 8.2). MyD88 also 

forms homodimers mediated by a direct TIR-TIR interaction. The BB loop is conserved 

in TIR domains and is suggested to be at the interface of the interaction. This was 

demonstrated by Loiarro et al. (2005) because a peptide consisting of the BB loop was 

able to inhibit MyD88 dimerisation and a mutation in the BB loop abolishes the ability 

of TLR2 to interact with MyD88.  

 

8.2 Mal Modelling 

Structural studies of Mal were based on two homology models produced by our 

collaborator (Niazi, unpublished) who found that BLAST indicated a number of TIR 

containing proteins. For modelling the TIR domain of human TLR2 (1FYW), TIR of 

human TLR1 (1FYV), and TIR domain of Myd88 ( 2JS7, 2Z5V) were selected as 

templates.  
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Figure 8.3 The Mal TIR domain with Y86 phosphorylated (A), and normal Y86 (B). In 

the phosphorylated Mal the BB loop is in a closed conformation while in the wild type 

the BB loop is open.  

 

8.2.1 Mal Models 

The two models produced by Niazi (unpublished), comprised the wild type with a 

tyrosine and a phosphorylated form with the Tyr mutated to phosphotyrosine (P-Mal). 

The model of the wild type was produced by MODELLER, and the tyrosines mutated to 

pY in the phosphorylated form. The BB loop area was subjected to loop refinement with 

the highest scoring structures selected. It was observed that the phosphorylation of Tyr 

allowed it to interact with the BB loop and could stabilise the BB loop in a closed 

conformation that may provide stable interactions with other proteins. The normal Tyr 

has less negative charge and hydrogen bonding potential which may allow the BB loop 

to have an open and more mobile conformation, which may not provide a stable 

interface for binding (Figure 8.3). As phosphorylation is required for function this may 

represent the active conformation while the native form is inactive.  

 

8.3 Zdock docking of MyD88 

Ohnishi et al. (2009) mutated residues of MyD88 at putative binding sites and identified 

two residues on opposite sides of the protein, R196 (Site II) and R288 (Site III), that 

decreased the affinity of MyD88 for Mal, and double mutations of these abolished 

affinity. They also found that the contributions from site II and III were comparable. 

Mutations at site I had no effect (Figure 8.4). MyD88 was docked with the active 

phosphorylated Mal and the inactive wild type Mal.   
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Figure 8.4 Taken from Ohnishi et al. (2009). Residues indicated in red are required for 

interaction with Mal.  

 

Figure 8.5 (A) P-Mal active conformation, pY86 forms H-bonds (red line) with the BB 

loop to form a deep concavity (arrow). (B) The native, inactive form with a shallow 

concavity. 

 

8.3.1 Mal structure affects binding to MyD88 

The active and inactive conformations of Mal differ in that the active conformation of 

the BB loop provides a more concave surface for binding while the surface of the 

inactive Mal is flatter (Figure 8.5) and this was found to affect the docking poses. 

 

In the dockings with P-Mal, a cluster of dockings place the MyD88 into the concave 

surface produced by the BB-loop. This Mode 1 places P-Mal with its BB loop residues 

in contact with the BB loop of MyD88. The BB loop of MyD88 binds within the 

concave surface formed by the active conformation of the P-Mal BB loop. In this pose, 

R196 at Site II in the BB loop of MyD88 forms the contact surface with Mal. Loiarro et 

al. (2005) suggested that the BB loop of MyD88 can be subdivided into a conserved 

charged portion (RD) a conserved B-turn portion (PG) and a central linker. In the 

docking, the B-turn residues PG lie within the concavity formed by the BB loop of P-
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Mal (Figure 8.6).  

 

Figure 8.6 The PG beta turn (P200 and G201) of MyD88 projects into the Mal cavity 

formed by the BB loop.  

 

An alternative docking pose also occurs with R217 of Site III forming the contact 

surface with P-Mal. In this Mode 2, R217 is in a position to form H-bonds with the Mal 

helix αA, while helix αB lies within the concavity produced by the P-Mal BB loop 

(Figure 8.7). In both poses the arginines from Sites II and III form the contact surface 

which is supported by the findings of Ohnishi et al. (2009). 

 

The wild type Mal was also docked with MyD88, and MyD88 could bind with the BB 

loop of Mal in two modes. MyD88 could bind in the shallow concavity formed by the 

Mal BB loop (Figure 8.8, B), and also on the surface of the BB loop (Figure 8.8, A). In 

both cases the important arginines also form the interaction site.  

 

To evaluate the docking poses, FireDock was modified to recognise the 

phosphotyrosine so that the poses could be refined and scored. FireDock showed that 

the most favourable conformation is the docking placing the BB loop of MyD88 in the 

interaction surface with the BB loop of P-Mal. While this is high scoring, the equivalent 

pose with the wild type Mal was low scoring (Table 8.1). 
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Table 8.1 The FireDock scores of the ZDOCK complexes.  

cmp  glob  aVdW  rVdW  ACE  inside  aElec  rElec  laElec  lrElec  hb  piS  catpiS  aliph  

pY 1  -44.8 -45.13 31.77 -7.83 19.16 0 5.08 0 7.21 -7.88 0 0 0 

pY 2  -34.59 -36.3 17.99 4.23 16.8 -57.68 5.65 -19.31 6.65 -1.87 -4.5 0 0 

Wild 1  -19.36 -26.43 10.06 -2.48 13.77 0 14.03 0 10.26 -2.6 0 -0.5 0 

Wild 2  -39.48 -33.55 14.32 -5.06 14.26 -19.04 11.46 -10.5 8.94 -2.27 -1.5 -0.5 -1 

 

 

Figure 8.7 Alternative binding modes of MyD88 with P-Mal. Two surfaces of MyD88 

can contact Mal, site II containing R196 (Mode 1, A) and Site III containing R217 

(Mode 2, B). 

 

Figure 8.8 Alternative binding modes of MyD88 with wild type Mal. MyD88 can bind 

onto the surface of the BB loop (Mode 2, A) or in the concavity formed by the Mal BB 

loop (Mode 1, B). 

 

The differences in score between these similar poses may be due partly to the „inside‟ 

score. Insideness is scored favourably by FireDock as concave interfaces are more 
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likely than flat interfaces and significantly increases the success rate of the program. 

The active conformation of the BB loop in Mal creates a more concave surface for the 

binding of MyD88 than the inactive conformation. The binding of MyD88 into a 

concavity on the surface of Mal may act to stabilise the interaction and may be reduced 

in the inactive conformation. In addition, the area of contact for the wild type appears to 

be less than in the active conformation with a difference in the vdW score. 

 

8.4 Dynamics 

Molecular dynamics was carried out on the wild type and phosphorylated Mal to 

determine a role for pY86 in the dynamics of the BB loop. A 10 ns simulation was 

carried out for both models. Molecular dynamics simulations were performed with the 

molecular dynamics program NAMD 2.6 (Phillips et al., 2005) using the CHARMM22 

force field and the TIP3P model for all water in the system. 

 

To calculate the RMSD, the VMD RMSD trajectory tool was used. This tool calculates 

the RMSD from the starting frame. The BB loop was identified as residues 119 to 134 

and the loop RMSD was calculated and found to be consistently higher in the wild type 

than in the pY model (Figure 8.9). In addition, in the wild type the BB loop moves into 

an open conformation after 8 ns. 

 

 

Figure 8.9 The RMSD of the BB loops was found to be higher in the wild type 

indicating a greater mobility. 
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8.4.1 Water Bridge 

Water bridges have been shown to have a functional role in protein folding, architecture 

and conformational stability. As no adequate programs were found to identify water 

bridges, a custom script was written for this purpose (Appendix B). A water bridge was 

searched for between the BB loop and pY residue for the pY model and between the BB 

loop and Tyr for the wildtype. The BB loop was defined as residues 119 to 134. 

 

Four types of water bridge were searched for: 

 

where the water acts as an acceptor-donor (AD bridge): 

Y O-----HO------HO protein 

                H 

 

where the water acts as a donor-donor (DD bridge): 

Y O-----HOH----O protein 

 

where water acts as a donor-acceptor (DA bridge): 

 

Y OH-----OH-----O protein 

                H 

 

and where the water act as an acceptor-acceptor (AA bridge): 

              H 

Y OH-----O-----HO protein 

              H 

 

The percent occupancy of a bridge was defined as the number of frames with the bridge 

present divided by the number of total analysis frames. The lifetime of a specific bridge 

was defined as the number of consecutive frames from its first appearance until it is 

broken, The average lifetime is an average over all lifetimes. 

 

For the pY, the AD bridge is present consistently throughout the trajectory with 

generally a consistent occupancy at each ns. An additional DD bridge occurs at a low 

frequency throughout most of the trajectory but towards the end of the 10 ns increases 

in occupancy and lifetime (Table 8.2). Throughout most of the trajectory a water forms 
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a AD bridge between the BB loop and pY. At 9 ns the BB loop approaches and begins 

to H-bond directly with the pY and the DD bridge increasingly occurs. The DD bridge 

occurs due to the closer proximity of the pY with the BB loop, the bridge forms a 

sharper angle than the AD bridge. The pY water bridge may stabilise the position of the 

BB loop and facilitate its movement towards the pY for direct H-bonding. 

 

Table 8.2 The occupancy (Occ), maximum (Max) and average lifetime (Ave) of the AD 

and DD water bridges per ns of trajectory of the P-Mal. H-bonds were defined with a 

distance cutoff of 3.5 Å and an angle cutoff of 60º. 

   

            P-Mal 

 

  

  

      Mal 

 
  

 
AD 

 
  DD 

 
  DA 

 

  DD 

 

  

Ns 

Occ Max Ave Occ Max Ave Occ Max Ave Occ Max Ave 

(%) (ps) (ps) (%) (ps) (ps) (%) (ps) (ps) (%) (ps) (ps) 

1 27.6 48 6.1 2 3 1.3 3.1 12 3.4 1.4 5 2 

2 57.3 39 5.3 6 13 1.7 2.6 7 2.4 2.5 5 1.1 

3 53.9 48 9.6 5.6 8 1.8 7.8 22 4.3 0.3 1 1 

4 29 30 5.2 1 1 1 0 0 0 0 0 0 

5 55.5 27 3.7 8.8 8 1.5 0 0 0 0 0 0 

6 52.5 61 5.4 6.8 11 1.6 0 0 0 0 0 0 

7 67.9 40 5 7.6 6 1.7 0 0 0 0 0 0 

8 63.6 36 5.1 9.8 15 2.1 0 0 0 0 0 0 

9 56.9 38 4.8 11.5 11 2.1 0 0 0 0 0 0 

10 60.5 76 5.7 13.3 12 3 0 0 0 0 0 0 

 

 

For the wildtype a bridge initially occurs with residue E132, at 4ns the BB loop moves 

away from the Tyr and no further bridges are found (Table 8.2). Although a water 

bridge can form transiently, unlike the pY it is not as stable with a low occupancy and 

lifetime. This water bridge may fail to stabilise the BB loop as it has a higher mobility 

and towards the end of 3ns the BB loop moves away from the Tyr.  

 

8.4.2 Summary 

The pY bonds with the BB loop via a stable water bridge and by a direct H-bond 

towards the end of the trajectory. This may stabilise the BB loop shown with a low 

RMSD. In the wildtype a bridge is initially present but is unstable and disappears as the 

BB loop moves away from the Tyr and has a higher flexibility. 

 

A similar anchoring of the BB loop to the rest of the Tir domain occurs in both TLR10 
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and TLR2. In the crystal structure of the TIR domain of TLR2 (1FYW) the BB loop 

contains the motif RDxΦ1Φ2G (Φ is any hydrophobic residue and x any residue) the 

conserved R and D form an ion pair interaction with each other and the R forms an ion 

pair with the E at the end of the helix αA. Xu et al. (2000) suggested that this ion pair 

between the BB loop R and helix αA E stabilised the conformation of the BB loop. 

TLR10 was crystallised as a dimer involving the BB loops. Nyman et al. (2008) 

suggested that the residue F672 acts to anchor the BB loop to the rest of the TIR domain 

as well as making contacts within the dimer. 

 

Mal acts as a bridging adaptor to bind MyD88 and bring it into a complex with the 

TLRs. Phosphorylation of Mal is required for its function and the results of this study 

suggest that phosphorylation of Y86 has a role in this. pY86 affects the stability and 

conformation of the BB loop that may act to bind MyD88. 

 

8.5 SOCS1 (JAB, SSI-1, TIP3) 

8.5.1 SOCS1 and Mal 

Although Mal is a homologue of MyD88, it differs in having an N-terminal PEST 

domain, short lived proteins contain a PEST domain and undergo ubiquitination and 

degradation. Mal also undergoes rapid degradation within 30 min of activation of 

TLR2/4. Mal has been demonstrated to bind to SOCS1 and over expression of SOCS1 

induces degradation of Mal. Mal also fails to be degraded in SOCS1 deficient 

macrophages. SOCS1 therefore negatively regulates TLR4 cytokine signalling by 

interacting with Mal. As Btk inhibitors inhibit the degradation of Mal, phosphorylation 

of Mal by Btk is followed by the binding of Mal to the SH2 domain of SOCS leading to 

ubiquitination (Kobayashi et al., 2006). Mal binds to SOCS1 to be polyubiquitinated on 

two N-terminal lysines which leads to its degradation by the 26S proteasome (Mansell 

et al., 2006).  

 

8.5.2 SOCS structure 

The SOCS (suppressor of cytokine signalling) family of proteins (SOCS1-7 and CIS1) 

contain three domains, a variable N-terminal domain, a central SH2 domain and a 

conserved SOCS box. The SOCS family are targeted to their substrate by means of the 

SH2 interaction domain, which interacts with phosphorylated tyrosines on the substrate. 

The SOCS box recruits the elongin BC complex for ubiquitination and subsequent 

degradation. 
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The SH2 structure is comprised of a central four stranded β sheet (βA-D) flanked by 

two α helices (αA and αB). The SH2 substrate binds across the central βD strand which 

separates the phosphotyrosine pocket (pY) from the hydrophobic +3 site where ligand 

specificity is determined (Figure 8.10). From the crystal structure of SOCS3 (2HMH) it 

was shown that the phosphate group of the tyrophosphate of the substrate binds in the 

phosphate binding pocket salt bridged to R71. Most of the contacts are made by the 

pTyr and residues C-terminal to the pTyr with the C-terminal enveloped by the EF and 

BG loops. The structures have been solved for SOCS2 (2C9W) and SOCS3 (2HMH), 

SOCS3 was used as a template for SOCS1 due to the similarities in function and 

substrate (Niazi, unpublished). 

 

8.5.3 SOCS1 and Mal binding 

The protein-protein interactions of Mal with SOCS1 were studied using ZDOCK carried 

out in this study and by our collaborator (Niazi, unpublished). The residues of the BB 

loop of Mal were blocked from the interface as that part is believed to be involved in an 

interaction with MyD88. 

 

The SOCS1 sequence has the SH2 domain specific phosphotyrosine binding motif 

FLVRDS which forms electrostatic and hydrogen bonding contacts with pY containing 

ligands. In the SOCS3 crystal structure (2HMH), the Arg in this motif has a strong 

interaction with the phosphotyrosine of the ligand (GP130 antigen). The Y106 in Mal is 

a site of phosphorylation and it was noted that the region surrounding Y106 had 

sequence conservations with the SOCS3 ligand GP130. 
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Figure 8.10 Nomenclature of the SH2 domain taken from Eck (1993). 

 

In 2HMH the ligand interactions occur primarily through the pY, the pY can make 7 

direct H-bonds to SOCS3 with a salt bridge to the R71 in the canonical phosphate 

binding site. In the SOCS1-Mal docking, the pY is also in a position to make H-bonds 

with the phosphate bindng site residues equivalent to those in SOCS3. In SOCS 1, 

arginines surrounding the phosphate binding site are in a position to interact with acidic 

residues on the Mal helix αA (Figure 8.11). This interaction may explain the specificity 

of SOCS1 for Mal, The basic residues in SOCS1 are in positions to interact with the 

acidic residues of Mal, and these residues are substituted in SOCS2/3 (Figure 8.12). 

 

8.5.4 Charge complementarity 

There are some sequence differences between SOCS1 and SOCS2/3. SOCS1 has an 

additional network of arginine residues providing a strong positively charged region 

surrounding the phosphate binding pocket (Figure 8.12). The dockings indicated that 

these arginines form a contact surface with Mal.  
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Figure 8.11 The ZDOCK docking of Mal and SOCS1. There is a charge 

complementarity between SOCS1 and Mal with the basic residues H87 and R107 on 

SOCS1 complementary to E108 and D102 on Mal. 

 

 

Figure 8.12 The alignment of SOCS1/2/3 with arrows indicating residues in SOCS1 at 

the binding interface with Mal.    

 

Mal is an acidic protein and the surface surrounding Y106 is strongly negatively 

charged. There are complementary basic residues at the contact surface of SOCS1. H87, 

R107 and R109 only occur in SOCS1 and are in positions to interact with acidic 

residues (E108 and D102) that surround the pY106 when it is bound within the 

phosphate binding pocket. As these residues are substituted in SOCS2 and 3 this may 

contribute to the specificity of SOCS1 for Mal. The sequence differences between 

SOCS1 and SOCS2 and 3 affect the electrostatic surfaces as produced by DelPhi 

(Figure 8.13). The phosphate binding pocket in SOCS1 is surrounded by basic residues 

while in SOCS2 and 3 the region surrounding the pocket is less positively charged. The 
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positively charged surface of SOCS1 has a complementarity to the negatively charged 

surface surrounding Y106, in particular the residues surrounding the phosphate binding 

pocket. 

 

Figure 8.13 A comparison of the electrostatic surfaces of SOCS1, 2 and 3 (Blue: 

positive, red: negative, white: uncharged in units of kT/e). The loop of SOCS1 contains 

basic residues contributing to a positively charged surface surrounding the phosphate 

binding pocket (circle).  

 

8.6 Conclusion 

Toll like receptors are involved in the innate immune system and provides an 

inflammatory response to pathogens such as the malaria parasite. TLR2 and 4 are 

involved in sensing this parasite and require the adaptor protein Mal for signalling. Mal 

has a central role in the immune response to malaria and its variations affect the host 

response. During TLR2 and TLR4 signalling, Mal is activated by phosphorylation. The 

role of phosphorylation has not been clearly determined and this study has proposed 

suggestions for the roles of phosphotyrosines.  

 

Mal binds with MyD88 and this interaction is thought to involve the BB loops and a 

role for Y86 in this interaction is proposed in this study. Y86 is located close to the BB 

loop and the pY86 is able to form water bridges and H-bonds with this loop that do not 
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form with the native tyrosine. These bonds may stabilise a conformation of the loop that 

promotes the interaction with MyD88.   

 

Mal is rapidly degraded by SOCS1 upon phosphorylation and Y106 is proposed in this 

study to be the site of SOCS1 binding. This site is proposed based on similarities of the 

region of Y106 to the native substrate GP130, and due to the exposed nature of this 

tyrosine on the surface of the protein, and also by a strong charge complementarity 

between the acidic surface of Mal and the basic surface of SOCS1. SOCS1 has a 

specificity towards Mal and this study suggests that this is due to this charge 

complementarity, the SOCS1 phosphate binding site is surrounded by basic residues 

that are substituted in SOCS2 and SOCS3 which provides a positively charged surface 

surrounding the site.  

 

By modulating the interactions of Mal, the hyper inflammatory responses that lead to 

severe malaria can be controlled. Understanding the nature of Mal with its binding 

partners is essential to identify targets for drug development. 
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9 Conclusions and Future Perspectives 
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9.0 Concluding Remarks 

The work in this thesis involved the application of the computational techniques of 

computer-aided molecular design to give atomic level insight into the structure of the 

P450s under investigation, and their interaction with substrates. This work aims to 

complement experimental studies to understand the structure of the enzymes and 

identify a relationship between its structure and its activity towards its substrates. This 

work may be applied for the design of novel insecticides or to guide further 

experimental studies.  

 

In this thesis, for a number of insecticide metabolisers and non-metabolisers homology 

modelling was used to build structural models. For a number of insect P450s 

experimental kinetic and metabolite data were obtained by collaboration with the 

Liverpool University School of Tropical Medicine, and for others data were obtained 

from the literature. Docking studies were carried out on these models using the 

experimental data to assess the validity of the models. Models were deemed to be valid 

if they could replicate the observed data by showing a correlation between the computed 

docking scores and the experimental IC50 values, and also if the docking poses of 

ligands within the active site replicated the known regiospecificity of metabolism. 

 

The docking poses produced by the models gives an insight into the atomic level 

structure of the active site and the interactions between the ligand and protein. This 

gives an indication of the mechanism of substrate recognition and identifies residues 

involved in this interaction. By the comparison of active sites of P450s capable of 

pyrethroid metabolism and those that are incapable, it is possible to identify the 

interactions that are specific for the binding of pyrethroids. It was observed that there 

were commonalities between pyrethroid metabolisers and this could act as a fingerprint 

to identify these features in other P450s to predict their ability as a metaboliser. This 

fingerprint consists of aromatic residues in the active site that are in a position to bind 

with the aromatic moieties of the pyrethroid when bound in a productive mode. These 

π-anchors occur consistently in P450s across clades and appear to be a primary feature 

of substrate recognition. These aromatic residues occur in the BC loop for most of the 

metabolising enzymes identified and these were termed typical metabolisers. In a small 

number of metabolisers these aromatic residues occurred in other parts of the active site 
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but were still in positions to contact the substrate, these were termed non-typical 

metabolisers. These fingerprint residues act as a chemical and structural match for the 

features of the pyrethroid, and appear to be one of the requirements for the binding of 

the ligand to the active site. This study proposes the role of a pi anchor in the binding of 

pyrethroids. By identifying these features, it is possible to predict if a novel P450 is 

capable of metabolising pyrethroids. This can be used to guide experimental studies 

towards likely candidates. 

 

Non metabolisers of pyrethroids were found to be diverse. Some non metabolisers 

contained the fingerprint residues found in the metabolisers, but had additional factors 

that prevented metabolism. These additional features include the presence of aromatic 

networks distant from the heme that act to prevent the ligand from accessing the heme. 

Other non metabolisers lacked the fingerprint residues; for these there were fewer 

complementarities between the pyrethroid and their active sites. Aromatic residues in 

the active site may be needed for the binding of pyrethroids and the lack of these 

residues is associated with a lack of metabolism. In addition, the presence of polar 

residues in the active site is also associated with a lack of activity. A hydrophobic active 

site may be required for the binding of hydrophobic pyrethroids. 

 

The structure of the active site was investigated by the use of fluorescent ligands with 

alkyl chains of differing lengths. The preference towards particular chains was shown to 

be caused by residue substitutions within the substrate recognition site 5 (SRS5) and by 

the structure of this region. This site is also involved in determining the docking pose of 

pyrethroids and in determining its regiospecificity of metabolism. The CYP6M2 and 

CYP6D1 models aided an understanding of the regiospecifity of metabolism. They both 

primarily metabolise the 4‟ position and the dockings show that this preference is due 

partly to the structure of the active site placing this site for metabolism, and partly due 

to its high reactivity. Understanding how P450s bind and metabolise pyrethroids can be 

used to design novel pyrethroids that are resistant to metabolism by masking the sites of 

metabolism, or designing pyrethroids that bind poorly or are activated by metabolism.  
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Features of the active site alone may not be sufficient for the metabolism of pyrethroids 

as non-metabolisers may also share these conservations. Factors external to the active 

site were found to have an effect on substrate preference, including the interaction of 

P450s with the membrane. The orientation of the protein with respect to the membrane 

could affect the access of hydrophobic ligands from the membrane to the active site and 

may have an effect on its interaction with its binding partners. The interaction with b5 

has been found by our collaborators to affect the metabolism of pyrethroids, and in this 

study it was proposed that this may be due to its role as a second electron donor or due 

to a stabilising of the P450 conformation. 

 

An excessive inflammatory response is involved in the development of the severe forms 

of malaria and Mal is an adaptor protein involved in this inflammatory pathway. 

Phosphorylation of Mal is required for its activation and the Mal model and its 

interaction with its binding partners was used to give an insight into the roles of 

phosphorylation. The role of Y86 was suggested to be involved with its interaction with 

the signalling adaptor protein MyD88. The phosphorylated Y86 is able to form bonds 

with the BB loop that are absent in the wild type. In the wild type the tyrosine has a 

lower H-bonding propensity and only forms an unstable transient bridge to the BB loop, 

which is more mobile and adopts an open conformation. The pY86 is able to form 

stable bridges and H-bonds to the BB loop which stabilised the loop in a closed 

conformation. This conformation may be preferred for the interaction with MyD88.  

 

The phosphorylation of Y106 was suggested to be involved with its binding to SOCS1 

which targets Mal for degradation and acts to limit the inflammatory response. Y106 is 

exposed on the surface of Mal and is surrounded by acidic residues. This position has a 

charge complementarity with the positively charged surface surrounding the SOCS1 

phosphate binding pocket. In addition, this complementarity may be used to explain the 

specificity of SOCS1 for Mal. SOCS2 and 3 lack the basic residues that occur in 

SOCS1 with a less basic surface surrounding their binding pockets. This 

characterisation of Mal activation and degradation may be used to identify drug targets 

for the design of ligands that could be used to attenuate the inflammatory response. 
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9.1 Future perspectives 

The models and results obtained in this thesis have given an insight into the structure of 

a range of P450s and their activity towards pyrethroids. The models of metabolisers 

such as CYP6M2 have given an understanding of the structure of the active site and 

how insecticides bind to produce the regiospecific metabolism. The identification of a 

pyrethroid binding fingerprint lays the groundwork for the further study of pyrethroid 

metabolising enzymes. This identification of residues involved in metabolism can be 

used to design new experimental studies using mutagenesis to conform these findings. 

This fingerprint may also act as a basis for the further identification of P450s involved 

in insecticide resistance.  

 

The understanding of how insecticides bind to the active sites of P450s can be used for 

the design the next generation of insecticides that are resistant to metabolism. An 

understanding of binding can lead to insecticides that bind poorly to the P450s 

responsible for resistance, or to design inhibitors specific for these enzymes. An 

understanding of how the regiospecificity of metabolism is achieved can lead to the 

development of insecticides with the site of metabolism masked by inert groups, or may 

be used to place chemical groups that are activated by metabolism to become suicide 

inhibitors or to produce toxic products. The structures of the active sites of these models 

can be used to aid the design of new insecticides. This has implications as the increase 

of insecticide resistance in mosquito affects the ability to control the spread of malaria.  

 

The models can be used for in silico screening of compound databases to find novel 

substrates and inhibitors that can be used to guide experimental work. The identification 

of structural scaffolds from these screens can be used to guide the development of novel 

insecticides. Such screens are cost effective as only the ones selected from in silico 

results need to be tested. The design of a probe that is specific to pyrethroid 

metabolising P450s can be used to identify novel P450s involved in resistance and to 

monitor the levels of resistance in populations, and to suggest changes in the use of 

currently used insecticides to control resistant populations. 

 



300 

 

Infection by malaria can progress into cerebral malaria, a severe form of malaria caused 

by an excessive inflammatory response in the host that is a cause of mortality. The 

adapter protein Mal is central to the inflammatory pathway and mutations in this protein 

can affect the susceptibility of the host to the severe forms of malaria. Malaria is sensed 

by the toll like receptors TLR2 and TLR4 that cause signalling to produce an 

inflammatory response. During this signalling Mal is activated by phosphorylation on 

tyrosines although the role this plays is not fully understood. In this thesis the predicted 

interactions between models of Mal and its binding partners as well as molecular 

dynamics simulations have offered explanations for the importance of phosphorylation. 

An understanding of these interactions is important for the identification of targets for 

drug development to modulate the immune response. This has implications for the 

design of drugs to prevent the progress of malaria into its severe forms, but also as a 

number of other inflammatory disorders involve the same pathway, this may have 

implications for a range of disorders. Mal is a target for drug design and this study 

identifies its binding interfaces with other members of the cascade. These findings may 

be used to target drug discovery.  

 

The results from this thesis highlight the importance of experimental and computational 

studies to work in tandem to fully understand observations. Computational studies can 

explain experimental observations and be used to guide further experimental work.    
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Appendix A 

Python script for Modeller V 8.0 to build the models. 

 
# Homology modelling by the automodel class 

 

from modeller.automodel import *    # Load the automodel class 

 

log.verbose()    # request verbose output 

env = environ()  # create a new MODELLER environment to build this 

model in 

 

# directories for input atom files 

env.io.atom_files_directory = '/home/momlejb2/bin/modeller8v0/' 

env.io.hetatm = True 

env.libs.topology.read(file='/home/momlejb2/bin/modeller8v0/modlib/top

_heav.lib') 

env.libs.parameters.read(file='/home/momlejb2/bin/modeller8v0/modlib/p

ar.lib') 

 

 

 

class mymodel(automodel): 

 

   def special_patches(self,aln): 

      # a patch for FE2S  (position of C, position of heme) 

     self.patch(residue_type='FE2S', residue_ids=('441', '499')) 

      

         

       

a = mymodel(env, 

              alnfile  = '/home/momlejb2/bin/modeller8v0/target and 

template.ali',     # alignment filename 

              knowns   = ( '1TQN', ), # codes of the templates 

              sequence = 'target' 

       )              # code of the target 

a.starting_model= 1                 # index of the first model  

a.ending_model  = 30                 # index of the last model 

                                    # (determines how many models to 

calculate) 

a.make()                            # do the actual homology modelling 
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Appendix B 

The .tcl script to find water bridges. 

 
####################################################### 

#Finds Water Bridges between two selections 

############################################# 

 

###################################################### 

#Select the sections of protein to find bridges between 

 

 

#Set the solvent  

set closewater [atomselect top "water"]  

 

 

#First selection #NOT CARBON- will find any bond to any atom with a H 

set resnameN27 [atomselect top "sidechain residue 2 and not carbon"] 

 

#Second selection 

set resid97 [atomselect top "residue 35 to 50 and not carbon"] 

#output files generated 

 

#debugging 

set file1 [open "close8.dat" w] 

set file2 [open "close9.dat" w] 

 

#output files 

set file3 [open "PROD-10_AD.dat" w] 

set file4 [open "PROD-10_DD.dat" w] 

set file5 [open "PROD-10_DA.dat" w] 

set file6 [open "PROD-10_AA.dat" w] 

 

######################################################### 

#Read in each frame of the trajectory in top 

set n [molinfo top get numframes] 

for { set i 0} {$i < $n} {incr i} { 

 

#update selection in each frame 

$closewater frame $i 

$closewater update 

$resid97 frame $i 

$resid97 update 

$resnameN27 frame $i 

$resnameN27 update 

 

#find hbond between pY and surrounding water pY is the acceptor 

set nhb [measure hbonds 3.5 60 $closewater $resnameN27]  

 

#find hbond between surounding water and SER- Ser is donor 

set SERdon [measure hbonds 3.5 60 $resid97 $closewater ]  

 

#find hbond between surounding water and SER, ser is the aceptor 

set SERacc [measure hbonds 3.5 60 $closewater $resid97  ]  

 

#find H-bond with Y as a donor 

set Ydon [measure hbonds 3.5 60  $resnameN27 $closewater  ]  

puts $file1 "$Ydon || $nhb  || $SERdon" 

 

#hbonds creates 3 lists: 

#0 ontains the indices of the donors 

#1 contains the indices of the acceptors 

#2 contains the index of the hydrogen atom in the hydrogen bond 
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###################################################### 

 

#find the following bridge: 

# 

# pY O--HO--HO SER 

#        H 

#find a common water 

set my_AD 0 

set my_DD 0 

set my_DA 0 

set my_AA 0 

 

foreach donor [lindex $nhb 0] { 

#read through water oxygen id acting as a donor for pY 

 foreach acceptor [lindex $SERdon 1] { 

 #read through each water id acting as an acceptor for SER 

  

 #set my_AD 0 

   

  if  {$donor == $acceptor} {; 

    

   #puts $file3 "$1" 

    

   set my_AD 1 

   puts $file2 "O-HO-HO $i $donor" 

   #puts $file2 "$i $my_AD" 

  } 

 

 } 

} 

 

#find the following bridge: 

# 

#pY O--HOH--O SER 

# 

# 

foreach donor_two [lindex $nhb 0] { 

 foreach acceptor_two [lindex $SERacc 0] { 

 

 #set my_DD 0 

  

  if  {$donor_two == $acceptor_two} {; 

   #puts $file3 "2"  

    

    

   set my_DD 1 

   puts $file2 "O-OHO-O $i $donor_two" 

  } 

 #puts "my_DD $my_DD" 

 } 

} 

 

#find the following bridge: 

#Y-donor  SER-acceptor 

 

#pY OH--OH--O SER 

#  H 

# 

#for each water acceptor 

foreach donor_three [lindex $Ydon 1] { 

 #Ser donor 
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 foreach acceptor_three [lindex $SERacc 0] { 

 

 #set my_DD 0 

  

  if  {$donor_three == $acceptor_three} {; 

   #puts $file3 "2"  

    

    

   set my_DA 1 

   puts $file2 "DA YOH-OH-O $i $donor_three" 

  } 

 #puts "my_DD $my_DD" 

 } 

} 

 

#find the following bridge: 

#Y-donor Ser-donor 

#        H 

#pY OH--O--HO SER 

#  H 

 

#for each water acceptor 

foreach donor_four [lindex $Ydon 1] { 

 #for each ser water acceptor 

 foreach acceptor_four [lindex $SERdon 1] { 

 

 #set my_DD 0 

  

  if  {$donor_four == $acceptor_four} {; 

   #puts $file3 "2"  

    

    

   set my_AA 1 

   puts $file2 "YOH-OH-O $i $donor_four" 

  } 

 #puts "my_DD $my_DD" 

 } 

} 

 

 

#do some stats 

set ADoccupancy [expr 0 + $my_AD] 

set DDoccupancy [expr 0 + $my_DD] 

 

#output the bonds found in current frame 

puts "$i AD $my_AD DD $my_DD DA $my_DA AA $my_AA" 

puts $file3 "$i $my_AD" 

puts $file4 "$i $my_DD" 

puts $file5 "$i $my_DA" 

puts $file6 "$i $my_AA" 

 

} 

close $file1  

close $file2 

close $file3 

close $file4 

close $file5 

close $file6 

 

set final_occ  [expr $ADoccupancy/$i] 

puts "$i occupancy is $ADoccupancy $final_occ %" 

 


